1
|
Ma J, Qiu J, Wright GA, Wang S. Oxygen/Nitric Oxide Dual-Releasing Nanozyme for Augmenting TMZ-Mediated Apoptosis and Necrosis. Mol Pharm 2025; 22:168-180. [PMID: 39571173 PMCID: PMC11707740 DOI: 10.1021/acs.molpharmaceut.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor, with a poor prognosis. Temozolomide (TMZ) represents the standard chemotherapy for GBM but has limited efficacy due to poor targeting and a hypoxic tumor microenvironment (TME). To address these challenges, we developed a dual-gas-releasing, cancer-cell-membrane-camouflaged nanoparticle to deliver TMZ. This nanoceria, camouflaged with a cancer cell membrane (CCM-CeO2), targets explicitly GBM cells and accumulates in lysosomes, triggering the rapid release of TMZ. Additionally, CCM-CeO2 could release oxygen (O2) and nitric oxide (NO) in response to the TME. Synthesized using d-arginine, catalytic nanoceria could decompose excessive hydrogen peroxide (H2O2) in the TME to produce O2, while d-arginine could nonenzymatically react with H2O2 to generate NO. CCM-CeO2 could penetrate GBM spheroids to a depth of 148.3 ± 31 μm, with the O2 and NO produced, reducing HIF-1α protein expression. When loaded with TMZ, CCM-CeO2 could increase the intracellular ROS produced by TMZ, leading to lysosome membrane permeabilization and notably augmented apoptosis and necrosis in GBM cells. An in vitro antitumor assay using spheroids showed that CCM-CeO2 reduced the IC50 value of TMZ from 174.5 to 42.6 μg/mL, likely due to the catalase-like activity of nanoceria. These results suggest that alleviating hypoxia and increasing ROS produced by chemotherapeutics could be an effective therapeutic strategy for treating GBM.
Collapse
Affiliation(s)
- Jun Ma
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Jingjing Qiu
- Department
of Mechanical Engineering & Department of Materials Science and
Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Gus A. Wright
- Flow
Cytometry Facility, College of Veterinary Medicine & Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Shiren Wang
- Department
of Industrial Systems and Engineering & Department of Materials
Science and Engineering & Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Spina A, Guidarelli A, Buffi G, Fiorani M, Cantoni O. Unveiling the link between NADPH oxidase 2 activation and mitochondrial superoxide formation in leukemic cell killing induced by arsenic trioxide. Pharmacol Res 2025; 211:107554. [PMID: 39694125 DOI: 10.1016/j.phrs.2024.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
This study focused on the interplay between NADPH oxidase 2 (NOX 2) activation and mitochondrial superoxide (mitoO2.-) formation induced by clinically relevant concentrations of arsenic trioxide (ATO; As2O3) in acute promyelocytic leukemia (APL) cells. Carefully controlled inhibitor studies and small interfering RNA mediated downregulation of p47phox (a component of the NOX 2 complex) expression demonstrated that, in an APL cell line, ATO promotes upstream NOX 2 activation critically connected with the formation of mitoO2.- and with the ensuing mitochondrial permeability transition (MPT)-dependent apoptosis. Instead, acute myeloid leukemia (AML) cell lines respond to ATO with low NOX 2 activation, resulting in a state that is non-permissive for mitoO2.- formation. Consistently, through rescue experiments, we demonstrate that pharmacological stimulation of NOX 2 overcomes resistance in these cells, thereby initiating the same cascade of downstream events observed in APL cells. As a final note, several lines of evidence, including measurement of glutathione, catalase and glutathione peroxidase levels, indicated that the antioxidant machinery was similar in APL and AML cells. The results regarding nuclear factor erythroid 2 p45-related factor 2-dependent antioxidant responses were instead of more complex interpretation as NB4 cells appeared particularly responsive to ATO. Our findings allow a novel interpretation of the interplay between NOX 2 activation and mitoO2.- formation induced by ATO, ultimately steering leukemic cells towards MPT-dependent apoptosis. These mechanistic insights provide a rationale for the disparate responses of APL and AML cells to ATO, offering potential avenues for the development of therapeutic intervention tailored to specific leukemia subtypes.
Collapse
MESH Headings
- Arsenic Trioxide/pharmacology
- Humans
- Superoxides/metabolism
- Mitochondria/drug effects
- Mitochondria/metabolism
- Antineoplastic Agents/pharmacology
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/pathology
- NADPH Oxidase 2/metabolism
- NADPH Oxidase 2/genetics
- Arsenicals/pharmacology
- Cell Line, Tumor
- Oxides/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Apoptosis/drug effects
- Enzyme Activation/drug effects
- NADPH Oxidases/metabolism
- NADPH Oxidases/genetics
Collapse
Affiliation(s)
- Andrea Spina
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
3
|
Elia G, Ferrari SM, Tkachenko I, Walunj D, Balestri E, Botrini C, Ragusa F, Antonelli A, Gellerman G, Fallahi P. Antineoplastic effect of doxorubizen in vitro in continuous and primary human anaplastic thyroid cancer cells. Endocrine 2024:10.1007/s12020-024-04088-5. [PMID: 39570323 DOI: 10.1007/s12020-024-04088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE New drugs are needed for the therapy of anaplastic thyroid cancer (ATC). This study aims to investigate doxorubizen (a dual-action structural hybrid (chimera) of doxorubicin (Dox) and DNA methylating drug temozolomide), in comparison with Dox, and alone or in combination with lenvatinib in ATC 8305C cells, and in primary human ATC cell cultures (pATC). METHODS We have investigated doxorubizen, Dox, and lenvatinib on 5 different pATC and in continuous 8305C cell line in vitro, evaluating their effect on cells proliferation by WST-1, apoptosis (Hoechst ad Annexin V assays) and migration (Chemicon QCM™ 96-well Migration Assay). RESULTS The results have demonstrated: (1) a significant antiproliferative and proapoptotic effect of doxorubizen in 8305C and in pATC; (2) a significant antiproliferative and proapoptotic effect of Dox in pATC, and in 8305C; (3) the antineoplastic effect of lenvatinib in 8305C and in pATC; (4) a stronger antiproliferative and proapoptotic effect of doxorubizen than that of Dox, or lenvatinib; (5) that doxorubizen induced an inhibition of migration in pATC stronger than that of Dox, or lenvatinib; (6) that doxorubizen is able to synergize in vitro with lenvatinib increasing the antiproliferative effect, while doxorubizen alone is the primary factor that promotes the proapoptotic impact. CONCLUSION We have first shown that doxorubizen has a potent antineoplastic effect in vitro in 8305C and in 5 different pATC, and that can synergize with lenvatinib. These results open the way to a future evaluation of the antineoplastic effect of doxorubizen in ATC patients.
Collapse
Affiliation(s)
- Giusy Elia
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Iryna Tkachenko
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Dipak Walunj
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Eugenia Balestri
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Chiara Botrini
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Gary Gellerman
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
Pulfer A, Pizzagalli DU, Gagliardi PA, Hinderling L, Lopez P, Zayats R, Carrillo-Barberà P, Antonello P, Palomino-Segura M, Grädel B, Nicolai M, Giusti A, Thelen M, Gambardella LM, Murooka TT, Pertz O, Krause R, Gonzalez SF. Transformer-based spatial-temporal detection of apoptotic cell death in live-cell imaging. eLife 2024; 12:RP90502. [PMID: 38497754 PMCID: PMC10948145 DOI: 10.7554/elife.90502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial-temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial-temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial-temporal regulation of this process.
Collapse
Affiliation(s)
- Alain Pulfer
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
- Department of Information Technology and Electrical Engineering, ETH ZurichZürichSwitzerland
| | - Diego Ulisse Pizzagalli
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
- Euler Institute, USILuganoSwitzerland
| | | | | | | | | | - Pau Carrillo-Barberà
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de ValènciaValenciaSpain
| | - Paola Antonello
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
- Institute of Cell Biology, University of BernBernSwitzerland
| | | | - Benjamin Grädel
- Institute of Cell Biology, University of BernBernSwitzerland
| | | | - Alessandro Giusti
- Dalle Molle Institute for Artificial Intelligence, IDSIALuganoSwitzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
| | | | | | - Olivier Pertz
- Institute of Cell Biology, University of BernBernSwitzerland
| | | | | |
Collapse
|
5
|
Abirami A, Devan U, Ramesh R, Antony Joseph Velanganni A, Małecki JG. Exploring the cytotoxicity of dinuclear Ru(II) p-cymene complexes appended N, N'-bis(4-substituted benzoyl)hydrazines: insights into the mechanism of apoptotic cell death. Dalton Trans 2024; 53:5167-5179. [PMID: 38380977 DOI: 10.1039/d3dt04234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cancer is a perilous life-threatening disease, and attempts are constantly being made to create multinuclear transition metal complexes that could lead to the development of potential anticancer medications and administration procedures. Hence, this work aims to design, synthesize, characterize, and assess the anticancer efficacy of ruthenium p-cymene complexes incorporating N,N'-bis(4-substituted benzoyl)hydrazine ligands. The formation of the new complexes (Ru2H1-Ru2H3) has been thoroughly established by elemental analysis, and FT-IR, UV-vis, NMR, and HR-MS spectral techniques. The solid-state molecular structures of the complexes Ru2H1 and Ru2H3 have been determined using the SC-XRD study, which confirms the N, O, and Cl-legged piano stool pseudo-octahedral geometry of each ruthenium(II) ion. The stability of these complexes in the solution state and their lipophilicity profile have been determined. Furthermore, the title complexes were tested for their in vitro anticancer activity against cancerous H460 (lung cancer cells), SkBr3 (breast cancer cells), HepG2 (liver cancer cells), and HeLa (cervical cancer cells) along with non-cancerous (HEK-293) cells. The IC50 results revealed that complex Ru2H3 exhibits potent activity against the proliferation of all four cancer cells and outscored the effect of the standard metallodrug cisplatin. This may be attributed to the presence of a couple of lipophilic electron-donating methoxy groups in the ligand scaffold and also the ruthenium(II) p-cymene motifs. Advantageously, all the complexes (Ru2H1-Ru2H3) displayed cytotoxic specificity only towards cancerous cells by leaving the off-target non-cancerous cells undamaged. Acridine orange/ethidium bromide (AO/EB) staining, Hoechst 33342, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) staining assays were used to investigate the apoptotic pathway and ROS levels in mitochondria. The results of western blot analysis confirmed that the complexes triggered apoptosis through an intrinsic mitochondrial pathway by upregulating Bax and downregulating Bcl-2 proteins. Finally, the extent of apoptosis triggered by the complex Ru2H3 was quantified with the aid of flow cytometry using the Annexin V-FITC/propidium iodide (PI) double-staining technique.
Collapse
Affiliation(s)
- Arunachalam Abirami
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Umapathy Devan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Arockiam Antony Joseph Velanganni
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
Varlamova EG, Baryshev AS, Gudkov SV, Babenko VA, Plotnikov EY, Turovsky EA. Cerium Oxide Nanoparticles Protect Cortical Astrocytes from Oxygen-Glucose Deprivation through Activation of the Ca 2+ Signaling System. Int J Mol Sci 2023; 24:14305. [PMID: 37762608 PMCID: PMC10531718 DOI: 10.3390/ijms241814305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Most of the works aimed at studying the cytoprotective properties of nanocerium are usually focused on the mechanisms of regulation of the redox status in cells while the complex effects of nanocerium on calcium homeostasis, the expression of pro-apoptotic and protective proteins are generally overlooked. There is a problem of a strong dependence of the effects of cerium oxide nanoparticles on their size, method of preparation and origin, which significantly limits their use in medicine. In this study, using the methods of molecular biology, immunocytochemistry, fluorescence microscopy and inhibitory analysis, the cytoprotective effect of cerium oxide nanoparticles obtained by laser ablation on cultured astrocytes of the cerebral cortex under oxygen-glucose deprivation (OGD) and reoxygenation (ischemia-like conditions) are shown. The concentration effects of cerium oxide nanoparticles on ROS production by astrocytes in an acute experiment and the effects of cell pre-incubation with nanocerium on ROS production under OGD conditions were studied. The dose dependence for nanocerium protection of cortical astrocytes from a global increase in calcium ions during oxygen-glucose deprivation and cell death were demonstrated. The concentration range of cerium oxide nanoparticles at which they have a pro-oxidant effect on cells has been identified. The effect of nanocerium concentrations on astrocyte preconditioning, accompanied by increased expression of protective proteins and limited ROS production induced by oxygen-glucose deprivation, has been investigated. In particular, a correlation was found between an increase in the concentration of cytosolic calcium under the action of nanocerium and the suppression of cell death. As a result, the positive and negative effects of nanocerium under oxygen-glucose deprivation and reoxygenation in astrocytes were revealed at the molecular level. Nanocerium was found to act as a "double-edged sword" and to have a strictly defined concentration therapeutic "window".
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
7
|
Varlamova EG, Uspalenko NI, Khmil NV, Shigaeva MI, Stepanov MR, Ananyan MA, Timchenko MA, Molchanov MV, Mironova GD, Turovsky EA. A Comparative Analysis of Neuroprotective Properties of Taxifolin and Its Water-Soluble Form in Ischemia of Cerebral Cortical Cells of the Mouse. Int J Mol Sci 2023; 24:11436. [PMID: 37511195 PMCID: PMC10380368 DOI: 10.3390/ijms241411436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral ischemia, and, as a result, insult, attacks up to 15 million people yearly in the world. In this connection, the development of effective preventive programs and methods of therapy has become one of the most urgent problems in modern angiology and pharmacology. The cytoprotective action of taxifolin (TAX) in ischemia is well known, but its limitations are also known due to its poor solubility and low capacity to pass through the hematoencephalic barrier. Molecular mechanisms underlying the protective effect of TAX in complex systems such as the brain remain poorly understood. It is known that the main cell types of the brain are neurons, astrocytes, and microglia, which regulate the activity of each other through neuroglial interactions. In this work, a comparative study of cytoprotective mechanisms of the effect of TAX and its new water-soluble form aqua taxifolin (aqTAX) was performed on cultured brain cells under ischemia-like conditions (oxygen-glucose deprivation (OGD)) followed by the reoxygenation of the culture medium. The concentration dependences of the protective effects of both taxifolin forms were determined using fluorescence microscopy, PCR analysis, and vitality tests. It was found that TAX began to effectively inhibit necrosis and the late stages of apoptosis in the concentration range of 30-100 µg/mL, with aqTAX in the range of 10-30 µg/mL. At the level of gene expression, aqTAX affected a larger number of genes than TAX; enhanced the basic and OGD/R-induced expression of genes encoding ROS-scavenging proteins with a higher efficiency, as well as anti-inflammatory and antiapoptotic proteins; and lowered the level of excitatory glutamate receptors. As a result, aqTAX significantly inhibited the OGD-induced increase in the Ca2+ levels in the cytosol ([Ca2+]i) in neurons and astrocytes under ischemic conditions. After a 40 min preincubation of cells with aqTAX under hypoxic conditions, these Ca2+ signals were completely inhibited, resulting in an almost complete suppression of necrotic death of cerebral cortical cells, which was not observed with the use of classical TAX.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nina I Uspalenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Natalia V Khmil
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria I Shigaeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Maria A Timchenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
8
|
Varlamova EG, Khabatova VV, Gudkov SV, Turovsky EA. Ca 2+-Dependent Effects of the Selenium-Sorafenib Nanocomplex on Glioblastoma Cells and Astrocytes of the Cerebral Cortex: Anticancer Agent and Cytoprotector. Int J Mol Sci 2023; 24:ijms24032411. [PMID: 36768736 PMCID: PMC9917080 DOI: 10.3390/ijms24032411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Despite the fact that sorafenib is recommended for the treatment of oncological diseases of the liver, kidneys, and thyroid gland, and recently it has been used for combination therapy of brain cancer of various genesis, there are still significant problems for its widespread and effective use. Among these problems, the presence of the blood-brain barrier of the brain and the need to use high doses of sorafenib, the existence of mechanisms for the redistribution of sorafenib and its release in the brain tissue, as well as the high resistance of gliomas and glioblastomas to therapy should be considered the main ones. Therefore, there is a need to create new methods for delivering sorafenib to brain tumors, enhancing the therapeutic potential of sorafenib and reducing the cytotoxic effects of active compounds on the healthy environment of tumors, and ideally, increasing the survival of healthy cells during therapy. Using vitality tests, fluorescence microscopy, and molecular biology methods, we showed that the selenium-sorafenib (SeSo) nanocomplex, at relatively low concentrations, is able to bypass the mechanisms of glioblastoma cell chemoresistance and to induce apoptosis through Ca2+-dependent induction of endoplasmic reticulum stress, changes in the expression of selenoproteins and selenium-containing proteins, as well as key kinases-regulators of oncogenicity and cell death. Selenium nanoparticles (SeNPs) also have a high anticancer efficacy in glioblastomas, but are less selective, since SeSo in cortical astrocytes causes a more pronounced activation of the cytoprotective pathways.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
9
|
Varlamova EG, Plotnikov EY, Turovsky EA. Neuronal Calcium Sensor-1 Protects Cortical Neurons from Hyperexcitation and Ca 2+ Overload during Ischemia by Protecting the Population of GABAergic Neurons. Int J Mol Sci 2022; 23:ijms232415675. [PMID: 36555318 PMCID: PMC9778989 DOI: 10.3390/ijms232415675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
A defection of blood circulation in the brain leads to ischemia, damage, and the death of nerve cells. It is known that individual populations of GABAergic neurons are the least resistant to the damaging factors of ischemia and therefore they die first of all, which leads to impaired inhibition in neuronal networks. To date, the neuroprotective properties of a number of calcium-binding proteins (calbindin, calretinin, and parvalbumin), which are markers of GABAergic neurons, are known. Neuronal calcium sensor-1 (NCS-1) is a signaling protein that is expressed in all types of neurons and is involved in the regulation of neurotransmission. The role of NCS-1 in the protection of neurons and especially their individual populations from ischemia and hyperexcitation has not been practically studied. In this work, using the methods of fluorescence microscopy, vitality tests, immunocytochemistry, and PCR analysis, the molecular mechanisms of the protective action of NCS-1 in ischemia/reoxygenation and hyperammonemia were established. Since NCS-1 is most expressed in GABAergic neurons, the knockdown of this protein with siRNA led to the most pronounced consequences in GABAergic neurons. The knockdown of NCS-1 (NCS-1-KD) suppressed the basic expression of protective proteins without significantly reducing cell viability. However, ischemia-like conditions (oxygen-glucose deprivation, OGD) and subsequent 24-h reoxygenation led to a more massive activation of apoptosis and necrosis in neurons with NCS-1-KD, compared to control cells. The mass death of NCS-1-KD cells during OGD and hyperammonemia has been associated with the induction of a more pronounced network hyperexcitation symptom, especially in the population of GABAergic neurons, leading to a global increase in cytosolic calcium ([Ca2+]i). The symptom of hyperexcitation of neurons with NCS-1-KD correlated with a decrease in the level of expression of the calcium-binding protein-parvalbumin. This was accompanied by an increase in the expression of excitatory ionotropic glutamate receptors, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (NMDAR and AMPAR) against the background of suppression of the expression of glutamate decarboxylase (synthesis of γ-aminobutyric acid).
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| |
Collapse
|
10
|
Cytoprotective Properties of a New Nanocomplex of Selenium with Taxifolin in the Cells of the Cerebral Cortex Exposed to Ischemia/Reoxygenation. Pharmaceutics 2022; 14:pharmaceutics14112477. [PMID: 36432668 PMCID: PMC9697510 DOI: 10.3390/pharmaceutics14112477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The neuroprotective effect of the natural antioxidant taxifolin (TAX) is well known for ischemic pathologies. However, the limitations of taxifolin application are described-poor solubility, low ability to penetrate the blood-brain barrier, and side effects from high doses for stroke therapy. We proposed the problem of targeted delivery of taxifolin and achievement effective concentrations could be solved by developing a nanocomplex of selenium nanoparticles (SeNPs) with taxifolin (Se-TAX). In this study, we developed a selenium-taxifolin nanocomplex based on selenium nanoparticles with a 100 nm size. It was shown that TAX, SeNPs, and Se-TAX were all able to suppress the production of ROS in neurons and astrocytes under exposure to exogenous H2O2 and ischemia-like conditions. However, the Se-TAX nanocomplex appeared to be the most effective, displaying a lower working concentration range and negligible pro-oxidant effect compared with pure SeNPs. The mechanism of Se-TAX beneficial effects involved the activation of some antioxidant enzymes and the suppression of ROS-generating systems during OGD/reoxygenation, while TAX and "naked" SeNPs were less effective in regulating the cellular redox status. Naked SeNPs inhibited a global increase in Ca2+ ions in cytosol, but not OGD-induced hyperexcitation of the neuroglial network, while Se-TAX suppressed both [Ca2+]i rise and hyperexcitation. The effect of TAX at similar doses appeared exclusively in inhibiting OGD-induced hyperexcitation. Analysis of necrosis and apoptosis after OGD/reoxygenation revealed the highest efficiency of the Se-TAX nanocomplex as well. Se-TAX suppressed the expression of proinflammatory and proapoptotic proteins with simultaneous activation of protective genes. We conclude that the Se-TAX nanocomplex combines the antioxidative features taxifolin and the antiapoptotic effect of nanoselenium, involving the regulation of Ca2+ dynamics.
Collapse
|
11
|
Size-Dependent Cytoprotective Effects of Selenium Nanoparticles during Oxygen-Glucose Deprivation in Brain Cortical Cells. Int J Mol Sci 2022; 23:ijms23137464. [PMID: 35806466 PMCID: PMC9267189 DOI: 10.3390/ijms23137464] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that selenium nanoparticles (SeNPs) obtained on their basis have a pleiotropic effect, inducing the process of apoptosis in tumor cells, on the one hand, and protecting healthy tissue cells from death under stress, on the other hand. It has been established that SeNPs protect brain cells from ischemia/reoxygenation through activation of the Ca2+ signaling system of astrocytes and reactive astrogliosis. At the same time, for a number of particles, the limitations of their use, associated with their size, are shown. The use of nanoparticles with a diameter of less than 10 nm leads to their short life-time in the bloodstream and rapid removal by the liver. Nanoparticles larger than 200 nm activate the complement system and are also quickly removed from the blood. The effects of different-sized SeNPs on brain cells have hardly been studied. Using the laser ablation method, we obtained SeNPs of various diameters: 50 nm, 100 nm, and 400 nm. Using fluorescence microscopy, vitality tests, PCR analysis, and immunocytochemistry, it was shown that all three types of the different-sized SeNPs have a cytoprotective effect on brain cortex cells under conditions of oxygen-glucose deprivation (OGD) and reoxygenation (R), suppressing the processes of necrotic death and inhibiting different efficiency processes of apoptosis. All of the studied SeNPs activate the Ca2+ signaling system of astrocytes, while simultaneously inducing different types of Ca2+ signals. SeNPs sized at 50 nm- induce Ca2+ responses of astrocytes in the form of a gradual irreversible increase in the concentration of cytosolic Ca2+ ([Ca2+]i), 100 nm-sized SeNPs induce stable Ca2+ oscillations without increasing the base level of [Ca2+]i, and 400 nm-sized SeNPs cause mixed patterns of Ca2+ signals. Such differences in the level of astrocyte Ca2+ signaling can explain the different cytoprotective efficacy of SeNPs, which is expressed in the expression of protective proteins and the activation of reactive astrogliosis. In terms of the cytoprotective efficiency under OGD/R conditions, different-sized SeNPs can be arranged in descending order: 100 nm-sized > 400 nm-sized > 50 nm-sized.
Collapse
|
12
|
Varlamova EG, Goltyaev MV, Simakin AV, Gudkov SV, Turovsky EA. Comparative Analysis of the Cytotoxic Effect of a Complex of Selenium Nanoparticles Doped with Sorafenib, "Naked" Selenium Nanoparticles, and Sorafenib on Human Hepatocyte Carcinoma HepG2 Cells. Int J Mol Sci 2022; 23:6641. [PMID: 35743086 PMCID: PMC9223423 DOI: 10.3390/ijms23126641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the use of sorafenib as one of the most effective drugs for the treatment of liver cancer, its significant limitations remain-poor solubility, the need to use high doses with the ensuing complications on healthy tissues and organs, and the formation of cell resistance to the drug. At the same time, there is more and more convincing evidence of the anticancer effect of selenium-containing compounds and nanoparticles. The aim of this work was to develop a selenium-sorafenib nanocomplex and study the molecular mechanisms of its anticancer effect on human hepatocyte carcinoma cells, where nanoselenium is not only a sorafenib transporter, but also an active compound. We have created a selenium-sorafenib nanocomplex based on selenium nanoparticles with size 100 nm. Using vitality tests, fluorescence microscopy, and PCR analysis, it was possible to show that selenium nanoparticles, both by themselves and doped with sorafenib, have a pronounced pro-apoptotic effect on HepG2 cells with an efficiency many times greater than that of sorafenib (So). "Naked" selenium nanoparticles (SeNPs) and the selenium-sorafenib nanocomplex (SeSo), already after 24 h of exposure, lead to the induction of the early stages of apoptosis with the transition to the later stages with an increase in the incubation time up to 48 h. At the same time, sorafenib, at the studied concentrations, began to exert a proapoptotic effect only after 48 h. Under the action of SeNPs and SeSo, both classical pathways of apoptosis induction and ER-stress-dependent pathways involving Ca2+ ions are activated. Thus, sorafenib did not cause the generation of Ca2+ signals by HepG2 cells, while SeNPs and SeSo led to the activation of the Ca2+ signaling system of cells. At the same time, the selenium-sorafenib nanocomplex turned out to be more effective in activating the Ca2+ signaling system of cells, inducing apoptosis and ER stress by an average of 20-25% compared to "naked" selenium nanoparticles. Our data on the mechanisms of action and the created nanocomplex are promising as a platform for the creation of highly selective and effective drugs with targeted delivery to tumors.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Mikhail V. Goltyaev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Aleksander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia; (A.V.S.); (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia; (A.V.S.); (S.V.G.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| |
Collapse
|
13
|
Wang X, Xu X, Mao G, Guo Y, Wang G, Sun X, Xu N, Zhang Z. Structural Characterization of Gracilariopsis lemaneiformis Polysaccharide and Its Property in Delaying Cellular Senescence. Front Nutr 2022; 9:876992. [PMID: 35651509 PMCID: PMC9149564 DOI: 10.3389/fnut.2022.876992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
The sulfated polysaccharide was isolated from the purified G. lemaneiformis polysaccharide (PGP), and its property in delaying H2O2-induced 2BS cellular senescence was studied. The results showed that PGP was a linear polysaccharide containing alternating α-(1 → 3)- and β-(1 → 4)-galactopyranose units. Most of the sulfate groups are at C6 of the -(1 → 4)-α-D-Galp, and a small part of them are at C3 and C6. PGP pretreatment could decrease SA-β-gal-positive cells and prevent the formation of senescence-associated heterochromatic foci (SAHF) induced by H2O2 in a dose-dependent manner. It is speculated that PGP may delay aging by downregulating the expression of p21 and p53 genes. The finding provides new insights into the beneficial role of G. lemaneiformis polysaccharide (GP) on retarding senescence process.
Collapse
Affiliation(s)
- Xiaomei Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Xiaogang Xu
- Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Yue Guo
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xue Sun
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Nianjun Xu
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| |
Collapse
|
14
|
Abstract
Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes.
Collapse
Affiliation(s)
- Xiao Liu
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
15
|
Features of the cytoprotective effect of selenium nanoparticles on primary cortical neurons and astrocytes during oxygen-glucose deprivation and reoxygenation. Sci Rep 2022; 12:1710. [PMID: 35110605 PMCID: PMC8810781 DOI: 10.1038/s41598-022-05674-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The study is aimed at elucidating the effect of selenium nanoparticles (SeNPs) on the death of cells in the primary culture of mouse cerebral cortex during oxygen and glucose deprivation (OGD). A primary cell culture of the cerebral cortex containing neurons and astrocytes was subjected to OGD and reoxygenation to simulate cerebral ischemia-like conditions in vitro. To evaluate the neuroprotective effect of SeNPs, cortical astrocytes and neurons were incubated for 24 h with SeNPs, and then subjected to 2-h OGD, followed by 24-h reoxygenation. Vitality tests, fluorescence microscopy, and real-time PCR have shown that incubation of primary cultured neurons and astrocytes with SeNPs at concentrations of 2.5–10 µg/ml under physiological conditions has its own characteristics depending on the type of cells (astrocytes or neurons) and leads to a dose-dependent increase in apoptosis. At low concentration SeNPs (0.5 µg/ml), on the contrary, almost completely suppressed the processes of basic necrosis and apoptosis. Both high (5 µg/ml) and low (0.5 µg/ml) concentrations of SeNPs, added for 24 h to the cells of cerebral cortex, led to an increase in the expression level of genes Bcl-2, Bcl-xL, Socs3, while the expression of Bax was suppressed. Incubation of the cells with 0.5 µg/ml SeNPs led to a decrease in the expression of SelK and SelT. On the contrary, 5 µg/ml SeNPs caused an increase in the expression of SelK, SelN, SelT, SelP. In the ischemic model, after OGD/R, there was a significant death of brain cells by the type of necrosis and apoptosis. OGD/R also led to an increase in mRNA expression of the Bax, SelK, SelN, and SelT genes and suppression of the Bcl-2, Bcl-xL, Socs3, SelP genes. Pre-incubation of cell cultures with 0.5 and 2.5 µg/ml SeNPs led to almost complete inhibition of OGD/R-induced necrosis and greatly reduced apoptosis. Simultaneously with these processes we observed suppression of caspase-3 activation. We hypothesize that the mechanisms of the protective action of SeNPs involve the activation of signaling cascades recruiting nuclear factors Nrf2 and SOCS3/STAT3, as well as the activation of adaptive pathways of ESR signaling of stress arising during OGD and involving selenoproteins SelK and SelT, proteins of the Bcl-2 family ultimately leading to inactivation of caspase-3 and inhibition of apoptosis. Thus, our results demonstrate that SeNPs can act as neuroprotective agents in the treatment of ischemic brain injuries.
Collapse
|
16
|
Turovsky EA, Varlamova EG, Gudkov SV, Plotnikov EY. The Protective Mechanism of Deuterated Linoleic Acid Involves the Activation of the Ca 2+ Signaling System of Astrocytes in Ischemia In Vitro. Int J Mol Sci 2021; 22:ijms222413216. [PMID: 34948013 PMCID: PMC8706680 DOI: 10.3390/ijms222413216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Ischemia-like (oxygen-glucose deprivation, OGD) conditions followed by reoxygenation (OGD/R) cause massive death of cerebral cortex cells in culture as a result of the induction of necrosis and apoptosis. Cell death occurs as a result of an OGD-induced increase in Ca2+ ions in the cytosol of neurons and astrocytes, an increase in the expression of genes encoding proapoptotic and inflammatory genes with suppression of protective genes. The deuterated form of linoleic polyunsaturated fatty acid (D4-Lnn) completely inhibits necrosis and greatly reduces apoptotic cell death with an increase in the concentration of fatty acid in the medium. It was shown for the first time that D4-Lnn, through the activation of the phosphoinositide calcium system of astrocytes, causes their reactivation, which correlates with the general cytoprotective effect on the cortical neurons and astrocytes in vitro. The mechanism of the cytoprotective action of D4-Lnn involves the inhibition of the OGD-induced calcium ions, increase in the cytosolic and reactive oxygen species (ROS) overproduction, the enhancement of the expression of protective genes, and the suppression of damaging proteins.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.A.T.); (E.G.V.)
| | - Elena G. Varlamova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.A.T.); (E.G.V.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
17
|
Yang J, Chen W, Sun Y, Xia P, Liu J, Zhang W. The role of microRNAs in regulating cadmium-induced apoptosis by targeting Bcl-2 in IEC-6 cells. Toxicol Appl Pharmacol 2021; 432:115737. [PMID: 34662668 DOI: 10.1016/j.taap.2021.115737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd) is one of the most harmful environmental pollutants and has been found to have adverse effects on the gut. However, the toxic effects and potential mechanism of Cd on intestinal epithelial cells (IECs) are poorly understood. This study evaluated the effects of Cd exposure (0, 0.25, 0.5, 1, 2, and 4 μM) on IEC-6 cells in terms of cell viability and apoptosis, as well as apoptosis-associated gene expression. The results indicated that low doses (0.25- 1 μM) of Cd exhibited hormetic effects, while high doses of Cd (2 and 4 μM) reduced cell viability. The apoptotic effect increased in a dose-dependent pattern. Moreover, the mRNA levels of the Bcl-2, Bax and Caspase 3 genes were altered, which was in agreement with their protein expression. Based on sequencing analysis, the expression pattern of the microRNAs (miRNAs) changed significantly in the 2 μM Cd-treated group. QRT-PCR verified that 7 miRNAs, including miR-124-3p and miR-370-3p, were all upregulated with dose-effect relationship. Besides, transfection of miR-124-3p and miR-370-3p mimics /inhibitor and Bcl-2 siRNA into IEC-6 cells verified that these two miRNAs could regulate Cd-induced apoptosis by targeting Bcl-2. Finally, the direct targeting relationship between miR-370-3p and Bcl-2 gene was confirmed by luciferase reporter assay. Overall, the results demonstrated that Cd exposure could induce apoptosis in IEC-6 cells. The potential mechanism may be interference with the regulation of Bcl-2 gene expression by miR-370-3p and miR-124-3p.
Collapse
Affiliation(s)
- Jinsong Yang
- Department of Infectious Disease Prevention and Control, Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Jintai Road No.76, 350001, China.
| | - Wei Chen
- Department of Infectious Disease Prevention and Control, Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Jintai Road No.76, 350001, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyuan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China
| | - Pincang Xia
- Department of Infectious Disease Prevention and Control, Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Jintai Road No.76, 350001, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyuan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyuan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China.
| |
Collapse
|
18
|
Varlamova EG, Turovsky EA, Babenko VA, Plotnikov EY. The Mechanisms Underlying the Protective Action of Selenium Nanoparticles against Ischemia/Reoxygenation Are Mediated by the Activation of the Ca 2+ Signaling System of Astrocytes and Reactive Astrogliosis. Int J Mol Sci 2021; 22:ijms222312825. [PMID: 34884629 PMCID: PMC8657910 DOI: 10.3390/ijms222312825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, much attention has been paid to the study of the therapeutic effect of the microelement selenium, its compounds, especially selenium nanoparticles, with a large number of works devoted to their anticancer effects. Studies proving the neuroprotective properties of selenium nanoparticles in various neurodegenerative diseases began to appear only in the last 5 years. Nevertheless, the mechanisms of the neuroprotective action of selenium nanoparticles under conditions of ischemia and reoxygenation remain unexplored, especially for intracellular Ca2+ signaling and neuroglial interactions. This work is devoted to the study of the cytoprotective mechanisms of selenium nanoparticles in the neuroglial networks of the cerebral cortex under conditions of ischemia/reoxygenation. It was shown for the first time that selenium nanoparticles dose-dependently induce the generation of Ca2+ signals selectively in astrocytes obtained from different parts of the brain. The generation of these Ca2+ signals by astrocytes occurs through the release of Ca2+ ions from the endoplasmic reticulum through the IP3 receptor upon activation of the phosphoinositide signaling pathway. An increase in the concentration of cytosolic Ca2+ in astrocytes leads to the opening of connexin Cx43 hemichannels and the release of ATP and lactate into the extracellular medium, which trigger paracrine activation of the astrocytic network through purinergic receptors. Incubation of cerebral cortex cells with selenium nanoparticles suppresses ischemia-induced increase in cytosolic Ca2+ and necrotic cell death. Activation of A2 reactive astrocytes exclusively after ischemia/reoxygenation, a decrease in the expression level of a number of proapoptotic and proinflammatory genes, an increase in lactate release by astrocytes, and suppression of the hyperexcitation of neuronal networks formed the basis of the cytoprotective effect of selenium nanoparticles in our studies.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Federal Research Center “Pushchino Scientific Center for Biological Research, Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Egor A. Turovsky
- Federal Research Center “Pushchino Scientific Center for Biological Research, Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.B.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.B.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
19
|
A Radioactive-Free Method for the Thorough Analysis of the Kinetics of Cell Cytotoxicity. J Imaging 2021; 7:jimaging7110222. [PMID: 34821853 PMCID: PMC8624610 DOI: 10.3390/jimaging7110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
The cytotoxic activity of T cells and Natural Killer cells is usually measured with the chromium release assay (CRA), which involves the use of 51Chromium (51Cr), a radioactive substance dangerous to the operator and expensive to handle and dismiss. The accuracy of the measurements depends on how well the target cells incorporate 51Cr during labelling which, in turn, depends on cellular division. Due to bystander metabolism, the target cells spontaneously release 51Cr, producing a high background noise. Alternative radioactive-free methods have been developed. Here, we compare a bioluminescence (BLI)-based and a carboxyfluorescein succinimidyl ester (CFSE)-based cytotoxicity assay to the standard radioactive CRA. In the first assay, the target cells stably express the enzyme luciferase, and vitality is measured by photon emission upon the addition of the substrate d-luciferin. In the second one, the target cells are labelled with CFSE, and the signal is detected by Flow Cytometry. We used these two protocols to measure cytotoxicity induced by treatment with NK cells. The cytotoxicity of NK cells was determined by adding increasing doses of human NK cells. The results obtained with the BLI method were consistent with those obtained with the CRA- or CFSE-based assays 4 hours after adding the NK cells. Most importantly, with the BLI assay, the kinetic of NK cells’ killing was thoroughly traced with multiple time point measurements, in contrast with the single time point measurement the other two methods allow, which unveiled additional information on NK cell killing pathways.
Collapse
|
20
|
Pragti, Kundu BK, Sonkar C, Ganguly R, Mukhopadhyay S. Modulation of catalytic and biomolecular binding properties of ruthenium(II)-arene complexes with the variation of coligands for selective toxicity against cancerous cells. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Turovsky EA, Varlamova EG. Mechanism of Ca 2+-Dependent Pro-Apoptotic Action of Selenium Nanoparticles, Mediated by Activation of Cx43 Hemichannels. BIOLOGY 2021; 10:biology10080743. [PMID: 34439975 PMCID: PMC8389560 DOI: 10.3390/biology10080743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
To date, there are practically no data on the mechanisms of the selenium nanoparticles action on calcium homeostasis, intracellular signaling in cancer cells, and on the relationship of signaling pathways activated by an increase in Ca2+ in the cytosol with the induction of apoptosis, which is of great importance. The study of these mechanisms is important for understanding the cytotoxic effect of selenium nanoparticles and the role of this microelement in the regulation of carcinogenesis. The work is devoted to the study of the role of selenium nanoparticles obtained by laser ablation in the activation of the calcium signaling system and the induction of apoptosis in human glioblastoma cells (A-172 cell line). In this work, it was shown for the first time that the generation of Ca2+ signals in A-172 cells occurs in response to the application of various concentrations of selenium nanoparticles. The intracellular mechanism responsible for the generation of these Ca2+ signals has also been established. It was found that nanoparticles promote the mobilization of Ca2+ ions from the endoplasmic reticulum through the IP3-receptor. This leads to the activation of vesicular release of ATP through connexin hemichannels (Cx43) and paracrine cell activation through purinergic receptors (mainly P2Y). In addition, it was shown that the activation of this signaling pathway is accompanied by an increase in the expression of pro-apoptotic genes and the induction of apoptosis. For the first time, the role of Cx43 in the regulation of apoptosis caused by selenium nanoparticles in glioblastoma cells has been shown. It was found that inhibition of Cx43 leads to a significant suppression of the induction of apoptosis in these cells after 24 h treatment of cells with selenium nanoparticles at a concentration of 5 µg/mL.
Collapse
|
22
|
Role of Satb1 and Satb2 Transcription Factors in the Glutamate Receptors Expression and Ca 2+ Signaling in the Cortical Neurons In Vitro. Int J Mol Sci 2021; 22:ijms22115968. [PMID: 34073140 PMCID: PMC8198236 DOI: 10.3390/ijms22115968] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Transcription factors Satb1 and Satb2 are involved in the processes of cortex development and maturation of neurons. Alterations in the expression of their target genes can lead to neurodegenerative processes. Molecular and cellular mechanisms of regulation of neurotransmission by these transcription factors remain poorly understood. In this study, we have shown that transcription factors Satb1 and Satb2 participate in the regulation of genes encoding the NMDA-, AMPA-, and KA- receptor subunits and the inhibitory GABA(A) receptor. Deletion of gene for either Satb1 or Satb2 homologous factors induces the expression of genes encoding the NMDA receptor subunits, thereby leading to higher amplitudes of Ca2+-signals in neurons derived from the Satb1-deficient (Satb1fl/+ * NexCre/+) and Satb1-null mice (Satb1fl/fl * NexCre/+) in response to the selective agonist reducing the EC50 for the NMDA receptor. Simultaneously, there is an increase in the expression of the Gria2 gene, encoding the AMPA receptor subunit, thus decreasing the Ca2+-signals of neurons in response to the treatment with a selective agonist (5-Fluorowillardiine (FW)). The Satb1 deletion increases the sensitivity of the KA receptor to the agonist (domoic acid), in the cortical neurons of the Satb1-deficient mice but decreases it in the Satb1-null mice. At the same time, the Satb2 deletion decreases Ca2+-signals and the sensitivity of the KA receptor to the agonist in neurons from the Satb1-null and the Satb1-deficient mice. The Satb1 deletion affects the development of the inhibitory system of neurotransmission resulting in the suppression of the neuron maturation process and switching the GABAergic responses from excitatory to inhibitory, while the Satb2 deletion has a similar effect only in the Satb1-null mice. We show that the Satb1 and Satb2 transcription factors are involved in the regulation of the transmission of excitatory signals and inhibition of the neuronal network in the cortical cell culture.
Collapse
|
23
|
Iancu IV, Botezatu A, Plesa A, Huica I, Fudulu A, Albulescu A, Bostan M, Mihaila M, Grancea C, Manda DA, Dobrescu R, Vladoiu SV, Anton G, Badiu CV. Alterations of regulatory factors and DNA methylation pattern in thyroid cancer. Cancer Biomark 2021; 28:255-268. [PMID: 32390600 DOI: 10.3233/cbm-190871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE DNA methylation plays an important role in thyroid oncogenesis. The aim of this study was to investigate the connection between global and local DNA methylation status and to establish the levels of important DNA methylation regulators (TET family and DNMT1) in thyroid tumours: follicular adenoma-FA, papillary thyroid carcinoma-PTC (classic papillary thyroid carcinoma-cPTC and papillary thyroid carcinoma follicular variant fvPTC). METHODS Global DNA methylation profile in thyroid tumours tissue (41 paired samples) was assessed by 5-methylcytosine and 5-hydroxymethylcytosine levels evaluation (ELISA), along with TETs and DNMT1 genes expression quantification. Also, it was investigated for the first time TET1 and TET2 promoter's methylation in thyroid tumours. BRAF V600E mutation and RET/PTC translocation testing were performed on all investigated samples. In vitro studies upon DNA methylation in K1 thyroid cancer cells were performed with demethylating agents (5-AzaC and vitamin C). RESULTS TET1 and TET2 displayed a significantly reduced gene expression level in PTC, while DNMT1 gene presented a high level of expression. PTC samples presented increased levels of 5-methylcytosine and low levels of 5-hydroxymethylcytosine. 5-methylcytosine levels were associated with TET1/TET2 expression levels. TET1 gene expression was significantly lower in patients positive for BRAF mutation and with RET/PTC rearrangement. TET2 gene was found hypermethylated in thyroid carcinoma patients overall, especially in PTC-follicular variant samples (p= 0.0002), where TET2 gene expression levels were significantly reduced (p= 0.0031). Furthermore, the data indicate for all thyroid cancer patients a good sensitivity (81.08%) and specificity (86.49%) regarding the use of TET1 (p< 0.0001), and TET2 (71.79%, 64.10%, p= 0.0001) hypermethylation as biomarkers for thyroid oncogenesis. CONCLUSIONS These results suggest that TET1/TET2 gene expression and methylation may serve as potential diagnostic tools for thyroid neoplasia. Our study showed that the methylation of TET1 increases in malignant thyroid tumours. fvPTC patients presented lower methylation levels compared to cPTC and could be a discriminatory factor between two cancer types and benign lesions. TET2 is a poorer discriminator between FA and fvPTC, but it can be useful for cPTC identification. K1-cells treated with demethylating agents showed a demethylation effect, especially upon TET2 gene. The cumulative effect of L-AA and 5-AzaC proved to have a potent combined demethylating effect on genes promoter's activation and could open new perspectives for thyroid cancer therapy.
Collapse
Affiliation(s)
- Iulia V Iancu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Anca Botezatu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Adriana Plesa
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Irina Huica
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Alina Fudulu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Adrian Albulescu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,National Institute for Chemical Pharmaceutical Research and Development, Bucharest, Romania
| | - Marinela Bostan
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Mirela Mihaila
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Camelia Grancea
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Dana Alice Manda
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Ruxandra Dobrescu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Susana Vilma Vladoiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Gabriela Anton
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Corin Virgil Badiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| |
Collapse
|
24
|
Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research. Microorganisms 2020; 8:microorganisms8091440. [PMID: 32962237 PMCID: PMC7563294 DOI: 10.3390/microorganisms8091440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
The clinical manifestation of leishmaniases depends on parasite species, host genetic background, and immune response. Manifestations of human leishmaniases are highly variable, ranging from self-healing skin lesions to fatal visceral disease. The scope of standard model hosts is insufficient to mimic well the wide disease spectrum, which compels the introduction of new model animals for leishmaniasis research. In this article, we study the susceptibility of three Asian rodent species (Cricetulus griseus, Lagurus lagurus, and Phodopus sungorus) to Leishmania major and L. donovani. The external manifestation of the disease, distribution, as well as load of parasites and infectiousness to natural sand fly vectors, were compared with standard models, BALB/c mice and Mesocricetus auratus. No significant differences were found in disease outcomes in animals inoculated with sand fly- or culture-derived parasites. All Asian rodent species were highly susceptible to L. major. Phodopus sungorus showed the non-healing phenotype with the progressive growth of ulcerative lesions and massive parasite loads. Lagurus lagurus and C. griseus represented the healing phenotype, the latter with high infectiousness to vectors, mimicking best the character of natural reservoir hosts. Both, L. lagurus and C. griseus were also highly susceptible to L. donovani, having wider parasite distribution and higher parasite loads and infectiousness than standard model animals.
Collapse
|
25
|
Glutathione-S-transferase omega 1 and nurse cell formation during experimental Trichinella infection. Vet Parasitol 2020; 297:109114. [PMID: 32386865 DOI: 10.1016/j.vetpar.2020.109114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/15/2023]
Abstract
The glutathione-S-transferases omega (GSTO) are multifunctional enzymes involved in cellular defense. During the nurse cell (NC) formation in Trichinella spiralis infection, the structural and regulatory genes of the skeletal muscle cell are downregulated and a new phenotype is acquired which advances parasite growth and survival. Previous studies showed that the GSTO1 is overexpressed in the NC during T. spiralis infection. To clarify the role of GSTO1 during NC formation, we evaluated the production of this enzyme by immunohistochemistry (IHC) in the diaphragms of mice experimentally infected with T. spiralis at 15, 28 and 60 days post infection (dpi); phosphorylation of Akt (p-Akt) and JNK1 (p-JNK1) were also evaluated. Furthermore, we evaluated the in vitro effects of T. spiralis excretory/secretory (ES) products from muscle larvae on specific functions (viability, proliferative response, apoptosis) in two cell lines (HeLa and U937), as well as its ability to induce GSTO1, p-AkT, p-ERK1/2 and p-JNK1. Results showed that GSTO1 was elevated in NC present in the diaphragms of T. spiralis experimentally infected mice at 15 dpi and progressively increased up to 60 dpi. The activation pattern of Akt in NC was similar to that of GSTO1, whereas JNK1 was never phosphorylated. ES induced a dose-dependent proliferative response in U937 cells, at 24 h and 48 h of treatment, but not in HeLa cells. However, after 72 h following treatment, significant cell death was observed in both cell lines at all doses. The apoptotic index (a.i.) was significantly higher than in untreated cells in both cell lines but only at the highest concentration of ES tested. Furthermore, Western Blots revealed that cells treated with ES for 24, 48 and 72 h, exhibited time-dependent overexpression of GSTO1, whereas p-Akt appeared only after 24 h of treatment. The p-ERK-1/2 peaked at 24 h then declined at 48 h and 72 h after treatment; however, it remained significantly higher than in untreated cells. No changes were observed in p-JNK1 at 24 and 48 h after treatment but a sharp increase in p-JNK1 was observed at 72 h. Also in HeLa cells, ES induced a small but significant increase in GSTO1 expression after 24 and 48 h of treatment where p-JNK1 was present only after 72 h of treatment. In conclusion, T. spiralis ES can reproduce in vitro the modifications observed inside the NC during experimental infection in mice.
Collapse
|
26
|
Turovskaya MV, Gaidin SG, Vedunova MV, Babaev AA, Turovsky EA. BDNF Overexpression Enhances the Preconditioning Effect of Brief Episodes of Hypoxia, Promoting Survival of GABAergic Neurons. Neurosci Bull 2020; 36:733-760. [PMID: 32219700 PMCID: PMC7340710 DOI: 10.1007/s12264-020-00480-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia causes depression of synaptic plasticity, hyperexcitation of neuronal networks, and the death of specific populations of neurons. However, brief episodes of hypoxia can promote the adaptation of cells. Hypoxic preconditioning is well manifested in glutamatergic neurons, while this adaptive mechanism is virtually suppressed in GABAergic neurons. Here, we show that brain-derived neurotrophic factor (BDNF) overexpression in neurons enhances the preconditioning effect of brief episodes of hypoxia. The amplitudes of the NMDAR- and AMPAR-mediated Ca2+ responses of glutamatergic and GABAergic neurons gradually decreased after repetitive brief hypoxia/reoxygenation cycles in cell cultures transduced with the (AAV)-Syn-BDNF-EGFP virus construct. In contrast, the amplitudes of the responses of GABAergic neurons increased in non-transduced cultures after preconditioning. The decrease of the amplitudes in GABAergic neurons indicated the activation of mechanisms of hypoxic preconditioning. Preconditioning suppressed apoptotic or necrotic cell death. This effect was most pronounced in cultures with BDNF overexpression. Knockdown of BDNF abolished the effect of preconditioning and promoted the death of GABAergic neurons. Moreover, the expression of the anti-apoptotic genes Stat3, Socs3, and Bcl-xl substantially increased 24 h after hypoxic episodes in the transduced cultures compared to controls. The expression of genes encoding the pro-inflammatory cytokines IL-10 and IL-6 also increased. In turn, the expression of pro-apoptotic (Bax, Casp-3, and Fas) and pro-inflammatory (IL-1β and TNFα) genes decreased after hypoxic episodes in cultures with BDNF overexpression. Inhibition of vesicular BDNF release abolished its protective action targeting inhibition of the oxygen-glucose deprivation (OGD)-induced [Ca2+]i increase in GABAergic and glutamatergic neurons, thus promoting their death. Bafilomycin A1, Brefeldin A, and tetanus toxin suppressed vesicular release (including BDNF) and shifted the gene expression profile towards excitotoxicity, inflammation, and apoptosis. These inhibitors of vesicular release abolished the protective effects of hypoxic preconditioning in glutamatergic neurons 24 h after hypoxia/reoxygenation cycles. This finding indicates a significant contribution of vesicular BDNF release to the development of the mechanisms of hypoxic preconditioning. Thus, our results demonstrate that BDNF plays a pivotal role in the activation and enhancement of the preconditioning effect of brief episodes of hypoxia and promotes tolerance of the most vulnerable populations of GABAergic neurons to hypoxia/ischemia.
Collapse
Affiliation(s)
- M V Turovskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - S G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - M V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - E A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| |
Collapse
|
27
|
Kachamakova-Trojanowska N, Podkalicka P, Bogacz T, Barwacz S, Józkowicz A, Dulak J, Łoboda A. HIF-1 stabilization exerts anticancer effects in breast cancer cells in vitro and in vivo. Biochem Pharmacol 2020; 175:113922. [PMID: 32205093 DOI: 10.1016/j.bcp.2020.113922] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Tumor hypoxia and high activity of hypoxia-inducible factor-1 (HIF-1) correlate with adverse disease outcomes, malignancy, resistance to therapy and metastasis. Nonetheless, recent studies indicate that under certain circumstances, HIF-1 stabilization may exert protective effects and even decrease tumor cell aggressiveness. This study aimed to characterize the potential anticancer effect of molidustat (BAY 85-3934), the prolyl hydroxylase (PHD) inhibitor and HIF-1 stabilizator. We confirmed that molidustat stabilizes HIF-1α and induces the expression of vascular endothelial growth factor (VEGF) in MDA-MB-231 breast cancer cells, to a similar or even greater extent than hypoxia. Interestingly, decreased cell survival and colony formation capabilities, together with S/G2 cell cycle arrest, were observed after treatment with PHD inhibitor. Importantly, molidustat enhanced the effectiveness of the chemotherapeutic drug, gemcitabine, on cancer cells. Finally, the xenograft model revealed decreased tumor growth in vivo after molidustat treatment. Both in vitro and in vivo analysis showed no differences in the angiogenic potential of endothelial cells treated with tumor-conditioned media or vascularization of the MDA-MB-231 xenografts, respectively. In summary, molidustat treatment exhibits an inhibitory effect on breast cancer cell survival, self-renewal capacity and potentiates the efficacy of chemotherapeutic gemcitabine.
Collapse
Affiliation(s)
- Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Tomasz Bogacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Szymon Barwacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
28
|
Alnahdi A, John A, Raza H. Mitigation of Glucolipotoxicity-Induced Apoptosis, Mitochondrial Dysfunction, and Metabolic Stress by N-Acetyl Cysteine in Pancreatic β-Cells. Biomolecules 2020; 10:biom10020239. [PMID: 32033264 PMCID: PMC7072690 DOI: 10.3390/biom10020239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Glucolipotoxicity caused by hyperglycemia and hyperlipidemia are the common features of diabetes-induced complications. Metabolic adaptation, particularly in energy metabolism; mitochondrial dysfunction; and increased inflammatory and oxidative stress responses are considered to be the main characteristics of diabetes and metabolic syndrome. However, due to various fluctuating endogenous and exogenous stimuli, the precise role of these factors under in vivo conditions is not clearly understood. In the present study, we used pancreatic β-cells, Rin-5F, to elucidate the molecular and metabolic changes in glucolipotoxicity. Cells treated with high glucose (25 mM) and high palmitic acid (up to 0.3 mM) for 24 h exhibited increased caspase/poly-ADP ribose polymerase (PARP)-dependent apoptosis followed by DNA fragmentation, alterations in mitochondrial membrane permeability, and bioenergetics, accompanied by alterations in glycolytic and mitochondrial energy metabolism. Our results also demonstrated alterations in the expression of mammalian target of rapamycin (mTOR)/5′ adenosine monophosphate-activated protein kinase (AMPK)-dependent apoptotic and autophagy markers. Furthermore, pre-treatment of cells with 10 mM N-acetyl cysteine attenuated the deleterious effects of high glucose and high palmitic acid with improved cellular functions and survival. These results suggest that the presence of high energy metabolites enhance mitochondrial dysfunction and apoptosis by suppressing autophagy and adapting energy metabolism, mediated, at least in part, via enhanced oxidative DNA damage and mTOR/AMPK-dependent cell signaling.
Collapse
|
29
|
Gaidin SG, Turovskaya MV, Gavrish MS, Babaev AA, Mal'tseva VN, Blinova EV, Turovsky EA. The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity. Int J Neurosci 2019; 130:363-383. [PMID: 31694441 DOI: 10.1080/00207454.2019.1691205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: Cerebral ischemia is accompanied by damage and death of a significant number of neurons due to glutamate excitotoxicity with subsequent a global increase of cytosolic Ca2+ concentration ([Ca2+]i). This study aimed to investigate the neuroprotective action of BDNF overexpression in hippocampal neurons against injury under ischemia-like conditions (oxygen and glucose deprivation) and glutamate-induced excitotoxicity (GluTox).Methods: The overexpression of BDNF was reached by the transduction of cell cultures with the adeno-associated (AAV)-Syn-BDNF-EGFP virus construct. Neuroprotective effects were mediated by Ca2+-dependent BDNF release followed by activation of the neuroprotective signaling cascades and changes of the gene expression. Thus, BDNF overexpression modulates Ca2+ homeostasis in cells, preventing Ca2+ overload and initiation of apoptotic and necrotic processes.Results:Antiapoptotic effect of BDNF overexpression is mediated via activation of phosphoinositide-3-kinase (PI3K) pathway and changing the expression of PI3K, HIF-1, Src and an anti-inflammatory cytokine IL-10. On the contrary, the decrease of expression of proapoptotic proteins such as Jun, Mapk8, caspase-3 and an inflammatory cytokine IL-1β was observed. These changes of expression were accompanied by the decrease of quantity of IL-1β receptors and the level of TNFα in cells in control, as well as 24 h after OGD. Besides, BDNF overexpression changes the expression of GABA(B) receptors. Also, the expression of NMDA and AMPA receptor subunits was altered towards a change in the conductivity of the receptors for Ca2+.Conclusion: Thus, our results demonstrate that neuronal BDNF overexpression reveals complex neuroprotective effects on the neurons and astrocytes under OGD and GluTox via inhibition of Ca2+ responses and regulation of gene expression.
Collapse
Affiliation(s)
- S G Gaidin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M V Turovskaya
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M S Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V N Mal'tseva
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - E V Blinova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,N. P. Ogarev Mordovia State University, Saransk, Russia
| | - E A Turovsky
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
30
|
Taxifolin protects neurons against ischemic injury in vitro via the activation of antioxidant systems and signal transduction pathways of GABAergic neurons. Mol Cell Neurosci 2019; 96:10-24. [PMID: 30776416 DOI: 10.1016/j.mcn.2019.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023] Open
Abstract
Cerebral blood flow disturbances lead to the massive death of brain cells. The death of >80% of cells is observed in hippocampal cell cultures after 40 min of oxygen and glucose deprivation (ischemia-like conditions, OGD). However, there are some populations of GABAergic neurons which are characterized by increased vulnerability to oxygen-glucose deprivation conditions. Using fluorescent microscopy, immunocytochemical assay, vitality tests and PCR-analysis, we have shown that population of GABAergic neurons are characterized by a different (faster) Ca2+ dynamics in response to OGD and increased basal ROS production under OGD conditions. A plant flavonoid taxifolin inhibited an excessive ROS production and an irreversible cytosolic Ca2+ concentration increase in GABAergic neurons, preventing the death of these neurons and further excitation of a neuronal network; neuroprotective effect of taxifolin increased after incubation of 24 h and correlated with increased expression of antiapoptocic and antioxidant genes Stat3 Nrf-2 Bcl-2, Bcl-xL, Ikk2, and genes coding for AMPA and kainate receptor subunits; in addition, taxifolin decreased expression of prooxidant enzyme NOS and proinflammatory cytokine IL-1β.
Collapse
|
31
|
Corti A, Dominici S, Piaggi S, Belcastro E, Chiu M, Taurino G, Pacini S, Bussolati O, Pompella A. γ-Glutamyltransferase enzyme activity of cancer cells modulates L-γ-glutamyl-p-nitroanilide (GPNA) cytotoxicity. Sci Rep 2019; 9:891. [PMID: 30696905 PMCID: PMC6351548 DOI: 10.1038/s41598-018-37385-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022] Open
Abstract
L-γ-Glutamyl-p-nitroanilide (GPNA) is widely used to inhibit the glutamine (Gln) transporter ASCT2, but recent studies have demonstrated that it is also able to inhibit other sodium-dependent and independent amino acid transporters. Moreover, GPNA is a well known substrate of the enzyme γ-glutamyltransferase (GGT). Our aim was to evaluate the effect of GGT-mediated GPNA catabolism on cell viability and Gln transport. The GGT-catalyzed hydrolysis of GPNA produced cytotoxic effects in lung cancer A549 cells, resulting from the release of metabolite p-nitroaniline (PNA) rather than from the inhibition of Gln uptake. Interestingly, compounds like valproic acid, verapamil and reversan were able to increase the cytotoxicity of GPNA and PNA, suggesting a key role of intracellular detoxification mechanisms. Our data indicate that the mechanism of action of GPNA is more complex than believed, and further confirm the poor specificity of GPNA as an inhibitor of Gln transport. Different factors may modulate the final effects of GPNA, ranging from GGT and ASCT2 expression to intracellular defenses against xenobiotics. Thus, other strategies - such as a genetic suppression of ASCT2 or the identification of new specific inhibitors - should be preferred when inhibition of ASCT2 function is required.
Collapse
Affiliation(s)
- Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - Silvia Dominici
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Simona Piaggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Eugenia Belcastro
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RMN), FMTS, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, 67000, Strasbourg, France
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Alfonso Pompella
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
32
|
In Vitro Assays for Screening Small Molecules. Methods Mol Biol 2018. [PMID: 30324524 DOI: 10.1007/978-1-4939-8805-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Traditionally anti-cancer therapeutics have been designed to target rapidly proliferating cells causing DNA damage and inducing apoptosis. However, with the development of the cancer stem cell (CSC) hypothesis, it has been postulated that a rare, slow dividing tumor cell population is able to escape therapy and contribute to tumor relapse and metastasis. The advances in characterization of CSCs across multiple cancer subtypes have allowed for development of targeted therapies using small molecule inhibitors. In this chapter, we describe two in vitro assays measuring proliferation and secondary sphere formation, which have become gold-standard assays to evaluate the effects of targeted therapies against CSCs. Together these assays constitute a rapid, inexpensive, and highly reproducible pipeline for testing small molecule inhibitors prior to more resource demanding in vivo studies.
Collapse
|
33
|
Nowak WN, Taha H, Kachamakova-Trojanowska N, Stępniewski J, Markiewicz JA, Kusienicka A, Szade K, Szade A, Bukowska-Strakova K, Hajduk K, Klóska D, Kopacz A, Grochot-Przęczek A, Barthenheier K, Cauvin C, Dulak J, Józkowicz A. Murine Bone Marrow Mesenchymal Stromal Cells Respond Efficiently to Oxidative Stress Despite the Low Level of Heme Oxygenases 1 and 2. Antioxid Redox Signal 2018; 29:111-127. [PMID: 29065700 PMCID: PMC6003402 DOI: 10.1089/ars.2017.7097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Mesenchymal stromal cells (MSCs) are heterogeneous cells from adult tissues that are able to differentiate in vitro into adipocytes, osteoblasts, or chondrocytes. Such cells are widely studied in regenerative medicine. However, the success of cellular therapy depends on the cell survival. Heme oxygenase-1 (HO-1, encoded by the Hmox1 gene), an enzyme converting heme to biliverdin, carbon monoxide, and Fe2+, is cytoprotective and can affect stem cell performance. Therefore, our study aimed at assessing whether Hmox1 is critical for survival and functions of murine bone marrow MSCs. RESULTS Both MSC Hmox1+/+ and Hmox1-/- showed similar phenotype, differentiation capacities, and production of cytokines or growth factors. Hmox1+/+ and Hmox1-/- cells showed similar survival in response to 50 μmol/L hemin even in increased glucose concentration, conditions that were unfavorable for Hmox1-/- bone marrow-derived proangiogenic cells (BDMC). Hmox1+/+ MSCs but not fibroblasts retained low ROS levels even after prolonged incubation with 50 μmol/L hemin, although both cell types have a comparable Hmox1 expression and similarly increase its levels in response to hemin. MSCs Hmox1-/- treated with hemin efficiently induced expression of a vast panel of antioxidant genes, especially enzymes of the glutathione pathway. Innovation and Conclusion: Hmox1 overexpression is a popular strategy to enhance viability and performance of MSCs after the transplantation. However, murine MSCs Hmox1-/- do not differ from wild-type MSCs in phenotype and functions. MSC Hmox1-/- show better resistance to hemin than fibroblasts and BDMCs and rapidly react to the stress by upregulation of quintessential genes in antioxidant response. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Witold Norbert Nowak
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Hevidar Taha
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,2 Department of Animal Production, College of Agriculture, University of Duhok , Duhok, Iraq
| | - Neli Kachamakova-Trojanowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Jacek Stępniewski
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Joanna Agata Markiewicz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Anna Kusienicka
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Krzysztof Szade
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Agata Szade
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Karolina Bukowska-Strakova
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,3 Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College , Kraków, Poland
| | - Karolina Hajduk
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Damian Klóska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Aleksandra Kopacz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Anna Grochot-Przęczek
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Kathrin Barthenheier
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Camille Cauvin
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Józef Dulak
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,4 Kardio-Med Silesia, Zabrze, Poland
| | - Alicja Józkowicz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| |
Collapse
|
34
|
Suhito IR, Han Y, Min J, Son H, Kim TH. In situ label-free monitoring of human adipose-derived mesenchymal stem cell differentiation into multiple lineages. Biomaterials 2018; 154:223-233. [DOI: 10.1016/j.biomaterials.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022]
|
35
|
Hu S, Chen TH, Zhao Y, Wang Z, Lam RHW. Protein-Substrate Adhesion in Microcontact Printing Regulates Cell Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1750-1759. [PMID: 29304548 DOI: 10.1021/acs.langmuir.7b02935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microcontact printing (μCP) is widely used to create patterns of biomolecules essential for studies of cell mechanics, migration, and tissue engineering. However, different types of μCPs may create micropatterns with varied protein-substrate adhesion, which may change cell behaviors and pose uncertainty in result interpretation. Here, we characterize two μCP methods for coating extracellular matrix (ECM) proteins (stamp-off and covalent bond) and demonstrate for the first time the important role of protein-substrate adhesion in determining cell behavior. We found that, as compared to cells with weaker traction force (e.g., endothelial cells), cells with strong traction force (e.g., vascular smooth muscle cells) may delaminate the ECM patterns, which reduced cell viability as a result. Importantly, such ECM delamination was observed on patterns by stamp-off but not on the patterns by covalent bonds. Further comparisons of the displacement of the ECM patterns between the normal VSMCs and the force-reduced VSMCs suggested that the cell traction force plays an essential role in this ECM delamination. Together, our results indicated that μCPs with insufficient adhesion may lead to ECM delamination and cause cell death, providing new insight for micropatterning in cell-biomaterial interaction on biointerfaces.
Collapse
Affiliation(s)
- Shuhuan Hu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
| | - Ting-Hsuan Chen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
- City University of Hong Kong, Shenzhen Research Institute , Shenzhen, China
| | - Yanhua Zhao
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
| | - Zuankai Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
- City University of Hong Kong, Shenzhen Research Institute , Shenzhen, China
| | - Raymond H W Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
- City University of Hong Kong, Shenzhen Research Institute , Shenzhen, China
| |
Collapse
|
36
|
Effect of sulfated galactan from Porphyra haitanensis on H 2O 2-induced premature senescence in WI-38 cells. Int J Biol Macromol 2017; 106:1235-1239. [PMID: 28860061 DOI: 10.1016/j.ijbiomac.2017.08.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/01/2023]
Abstract
Porphyran sulfated galactan extracted from red algae Porphyra haitanensis is a sulfated polysaccharide, which possesses excellent activities. In the present study, WI-38 cells were treated with H2O2 to induce premature senescence and then the protection of porphyran against aging in vitro and associated molecular mechanisms were investigated. The protection occurred in a dose-dependent manner, offering an optimal efficacy starting at 10μg/mL. The proportion of SA-β-gal positive cells in porphyran group decreases from 53% to 23% in the cultures at 30 PDs. Porphyran has been detected specifically reducing SAHF-like foci formation in senescent cells. In addition, porphyran significantly affected the p53-p21 pathways in H2O2-treated WI-38 cells. Our data suggest the promising role of porphyran as an attractive and bio-safe agent with the potential to retard senescence and attenuate senescence-related diseases.
Collapse
|
37
|
Kim Y, Kim E, Oh S, Yoon YE, Jang JH. Mutagenic Analysis of an Adeno-Associated Virus Variant Capable of Simultaneously Promoting Immune Resistance and Robust Gene Delivery. Hum Gene Ther 2017. [PMID: 28648139 DOI: 10.1089/hum.2017.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In addition to the ability to boost gene delivery efficiency in many therapeutically relevant cells, the capability of circumventing neutralizing antibody (NAb) inactivation is a key prerequisite that gene carriers must fulfill for their extensive applications as therapeutic agents in many gene therapy trials, especially for cancer treatments. This study revealed that a genetically engineered adeno-associated virus (AAV) variant, AAVr3.45, inherently possesses dual beneficial properties as a gene carrier: (i) efficiently delivering therapeutic genes to many clinically valuable cells (e.g., stem or cancer cells) and (ii) effectively bypassing immunoglobulin (IgG) neutralization. Detailed interpretation of the structural features of AAVr3.45, which was previously engineered from AAV2, demonstrated that the LATQVGQKTA peptide at the heparan sulfate proteoglycan binding domain, especially the presence of cationic lysine on the peptide, served as a key motif for dramatically enhancing its gene delivery capabilities, ultimately broadening its tropisms for many cancer cell lines. Furthermore, the substitution of valine on the AAV2 capsid at the amino acid 719 site to methionine functioned as a coordinator for promoting viral resistance against IgG inactivation. The NAb-resistant characteristics of AAVr3.45 were possibly associated with the LATQVGQKTA sequence itself, indicating that its synergistic cooperation with the point mutation (V719M) is required for maximizing its ability to evade NAb inactivation. The potential of AAVr3.45 as a cancer gene therapy agent was confirmed by provoking apoptosis in breast adenocarcinoma by efficiently delivering a pro-apoptotic gene, BIM (Bcl-2-like protein 11), under high titers of human IgG. Thus, the superior aspects of the NAb-resistant AAVr3.45 as a potential therapeutic agent for systemic injection approaches, especially for cancer gene therapy, were highlighted in this study.
Collapse
Affiliation(s)
- Yoojin Kim
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea
| | - Eunmi Kim
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea.,2 Material Research Division, R&D Unit, AmorePacific Corporation, Gyeonggi-do, Korea
| | - Seokmin Oh
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea
| | - Ye-Eun Yoon
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea
| | - Jae-Hyung Jang
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea
| |
Collapse
|
38
|
Yin DT, Lei M, Xu J, Li H, Wang Y, Liu Z, Ma R, Yu K, Li X. The Chinese herb Prunella vulgaris promotes apoptosis in human well-differentiated thyroid carcinoma cells via the B-cell lymphoma-2/Bcl-2-associated X protein/caspase-3 signaling pathway. Oncol Lett 2017; 14:1309-1314. [PMID: 28808482 PMCID: PMC5542033 DOI: 10.3892/ol.2017.6317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/07/2017] [Indexed: 01/20/2023] Open
Abstract
Prunella vulgaris (PV), a traditional Chinese herb, has been shown to be rich in bioactive chemicals and possess anti-proliferative and pro-apoptotic effects on tumor cells. The effect of PV on human well-differentiated thyroid carcinoma (WDTC), which accounts for the majority of common endocrine malignancies, remains to be elucidated. The present study aimed to investigate the function of PV on WDTC cell lines and apoptosis-associated signaling pathway activity. Additional studies demonstrated that PV may induce apoptosis in WDTC TPC-1 and FTC-133 cell lines, using the Cell Counting Kit-8 assay. Morphological changes of apoptotic cells were observed by Hoechst 33342 and acridine orange/ethidium bromide staining. In addition, ladder pattern of fragmented DNA was observed by DNA gel electrophoresis. It was also observed that PV significantly increased Bcl-2-associated X protein and caspase-3 expression, and downregulated B-cell lymphoma-2 expression in TPC-1 and FTC-133 by reverse transcription-quantitative polymerase chain reaction (P<0.05). Thus, the present results indicated that PV has the potential to be a future WDTC therapeutic agent.
Collapse
Affiliation(s)
- De-Tao Yin
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, Henan 450050, P.R. China
| | - Mengyuan Lei
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, Henan 450050, P.R. China
| | - Jianhui Xu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, Henan 450050, P.R. China
| | - Hongqiang Li
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, Henan 450050, P.R. China
| | - Yongfei Wang
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, Henan 450050, P.R. China
| | - Zhen Liu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, Henan 450050, P.R. China
| | - Runsheng Ma
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, Henan 450050, P.R. China
| | - Kun Yu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, Henan 450050, P.R. China
| | - Xianghua Li
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou, Henan 450050, P.R. China
| |
Collapse
|
39
|
Abstract
Synchronized populations of large numbers of cells can be obtained by centrifugal elutriation on the basis of sedimentation properties of small round particles, with minimal perturbation of cellular functions. The physical characteristics of cell size and sedimentation velocity are operative in the technique of centrifugal elutriation also known as counterstreaming centrifugation. The elutriator is an advanced device for increasing the sedimentation rate to yield enhanced resolution of cell separation. A random population of cells is introduced into the elutriation chamber of an elutriator rotor running in a specially designed centrifuge. By increasing step-by-step the flow rate of the elutriation fluid, successive populations of relatively homogeneous cell size can be removed from the elutriation chamber and used as synchronized subpopulations. For cell synchronization by centrifugal elutriation, early log S phase cell populations are most suitable where most of the cells are in G1 and S phase (>80 %). Apoptotic cells can be found in the early elutriation fractions belonging to the sub-Go window. Protocols for the synchronization of nuclei of murine pre-B cells and high-resolution centrifugal elutriation of CHO cells are given. The verification of purity and cell cycle positions of cells in elutriated fractions includes the measurement of DNA synthesis by [3H]-thymidine incorporation and DNA content by propidium iodide flow cytometry.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary.
| |
Collapse
|
40
|
Zacharioudakis E, Cañeque T, Custodio R, Müller S, Cuadro AM, Vaquero JJ, Rodriguez R. Quinolizinium as a new fluorescent lysosomotropic probe. Bioorg Med Chem Lett 2016; 27:203-207. [PMID: 27919658 DOI: 10.1016/j.bmcl.2016.11.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
We have synthesized a collection of quinolizinium fluorescent dyes for the purpose of cell imaging. Preliminary biological studies in human U2OS osteosarcoma cancer cells have shown that different functional groups appended to the cationic quinolizinium scaffold efficiently modulate photophysical properties but also cellular distribution. While quinolizinium probes are known nuclear staining reagents, we have identified a particular quinolizinium derivative salt that targets the lysosomal compartment. This finding raises the question of predictability of specific organelle targeting from structural features of small molecules.
Collapse
Affiliation(s)
- Emmanouil Zacharioudakis
- Institut Curie, PSL Research University, Organic Synthesis and Cell Biology Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3666, 75005 Paris, France; INSERM U1143, 75005 Paris, France
| | - Tatiana Cañeque
- Institut Curie, PSL Research University, Organic Synthesis and Cell Biology Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3666, 75005 Paris, France; INSERM U1143, 75005 Paris, France.
| | - Raúl Custodio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Sebastian Müller
- Institut Curie, PSL Research University, Organic Synthesis and Cell Biology Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3666, 75005 Paris, France; INSERM U1143, 75005 Paris, France
| | - Ana M Cuadro
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Juan J Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Raphaël Rodriguez
- Institut Curie, PSL Research University, Organic Synthesis and Cell Biology Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3666, 75005 Paris, France; INSERM U1143, 75005 Paris, France
| |
Collapse
|
41
|
Węsierska-Gądek J, Mauritz M, Mitulovic G, Cupo M. Differential Potential of Pharmacological PARP Inhibitors for Inhibiting Cell Proliferation and Inducing Apoptosis in Human Breast Cancer Cells. J Cell Biochem 2016; 116:2824-39. [PMID: 25981734 DOI: 10.1002/jcb.25229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
BRCA1/2-mutant cells are hypersensitive to inactivation of poly(ADP-ribose) polymerase 1 (PARP-1). We recently showed that inhibition of PARP-1 by NU1025 is strongly cytotoxic for BRCA1-positive BT-20 cells, but not BRCA1-deficient SKBr-3 cells. These results raised the possibility that other PARP-1 inhibitors, particularly those tested in clinical trials, may be more efficacious against BRCA1-deficient SKBr-3 breast cancer cells than NU1025. Thus, in the presented study the cytotoxicity of four PARP inhibitors under clinical evaluation (olaparib, rucaparib, iniparib and AZD2461) was examined and compared to that of NU1025. The sensitivity of breast cancer cells to the PARP-1 inhibition strongly varied. Remarkably, BRCA-1-deficient SKBr-3 cells were almost completely insensitive to NU1025, olaparib and rucaparib, whereas BRCA1-expressing BT-20 cells were strongly affected by NU1025 even at low doses. In contrast, iniparib and AZD2461 were cytotoxic for both BT-20 and SKBr-3 cells. Of the four tested PARP-1 inhibitors only AZD2461 strongly affected cell cycle progression. Interestingly, the anti-proliferative and pro-apoptotic potential of the tested PARP-1 inhibitors clearly correlated with their capacity to damage DNA. Further analyses revealed that proteomic signatures of the two studied breast cancer cell lines strongly differ, and a set of 197 proteins was differentially expressed in NU1025-treated BT-20 cancer cells. These results indicate that BT-20 cells may harbor an unknown defect in DNA repair pathway(s) rendering them sensitive to PARP-1 inhibition. They also imply that therapeutic applicability of PARP-1 inhibitors is not limited to BRCA mutation carriers but can be extended to patients harboring deficiencies in other components of the pathway(s).
Collapse
Affiliation(s)
- Józefa Węsierska-Gądek
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Vienna, Austria
| | - Matthias Mauritz
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Vienna, Austria
| | - Goran Mitulovic
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University of Vienna, Borschkegasse 8a, Vienna, 1090, Austria
| | - Maria Cupo
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Vienna, Austria
| |
Collapse
|
42
|
Abdel-Hameed ESS, Bazaid SA, Hagag HA. Chemical characterization ofRosa damascena Miller var. trigintipetala Dieck essential oil and itsin vitrogenotoxic and cytotoxic properties. JOURNAL OF ESSENTIAL OIL RESEARCH 2015. [DOI: 10.1080/10412905.2015.1099120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Slaats GG, Saldivar JC, Bacal J, Zeman MK, Kile AC, Hynes AM, Srivastava S, Nazmutdinova J, den Ouden K, Zagers MS, Foletto V, Verhaar MC, Miles C, Sayer JA, Cimprich KA, Giles RH. DNA replication stress underlies renal phenotypes in CEP290-associated Joubert syndrome. J Clin Invest 2015; 125:3657-66. [PMID: 26301811 DOI: 10.1172/jci80657] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/10/2015] [Indexed: 11/17/2022] Open
Abstract
Juvenile ciliopathy syndromes that are associated with renal cysts and premature renal failure are commonly the result of mutations in the gene encoding centrosomal protein CEP290. In addition to centrosomes and the transition zone at the base of the primary cilium, CEP290 also localizes to the nucleus; however, the nuclear function of CEP290 is unknown. Here, we demonstrate that reduction of cellular CEP290 in primary human and mouse kidney cells as well as in zebrafish embryos leads to enhanced DNA damage signaling and accumulation of DNA breaks ex vivo and in vivo. Compared with those from WT mice, primary kidney cells from Cep290-deficient mice exhibited supernumerary centrioles, decreased replication fork velocity, fork asymmetry, and increased levels of cyclin-dependent kinases (CDKs). Treatment of Cep290-deficient cells with CDK inhibitors rescued DNA damage and centriole number. Moreover, the loss of primary cilia that results from CEP290 dysfunction was rescued in 3D cell culture spheroids of primary murine kidney cells after exposure to CDK inhibitors. Together, our results provide a link between CEP290 and DNA replication stress and suggest CDK inhibition as a potential treatment strategy for a wide range of ciliopathy syndromes.
Collapse
|
44
|
Kang SK, Park G, Kim K, Hwang SW, Cheng H, Shin J, Chung S, Kim M, Yin L, Lee JC, Lee KM, Rogers JA. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9297-9305. [PMID: 25867894 DOI: 10.1021/acsami.5b02526] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.
Collapse
Affiliation(s)
| | - Gayoung Park
- §Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-713, Republic of Korea
- △Department of Biomicrosystem Technology, Korea University, Seoul 136-713, Republic of Korea
| | | | - Suk-Won Hwang
- ∥KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | - Minjin Kim
- ⊥KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
| | | | | | - Kyung-Mi Lee
- §Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-713, Republic of Korea
- #Department of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | |
Collapse
|
45
|
Schmitt C, Sako N, Bagot M, Bensussan A. Lack of evidence that HACE1 is not a tumor suppressor gene in NKTCL: to the editor-in-chief. Authors' reply. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1168. [PMID: 25794711 DOI: 10.1016/j.ajpath.2015.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Christian Schmitt
- INSERM, U976, Paris, France; Paris Diderot University, Sorbonne Paris Cité, UMRS 976, Paris, France
| | - Nouhoum Sako
- INSERM, U976, Paris, France; Paris Diderot University, Sorbonne Paris Cité, UMRS 976, Paris, France
| | - Martine Bagot
- INSERM, U976, Paris, France; Paris Diderot University, Sorbonne Paris Cité, UMRS 976, Paris, France; AP-HP, Department of Dermatology, Hop Saint-Louis, Paris, France
| | - Armand Bensussan
- INSERM, U976, Paris, France; Paris Diderot University, Sorbonne Paris Cité, UMRS 976, Paris, France
| |
Collapse
|
46
|
Akber U, Na BR, Ko YS, Lee HS, Kim HR, Kwon MS, Park ZY, Choi EJ, Han WC, Lee SH, Oh HM, Jun CD. Phytocomponent 4-hydroxy-3-methoxycinnamaldehyde ablates T-cell activation by targeting protein kinase C-θ and its downstream pathways. Int Immunopharmacol 2015; 25:130-40. [DOI: 10.1016/j.intimp.2015.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/17/2015] [Accepted: 01/21/2015] [Indexed: 12/18/2022]
|
47
|
Mercier SM, Diepenbroek B, Martens D, Wijffels RH, Streefland M. Characterization of apoptosis in PER.C6® batch and perfusion cultures. Biotechnol Bioeng 2014; 112:569-78. [DOI: 10.1002/bit.25459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/09/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah M. Mercier
- Vaccine Process and Analytical Development Department; Crucell Holland BV; Archimedesweg 4-6 2333 CN Leiden The Netherlands
| | - Bas Diepenbroek
- Vaccine Process and Analytical Development Department; Crucell Holland BV; Archimedesweg 4-6 2333 CN Leiden The Netherlands
| | - Dirk Martens
- Bioprocess Engineering; Wageningen University; P.O. Box 8629 6700 EV Wageningen The Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering; Wageningen University; P.O. Box 8629 6700 EV Wageningen The Netherlands
| | - Mathieu Streefland
- Bioprocess Engineering; Wageningen University; P.O. Box 8629 6700 EV Wageningen The Netherlands
| |
Collapse
|
48
|
Slaats GG, Ghosh AK, Falke LL, Le Corre S, Shaltiel IA, van de Hoek G, Klasson TD, Stokman MF, Logister I, Verhaar MC, Goldschmeding R, Nguyen TQ, Drummond IA, Hildebrandt F, Giles RH. Nephronophthisis-associated CEP164 regulates cell cycle progression, apoptosis and epithelial-to-mesenchymal transition. PLoS Genet 2014; 10:e1004594. [PMID: 25340510 PMCID: PMC4207587 DOI: 10.1371/journal.pgen.1004594] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022] Open
Abstract
We recently reported that centrosomal protein 164 (CEP164) regulates both cilia and the DNA damage response in the autosomal recessive polycystic kidney disease nephronophthisis. Here we examine the functional role of CEP164 in nephronophthisis-related ciliopathies and concomitant fibrosis. Live cell imaging of RPE-FUCCI (fluorescent, ubiquitination-based cell cycle indicator) cells after siRNA knockdown of CEP164 revealed an overall quicker cell cycle than control cells, although early S-phase was significantly longer. Follow-up FACS experiments with renal IMCD3 cells confirm that Cep164 siRNA knockdown promotes cells to accumulate in S-phase. We demonstrate that this effect can be rescued by human wild-type CEP164, but not disease-associated mutants. siRNA of CEP164 revealed a proliferation defect over time, as measured by CyQuant assays. The discrepancy between accelerated cell cycle and inhibited overall proliferation could be explained by induction of apoptosis and epithelial-to-mesenchymal transition. Reduction of CEP164 levels induces apoptosis in immunofluorescence, FACS and RT-QPCR experiments. Furthermore, knockdown of Cep164 or overexpression of dominant negative mutant allele CEP164 Q525X induces epithelial-to-mesenchymal transition, and concomitant upregulation of genes associated with fibrosis. Zebrafish injected with cep164 morpholinos likewise manifest developmental abnormalities, impaired DNA damage signaling, apoptosis and a pro-fibrotic response in vivo. This study reveals a novel role for CEP164 in the pathogenesis of nephronophthisis, in which mutations cause ciliary defects coupled with DNA damage induced replicative stress, cell death, and epithelial-to-mesenchymal transition, and suggests that these events drive the characteristic fibrosis observed in nephronophthisis kidneys. Nephronophthisis is a leading inherited cause of renal failure in children and young adults. This work contributes to understanding of the disease mechanism of nephronophthisis, which is characterized by multi-cystic and fibrotic kidneys. The genes mutated in patients with nephronophthisis all seem to encode proteins involved in cilia function, and some of them are recently reported to also function in DNA damage signaling. We investigated how loss of cilia and impaired DNA damage signaling could cause the excessive fibrosis seen in nephronophthisis. Studies during the past decade have focused on treating the cysts of this early-onset renal disease. However, we think that understanding and curing the fibrosis seen in these patients will provide new treatment opportunities. Our work gives insight into the orchestration of downstream effects on the cellular level after loss of nephronophthisis gene CEP164 as a result of loss of cilia and accumulating DNA damage signaling.
Collapse
Affiliation(s)
- Gisela G. Slaats
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amiya K. Ghosh
- Division of Geriatrics & Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lucas L. Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stéphanie Le Corre
- Nephrology Division, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Indra A. Shaltiel
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Glenn van de Hoek
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Timothy D. Klasson
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marijn F. Stokman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ive Logister
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tri Q. Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Iain A. Drummond
- Nephrology Division, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Rachel H. Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Atale N, Gupta S, Yadav UCS, Rani V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J Microsc 2014; 255:7-19. [PMID: 24831993 DOI: 10.1111/jmi.12133] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023]
Abstract
Apoptosis, a genetically programmed cellular event leads to biochemical and morphological changes in cells. Alterations in DNA caused by several factors affect nucleus and ultimately the entire cell leading to compromised function of the organ and organism. DNA, a master regulator of the cellular events, is an important biomolecule with regards to cell growth, cell death, cell migration and cell differentiation. It is therefore imperative to develop the staining techniques that may lead to visualize the changes in nucleus where DNA is housed, to comprehend the cellular pathophysiology. Over the years a number of nuclear staining techniques such as propidium iodide, Hoechst-33342, 4', 6-diamidino-2-phenylindole (DAPI), Acridine orange-Ethidium bromide staining, among others have been developed to assess the changes in DNA. Some nonnuclear staining techniques such as Annexin-V staining, which although does not stain DNA, but helps to identify the events that result from DNA alteration and leads to initiation of apoptotic cell death. In this review, we have briefly discussed some of the most commonly used fluorescent and nonfluorescent staining techniques that identify apoptotic changes in cell, DNA and the nucleus. These techniques help in differentiating several cellular and nuclear phenotypes that result from DNA damage and have been identified as specific to necrosis or early and late apoptosis as well as scores of other nuclear deformities occurring inside the cells.
Collapse
Affiliation(s)
- N Atale
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | | | | | | |
Collapse
|
50
|
Grochot-Przeczek A, Kotlinowski J, Kozakowska M, Starowicz K, Jagodzinska J, Stachurska A, Volger OL, Bukowska-Strakova K, Florczyk U, Tertil M, Jazwa A, Szade K, Stepniewski J, Loboda A, Horrevoets AJG, Dulak J, Jozkowicz A. Heme oxygenase-1 is required for angiogenic function of bone marrow-derived progenitor cells: role in therapeutic revascularization. Antioxid Redox Signal 2014; 20:1677-92. [PMID: 24206054 PMCID: PMC3961799 DOI: 10.1089/ars.2013.5426] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that can be down-regulated in diabetes. Its importance for mature endothelium has been described, but its role in proangiogenic progenitors is not well known. We investigated the effect of HO-1 on the angiogenic potential of bone marrow-derived cells (BMDCs) and on blood flow recovery in ischemic muscle of diabetic mice. RESULTS Lack of HO-1 decreased the number of endothelial progenitor cells (Lin(-)CD45(-)cKit(-)Sca-1(+)VEGFR-2(+)) in murine bone marrow, and inhibited the angiogenic potential of cultured BMDCs, affecting their survival under oxidative stress, proliferation, migration, formation of capillaries, and paracrine proangiogenic potential. Transcriptome analysis of HO-1(-/-) BMDCs revealed the attenuated up-regulation of proangiogenic genes in response to hypoxia. Heterozygous HO-1(+/-) diabetic mice subjected to hind limb ischemia exhibited reduced local expression of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), stromal cell-derived factor 1 (SDF-1), VEGFR-1, VEGFR-2, and CXCR-4. This was accompanied by impaired revascularization of ischemic muscle, despite a strong mobilization of bone marrow-derived proangiogenic progenitors (Sca-1(+)CXCR-4(+)) into peripheral blood. Blood flow recovery could be rescued by local injections of conditioned media harvested from BMDCs, but not by an injection of cultured BMDCs. INNOVATION This is the first report showing that HO-1 haploinsufficiency impairs tissue revascularization in diabetes and that proangiogenic in situ response, not progenitor cell mobilization, is important for blood flow recovery. CONCLUSIONS HO-1 is necessary for a proper proangiogenic function of BMDCs. A low level of HO-1 in hyperglycemic mice decreases restoration of perfusion in ischemic muscle, which can be rescued by a local injection of conditioned media from cultured BMDCs.
Collapse
Affiliation(s)
- Anna Grochot-Przeczek
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|