1
|
Dowaidar M. Cell-penetrating peptides with nanoparticles hybrid delivery vectors and their uptake pathways. Mitochondrion 2024; 78:101906. [PMID: 38797356 DOI: 10.1016/j.mito.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Cell-penetrating peptides (CPPs) are molecules that improve the cellular uptake of various molecular payloads that do not easily traverse the cellular membrane. CPPs can be found in pharmaceutical and medical products. The vast majority of cell-penetrating chemicals that are discussed in published research are peptide based. The paper also delves into the various applications of hybrid vectors. Because CPPs are able to carry cargo across the cellular membrane, they are a viable candidate for use as a suitable carrier for a wide variety of cargoes, such as siRNA, nanoparticles, and others. In which we discuss the CPPs, their classification, uptake mechanisms, hybrid vector systems, nanoparticles and their uptake mechanisms, etc. Further in this paper, we discuss CPPs conjugated to Nanoparticles, Combining CPPs with lipids and polymeric Nanoparticles in A Conjugated System, CPPs conjugated to nanoparticles for therapeutic purposes, and potential therapeutic uses of CPPs as delivery molecules. Also discussed the preclinical and clinical use of CPPS, intracellular trafficking of nanoparticles, and activatable and bioconjugated CPPs.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
2
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
3
|
Alcantara KP, Malabanan JWT, Vajragupta O, Rojsitthisak P, Rojsitthisak P. A promising strategy of surface-modified nanoparticles targeting CXCR4 for precision cancer therapy. J Drug Target 2024; 32:587-605. [PMID: 38634290 DOI: 10.1080/1061186x.2024.2345235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Nanoparticle (NP) functionalization with specific ligands enhances targeted cancer therapy and imaging by promoting receptor recognition and improving cellular uptake. This review focuses on recent research exploring the interaction between cancer cell-expressed chemokine receptor 4 (CXCR4) and ligand-conjugated NPs, utilising small molecules, peptides, and antibodies. Active NP targeting has shown improved tumour targeting and reduced toxicity, enabling precision therapy and diagnosis. However, challenges persist in the clinical translation of targeted NPs due to issues with biological response, tumour accumulation, and maintaining NP quality at an industrial scale. Biological and intratumoral barriers further hinder efficient NP accumulation in tumours, hampering translatability. To address these challenges, the academic community is refocusing efforts on understanding NP biological fate and establishing robust preclinical models. Future studies should investigate NP-body interactions, develop computational models, and identify optimal preclinical models. Establishing central NP research databases and fostering collaboration across disciplines is crucial to expediting clinical translation. Overcoming these hurdles will unlock the transformative potential of CXCR4-ligand-NP conjugates in revolutionising cancer treatment.
Collapse
Affiliation(s)
- Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - John Wilfred T Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Almeida MB, Galdiano CMR, Silva Benvenuto FSRD, Carrilho E, Brazaca LC. Strategies Employed to Design Biocompatible Metal Nanoparticles for Medical Science and Biotechnology Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688024 DOI: 10.1021/acsami.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The applicability of nanomaterials has evolved in biomedical domains thanks to advances in biocompatibility strategies and the mitigation of cytotoxic effects, allowing diagnostics, imaging, and therapeutic approaches. The application of nanoparticles (NP), particularly metal nanoparticles (mNPs), such as gold (Au) and silver (Ag), includes inherent challenges related to the material characteristics, surface modification, and bioconjugation techniques. By tailoring the surface properties through appropriate coating with biocompatible molecules or functionalization with active biomolecules, researchers can reach a harmonious interaction with biological systems or samples (mostly fluids or tissues). Thus, this review highlights the mechanisms associated with the obtention of biocompatible mNP and presents a comprehensive overview of methods that facilitate safe and efficient production. Therefore, we consider this review to be a valuable resource for all researchers navigating this dynamic field.
Collapse
Affiliation(s)
- Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | | | - Filipe Sampaio Reis da Silva Benvenuto
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
5
|
Kawelah MR, Han S, Atila Dincer C, Jeon J, Brisola J, Hussain AF, Jeevarathinam AS, Bouchard R, Marras AE, Truskett TM, Sokolov KV, Johnston KP. Antibody-Conjugated Polymersomes with Encapsulated Indocyanine Green J-Aggregates and High Near-Infrared Absorption for Molecular Photoacoustic Cancer Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5598-5612. [PMID: 38270979 PMCID: PMC11246536 DOI: 10.1021/acsami.3c16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Imaging plays a critical role in all stages of cancer care from early detection to diagnosis, prognosis, and therapy monitoring. Recently, photoacoustic imaging (PAI) has started to emerge into the clinical realm due to its high sensitivity and ability to penetrate tissues up to several centimeters deep. Herein, we encapsulated indocyanine green J (ICGJ) aggregate, one of the only FDA-approved organic exogenous contrast agents that absorbs in the near-infrared range, at high loadings up to ∼40% w/w within biodegradable polymersomes (ICGJ-Ps) composed of poly(lactide-co-glycolide-b-polyethylene glycol) (PLGA-b-PEG). The small Ps hydrodynamic diameter of 80 nm is advantageous for in vivo applications, while directional conjugation with epidermal growth factor receptor (EGFR) targeting cetuximab antibodies renders molecular specificity. Even when exposed to serum, the ∼11 nm-thick membrane of the Ps prevents dissociation of the encapsulated ICGJ for at least 48 h with a high ratio of ICGJ to monomeric ICG absorbances (i.e., I895/I780 ratio) of approximately 5.0 that enables generation of a strong NIR photoacoustic (PA) signal. The PA signal of polymersome-labeled breast cancer cells is proportional to the level of cellular EGFR expression, indicating the feasibility of molecular PAI with antibody-conjugated ICGJ-Ps. Furthermore, the labeled cells were successfully detected with PAI in highly turbid tissue-mimicking phantoms up to a depth of 5 mm with the PA signal proportional to the amount of cells. These data show the potential of molecular PAI with ICGJ-Ps for clinical applications such as tumor margin detection, evaluation of lymph nodes for the presence of micrometastasis, and laparoscopic imaging procedures.
Collapse
Affiliation(s)
- Mohammed R Kawelah
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangheon Han
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Ceren Atila Dincer
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemical Engineering, Faculty of Engineering, Ankara Universit, Ankara 06100, Turkey
| | - Jongyeong Jeon
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joel Brisola
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aasim F Hussain
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Richard Bouchard
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Alexander E Marras
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Konstantin V Sokolov
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas 77030, United States
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Lu C, Wang B, Fang X, Tsai DP, Zhu W, Song Q, Deng X, He T, Gong X, Luo H, Wang Z, Dai X, Shi Y, Cheng X. Nanoparticle Deep-Subwavelength Dynamics Empowered by Optical Meron-Antimeron Topology. NANO LETTERS 2024; 24:104-113. [PMID: 37943097 DOI: 10.1021/acs.nanolett.3c03351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Optical meron is a type of nonplanar topological texture mainly observed in surface plasmon polaritons and highly symmetric points of photonic crystals in the reciprocal space. Here, we report Poynting-vector merons formed at the real space of a photonic crystal for a Γ-point illumination. Optical merons can be utilized for subwavelength-resolution manipulation of nanoparticles, resembling a topological Hall effect on electrons via magnetic merons. In particular, staggered merons and antimerons impose strong radiation pressure on large gold nanoparticles (AuNPs), while focused hot spots in antimerons generate dominant optical gradient forces on small AuNPs. Synergistically, differently sized AuNPs in a still environment can be trapped or orbit in opposite directions, mimicking a coupled galaxy system. They can also be separated with a 10 nm precision when applying a flow velocity of >1 mm/s. Our study unravels a novel way to exploit topological textures for optical manipulation with deep-subwavelength precision and switchable topology in a lossless environment.
Collapse
Affiliation(s)
- Chengfeng Lu
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Bo Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiao Deng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Hong Luo
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| |
Collapse
|
7
|
Sapna K, Shim YB, Arun AB, Prasad KS. Diagnosis of Neglected Tropical Zoonotic Disease, Leptospirosis in a Clinical Sample Using a Photothermal Immunosensor. Anal Chem 2024; 96:409-418. [PMID: 38112052 DOI: 10.1021/acs.analchem.3c04447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Photothermal biosensing based on nanomaterials has gained increasing attention because of its universality and simplicity. Diagnostics of neglected tropical diseases (NTDs) in low-resource settings are challenging in terms of speed, accuracy, and cost-effectiveness. By exploiting the photothermal property of carbon nanotubes (CNTs), simple thermometric measurements can be used to generate quantitative biochemical readouts. Herein, a photothermal immunosensor for leptospirosis detection based on a CNT-labeled monoclonal antibody is established through the sensitive monitoring of the target biomarker LipL32 with a simple thermometer. Under optimum conditions, a linear range up to 106 pg/mL with a limit of detection (LOD) of 300 fg/mL was obtained. Overall, the proposed immunoassay exhibited good precision, selectivity, and acceptable stability. Clinical patient sample analysis with the photothermal sensor proved the differential diagnosis of leptospirosis along with other febrile illnesses. On the other hand, we have also characterized the photothermal sensor platform with surface morphological and spectral techniques to confirm the robust and successful fabrication of the immunosensor. The fabricated photothermal sensor could be used as a potential diagnostic tool for the early detection of NTDs in patients from resource-limited settings, as it does not require sample pretreatment, sophisticated equipment, or skilled labor. Moreover, the developed photothermal assay follows ASSURED criteria, very crucial for diagnosis in resource-limited settings.
Collapse
Affiliation(s)
- Kannan Sapna
- Nanomaterial Research Laboratory (NMRL), Smart Materials and Devices, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of Biophysio Sensor Technology, Pusan National University, Busan 46241, Republic of Korea
| | | | - Kariate Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Smart Materials and Devices, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India
- Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| |
Collapse
|
8
|
Yi T, Hongjiao C, Minling Z, Xin Y, Qingfu Q, Zhixin C, Jing Y, Zhikui C. Biodistribution and Targeted Antitumor Effects of Trastuzumab-Modified Gold Nanorods in Mice with Gastric Cancer. Curr Drug Deliv 2024; 21:421-430. [PMID: 36515037 DOI: 10.2174/1567201820666221212125325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Targeted drug is often engulfed and cleared by the reticuloendothelial system in vivo, resulting in reduced treatment efficacy. This study aimed to explore the biodistribution and HER-2-targeted antitumor effects of trastuzumab-modified gold nanorods (Tra-AuNRs) in a gastric cancer animal model. METHODS Gold nanorods were synthesized using a seed-mediated growth method, and then subjected to trastuzumab-targeted modification. Elemental analysis, Fourier transform infrared spectroscopy, and Xray photoelectron spectroscopy were performed; UV-visible absorption peak, photothermal effects, morphology, and size distribution of Tra-AuNRs were characterized. The targeted killing effect of Tra- AuNRs on gastric cancer cells was assessed in vitro. Tra-AuNRs were injected intravenously and intratumorally into gastric cancer-bearing nude mice in vivo and their distribution was detected. Tumor growth inhibition rate and tumor apoptosis-related protein expression were compared between groups. RESULTS Tra-AuNRs presented a relatively uniform morphology with an average particle size of 59.9 nm and a longitudinal plasmon resonance absorption peak of 790 nm. The targeted killing rate of gastric cancer cells in vitro by Tra-AuNRs was 87.9%. After intravenous injection, Tra-AuNRs were mainly distributed in the liver, tumor, spleen, and lungs. Comparatively, Tra-AuNRs were mainly distributed in the tumor when intratumorally injected, with a tumor concentration of 6.42 μg/g after 24 h. The tumor growth inhibition rate reached 78.3% in the intratumoral injection group, with significantly higher BAX, BAD, and CASPASE-3 expression than that in the intravenous injection group. CONCLUSION The findings suggest that Tra-AuNRs can be used for HER-2-positive gastric cancer treatment. Intratumoral injection of Tra-AuNRs significantly increased the local tumor drug concentration and improved the molecular targeted antitumor growth effect in gastric cancer-bearing nude mice.
Collapse
Affiliation(s)
- Tang Yi
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Cai Hongjiao
- Fisheries College of Jimei University, Xiamen, China
| | - Zhuo Minling
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Xin
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Qian Qingfu
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Chen Zhixin
- Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou, China
| | - Yang Jing
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Chen Zhikui
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Saini G, Parasa MK, Clayton KN, Fraseur JG, Bolton SC, Lin KP, Wereley ST, Kinzer-Ursem TL. Immobilization of azide-functionalized proteins to micro- and nanoparticles directly from cell lysate. Mikrochim Acta 2023; 191:46. [PMID: 38129631 PMCID: PMC10739308 DOI: 10.1007/s00604-023-06068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023]
Abstract
Immobilization of proteins and enzymes on solid supports has been utilized in a variety of applications, from improved protein stability on supported catalysts in industrial processes to fabrication of biosensors, biochips, and microdevices. A critical requirement for these applications is facile yet stable covalent conjugation between the immobilized and fully active protein and the solid support to produce stable, highly bio-active conjugates. Here, we report functionalization of solid surfaces (gold nanoparticles and magnetic beads) with bio-active proteins using site-specific and biorthogonal labeling and azide-alkyne cycloaddition, a click chemistry. Specifically, we recombinantly express and selectively label calcium-dependent proteins, calmodulin and calcineurin, and cAMP-dependent protein kinase A (PKA) with N-terminal azide-tags for efficient conjugation to nanoparticles and magnetic beads. We successfully immobilized the proteins on to the solid supports directly from the cell lysate with click chemistry, forgoing the step of purification. This approach is optimized to yield low particle aggregation and high levels of protein activity post-conjugation. The entire process enables streamlined workflows for bioconjugation and highly active conjugated proteins.
Collapse
Affiliation(s)
- Gunjan Saini
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Mrugesh Krishna Parasa
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Katherine N Clayton
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Julia G Fraseur
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Scott C Bolton
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Kevin P Lin
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
10
|
Sun Z, Huang J, Fishelson Z, Wang C, Zhang S. Cell-Penetrating Peptide-Based Delivery of Macromolecular Drugs: Development, Strategies, and Progress. Biomedicines 2023; 11:1971. [PMID: 37509610 PMCID: PMC10377493 DOI: 10.3390/biomedicines11071971] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cell-penetrating peptides (CPPs), developed for more than 30 years, are still being extensively studied due to their excellent delivery performance. Compared with other delivery vehicles, CPPs hold promise for delivering different types of drugs. Here, we review the development process of CPPs and summarize the composition and classification of the CPP-based delivery systems, cellular uptake mechanisms, influencing factors, and biological barriers. We also summarize the optimization routes of CPP-based macromolecular drug delivery from stability and targeting perspectives. Strategies for enhanced endosomal escape, which prolong its half-life in blood, improved targeting efficiency and stimuli-responsive design are comprehensively summarized for CPP-based macromolecule delivery. Finally, after concluding the clinical trials of CPP-based drug delivery systems, we extracted the necessary conditions for a successful CPP-based delivery system. This review provides the latest framework for the CPP-based delivery of macromolecular drugs and summarizes the optimized strategies to improve delivery efficiency.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chenhui Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Kaladharan K, Chen KH, Chen PH, Goudar VS, Ishdorj TO, Santra TS, Tseng FG. Dual-clamped One-Pot SERS-based Biosensors for Rapid and Sensitive Detection of SARS-CoV-2 Using Portable Raman Spectrometer. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 393:134172. [PMID: 37363301 PMCID: PMC10276524 DOI: 10.1016/j.snb.2023.134172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/20/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Rapid and sensitive diagnostics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of utmost importance to control the widespread coronavirus disease 2019 (COVID-19) upsurge. This study demonstrated a novel one-pot surface-enhanced Raman scattering (SERS) based immunoassay to detect SARS-CoV-2, without any washing process using a portable Raman spectrometer. The SERS-immune assay was designed using a regular digital versatile disk (DVD) substrate integrated with Raman reporter labeled silver nanoparticles for double clamping effects. The disks were molded to form nanopillar arrays and coated with silver film to enhance the sensitivity of immunoassay. The SERS platform demonstrated a limit of detection (LoD) up to 50 pg mL-1 for SARS-CoV-2 spike protein and virus-like-particle (VLP) protein in phosphate buffer saline within a turnaround time of 20 minutes. Moreover, VLP protein spiked in untreated saliva achieved an LoD of 400 pg mL-1, providing a cycle threshold (Ct) value range of 30-32, closer to reverse transcription-polymerase chain reaction (RT-PCR) results (35-40) and higher than the commercial rapid antigen tests, ranging from 25-28. Therefore, the developed one-pot SERS based biosensor exhibited highly sensitive and rapid detection of SARS-CoV-2, which could be a potential point-of-care platform for early and cost-effective diagnosis of the COVID-19 virus.
Collapse
Affiliation(s)
- Kiran Kaladharan
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
| | - Kuan-Hung Chen
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
| | - Pin-Han Chen
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
| | - Venkanagouda S Goudar
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
| | - Tseren-Onolt Ishdorj
- School of Information and Communication Technology, Mongolian University of Science and Technology, Mongolia
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Taiwan ROC
- Department of Chemistry, National Tsing Hua University, Taiwan ROC
- Frontier Research Centre on Fundamental and Applied Sciences of Matters, National Tsing Hua, University, Taiwan, ROC
- Research Centre for Applied Sciences, Academia Sinica, Taipei, Taiwan ROC
| |
Collapse
|
12
|
Jia L, Fu Y, Zhang N, Liu Y, Su L, Wang H, Zhao W. Directional conjugation of Trop2 antibody to black phosphorus nanosheets for phototherapy in orthotopic gastric carcinoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102687. [PMID: 37121458 DOI: 10.1016/j.nano.2023.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Tumor-associated calcium signal transducer 2 (Trop2) highly specific expression in gastric carcinoma (GC). The combination of Trop2 antibody and phototherapy agents could exhibit synergetic antitumor activity. Black phosphorus nanosheets (BP) are covalently modified with Trop2 IgG antibodies via heterobifunctional linker of polyethylene glycol (PEG). Then the Trop2 antibody was directionally conjugated to BP via Schiff base reaction between aldehyde group from oxidized Trop2 antibody and amino group of PEG. The Trop2-funcationalzied BP can significantly increase the endocytosis of BP in Trop2-positive GC cells exhibiting a reinforced antitumor activity under near infrared (NIR) irradiation. More importantly, a murine orthotopic GC model demonstrates that Trop2 antibody modification can significantly promote the accumulation of BP at tumor tissues and strengthen antitumoral activity of phototherapy. Directional conjugation of Trop2 antibody to BP facilitates the BP with superior stability, tumor targeting ability and excellent anti-tumor activity under NIR irradiation without systemic toxicity.
Collapse
Affiliation(s)
- Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Yuhao Fu
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China; Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot 010050, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Lin Su
- Otolaryngology Head and Neck Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Haisheng Wang
- Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot 010050, China.
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China.
| |
Collapse
|
13
|
Dutta R, Rajendran K, Jana SK, Saleena LM, Ghorai S. Use of Graphene and Its Derivatives for the Detection of Dengue Virus. BIOSENSORS 2023; 13:349. [PMID: 36979561 PMCID: PMC10046626 DOI: 10.3390/bios13030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Every year, the dengue virus and its principal mosquito vector, Aedes sp., have caused massive outbreaks, primarily in equatorial countries. The pre-existing techniques available for dengue detection are expensive and require trained personnel. Graphene and its derivatives have remarkable properties of electrical and thermal conductivity, and are flexible, light, and biocompatible, making them ideal platforms for biosensor development. The incorporation of these materials, along with appropriate nanomaterials, improves the quality of detection methods. Graphene can help overcome the difficulties associated with conventional techniques. In this review, we have given comprehensive details on current graphene-based diagnostics for dengue virus detection. We have also discussed state-of-the-art biosensing technologies and evaluated the advantages and disadvantages of the same.
Collapse
Affiliation(s)
- Reshmi Dutta
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Kokilavani Rajendran
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Lilly M. Saleena
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, Raiganj 733134, India
| |
Collapse
|
14
|
Khosroshahi ME, Patel Y. Reflective FT-NIR and SERS studies of HER-II breast cancer biomarker using plasmonic-active nanostructured thin film immobilized oriented antibody. JOURNAL OF BIOPHOTONICS 2023; 16:e202200252. [PMID: 36177970 DOI: 10.1002/jbio.202200252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
We describe the fabrication of plasmonic-active nanostructured thin film substrate as a label-free surface-enhanced Raman scattering (SERS)-based biosensor immobilized covalently with monoclonal HER-II antibody (mAb) to detect overexpressed HER-II as a biomarker in breast cancer serum (BCS). Oriented conjugation of mAb via hydrazone linkage to provide higher mAb accessibility was characterized by UV-vis and reflective Fourier transform near-infrared (FT-NIR) spectroscopic techniques. The interaction of BCS with mAb was studied by FT-NIR and nonresonant SERS at 637 nm. The results showed detection of glycoprotein content at different laser powers including a rise in amino acid and glycan content with varying results at higher power. With nonresonant SERS we observed nonlinear behavior of peak intensity. Analysis of variance was implemented to determine the effect of laser power which was found not to be a contributing factor. However, at the nanoscale, factors including the heating effect and aggregation of molecules can contribute to the nonlinearity of peak intensity.
Collapse
Affiliation(s)
- Mohammad E Khosroshahi
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario, Canada
- Institute for Advanced Non-Destructive & Diagnostic Technologies (IANDIT), University of Toronto, Toronto, Ontario, Canada
| | - Yesha Patel
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario, Canada
- Department of Biochemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
15
|
Performance evaluation of a rapid dengue NS1 antigen lateral flow immunoassay test with reference to dengue NS1 antigen-capture ELISA. JOURNAL OF CLINICAL VIROLOGY PLUS 2023. [DOI: 10.1016/j.jcvp.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
16
|
Hosseinabadi HG, Nieto D, Yousefinejad A, Fattel H, Ionov L, Miri AK. Ink Material Selection and Optical Design Considerations in DLP 3D Printing. APPLIED MATERIALS TODAY 2023; 30:101721. [PMID: 37576708 PMCID: PMC10421610 DOI: 10.1016/j.apmt.2022.101721] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Digital light processing (DLP) 3D printing has become a powerful manufacturing tool for the fast fabrication of complex functional structures. The rapid progress in DLP printing has been linked to research on optical design factors and ink selection. This critical review highlights the main challenges in the DLP printing of photopolymerizable inks. The kinetics equations of photopolymerization reaction in a DLP printer are solved, and the dependence of curing depth on the process optical parameters and ink chemical properties are explained. Developments in DLP platform design and ink selection are summarized, and the roles of monomer structure and molecular weight on DLP printing resolution are shown by experimental data. A detailed guideline is presented to help engineers and scientists to select inks and optical parameters for fabricating functional structures for multi-material and 4D printing applications.
Collapse
Affiliation(s)
- Hossein G. Hosseinabadi
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Daniel Nieto
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Ali Yousefinejad
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Hoda Fattel
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Leonid Ionov
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Amir K. Miri
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| |
Collapse
|
17
|
Fereshteh Z, Dang MN, Wenck C, Day ES, Slater JH. E-Selectin Targeted Gold Nanoshells to Inhibit Breast Cancer Cell Binding to Lung Endothelial Cells. ACS APPLIED NANO MATERIALS 2023; 6:1315-1324. [PMID: 37789828 PMCID: PMC10544796 DOI: 10.1021/acsanm.2c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Extravasation of circulating tumor cells (CTCs) from the vasculature is a key step in cancer metastasis. CTCs bind to cell adhesion molecules (CAMs) expressed by endothelial cells (ECs) for flow arrest prior to extravasation. While a number of EC-expressed CAMs have been implicated in facilitating CTC binding, this work investigated the efficacy of inhibiting cancer cell binding to human lung microvascular ECs via antibody blocking of E-selectin using antibody-functionalized gold nanoshells (NS). The antibody-functionalized gold NS were synthesized using both directional and non-directional antibody conjugation techniques with variations in synthesis parameters (linker length, amount of passivating agents, and ratio of antibodies to NS) to gain a better understanding of these properties on the resultant hydrodynamic diameter, zeta potential, and antibody loading density. We quantified the ability of E-selectin antibody-functionalized NS to bind human lung microvascular endothelial cells (HMVEC-Ls) under non-inflamed and inflamed (TNF-α) conditions to inhibit binding of triple-negative MDA-MB-231s. E-selectin-targeted NS prepared using non-directional conjugation had higher antibody loading than those prepared via directional conjugation, resulting in the conjugates having similar overall binding to HMVEC-Ls at a given antibody concentration. E-selectin-targeted NS reduced MDA-MB-231 binding to HMVEC-Ls by up to 41% as determined using an in vitro binding assay. These results provide useful insights into the characteristics of antibody-functionalized NS prepared under different conditions while also demonstrating proof of concept that these conjugates hold potential to inhibit CTC binding to ECs, a critical step in extravasation during metastasis.
Collapse
Affiliation(s)
- Z Fereshteh
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - M N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - C Wenck
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - E S Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - J H Slater
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| |
Collapse
|
18
|
Guo D, Dai X, Liu K, Liu Y, Wu J, Wang K, Jiang S, Sun F, Wang L, Guo B, Yang D, Huang L. A Self-Reinforcing Nanoplatform for Highly Effective Synergistic Targeted Combinatary Calcium-Overload and Photodynamic Therapy of Cancer. Adv Healthc Mater 2023; 12:e2202424. [PMID: 36640265 DOI: 10.1002/adhm.202202424] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/26/2022] [Indexed: 01/15/2023]
Abstract
While calcium-overload-mediated therapy (COMT) is a promising but largely untapped therapeutic strategy, combinatory therapy greatly boosts treatment outcomes with integrated merits of different therapies. Herein, a BPQD@CaO2 -PEG-GPC3Ab nanoplatform is formulated by integrating calcium peroxide (CaO2 ) and black phosphorus quantum dot (BPQD, photosensitizer) with active-targeting glypican-3 antibody (GPC3Ab), for combinatory photodynamic therapy (PDT) and COMT in response to acidic pH and near-infrared (NIR) light, wherein CaO2 serves as the reservoir of calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ). Navigated by GPC3Ab to tumor cells at acidic pH, the nanoparticle disassembles to CaO2 and BPQD; CaO2 produces COMT Ca2+ and H2 O2 , while H2 O2 makes oxygen (O2 ) to promote PDT; under NIR irradiation BPQD facilitates not only the conversion of O2 to singlet oxygen (1 O2 ) for PDT, but also moderate hyperthermia to accelerate NP dissociation to CaO2 and BPQD, and conversions of CaO2 to Ca2+ and H2 O2 , and H2 O2 to O2 , to enhance both COMT and PDT. After supplementary ionomycin treatment to induce intracellular Ca2+ bursts, the multimodal therapeutics strikingly induce hepatocellular carcinoma apoptosis, likely through the activation of the calpains and caspases 12, 9, and 3, up-regulation of Bax and down-regulation of Bcl-2 proteins. This nanoplatform enables a mutually-amplifying and self-reinforcing synergistic therapy.
Collapse
Affiliation(s)
- Dongdong Guo
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoyong Dai
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Kewei Liu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yuhong Liu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiamin Wu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Kun Wang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Shengwei Jiang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Fen Sun
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Lijun Wang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dongye Yang
- Division of Gastroenterology and Hepatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Laiqiang Huang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Calidonio JM, Hamad-Schifferli K. Biophysical and biochemical insights in the design of immunoassays. Biochim Biophys Acta Gen Subj 2023; 1867:130266. [PMID: 36309294 PMCID: PMC11193098 DOI: 10.1016/j.bbagen.2022.130266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Rapid antigen assays have been attractive for decentralized, point of care diagnostics because of their low cost, robustness, and ease of use. The development of a diagnostic assay for a newly emerging infectious disease needs to take into account the progression of a disease, whether there is human to human transmission, and patient biomarker levels with time, and these all impact the choice of antigen targets and affinity agents. SCOPE OF REVIEW The factors involved in the biophysical design of rapid antigen immunoassays are discussed, focusing on antigen selection and designing for cross-reactivity. State of the art in the biophysical characterization of protein-ligand or antigen-antibody interactions, the different types of affinity agents used in immunoassays, and biochemical conjugation strategies are described. MAJOR CONCLUSIONS Antigen choice is a critical factor in immunoassay diagnostic development, and should account for the properties of the virion, virus, and disease progression. Biophysical and biochemical aspects of immunoassays are critical for performance. GENERAL SIGNIFICANCE This review can serve as an instructive guide to aid in diagnostic development for future emerging diseases.
Collapse
Affiliation(s)
| | - Kimberly Hamad-Schifferli
- Dept. of Engineering, University of Massachusetts Boston, Boston, MA, USA; School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
20
|
pH-Regulated Strategy and Mechanism of Antibody Orientation on Magnetic Beads for Improving Capture Performance of Staphylococcus Species. Foods 2022; 11:foods11223599. [PMID: 36429188 PMCID: PMC9689862 DOI: 10.3390/foods11223599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Immunomagnetic beads (IMBs) have been widely used to capture and isolate target pathogens from complex food samples. The orientation of the antibody immobilized on the surface of magnetic beads (MBs) is closely related to the effective recognition with an antigen. We put forward an available strategy to orient the antibody on the surface of MBs by changing the charged amino group ratio of the reactive amino groups at optimal pH value. Quantum dots labeling antigen assay, antigen-binding fragment (Fab) accessibility assay and lysine mimicking were used for the first time to skillfully illustrate the antibody orientation mechanism. This revealed that the positively charged ε-NH2 group of lysine on the Fc relative to the uncharged amino terminus on Fab was preferentially adsorbed on the surface of MBs with a negatively charged group at pH 8.0, resulting in antigen binding sites of antibody fully exposed. This study contributes to the understanding of the antibody orientation on the surface of MBs and the potential application of IMBs in the separation and detection of pathogenic bacteria in food samples.
Collapse
|
21
|
Calidonio JM, Gomez-Marquez J, Hamad-Schifferli K. Nanomaterial and interface advances in immunoassay biosensors. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17804-17815. [PMID: 38957865 PMCID: PMC11218816 DOI: 10.1021/acs.jpcc.2c05008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biosensors have been used for a remarkable array of applications, including infectious diseases, environmental monitoring, cancer diagnosis, food safety, and numerous others. In particular, the global COVID-19 pandemic has exposed a need for rapid tests, so the type of biosensor that has gained considerable interest recently are immunoassays, which are used for rapid diagnostics. The performance of paper-based lateral flow and dipstick immunoassays is influenced by the physical properties of the nanoparticles (NPs), NP-antibody conjugates, and paper substrate. Many materials innovations have enhanced diagnostics by increasing sensitivity or enabling unique readouts. However, negative side effects can arise at the interface between the biological sample and biomolecules and the NP or paper substrate, such as non-specific adsorption and protein denaturation. In this Perspective, we discuss the immunoassay components and highlight chemistry and materials innovations that can improve sensitivity. We also explore the range of bio-interface issues that can present challenges for immunoassays.
Collapse
Affiliation(s)
| | | | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA 02125
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
22
|
Bongaerts GPA, Williams RM, van der Wielen MWJ, Feiters MC. (Photo-)chemical roadmap to strategic antimicrobial photodynamic and photothermal therapies. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Schwartz‐Duval AS, Sokolov KV. Prospecting Cellular Gold Nanoparticle Biomineralization as a Viable Alternative to Prefabricated Gold Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105957. [PMID: 35508715 PMCID: PMC9284136 DOI: 10.1002/advs.202105957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Gold nanoparticles (GNPs) have shown considerable potential in a vast number of biomedical applications. However, currently there are no clinically approved injectable GNP formulations. Conversely, gold salts have been used in the clinic for nearly a century. Further, there is evidence of GNP formation in patients treated with gold salts (i.e., chrysiasis). Recent reports evaluating this phenomenon in human cells and in murine models indicate that the use of gold ions for in situ formation of theranostic GNPs could greatly improve the delivery within dense biological tissues, increase efficiency of intracellular gold uptake, and specificity of GNP formation within cancer cells. These attributes in combination with safe clinical application of gold salts make this process a viable strategy for clinical translation. Here, the first summary of the current knowledge related to GNP biomineralization in mammalian cells is provided along with critical assessment of potential biomedical applications of this newly emergent field.
Collapse
Affiliation(s)
- Aaron S. Schwartz‐Duval
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
| | - Konstantin V. Sokolov
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences6767 Bertner AveHoustonTX77030USA
- Department of BioengineeringRice University6100 Main St.HoustonTX77030USA
- Department of Biomedical EngineeringThe University of Texas at Austin107 W Dean Keeton St.AustinTX78712USA
| |
Collapse
|
24
|
Jandhyala S, Van Namen A, Spatarelu CP, Luke GP. EGFR-Targeted Perfluorohexane Nanodroplets for Molecular Ultrasound Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2251. [PMID: 35808089 PMCID: PMC9268413 DOI: 10.3390/nano12132251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023]
Abstract
Perfluorocarbon nanodroplets offer an alternative to gaseous microbubbles as contrast agents for ultrasound imaging. They can be acoustically activated to induce a liquid-to-gas phase transition and provide contrast in ultrasound images. In this study, we demonstrate a new strategy to synthesize antibody-conjugated perfluorohexane nanodroplet (PFHnD-Ab) ultrasound contrast agents that target cells overexpressing the epidermal growth factor receptor (EGFR). The perfluorohexane nanodroplets (PFHnD) containing a lipophilic DiD fluorescent dye were synthesized using a phospholipid shell. Antibodies were conjugated to the surface through a hydrazide-aldehyde reaction. Cellular binding was confirmed using fluorescence microscopy; the DiD fluorescence signal of the PFHnD-Ab was 5.63× and 6× greater than the fluorescence signal in the case of non-targeted PFHnDs and the EGFR blocking control, respectively. Cells were imaged in tissue-mimicking phantoms using a custom ultrasound imaging setup consisting of a high-intensity focused ultrasound transducer and linear array imaging transducer. Cells with conjugated PFHnD-Abs exhibited a significantly higher (p < 0.001) increase in ultrasound amplitude compared to cells with non-targeted PFHnDs and cells exposed to free antibody before the addition of PFHnD-Abs. The developed nanodroplets show potential to augment the use of ultrasound in molecular imaging cancer diagnostics.
Collapse
Affiliation(s)
- Sidhartha Jandhyala
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.J.); (A.V.N.); (C.-P.S.)
| | - Austin Van Namen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.J.); (A.V.N.); (C.-P.S.)
| | - Catalina-Paula Spatarelu
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.J.); (A.V.N.); (C.-P.S.)
| | - Geoffrey P. Luke
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.J.); (A.V.N.); (C.-P.S.)
- Translational Engineering in Cancer Program, Dartmouth Cancer Center, Lebanon, NH 03756, USA
| |
Collapse
|
25
|
Kim C, Nevozhay D, Aburto RR, Pehere A, Pang L, Dillard R, Wang Z, Smith C, Mathieu KB, Zhang M, Hazle JD, Bast RC, Sokolov K. One-Pot, One-Step Synthesis of Drug-Loaded Magnetic Multimicelle Aggregates. Bioconjug Chem 2022; 33:969-981. [PMID: 35522527 PMCID: PMC9121875 DOI: 10.1021/acs.bioconjchem.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Lipid-based formulations provide a nanotechnology platform that is widely used in a variety of biomedical applications because it has several advantageous properties including biocompatibility, reduced toxicity, relative ease of surface modifications, and the possibility for efficient loading of drugs, biologics, and nanoparticles. A combination of lipid-based formulations with magnetic nanoparticles such as iron oxide was shown to be highly advantageous in a growing number of applications including magnet-mediated drug delivery and image-guided therapy. Currently, lipid-based formulations are prepared by multistep protocols. Simplification of the current multistep procedures can lead to a number of important technological advantages including significantly decreased processing time, higher reaction yield, better product reproducibility, and improved quality. Here, we introduce a one-pot, single-step synthesis of drug-loaded magnetic multimicelle aggregates (MaMAs), which is based on controlled flow infusion of an iron oxide nanoparticle/lipid mixture into an aqueous drug solution under ultrasonication. Furthermore, we prepared molecular-targeted MaMAs by directional antibody conjugation through an Fc moiety using Cu-free click chemistry. Fluorescence imaging and quantification confirmed that antibody-conjugated MaMAs showed high cell-specific targeting that was enhanced by magnetic delivery.
Collapse
Affiliation(s)
- Chang
Soo Kim
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dmitry Nevozhay
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rebeca Romero Aburto
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ashok Pehere
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Lan Pang
- Department
of Experimental Therapeutics, The University
of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rebecca Dillard
- Center
for Molecular Microscopy, Frederick National Laboratory for Cancer
Research, Center for Cancer Research, National
Cancer Institute, NIH, Frederick, Maryland 21701, United States
| | - Ziqiu Wang
- Center
for Molecular Microscopy, Frederick National Laboratory for Cancer
Research, Center for Cancer Research, National
Cancer Institute, NIH, Frederick, Maryland 21701, United States
| | - Clayton Smith
- Center
for Molecular Microscopy, Frederick National Laboratory for Cancer
Research, Center for Cancer Research, National
Cancer Institute, NIH, Frederick, Maryland 21701, United States
| | - Kelsey Boitnott Mathieu
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Marie Zhang
- Imagion
Biosystems, Inc., San Diego, California 92121, United States
| | - John D. Hazle
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert C. Bast
- Department
of Experimental Therapeutics, The University
of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Konstantin Sokolov
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Bikkarolla SK, McNamee SE, Vance P, McLaughlin J. High-Sensitive Detection and Quantitative Analysis of Thyroid-Stimulating Hormone Using Gold-Nanoshell-Based Lateral Flow Immunoassay Device. BIOSENSORS 2022; 12:182. [PMID: 35323452 PMCID: PMC8946628 DOI: 10.3390/bios12030182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Au nanoparticles (AuNPs) have been used as signal reporters in colorimetric lateral flow immunoassays (LFAs) for decades. However, it remains a major challenge to significantly improve the detection sensitivity of traditional LFAs due to the low brightness of AuNPs. As an alternative approach, we overcome this problem by utilizing 150 nm gold nanoshells (AuNSs) that were engineered by coating low-density silica nanoparticles with a thin layer of gold. AuNSs are dark green, have 14 times larger surface area, and are approximately 35 times brighter compared to AuNPs. In this study, we used detection of thyroid-stimulating hormone (TSH) in a proof-of-concept assay. The limit of detection (LOD) with AuNS-based LFA was 0.16 µIU/mL, which is 26 times more sensitive than the conventional colorimetric LFA that utilizes AuNP as a label. The dynamic range of the calibration curve was 0.16−9.5 µIU/mL, making it possible to diagnose both hyperthyroidism (<0.5 µIU/mL) and hypothyroidism (>5 µIU/mL) using AuNS-based LFA. Thus, the developed device has a strong potential for early screening and diagnosis of diseases related to the thyroid hormone.
Collapse
Affiliation(s)
- Santosh Kumar Bikkarolla
- School of Engineering, Engineering Research Institute, University of Ulster, Newtownabbey BT37 0QB, UK;
| | - Sara E. McNamee
- School of Engineering, Engineering Research Institute, University of Ulster, Newtownabbey BT37 0QB, UK;
| | - Paul Vance
- Randox Laboratories Ltd., 55 Diamond Road, Crumlin, County Antrim BT29 4QY, UK;
| | - James McLaughlin
- School of Engineering, Engineering Research Institute, University of Ulster, Newtownabbey BT37 0QB, UK;
| |
Collapse
|
28
|
Size and surface coverage density are major factors in determining thiol modified gold nanoparticles characteristics. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Sun JP, Ren YT, Liu ZX, He MJ, Gao BH, Qi H. Dependence of the Nonlinear Photoacoustic Response of Gold Nanoparticles on the Heat-Transfer Process. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:3489-3501. [PMID: 35572805 PMCID: PMC9098176 DOI: 10.1021/acs.jpcc.1c09245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging using the nonlinear PA response of gold nanoparticles (GNPs) can effectively attenuate the interference from background noise caused by biomolecules (e.g., hemoglobin), thus offering a highly potential noninvasive biomedical imaging method. However, the mechanism of the nonlinear PA response of GNPs based on the thermal expansion mechanism, especially the effect of heat-transfer ability, still lacks quantitative investigation. Therefore, this work investigated the effect of heat-transfer ability on the nonlinear PA response of GNPs using the critical energy and fluence concept, taking into account the Au@SiO2 core-shell nanoparticles (weakened heat transfer) and gold nanochains (enhanced heat transfer). The results showed that the stronger the heat transferability, the smaller the critical energy, indicating that the nonlinear PA response of different nanoparticles cannot be contrasted directly through the critical energy. Moreover, the critical fluence can directly contrast the proportion of nonlinear components in the PA response of different GNPs as governed by the combined effect of heat transferability and photothermal conversion ability.
Collapse
Affiliation(s)
- Jian-Ping Sun
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| | - Ya-Tao Ren
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
- Faculty
of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Zi-Xuan Liu
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| | - Ming-Jian He
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| | - Bao-Hai Gao
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| | - Hong Qi
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| |
Collapse
|
30
|
Yoo S, Yoon SW, Jung WN, Chung MH, Kim H, Jeong H, Yoo KH. Photothermal inactivation of universal viral particles by localized surface plasmon resonance mediated heating filter membrane. Sci Rep 2022; 12:1724. [PMID: 35110635 PMCID: PMC8810778 DOI: 10.1038/s41598-022-05738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
This study introduces localized surface plasmon resonance (L-SPR) mediated heating filter membrane (HFM) for inactivating universal viral particles by using the photothermal effect of plasmonic metal nanoparticles (NPs). Plasmonic metal NPs were coated onto filter membrane via a conventional spray-coating method. The surface temperature of the HFM could be controlled to approximately 40-60 °C at room temperature, owing to the photothermal effect of the gold (Au) NPs coated on them, under irradiation by visible light-emitting diodes. Due to the photothermal effect of the HFMs, the virus titer of H1Npdm09 was reduced by > 99.9%, the full inactivation time being < 10 min, confirming the 50% tissue culture infective dose (TCID50) assay. Crystal violet staining showed that the infectious samples with photothermal inactivation lost their infectivity against Mardin-Darby Canine Kidney cells. Moreover, photothermal inactivation could also be applied to reduce the infectivity of SARS-CoV-2, showing reduction rate of 99%. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques to confirm the existence of viral genes on the surface of the HFM. The results of the TCID50 assay, crystal violet staining method, and qRT-PCR showed that the effective and immediate reduction in viral infectivity possibly originated from the denaturation or deformation of membrane proteins and components. This study provides a new, simple, and effective method to inactivate viral infectivity, leading to its potential application in various fields of indoor air quality control and medical science.
Collapse
Affiliation(s)
- Seunghwan Yoo
- Energy ICT Convergence Research Department, Energy Efficiency Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sun-Woo Yoon
- Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Woo-Nam Jung
- Advanced Combustion Power Lab., Energy Efficiency Research Division, Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Department of Mechnical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Deajeon, 34141, Republic of Korea
| | - Moon Hyun Chung
- Energy ICT Convergence Research Department, Energy Efficiency Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunjun Kim
- Energy ICT Convergence Research Department, Energy Efficiency Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Hagkeun Jeong
- Energy Efficiency Research Division, Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
31
|
Oussou-Azo FA, Futagami T, Vestergaard MCM. Immuno-Dipstick for Colletotrichum gloeosporioides Detection: Towards On-Farm Application. BIOSENSORS 2022; 12:49. [PMID: 35200310 PMCID: PMC8869205 DOI: 10.3390/bios12020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
Early and quick detection of pathogens are crucial for managing the spread of infections in the biomedical, biosafety, food, and agricultural fields. While molecular diagnostics can offer the specificity and reliability in acute infectious diseases, detection of pathogens is often slowed down by the current benchtop molecular diagnoses, which are time consuming, labor intensive, and lack the mobility for application at the point-of-need. In this work, we developed a complete on-farm use detection protocol for the plant-devastating anthracnose agent: Colletotrichum gloeosporioides. Our methods combined a simplified DNA extraction on paper that is compatible with loop-mediated isothermal amplification (LAMP), coupled with paper-based immunoassay lateral flow sensing. Our results offer simple, quick, easy, and a minimally instrumented toolkit for Colletotrichum gloeosporioides detection. This scalable and adaptable platform is a valuable alternative to traditional sensing systems towards on-the-go pathogen detection in food and agriculture, biomedical, and other fields.
Collapse
Affiliation(s)
- Fifame Auriane Oussou-Azo
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (F.A.O.-A.); (T.F.)
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (F.A.O.-A.); (T.F.)
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mun’delanji Catherine M. Vestergaard
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (F.A.O.-A.); (T.F.)
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
32
|
Biby A, Wang X, Liu X, Roberson O, Henry A, Xia X. Rapid testing for coronavirus disease 2019 (COVID-19). MRS COMMUNICATIONS 2022; 12:12-23. [PMID: 35075405 PMCID: PMC8769796 DOI: 10.1557/s43579-021-00146-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
Rapid testing, generally refers to the paper-based diagnostic platform known as "lateral flow assay" (LFA), has emerged as a critical asset to the containment of coronavirus disease 2019 (COVID-19) around the world. LFA technology stands out amongst peer platforms due to its cost-effective design, user-friendly interface, and low sample-to-readout times. This article aims to introduce its design, use, and practicality for the purpose of diagnosing SARS-CoV-2 infection. A connection is made from the normal COVID-19 immune response to the design and efficacy of rapid testing. Interference in test results is a challenge shared by most diagnostic platforms and can be rooted in various underlying issues. The current knowledge and situation about interference in rapid COVID-19 tests due to variant strains as well as vaccination are discussed. The cost and societal impact are reviewed as they play important roles in determining how to properly implement public testing practices. Perspectives on improving the performance, especially detection sensitivity, of LFA for COVID-19 are provided.
Collapse
Affiliation(s)
- Alexander Biby
- Department of Chemistry, University of Central Florida, Orlando, FL 32816 USA
| | - Xiaochuan Wang
- School of Social Work, University of Central Florida, Orlando, FL 32816 USA
| | - Xinliang Liu
- School of Global Health Management & Informatics, University of Central Florida, Orlando, FL 32816 USA
| | - Olivia Roberson
- Department of Chemistry, University of Central Florida, Orlando, FL 32816 USA
| | - Allya Henry
- School of Social Work, University of Central Florida, Orlando, FL 32816 USA
| | - Xiaohu Xia
- Department of Chemistry, University of Central Florida, Orlando, FL 32816 USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816 USA
| |
Collapse
|
33
|
Rotov AY, Romanov IS, Tarakanchikova YV, Astakhova LA. Application Prospects for Synthetic Nanoparticles in Optogenetic Retinal Prosthetics. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Lin T, Huang X, Guo L, Zhou S, Li X, Liu Y, Hu J, Chen X, Xiong Y. Boronate affinity-assisted oriented antibody conjugation on quantum dot nanobeads for improved detection performance in lateral flow immunoassay. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Namen AV, Jandhyala S, Jordan T, Luke GP. Repeated Acoustic Vaporization of Perfluorohexane Nanodroplets for Contrast-Enhanced Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3497-3506. [PMID: 34191726 PMCID: PMC8667194 DOI: 10.1109/tuffc.2021.3093828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Superheated perfluorocarbon nanodroplets are emerging ultrasound imaging contrast agents that boast biocompatible components, unique phase-change dynamics, and therapeutic loading capabilities. Upon exposure to a sufficiently high-intensity pulse of acoustic energy, the nanodroplet's perfluorocarbon core undergoes a liquid-to-gas phase change and becomes an echogenic microbubble, providing ultrasound contrast. The controllable activation leads to high-contrast images, while the small size of the nanodroplets promotes longer circulation times and better in vivo stability. One drawback, however, is that the nanodroplets can only be vaporized a single time, limiting their versatility. Recently, we and others have addressed this issue by using a perfluorohexane core, which has a boiling point above body temperature. Thus after vaporization, the microbubbles recondense back into their stable nanodroplet form. Previous work with perfluorohexane nanodroplets relied on optical activation via pulsed laser absorption of an encapsulated dye. This strategy limits the imaging depth and temporal resolution of the method. In this study, we overcome these limitations by demonstrating acoustic droplet vaporization with 1.1-MHz high-intensity focused ultrasound (HIFU). A short-duration, high-amplitude pulse of focused ultrasound provides a sufficiently strong peak negative pressure to initiate vaporization. A custom imaging sequence was developed to enable the synchronization of a HIFU transducer and a linear array imaging transducer. We show a visualization of repeated acoustic activation of perfluorohexane nanodroplets in polyacrylamide tissue-mimicking phantoms. We further demonstrate the detection of hundreds of vaporization events from individual nanodroplets with activation thresholds well below the tissue cavitation limit. Overall, this approach has the potential to result in reliable and repeatable contrast-enhanced ultrasound imaging at clinically relevant depths.
Collapse
|
36
|
Abstract
Glioblastoma is one of the deadliest forms of primary adult tumors, with median survival of 14.6 months post-diagnosis despite aggressive standard of care treatment. This grim prognosis for glioblastoma patients has changed little in the past two decades, necessitating novel treatment modalities. One potential treatment modality is cancer immunotherapy, which has shown remarkable progress in slowing disease progression or even potentially curing certain solid tumors. However, the transport barriers posed by the blood-brain barrier and the immune privileged status of the central nervous system pose drug delivery obstacles that are unique to brain tumors. In this review, we provide an overview of the various physiological, immunological, and drug delivery barriers that must be overcome for effective glioblastoma treatment. We discuss chemical modification strategies to enable nanomedicines to bypass the blood-brain barrier and reach intracranial tumors. Finally, we highlight recent advances in biomaterial-based strategies for cancer immunotherapy that can be adapted to glioblastoma treatment.
Collapse
Affiliation(s)
- Yuan Rui
- Department of Biomedical Engineering, the Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering, the Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Neurosurgery, Ophthalmology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Materials Science & Engineering and Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins University School of Medicine, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA.
| |
Collapse
|
37
|
Synthesis of Cell-Penetrating Peptide Coated Silica Nanoparticles and Their Physicochemical and Biological Characterization. Methods Mol Biol 2021. [PMID: 34766285 DOI: 10.1007/978-1-0716-1752-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The surface decoration of nanoparticles with cell-penetrating peptides (CPPs) represents a common technique for intracellular delivery of nanotherapeutics. Conjugate formation can be performed via covalent or non-covalent strategies. Here, we describe on the synthesis of silica nanoparticles, a well-known inorganic drug delivery vehicle type, and their surface modification with cell-penetrating peptides using sC18 and derivatives thereof. Moreover, physicochemical as well as biological characterization methods, including cellular uptake measurements, of particle-peptide conjugates are described.
Collapse
|
38
|
Tang JB, Yang HM, Gao XY, Zeng XZ, Wang FS. Directional immobilization of antibody onto magnetic nanoparticles by Fc-binding protein-assisted photo-conjugation for high sensitivity detection of antigen. Anal Chim Acta 2021; 1184:339054. [PMID: 34625272 DOI: 10.1016/j.aca.2021.339054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022]
Abstract
Immobilized antibodies with site-specific, oriented, and covalent pattern are of great significance to improve the sensitivity of solid-phase immunoassay. Here, we developed a novel antibody conjugation strategy that can immobilize antibodies in a directional and covalent manner. In this study, an IgG-Fc binding protein (Z domain) carrying a site-specific photo-crosslinker, p-benzoyl-L-phenylalanine, and a single C-terminal cysteine (Cys) handle was genetically engineered. Upon UV irradiation, the chimeric protein enables the Cys handle to couple with the native antibody in Fc-specific and covalent conjugation pattern, resulting in a novel thiolated antibody. Thus, an approach for the covalent, directional immobilization of antibodies to maleimide-modified magnetic nanoparticles (MNPs) was developed on the basis of the crosslinking between sulfhydryl and maleimide groups. The antibody-conjugated MNPs were applied in MNP-based enzyme-linked immunosorbent assay (ELISA) for the detection of carcinoembryonic antigen. The MNP-based ELISA presented a quantification linear range of 0.1-100 ng mL-1 and detection limit of 0.02 ng mL-1, which was approximately 100 times more sensitive than the traditional microplate ELISA (2.0 ng mL-1). Thus, the proposed antibody immobilization approach can be used in surface functionalization for the sensitive detection of various biomarkers.
Collapse
Affiliation(s)
- Jin-Bao Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China; Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Ming Yang
- Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiao-Yi Gao
- Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xian-Zhong Zeng
- Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
39
|
High-spatial and colourimetric imaging of histone modifications in single senescent cells using plasmonic nanoprobes. Nat Commun 2021; 12:5899. [PMID: 34625566 PMCID: PMC8501099 DOI: 10.1038/s41467-021-26224-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Histones are closely related to the state of chromatin, and epigenetic modification of their tail results in regulation in cells. Therefore, developing various analytical tools to map the changes in position and distribution of histone modifications is helpful in studying underlying mechanisms. Herein, we propose a high-spatial and colourimetric imaging method using plasmonic nanoparticles as probes to visualize heterochromatin histone markers in a single nucleus. We visualized the reorganization between repressive histone markers, H3K9me3 and H3K27me3, caused by oncogene-induced senescence based on the scattering colours and spectral shift of plasmonic nanoprobes to longer wavelengths using their distance-dependent coupling effect. The measured scattering profiles were correlated with the computation results simulating the scattering spectra according to the arrangements and distances among the plasmonic nanoprobes. The plasmonic nanoprobe-based high-spatial hyperspectral imaging provides an advanced way to study the dynamics of histone modifications for predicting the progression of diseases or senescence.
Collapse
|
40
|
Patel N, Ghali L, Roitt I, Munoz LP, Bayford R. Exploiting the efficacy of Tyro3 and folate receptors to enhance the delivery of gold nanoparticles into colorectal cancer cells in vitro. NANOSCALE ADVANCES 2021; 3:5373-5386. [PMID: 36132641 PMCID: PMC9419080 DOI: 10.1039/d1na00318f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/15/2021] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the fourth most common cancer in the world. Due to its asymptomatic nature, CRC is diagnosed at an advanced stage where the survival rate is <5%. Besides, CRC treatment using chemotherapy, radiotherapy and surgery often causes undesirable side-effects. As such, gold nanoparticles (GNPs) are envisaged in the field for the diagnosis and treatment of CRC. GNPs have unique physical, chemical and electrical properties at the nanoscale which make them suitable for application in biomedicine. However, for GNPs to become clinically effective, their internalisation efficiency in cancer cells must be enhanced. Folate receptor-α (FR) is overexpressed in CRC cells wherein FR helps in the uptake of folic acid within the cells. Tyro3, a novel tyrosine kinase receptor, drives cell proliferation and its overexpression is correlated with poor prognosis in CRC. Their upregulated expression in CRC cells relative to normal cells makes them an ideal target for GNPs using active targeting. Therefore, in this study receptors FR and Tyro3 were simultaneously targeted using specific antibody-coated GNPs in order to enhance the uptake and internalisation of GNPs in CRC cells in vitro. Four different types of coated-GNPs were synthesised GNPs-PEG, GNPs-anti-FR, GNPs-anti-Tyro3 and GNPs-anti-(FR + Tyro3) and incubated (0-50 ng) with three CRC cell lines namely CRL1790, CRL2159 and HCT116. Simultaneous targeting of these receptors by GNPs-anti-(FR + Tyro3) was found to be the most effective in internalisation in CRC cells compared with GNPs targeted singly to FR or Tyro3 (p <0.05). Besides this, results show that Tyro3 mediated similar internalisation efficacy to FR (p <0.05) in CRC cells using ICP-OES.
Collapse
Affiliation(s)
- Nakul Patel
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Lucy Ghali
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Ivan Roitt
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Leonardo Puntoja Munoz
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Richard Bayford
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| |
Collapse
|
41
|
Clinically translatable quantitative molecular photoacoustic imaging with liposome-encapsulated ICG J-aggregates. Nat Commun 2021; 12:5410. [PMID: 34518530 PMCID: PMC8438038 DOI: 10.1038/s41467-021-25452-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Photoacoustic (PA) imaging is a functional and molecular imaging technique capable of high sensitivity and spatiotemporal resolution at depth. Widespread use of PA imaging, however, is limited by currently available contrast agents, which either lack PA-signal-generation ability for deep imaging or their absorbance spectra overlap with hemoglobin, reducing sensitivity. Here we report on a PA contrast agent based on targeted liposomes loaded with J-aggregated indocyanine green (ICG) dye (i.e., PAtrace) that we synthesized, bioconjugated, and characterized to addresses these limitations. We then validated PAtrace in phantom, in vitro, and in vivo PA imaging environments for both spectral unmixing accuracy and targeting efficacy in a folate receptor alpha-positive ovarian cancer model. These study results show that PAtrace concurrently provides significantly improved contrast-agent quantification/sensitivity and SO2 estimation accuracy compared to monomeric ICG. PAtrace's performance attributes and composition of FDA-approved components make it a promising agent for future clinical molecular PA imaging.
Collapse
|
42
|
Dang MN, Hoover EC, Scully MA, Sterin EH, Day ES. Antibody Nanocarriers for Cancer Management. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100295. [PMID: 34423177 PMCID: PMC8373047 DOI: 10.1016/j.cobme.2021.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibodies are extremely valuable tools in modern medicine due to their ability to target diseased cells through selective antigen binding and thereby regulate cellular signaling or inhibit cell-cell interactions with high specificity. However, the therapeutic utility of freely delivered antibodies is limited by high production costs, low efficacy, dose-limiting toxicities, and inability to cross the cellular membrane (which hinders antibodies against intracellular targets). To overcome these limitations, researchers have begun to develop nanocarriers that can improve antibodies' delivery efficiency, safety profile, and clinical potential. This review summarizes recent advances in the design and implementation of nanocarriers for extracellular or intracellular antibody delivery, emphasizing important design considerations, and points to future directions for the field.
Collapse
Affiliation(s)
- Megan N. Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Elise C. Hoover
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Mackenzie A. Scully
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Eric H. Sterin
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Emily S. Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, 19713, United States
| |
Collapse
|
43
|
Karunakaran V, Saritha VN, Ramya AN, Murali VP, Raghu KG, Sujathan K, Maiti KK. Elucidating Raman Image-Guided Differential Recognition of Clinically Confirmed Grades of Cervical Exfoliated Cells by Dual Biomarker-Appended SERS-Tag. Anal Chem 2021; 93:11140-11150. [PMID: 34348462 DOI: 10.1021/acs.analchem.1c01607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrasensitive detection of cancer biomarkers via single-cell analysis through Raman imaging is an impending approach that modulates the possibility of early diagnosis. Cervical cancer is one such type that can be monitored for a sufficiently long period toward invasive cancer phenotype. Herein, we report a surface-enhanced Raman scattering (SERS) nanotag (SERS-tag) for the simultaneous detection of p16/K-i67, a dual biomarker persisting in the progression of squamous cell carcinoma of human cervix. A nanoflower-shaped SERS-tag, constituted of hybrid gold nanostar with silver tips to achieve maximum fingerprint enhancement from the incorporated reporter molecule, was further functionalized with the cocktail monoclonal antibodies against p16/K-i67. The recognition by the SERS-tag was first validated in cervical squamous cell carcinoma cell line SiHa as a foot-step study and subsequently implemented to different grades of clinically confirmed exfoliated cells including normal cell (NC), high-grade intra-epithelial lesion (HC), and squamous cell carcinoma (CC) samples of the cervix. Precise Raman mapped images were constituted based on the average intensity gradient of the signature Raman peaks arising from different grades of exfoliated cells. We observed a distinct intensity hike of around 10-fold in the single dysplastic HC and CC samples in comparison to NC specimen, which clearly justify the prevalence of p16/Ki-67. The synthesized probe is able to map the abnormal cells within 20 min with high reproducibility and stability for 1 mm × 1 mm mapping area with good contrast. Amidst the challenges in Raman image-guided modality, the technique was further complemented with the gold standard immunocytochemistry (ICC) dual staining analysis. Even though both are time-consuming techniques, tedious steps can be avoided and real-time readout can be achieved using the SERS mapping unlike immunocytochemistry technique. Therefore, the newly developed Raman image-guided SERS imaging emphasizes the approach of uplifting of SERS in practical utility with further improvement for clinical applications for cervical cancer detection in future.
Collapse
Affiliation(s)
- Varsha Karunakaran
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Valliamma N Saritha
- Regional Cancer Centre (RCC), Division of Cancer Research, Thiruvananthapuram 695011, Kerala, India
| | - Adukkadan N Ramya
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishnu Priya Murali
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, Thiruvananthapuram 695019, Kerala, India
| | - Kozhiparambil G Raghu
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Agro-Processing and Technology Division (APTD), Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kunjuraman Sujathan
- Regional Cancer Centre (RCC), Division of Cancer Research, Thiruvananthapuram 695011, Kerala, India
| | - Kaustabh Kumar Maiti
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
44
|
Zhou S, Hu J, Chen X, Duan H, Shao Y, Lin T, Li X, Huang X, Xiong Y. Hydrazide-assisted directional antibody conjugation of gold nanoparticles to enhance immunochromatographic assay. Anal Chim Acta 2021; 1168:338623. [PMID: 34052002 DOI: 10.1016/j.aca.2021.338623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
The analytical performance of immunochromatographic assay (ICA) is usually determined by the biological activity of antibody and gold nanoparticle conjugates (AuNP probes). However, conventional probes are constructed using the nondirectional coupling method that can cause the improper orientation of antibodies with the poor accessibility of antigen-binding sites. To address these issues, we report a site-specific directional coupling strategy to enhance the bioactivity of AuNP probes through the specific covalent binding of the aldehyde group in the Fc domain of antibodies with the hydrazide group modified on the surface of AuNPs. Through this design, the antibodies can be erected on the AuNP surface to fully expose the Fab domain and achieve the maximized functional availability. Leveraging these AuNP probes as ICA labels, we demonstrate an improved detection of the hepatitis B surface antigen with less used amount of labeled antibody (0.2 mg/pmol AuNPs), shorter reaction time (10 min), better antibody bioactivity, and higher detection sensitivity (2 ng/mL) compared with the carbodiimide method. Overall, this work provides great promise for the design and the construction of high-performance probes to enhance the detection performance of ICA sensors.
Collapse
Affiliation(s)
- Shu Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Jing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Yanna Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Tong Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Xiangmin Li
- School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
45
|
Okyem S, Awotunde O, Ogunlusi T, Riley MB, Driskell JD. High-Affinity Points of Interaction on Antibody Allow Synthesis of Stable and Highly Functional Antibody-Gold Nanoparticle Conjugates. Bioconjug Chem 2021; 32:1753-1762. [PMID: 34228917 DOI: 10.1021/acs.bioconjchem.1c00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many emerging nanobiotechnologies rely on the proper function of proteins immobilized on gold nanoparticles. Often, the surface chemistry of the AuNP is engineered to control the orientation, surface coverage, and structure of the adsorbed protein to maximize conjugate function. Here, we chemically modified antibody to investigate the effect of protein surface chemistries on adsorption to AuNPs. A monoclonal anti-horseradish peroxidase IgG antibody (anti-HRP) was reacted with N-succinimidyl acrylate (NSA) or reduced dithiobissuccinimidyl propionate (DSP) to modify lysine residues. Zeta potential measurements confirmed that both chemical modifications reduced the localized regions of positive charge on the protein surface, while the DSP modification incorporated additional free thiols. Dynamic light scattering confirmed that native and chemically modified antibodies adsorbed onto AuNPs to form bioconjugates; however, adsorption kinetics revealed that the NSA-modified antibody required significantly more time to allow for the formation of a hard corona. Moreover, conjugates formed with the NSA-modified antibody lost antigen-binding function, whereas unmodified and DSP-modified antibodies adsorbed onto AuNPs to form functional conjugates. These results indicate that high-affinity functional groups are required to prevent protein unfolding and loss of function when adsorbed on the AuNP surface. The reduced protein charge and high-affinity thiol groups on the DSP-modified antibody enabled pH-dependent control of protein orientation and the formation of highly active conjugates at solution pHs (<7.5) that are inaccessible with unmodified antibody due to conjugate aggregation. This study establishes parameters for protein modification to facilitate the formation of highly functional and stable protein-AuNP conjugates.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Olatunde Awotunde
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Tosin Ogunlusi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - McKenzie B Riley
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
46
|
Han S, Zal T, Sokolov KV. Fate of Antibody-Targeted Ultrasmall Gold Nanoparticles in Cancer Cells after Receptor-Mediated Uptake. ACS NANO 2021; 15:9495-9508. [PMID: 34011152 PMCID: PMC8223898 DOI: 10.1021/acsnano.0c08128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles with ultrasmall sizes (less than 10 nm) offer many advantages in biomedical applications compared to their bigger counterparts, including better intratumoral distribution, improved pharmacokinetics (PK), and efficient body clearance. When functionalized with a biocompatible coating and a target-specific antibody, ultrasmall nanoparticles represent an attractive clinical translation platform. Although there is a tremendous body of work dedicated to PK and the biological effects of various nanoparticles, little is known about the fate of different components of functionalized nanoparticles in a biological environment such as in live cells. Here, we used luminescence properties of 5 nm gold nanoparticles (AuNPs) to study the intracellular trafficking and fate of the AuNPs functionalized with an organic layer consisting of a polyethylene glycol (PEG) coating and epidermal growth factor receptor (EGFR)-targeting antibody. We showed that intracellular uptake of the targeted 5 nm AuNPs results in a strong two-photon luminescence (TPL) that is characterized by broad emission and very short lifetimes compared to the fluorescence of the nanoparticle-conjugated fluorophore-tagged antibody, thereby allowing selective imaging of these components using TPL and two-photon excited fluorescence lifetime microscopy (2P-FLIM). Our results indicate that the nanoparticle's coating is detached from the particle's surface inside cells, leading to formation of nanoparticle clusters with a strong TPL. Furthermore, we observed an optically resolved spatial separation of the gold core and the antibody coating of the particles inside cells. We used data from two-photon microscopy, 2P-FLIM, electron microscopy, and in vitro assays to propose a model of interactions of functionalized 5 nm AuNPs with live cells.
Collapse
Affiliation(s)
- Sangheon Han
- Department of Bioengineering, Rice
University, 6100 Main Street, Houston, Texas 77005, United
States
- Department of Imaging Physics, The
University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, Texas 77030, United States
| | - Tomasz Zal
- Department of Leukemia, The University of
Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas
77030, United States
| | - Konstantin V. Sokolov
- Department of Bioengineering, Rice
University, 6100 Main Street, Houston, Texas 77005, United
States
- Department of Imaging Physics, The
University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, Texas 77030, United States
| |
Collapse
|
47
|
Ye Q, Wang Y, Shen S, Xu C, Wang J. Biomaterials-Based Delivery of Therapeutic Antibodies for Cancer Therapy. Adv Healthc Mater 2021; 10:e2002139. [PMID: 33870637 DOI: 10.1002/adhm.202002139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/05/2021] [Indexed: 12/19/2022]
Abstract
Considerable breakthroughs in the treatment of malignant tumors using antibody drugs, especially immunomodulating monoclonal antibodies (mAbs), have been made in the past decade. Despite technological advancements in antibody design and manufacture, multiple challenges face antibody-mediated cancer therapy, such as instability in vivo, poor tumor penetration, limited response rate, and undesirable off-target cytotoxicity. In recent years, an increasing number of biomaterials-based delivery systems have been reported to enhance the antitumor efficacy of antibody drugs. This review summarizes the advances and breakthroughs in integrating biomaterials with therapeutic antibodies for enhanced cancer therapy. A brief introduction to the principal mechanism of antibody-based cancer therapy is first established, and then various antibody immobilization strategies are provided. Finally, the current state-of-the-art in biomaterials-based antibody delivery systems and their applications in cancer treatment are summarized, highlighting how the delivery systems augment the therapeutic efficacy of antibody drugs. The outlook and perspective on biomaterials-based delivery of antitumor antibodies are also discussed.
Collapse
Affiliation(s)
- Qian‐Ni Ye
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
| | - Yue Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Cong‐Fei Xu
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
48
|
Hara D, Tao W, Totiger TM, Pourmand A, Dogan N, Ford JC, Shi J, Pollack A. Prostate Cancer Targeted X-Ray Fluorescence Imaging via Gold Nanoparticles Functionalized With Prostate-Specific Membrane Antigen (PSMA). Int J Radiat Oncol Biol Phys 2021; 111:220-232. [PMID: 33964351 DOI: 10.1016/j.ijrobp.2021.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The gold nanoparticle (GNP) as a promising theranostic probe has been increasingly studied. The tumor-targeting efficiency of GNPs is crucial to increase the therapeutic ratio. In this study, we developed PSMA-targeted GNPs to enhance GNP uptake in prostate cancer and developed an x-ray fluorescence imaging system to noninvasively monitor and assess GNP delivery. METHODS AND MATERIALS For targeted therapy of prostate cancer, anti-prostate-specific membrane antigen (PSMA) antibodies were conjugated onto PEGylated GNPs through 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) (EDC/NHS) chemistry. In vivo imaging was implemented using an in-house-developed dual-modality computed tomography (CT) and x-ray fluorescence CT (XFCT) system on mice bearing subcutaneous LNCaP prostate tumors. After intravenous administration of GNPs (15 mg/mL, 200 μL), the x-ray fluorescence signals from the tumor were collected at various time points (5 minutes to approximately 30 hours) for GNP pharmacokinetics analysis. At 24 hours after administration, x-ray fluorescence projection (XRFproj) and XFCT imaging were conducted to evaluate the prostate tumor uptake of active- and passive-targeting GNPs. Inductively coupled plasma mass spectrometry analysis was adopted as a benchmark to verify the quantification accuracy of XRFproj/XFCT imaging. RESULTS Fluorescence microscopic imaging confirmed the enhanced (approximately 4 times) targeting efficiency of PSMA-targeted GNPs in vitro. The pharmacokinetics analysis showed enhanced tumor uptake/retention of PSMA-targeted GNPs and revealed that the peak tumor accumulation appeared at approximately 24 hours after intravenous administration. Both XRFproj and XFCT imaging presented their accuracy in quantifying GNPs within tumors noninvasively. Moreover, XFCT imaging verified its unique capabilities to simultaneously determine the heterogeneous spatial distribution and the concentration of GNPs within tumors in vivo. CONCLUSIONS In conjunction with PSMA-targeted GNPs, XRFproj/XFCT would be a highly sensitive tool for targeted imaging of prostate cancer, benefiting the elucidation of mechanisms of GNP-assisted prostate-cancer therapy.
Collapse
Affiliation(s)
- Daiki Hara
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida; Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Tulasigeri M Totiger
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ali Pourmand
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| | - Nesrin Dogan
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida
| | - John Chetley Ford
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida; Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida.
| | - Junwei Shi
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida.
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
49
|
Peng Y, Rabin C, Walgama CT, Pollok NE, Smith L, Richards I, Crooks RM. Silver Nanocubes as Electrochemical Labels for Bioassays. ACS Sens 2021; 6:1111-1119. [PMID: 33439628 DOI: 10.1021/acssensors.0c02377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we report on the use of 40 ± 4 nm silver nanocubes (AgNCs) as electrochemical labels in bioassays. The model metalloimmunoassay combines galvanic exchange (GE) and anodic stripping voltammetry (ASV). The results show that a lower limit of detection is achieved by simply changing the shape of the Ag label yielding improved GE with AgNCs when compared to GE with spherical silver nanoparticles (sAgNPs). Specifically, during GE between electrogenerated Au3+ and the Ag labels, a thin shell of Au forms on the surface of the NP. This shell is more porous when GE proceeds on AgNCs compared to sAgNPs, and therefore, more exchange occurs when using AgNCs. ASV results show that the Ag collection efficiency (AgCE%) is increased by up to ∼57% when using AgNCs. When the electrochemical system is fully optimized, the limit of detection is 0.1 pM AgNCs, which is an order of magnitude lower than that of sAgNP labels.
Collapse
Affiliation(s)
- Yi Peng
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Charlie Rabin
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Charuksha T. Walgama
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Nicole E. Pollok
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Leilani Smith
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Ian Richards
- Interactives Executive Excellence LLC, Austin, Texas 78733 United States
| | - Richard M. Crooks
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| |
Collapse
|
50
|
António M, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021; 230:122345. [PMID: 33934794 DOI: 10.1016/j.talanta.2021.122345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Urine is a biofluid easy to collect through a non-invasive technique that allows collecting a large volume of sample. The use of urine for disease diagnosis is not yet well explored. However, it has gained attention over the last three years. It has been applied in the diagnosis of several illnesses such as kidney disease, bladder cancer, prostate cancer and cardiovascular diseases. In the last decade, gold nanoparticles (Au NPs) have attracted attention in biosensors' development for the diagnosis of diseases due to their electrical and optical properties, ability to conjugate with biomolecules, high sensitivity, and selectivity. Therefore, this article aims to present a comprehensive view of state of the art on the advances made in the quantification of analytes in urinary samples using AuNPs based assays, with a focus on protein analysis. The type of diagnosis methods, the Au NPs synthesis approaches and the strategies for surface modification aiming at selectivity towards the different targets are highlighted.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal; Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal; LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|