1
|
Deepika NP, Krishnamurthy PT, Varshini MS, Naik MR, Sajini DV, Kiran AVR, Garikapati KK, Duraiswamy B, Sharma R. Ethnopharmacological validation of Karkataka Taila-An edible crab Rasayana in rotenone-induced in vitro and in vivo models of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118691. [PMID: 39134229 DOI: 10.1016/j.jep.2024.118691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Karkataka Taila (KT), an ancient Ayurvedic Rasayana comprising the edible freshwater crab Scylla serrata Forskal flesh, is still used by local traditional practitioners in Kerala state to treat tremors and palsy. In the scientific community, it becomes less exposed due to the lack of adequate scientific validations and brief reports. There has been no published research on the effectiveness of KT in treating Parkinson's disease (PD). PURPOSE The purpose of the current research work was to investigate the anti-Parkison's potential of KT against rotenone-induced neurotoxicity in SH-SY5Y cell lines and rat model of PD and investigate underlying molecular mechanisms. MATERIALS AND METHODS The components of KT have been identified by gas chromatography-mass spectroscopy (GC-MS). The neuroprotective activity of KT was assessed using SH-SY5Y cell lines and rats against rotenone-induced PD. The parameters used for asses the neuroprotection are antioxidant markers (ROS and SOD), anti-inflammatory markers (IL-6, IL-1β, TNF-α, and nitrite), and dopamine levels. Behavioral evaluation and rat brain histopathology were carried out to further support the neuroprotection. RESULT Analysis using GC-MS revealed 36 constituents in KT. In vitro, the KT displayed considerable neuroprotective effects in terms of decreasing oxidative stress (ROS and SOD), neuroinflammation (IL-6, IL-1β, TNF-α, and nitrite), and elevating dopamine concentration. In vivo data showing improvements in histopathological and biochemical parameters confirmed the in vitro study findings, and in terms of behavioral assays, KT displayed significant activity. CONCLUSION GC-MS profiling was used to identify the bioactive compounds of KT with antioxidant, anti-inflammatory, and neuroprotective properties. As a result, they may be responsible for the therapeutic effects of KT on PD.
Collapse
Affiliation(s)
- N P Deepika
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Mudavath Ravi Naik
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Ammu Vvv Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Basavan Duraiswamy
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Hijam AC, Tongbram YC, Nongthombam PD, Meitei HN, Koijam AS, Rajashekar Y, Haobam R. Traditionally used edible medicinal plants protect against rotenone induced toxicity in SH-SY5Y cells-a prospect for the development of herbal nutraceuticals. Neurochem Int 2024; 180:105855. [PMID: 39244037 DOI: 10.1016/j.neuint.2024.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Plants are good sources of pharmacologically active compounds. The present study aimed to examine the neuroprotective potentials of the methanol extracts of Salix tetrasperma Roxb. leaf (STME) and Plantago asiatica L. (PAME), two edibles medicinal plants of Manipur, India against neurotoxicity induced by rotenone in SH-SY5Y cells. Free radical quenching activities were evaluated by ABTS and DPPH assays. The cytotoxicity of rotenone and the neuronal survival were assessed by MTT assay and MAP2 expression analysis. DCF-DA, Rhodamine 123 (Rh-123), and DAPI measured the intracellular reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and apoptotic nuclei, respectively. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were also assessed. LC-QTOF-MS analysis was performed for the identification of the compounds present in STME and PAME. The study showed that both the plant extracts (STME and PAME) showed antioxidant and neuroprotective capabilities in rotenone-induced neurotoxicity by preventing oxidative stress through the reduction of intracellular ROS levels and reversing the activities of GPx, SOD, and CAT caused by rotenone. Further, both plants prevented apoptotic cell death by normalizing the steady state of MMP and protecting nuclear DNA condensation. LC-QTOF-MS analysis shows the presence of known neuroprotective compounds like uridine and gabapentin in STME and PAME respectively. The two plants might be an important source of natural antioxidants and nutraceuticals with neuroprotective abilities. This could be investigated further to formulate herbal nutraceuticals for the treatment of neurodegenerative disease like Parkinson's disease.
Collapse
Affiliation(s)
- Aruna Chanu Hijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Pooja Devi Nongthombam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Yallapa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India.
| |
Collapse
|
3
|
Shahabuddin F, Naseem S, Alam T, Khan AA, Khan F. Chronic aluminium chloride exposure induces redox imbalance, metabolic distress, DNA damage, and histopathologic alterations in Wistar rat liver. Toxicol Ind Health 2024; 40:581-595. [PMID: 39138847 DOI: 10.1177/07482337241269784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Aluminium, a ubiquitous environmental toxicant, is distinguished for eliciting a broad range of physiological, biochemical, and behavioural alterations in laboratory animals and humans. The present work was conducted to study the functional and structural changes induced by aluminium in rat liver. Twenty five adult male Wistar rats (150-200 g) were randomly divided into five groups; control group and four Al-treated groups viz: Al 1 (25 mg AlCl3/kg b.wt), Al 2 (35 mg AlCl3/kg b.wt), Al 3 (45 mg AlCl3/kg b.wt), and Al 4 (55 mg AlCl3/kg b.wt). Rats in the aluminium-treated groups were administered AlCl3 for 30 days through oral gavage. Aluminium significantly increased the serum levels of liver function markers (ALT, AST, and ALP), phospholipids, and cholesterol. The activities of hepatocyte membrane (ALP, GGT, and LAP) and carbohydrate metabolic (G6P, F16BP, HK, LDH, MDH, ME, and G6PDH) enzymes were significantly altered by AlCl3 administration. Prolonged Al exposure induced oxidative stress in the liver, as evident by significant hepatocellular DNA damage, increased lipid peroxidation, and decreased non-enzymatic and enzymatic antioxidants. The toxic effects observed in this study were AlCl3 dose-dependent. Histopathological examination of liver sections revealed enlargement of sinusoidal spaces, derangement of the hepatic chord, loss of discrete hepatic cell boundaries, congestion of hepatic sinusoids, and degeneration of hepatocytes in Al-intoxicated rats. In conclusion, aluminium causes severe hepatotoxicity by inhibiting the hepatocyte membrane enzymes and disrupting the liver's energy metabolism and antioxidant defence.
Collapse
Affiliation(s)
- Farha Shahabuddin
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Samina Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tauseef Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, Faculty of Medicine, JN Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
4
|
Sivakumar B, Kurian GA. The Worsening of Myocardial Ischemia-Reperfusion Injury in Uremic Cardiomyopathy is Further Aggravated by PM 2.5 Exposure: Mitochondria Serve as the Central Focus of Pathology. Cardiovasc Toxicol 2024; 24:1236-1252. [PMID: 39264521 DOI: 10.1007/s12012-024-09920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Uremic cardiomyopathy (UC) represents a complex syndrome characterized by different cardiac complications, including systolic and diastolic dysfunction, left ventricular hypertrophy, and diffuse fibrosis, potentially culminating in myocardial infarction (MI). Revascularization procedures are often necessary for MI management and can induce ischemia reperfusion injury (IR). Despite this clinical relevance, the role of fine particulate matter (PM2.5) in UC pathology and the underlying subcellular mechanisms governing this pathology remains poorly understood. Hence, we investigate the impact of PM2.5 exposure on UC susceptibility to IR injury. Using a rat model of adenine-induced chronic kidney disease (CKD), the animals were exposed to PM2.5 at 250 µg/m3 for 3 h daily over 21 days. Subsequently, hearts were isolated and subjected to 30 min of ischemia followed by 60 min of reperfusion to induce IR injury. UC hearts exposed to PM2.5 followed by IR induction (Adenine + PM_IR) exhibited significantly impaired cardiac function and increased cardiac injury (increased infarct size and apoptosis). Analysis at the subcellular level revealed reduced mitochondrial copy number, impaired mitochondrial bioenergetics, decreased expression of PGC1-α (a key regulator of mitochondrial biogenesis), and compromised mitochondrial quality control mechanisms. Additionally, increased mitochondrial oxidative stress and perturbation of the PI3K/AKT/AMPK signaling axis were evident. Our findings therefore collectively indicate that UC myocardium when exposed to PM2.5 is more vulnerable to IR-induced injury, primarily due to severe mitochondrial impairment.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/chemically induced
- Particulate Matter/toxicity
- Disease Models, Animal
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/drug effects
- Male
- Signal Transduction
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cardiomyopathies/chemically induced
- Cardiomyopathies/physiopathology
- Apoptosis/drug effects
- Uremia/metabolism
- Uremia/chemically induced
- Uremia/pathology
- Uremia/complications
- Energy Metabolism/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/metabolism
- Air Pollutants/toxicity
- Rats, Sprague-Dawley
- Proto-Oncogene Proteins c-akt/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Adenine/toxicity
- Adenine/pharmacology
- Oxidative Stress/drug effects
- Ventricular Function, Left/drug effects
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardial Infarction/chemically induced
- Myocardial Infarction/physiopathology
- Phosphatidylinositol 3-Kinase/metabolism
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
5
|
Sivakumar B, Kurian GA. Increased Susceptibility of Cardiac Tissue to PM 2.5-Induced Toxicity in Uremic Cardiomyopathic Rats Is Linked to Elevated Levels of Mitochondrial Dysfunction. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39462878 DOI: 10.1002/tox.24437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/03/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Patients with chronic kidney disease (CKD) frequently develop uremic cardiomyopathy, characterized by mitochondrial dysfunction as one of its pathologically significant mediators. Given that PM2.5 specifically targets cardiac mitochondria, exacerbating toxicity, this study addresses the potential alterations in the severity of PM2.5 toxicity in the context of CKD conditions. Female Wistar rats were exposed to PM2.5 at a concentration of 250 μg/m3 daily for 3 h for 21 days after which an adenine-induced CKD model was developed. While both PM2.5 exposure and the induction of CKD in rats lead to cardiomyopathy, the CKD animals exposed to PM2.5 exhibited a notably severe extent of myocardial hypertrophy and fibrosis. ECG recordings in CKD+ PM2.5 animals revealed a depressed ST segment and prolonged QRS interval, with both PM2.5 and CKD animals displaying an elevated ST segment. Subcellular level analysis confirmed a significantly low mitochondrial copy number and a severe decline in mitochondrial bioenergetic function in the CKD+ PM2.5 group. The prominent decline in PGC1-α further affirmed the severe mitochondrial functional deterioration in CKD+ PM2.5 animals compared to other experimental groups. Additionally, myocardial calcification was enhanced in CKD+ PM2.5 animals, heightening the susceptibility of CKD animals to PM2.5 toxicity. In summary, our findings suggest that the increased vulnerability of CKD myocardium to PM2.5-induced toxicity may be attributed to severe mitochondrial damage and increased calcification in the myocardium.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
6
|
Zhang S, Zhang H, Li M, Song H, Sun J, Fan C, Xie Y, Wang H, Ge Z. Differentiating Reactive Oxygen Species with DNA Framework Monitors. NANO LETTERS 2024; 24:13438-13446. [PMID: 39382404 DOI: 10.1021/acs.nanolett.4c04210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The lifespan, oxidizing properties, bonding behaviors, and reactivity of reactive oxygen species (ROS) produced during photocatalytic activation can vary significantly due to the differences in electron configurations of ROS, which are dependent on their generation mechanisms: energy transfer or charge transfer. Hence, identifying and differentiating ROS of different mechanisms can improve our understanding of redox reactions and related diseases, providing a basis for the prevention and treatment of related diseases. Here, we have developed a DNA framework monitor (DFM) based on dynamic DNA structural changes to effectively distinguish the two types of ROS produced in photocatalytic activation of O2. This DFM provides a visualization tool for observing the reaction kinetics of ROS with DNA, not only distinguishing two types of ROS with different mechanisms but also serving as a universal system for evaluating the efficacy and performance of nanomaterials for ROS regulation.
Collapse
Affiliation(s)
- Shuangye Zhang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairuo Zhang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haitao Song
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jielin Sun
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Saha S, Ghosh A, Santra HK, Banerjee D, Chattopadhyay S. Corrective role of endophytic exopolysaccharides from Clerodendrum infortunatum L. on arsenic-induced ovarian steroidogenic dysfunction and associated inflammatory responses. Int J Biol Macromol 2024; 282:136795. [PMID: 39442839 DOI: 10.1016/j.ijbiomac.2024.136795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The present investigation aimed to evaluate the therapeutic potential of exopolysaccharides (EPSs) derived from endophytic fungi against arsenic [As(III)]-mediated metabolic and reproductive ailments. Two endophytic fungi, Diaporthe arengae (CleR1) and Fusarium proliferatum (CleR3), were isolated from Clerodendrum infortunatum (Cle), and used for the extraction of two types of EPSs. GC-MS analysis confirmed the presence of hydroxymethyl furfural (HMF) and α-d-glucopyranose in the EPS1 (CleR1) and EPS2 (CleR3), respectively. FTIR analysis revealed the potential As(III)-chelation properties of both EPSs. EPS1 and EPS2 significantly mitigated As(III)-induced oxidative stress and lipid peroxidation by restoring the activities of antioxidative enzymes. EPSs successfully corrected the gonadotropin imbalance and steroidogenic alterations. The downregulation of proinflammatory (NF-κB and TNF-α) and proapoptotic (BAX) mediators and the upregulation of antiapoptotic (Bcl-2) markers were also detected following the treatment with EPSs. Histomorphological restoration of reproductive and metabolic organs was also observed in both the EPS groups. Moreover, the As(III)-induced increase in the immunoreactivity of the androgen receptor (AR) was successfully reversed by these EPSs. Molecular docking predicted that HMF and α-d-glucopyranose of EPS1 and EPS2 interact with the active site of AR by limiting its activity. Hence, EPS could be effective for developing new therapeutic strategies for managing As(III) toxicity.
Collapse
Affiliation(s)
- Sangita Saha
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India; Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Angshita Ghosh
- Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Hiran Kanti Santra
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Debdulal Banerjee
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sandip Chattopadhyay
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
8
|
Khalil EM, Rady MI, Darwish SF, Abd-Allah ER. Nano Spirulina platensis countered cisplatin-induced repro-toxicity by reversing the expression of altered steroid hormones and downregulation of the StAR gene. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03483-z. [PMID: 39414699 DOI: 10.1007/s00210-024-03483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
Cisplatin is a commonly utilized chemotherapy medication for treating different sarcomas and carcinomas. Its ability interferes with cancer cells' DNA repair pathways and postpones unfavorable outcomes in cancer patients. The current investigation's goal was to ascertain if nano Spirulina platensis (NSP) might shield rat testicles from cisplatin damage by assessing the expression of the StAR and SOD genes, sex hormones, 17ß-hydroxysteroid dehydrogenase(17ß-HSD), sperm profile picture, oxidative condition of testes, testicular histology, and DNA damage. Four equal and random groups of 28 adult male Wistar rats were created; the control group was given saline for 8 weeks. An extraction of NSP at a concentration of 2500 mg/kg body weight was administered orally for 8 weeks to the NSP group. For the first 4 weeks, the cisplatin group was intraperitoneally injected with 2 mg/kg/body weight of cisplatin, and for the next 4 weeks, they were given a dosage of 4 mg/kg/body weight. The cisplatin + NSP group was given both NSP and cisplatin. The results of the experiment showed that intake of NSP and cisplatin improved sperm profile; re-established the balance of oxidizing agents and antioxidant state; enhanced testicular histology; promoted the histometric parameters of seminiferous tubules including epithelial height, their diameter, and Johnsen's score, decreasing DNA breakage in testicular tissue; increased testosterone level; decreased 17ß-HSD concentration; and upregulated both the StAR and SOD gene expression in testicles compared to rats exposed to cisplatin alone. These results demonstrate that NSP is a promising agent for improving cisplatin-induced testicular injury and infertility.
Collapse
Affiliation(s)
- Eman M Khalil
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt
| | - Mohamed I Rady
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Samah F Darwish
- Biotechnology Research Unit, Animal Reproduction Research Institute, Giza, Egypt
| | - Entsar R Abd-Allah
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt.
| |
Collapse
|
9
|
Cha D, Choi S, Lee Y, Cho J, Lee S. Mitoquinone improves porcine embryo development through modulating oxidative stress and mitochondrial function. Theriogenology 2024; 231:90-100. [PMID: 39427592 DOI: 10.1016/j.theriogenology.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Oxidative stress caused by excess reactive oxygen species (ROS) is one of the main causes of low efficiency in in vitro production of embryos. These ROS can cause mitochondrial dysfunction and apoptosis, resulting in poor embryo development. Therefore, to prevent mitochondrial damage and apoptosis caused by ROS, we investigated the effects of mitoquinone (MitoQ), a mitochondrial-targeted antioxidant, on the in vitro culture (IVC) of porcine embryos. Various concentrations of MitoQ (0, 0.01, 0.1, or 1 nM) were supplemented during the entire period of IVC. The results showed that supplementation with 0.1 nM MitoQ significantly increased the blastocyst formation rate, with a higher total cell number including trophectoderm cell number and higher transcript expression of lineage-specific transcription factors in blastocysts. In addition, the 0.1 nM MitoQ-treated group showed a significantly lower percentage and number of apoptotic cells in blastocysts with positively regulated transcript expression of apoptosis-related genes. Therefore, 0.1 nM MitoQ was suggested as optimal concentration for porcine IVC and used for further investigations. MitoQ treatment significantly reduced intracellular ROS levels and increased glutathione levels in Day 2 embryos, with upregulated the transcript expression of antioxidant enzymes-related genes. Furthermore, the MitoQ group exhibited a significantly higher mitochondrial quantity, mitochondrial membrane potential, and ATP content in Day 2 embryos, with increased transcript expression of mitochondrial biogenesis-related genes. Taken together, these findings reveal that MitoQ supplementation can enhance the developmental competence of porcine embryos by decreasing oxidative stress and improving mitochondrial function.
Collapse
Affiliation(s)
- Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seunghyun Choi
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yumin Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
10
|
Lane HY, Wang SH, Lin CH. Sex- and dose-dependent catalase increase and its clinical impact in a benzoate dose-finding, randomized, double-blind, placebo-controlled trial for Alzheimer's disease. Pharmacol Biochem Behav 2024; 245:173885. [PMID: 39384087 DOI: 10.1016/j.pbb.2024.173885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Sex differences in Alzheimer's disease (AD) are gaining increasing attention. Previously research has shown that sodium benzoate treatment can improve cognitive function in AD patients, particularly in the female patients; and 1000 mg/day of benzoate appears more efficacious than lower doses. Catalase is a crucial endogenous antioxidant; and deficiency of catalase is regarded to be related to the pathogenesis of AD. The current study aimed to explore the role of sex and benzoate dose in the change of catalase activity among benzoate-treated AD patients. METHODS This secondary analysis used data from a double-blind trial, in which 149 CE patients were randomized to receive placebo or one of three benzoate doses (500, 750, or 1000 mg/day) and measured with Alzheimer's disease assessment scale-cognitive subscale. Plasma catalase was assayed before and after treatment. RESULTS Benzoate treatment, particularly at 1000 mg/day, increased catalase among female patients, but not among male. The increases in the catalase activity among the benzoate-treated women were correlated with their cognitive improvements. In addition, higher baseline catalase activity was associated with more cognitive improvement after benzoate treatment among both female and male patients. CONCLUSIONS Supporting the oxidative stress theory and sex difference in AD, the finding suggest that sex (female) and benzoate dose co-determine catalase increase in benzoate-treated AD patients and the catalase increment contributes to cognitive improvement of benzoate-treated women. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03752463.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Gamal M, Awad MA, Shadidizaji A, Ibrahim MA, Ghoneim MA, Warda M. In vivo and in silico insights into the antidiabetic efficacy of EVOO and hydroxytyrosol in a rat model. J Nutr Biochem 2024; 135:109775. [PMID: 39370013 DOI: 10.1016/j.jnutbio.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Extra virgin olive oil (EVOO) has a putative antidiabetic activity mostly attributed to its polyphenol Hydroxytyrosol. In this study, we explored the antidiabetic effects of EVOO and Hydroxytyrosol on an in vivo T2D-simulated rat model as well as in in silico study. Wistar rats were divided into four groups. The first group served as a normal control (NC), while type 2 diabetes (T2D) was induced in the remaining groups using a high-fat diet (HFD) for 12 weeks followed by a single dose of streptozotocin (STZ, 30 mg/kg). One diabetic group remained untreated (DC), while the other two groups received an 8-week treatment with either EVOO (90 g/kg of the diet) (DO) or Hydroxytyrosol (17.3 mg/kg of the diet) (DH). The DC group exhibited hallmark features of established T2D, including elevated fasting blood glucose levels, impaired glucose tolerance, increased HOMA-IR, widespread downregulation of insulin receptor expression, heightened oxidative stress, and impaired β-cell function. In contrast, treatments with EVOO and Hydroxytyrosol elicited an antidiabetic response, characterized by improved glucose tolerance, as indicated by accelerated blood glucose clearance. Systematic analysis revealed the underlying antidiabetic mechanisms: both treatments enhanced insulin receptor expression in the liver and skeletal muscles, increased adiponectin levels, and mitigated oxidative stress. Moreover, while EVOO reduced intramyocellular lipids, Hydroxytyrosol restored adipose tissue insulin sensitivity and enhanced β-cell survival. Molecular docking and dynamics confirm Hydroxytyrosol's high affinity binding to PGC-1α, IRE-1α, and PPAR-γ, particularly IRE-1α, highlighting its potential to modulate diabetic signaling pathways. Collectively, these mechanisms highlight the putative antidiabetic role of EVOO and Hydroxytyrosol. Moreover, the favorable docking scores of Hydroxytyrosol with PGC-1α, IRE-1α, and PPAR-γ support the antidiabetic potential and offer promising avenues for further research and the development of novel antidiabetic therapies.
Collapse
Affiliation(s)
- Mahmoud Gamal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mohamed A Awad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Magdy A Ghoneim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
12
|
Rezavanimehr MM, Kakhki S, Pahlavani H, Khosropour M, Khatibi SR, Beheshti F. Vitamin B 12 supplementation improved memory impairment following nicotine withdrawal in adolescent male rats: The role of oxidative stress, inflammatory, BDNF, GFAP, and AChE activity. Behav Brain Res 2024; 474:115180. [PMID: 39111405 DOI: 10.1016/j.bbr.2024.115180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
The present study aimed to assess the potential effect of vitamin B12 (Vit B12) on cognition impairment caused by nicotine (Nic) cessation in adolescent male rats. Adolescent male rats were categorized into two main groups as vehicle (normal saline, intraperitoneally), and Nic group in which received Nic (2 mg/kg) from 21 to 42 days of ages and then the Nic group were divided into three groups as withdrawal (the animals returned to regular diet without treatment), second and third groups received bupropion (20 mg/kg), and Vit B12 at three different doses including 0.5,1, and 1.5 mg/kg by oral gavage as treatments to attenuate Nic withdrawal symptoms. The last group including normal animals received the highest doses of Vit B12 just in the Nic abstinence period to compare the effect of that with vehicle. In MWM, Vit B12and bupropion increased the time spent in the target quadrant that is strongly associated with spatial memory as well as the more time spent with the NORT. Vit B12 and bupropion modulated both oxidant/antioxidant and inflammatory/anti-inflammatory balance, alongside inhibitory effect on AChE, and GFAP. However, BDNF and amyloid-B showed insignificant difference as compared to Vit B12 and bupropion. Considering the present results and similar related studies, Vit B12 can be introduced as a strong anti-oxidant, and anti-inflammatory agent by which probably improved memory impairment caused by Nic addiction accompanied by withdrawal. Further, other mechanisms including activity reduction of AChE, and GFAP should be considered; however, it needs further investigation and larger-scale evidences.
Collapse
Affiliation(s)
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Pahlavani
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maryam Khosropour
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Reza Khatibi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
13
|
Molina SJ, Corsi GN, Araujo Añon LC, Guelman LR. Sex-dependent effects of short-term ethanol, energy drinks and acute noise exposure on hippocampal oxidative balance and glutamate transporter EAAT-1 during rat adolescence. Neurotoxicology 2024; 105:147-157. [PMID: 39366467 DOI: 10.1016/j.neuro.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
It is known that human adolescents often consume ethanol (EtOH) alone or mixed with energy drinks (ED), especially in noisy environments. Although these agents impact the developing brain, their effects after brief exposure or when presented together remain unclear. Given that few animal studies in this subject are available, this research aimed to study the effects of a brief exposure to these stimuli on the oxidative state and EAAT-1 glutamate transporter levels in the developing rat hippocampus (HC). Adolescent Wistar rats were subjected to a two-bottle choice, limited access to drinking in the dark paradigm, for EtOH and EtOH+ED intake, for 4 days, and subsequent acute noise exposure. Next, hippocampal catalase activity, reactive oxygen species (ROS), glutaredoxin-1 (Grx-1) and glutamate transporter EAAT-1 levels were assessed. Results showed sex-dependent alterations after exposure to these stimuli: Females consuming EtOH had higher hippocampal ROS levels, which decreased when combined with noise; males showed reduced ROS levels only after noise exposure. No significant changes occurred in catalase activity, Grx-1, or EAAT-1 levels with EtOH and noise exposure in neither sex. Additionally, ED raised EtOH consumption in both sexes, normalizing ROS levels only in females when combined with EtOH. Finally, ED consumption altered Grx-1 and EAAT-1 levels in both sexes. In summary, brief exposure to these stimuli induced sex-dependent alterations, suggesting differentiated coping strategies between sexes. Whereas ED consumption may have antioxidant effects in some cases, it could also increase excitotoxicity risk. These novel findings raise questions for future research on the underlying corresponding mechanisms.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina.
| | - Gonzalo Nahuel Corsi
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Lara Candela Araujo Añon
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
14
|
Xu M, Wu G, You Q, Chen X. The Landscape of Smart Biomaterial-Based Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401310. [PMID: 39166484 PMCID: PMC11497043 DOI: 10.1002/advs.202401310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/19/2024] [Indexed: 08/23/2024]
Abstract
Hydrogen (H2) therapy is an emerging, novel, and safe therapeutic modality that uses molecular hydrogen for effective treatment. However, the impact of H2 therapy is limited because hydrogen molecules predominantly depend on the systemic administration of H2 gas, which cannot accumulate at the lesion site with high concentration, thus leading to limited targeting and utilization. Biomaterials are developed to specifically deliver H2 and control its release. In this review, the development process, stimuli-responsive release strategies, and potential therapeutic mechanisms of biomaterial-based H2 therapy are summarized. H2 therapy. Specifically, the produced H2 from biomaterials not only can scavenge free radicals, such as reactive oxygen species (ROS) and lipid peroxidation (LPO), but also can inhibit the danger factors of initiating diseases, including pro-inflammatory cytokines, adenosine triphosphate (ATP), and heat shock protein (HSP). In addition, the released H2 can further act as signal molecules to regulate key pathways for disease treatment. The current opportunities and challenges of H2-based therapy are discussed, and the future research directions of biomaterial-based H2 therapy for clinical applications are emphasized.
Collapse
Affiliation(s)
- Min Xu
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Gege Wu
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Qing You
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
15
|
Zhou XR, Wang XY, Sun YM, Zhang C, Liu KJ, Zhang FY, Xiang B. Glycyrrhizin Protects Submandibular Gland Against Radiation Damage by Enhancing Antioxidant Defense and Preserving Mitochondrial Homeostasis. Antioxid Redox Signal 2024; 41:723-743. [PMID: 38069572 DOI: 10.1089/ars.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Aims: Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. Results: Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. Innovation: Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. Conclusion: These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xin-Ru Zhou
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Xin-Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Yue-Mei Sun
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Chong Zhang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Ke Jian Liu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fu-Yin Zhang
- Department of Oral Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| |
Collapse
|
16
|
Nicy V, Gurusubramanian G, Roy VK. Effects of chronic CuNPs treatment followed by termination for two spermatogenic cycles in the testicular functions of mice. Reprod Toxicol 2024; 129:108669. [PMID: 39038765 DOI: 10.1016/j.reprotox.2024.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The present study investigated the possible effects of copper nanoparticles (CuNPs) after discontinuing treatment on testicular activity in a mouse model. The male mice were given continuous CuNPs treatment for 70 days and left untreated for 70 days. The results show that even after the discontinuation of CuNPs treatment, the testicular impairment was persistent till 140 days at a higher dose (200 mg/kg group). The spermatogenesis, sperm parameters, proliferation and antioxidant status were suppressed in the higher dose groups. However, these effects were also observed at moderate levels in the other CuNPs treated groups, such as at 10 mg/kg and 100 mg/kg. The apoptosis was stimulated at a higher dose compared to the other groups. The testosterone, LH levels and AR expression were suppressed in all the CuNPs treated groups, along with slight elevation in the estrogen levels and up-regulated ERβ expression. The fertility data also showed a decline in all CuNPs treated groups with the lowest litter size in the 200 mg/kg treated group. Despite testis, epididymis and accessory sex organs like prostate, seminal vesicle, and vas deferens, histoarchitecture also showed impairment. This is the first report on how CuNPs affect the male reproductive system in mice even after treatment was terminated. The current study also demonstrated possible negative effects on male reproductive function that might last for longer at higher dosages of chronic CuNPs exposure even after termination.
Collapse
Affiliation(s)
- Vanrohlu Nicy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| |
Collapse
|
17
|
Poyraz F, Akbaş G, Duranoğlu D, Acar S, Mansuroğlu B, Ersöz M. Sinapic-Acid-Loaded Nanoparticles Optimized via Experimental Design Methods: Cytotoxic, Antiapoptotoic, Antiproliferative, and Antioxidant Activity. ACS OMEGA 2024; 9:40329-40345. [PMID: 39371991 PMCID: PMC11447863 DOI: 10.1021/acsomega.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 10/08/2024]
Abstract
Nanoparticles are frequently investigated as carrier systems that increase the biological activities of hydrophobic molecules, especially by providing them with water solubility. Sinapic acid (Sa), commonly found in plants, is a phenolic compound with a wide spectrum of biological activities and extensive pharmacological properties. The aim of this study was the synthesis/characterization of optimized sinapic-acid-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (SaNPs) to improve the solubility of sinapic acid (Sa) that limit its use in the biological system and investigate the biological activities of these nanoparticles in the breast cancer cell line. For this purpose, sinapic-acid-loaded PLGA nanoparticles were obtained and optimized by experimental design methods. Then, cytotoxic (MTT method), antiapoptotic (terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay), antiproliferative (immunocytochemically by PCNA assay), and antioxidant activities (superoxide dismutase (SOD) and catalase activities, glutathione, malondialdehyde (MDA), and caspase-3 levels) of optimized nanoparticles were examined comperatively with free drug on MCF-7 cells. The IC50 values of the SaNPs (170.6 ± 3.6 nm size) in MCF-7 cells were determined at 180, 168, and 145 μg/mL for 24, 48, and 72 h, respectively, and at these doses, the nanoparticles did not show any toxic effect on the MCF10A cell line. Treatment of Sa and SaNPs at doses of 24 and 48 h showed a statistically significant reduction in the PCNA level in MCF-7 cells, with an increase in the number of cells leading to apoptosis. In MCF-7 cells treated with SaNP at concentrations of 150 and 200 μg/mL for 24 h, MDA levels were significantly increased, SOD activities were significantly decreased, and reduced glutathione (GSH) and catalase levels were increased compared with control groups. The findings of this study indicate that polyphenolic compounds can contribute to the design of drugs for treatment by forming nanoparticle formulations. The developed nanoparticle formulation is thought to be a useful model for other hydrophobic biological active substances.
Collapse
Affiliation(s)
- Fatma
Şayan Poyraz
- Department
of Molecular Biology and Genetics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34349, Turkey
| | - Gülşah Akbaş
- Department
of Molecular Biology and Genetics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34349, Turkey
| | - Dilek Duranoğlu
- Department
of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Serap Acar
- Department
of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Banu Mansuroğlu
- Department
of Molecular Biology and Genetics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34349, Turkey
| | - Melike Ersöz
- Department
of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul 34394, Turkey
| |
Collapse
|
18
|
Wu W, Yang H, Xing P, Zhu G, Han X, Xue M, Min G, Ding H, Wu G, Liu Z. Brassica rapa BrICE1 and BrICE2 Positively Regulate the Cold Tolerance via CBF and ROS Pathways, Balancing Growth and Defense in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2625. [PMID: 39339599 PMCID: PMC11435425 DOI: 10.3390/plants13182625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Winter rapeseed (Brassica rapa) has a good chilling and freezing tolerance. inducer of CBF expression 1 (ICE1) plays a crucial role in cold signaling in plants; however, its role in Brassica rapa remains unclear. In this study, we identified 41 ICE1 homologous genes from six widely cultivated Brassica species. These genes exhibited high conservation, with evolutionary complexity between diploid and allotetraploid species. Cold stress induced ICE1 homolog expression, with differences between strongly and weakly cold-tolerant varieties. Two novel ICE1 paralogs, BrICE1 and BrICE2, were cloned from Brassica rapa Longyou 6. Subcellular localization assays showed that they localized to the nucleus, and low temperature did not affect their nuclear localization. The overexpression of BrICE1 and BrICE2 increased cold tolerance in transgenic Arabidopsis and enhanced reactive oxygen species' (ROS) scavenging ability. Furthermore, our data demonstrate that overexpression of BrICE1 and BrICE2 inhibited root growth in Arabidopsis, and low temperatures could induce the degradation of BrICE1 and BrICE2 via the 26S-proteasome pathway. In summary, ICE1 homologous genes exhibit complex evolutionary relationships in Brassica species and are involved in the C-repeat/DREB binding factor (CBF) pathway and ROS scavenging mechanism in response to cold stress; these regulating mechanisms might also be responsible for balancing the development and cold defense of Brassica rapa.
Collapse
Affiliation(s)
- Wangze Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Haobo Yang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peng Xing
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guoting Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xueyan Han
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Mei Xue
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guotai Min
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Haijun Ding
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
19
|
Kosanam S, Pasupula R. Effect of Methyl Glycoside on Apoptosis and Oxidative Stress in Hypoxia Induced-Reoxygenated H9C2 Cell Lines. Cell Biochem Biophys 2024:10.1007/s12013-024-01539-8. [PMID: 39292425 DOI: 10.1007/s12013-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
This study focuses on key genes (Caspase-3, JAK2, BCL2L1 and MAPK8) and their modulation in response to hypoxia-induced stress using Methyl Glycoside (MG), a small molecule spectroscopically screened from Aganosma dichotoma. Hypoxia/reoxygenation (H/R) induced H9C2 cells, pre- treated with MG, were subjected to cell viability assay, free radical scavenging activities (catalase, GST, GSH-Px, SOD), caspase activity, mitochondrial membrane potential, and gene expression profiling through standard assays and molecular techniques. Results indicated that MG treatment, has potential protective effects against H/R induced stress in H9C2 cell lines. Cell viability assays showed that MG maintained cellular viability with significant protection (P < 0.05) observed from 10 µM. Free radical scavenging assays revealed that MG, enhanced detoxification mechanisms and exhibited potential antioxidant effect in a significantly (P < 0.05) in a dose dependant manner. MG pre-treatment in H9C2 cells protected cellular damage from caspase activity, cells exhibited high mitochondrial membrane potential, and gene expression profiles, including upregulation of anti-apoptotic BCL2L1 and modulation of stress-responsive genes like CASP3, JAK2 and MAPK8. Hence, MG exhibited concentration-dependent protective effects on viability, oxidative stress, and apoptosis-related pathways, laying the foundation for further exploration and translational applications in cardiovascular interventions.
Collapse
Affiliation(s)
- Sreya Kosanam
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Rajeshwari Pasupula
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India.
| |
Collapse
|
20
|
Al-Rajhi AMH, Selim S, Abdalla AE, Hagagy N, Saddiq AA, Al Jaouni SK, Abdelghany TM. Synthesis of chitosan/Fe 2O 3/CuO-nanocomposite and their role as inhibitor for some biological disorders in vitro with molecular docking interactions studies. Int J Biol Macromol 2024; 280:135664. [PMID: 39278450 DOI: 10.1016/j.ijbiomac.2024.135664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The hybrid material between the functional elements particularly with the polymer compounds as a nanocomposites are attractive in numerous fields. In the current work, chitosan/Fe2O3/CuO-nanocomposite has been successfully synthesized in situ via a coprecipitation method and characterized by several apparatuses. The X-ray diffraction cleared that chitosan/Fe2O3/CuO-nanocomposite was crystalline. Transmission Electron Microscopy (TEM) showed that the size of chitosan/Fe2O3/CuO-nanocomposite was of 17-85 nm. Candida albicans, Candida tropicalis, and Geotrichum candidum were inhibited employing the chitosan/Fe2O3/CuO-nanocomposite with inhibition areas of 25 ± 0.1 and 30 ± 0.1, and 23 ± 0.2 mm, respectively. Minimum inhibitory concentration (MIC) of chitosan/Fe2O3/CuO-nanocomposite was 15.62, 31.25, and 62.5 μg/mL for C. tropicalis, C. albicans, and G. candidum, respectively. Biofilm formation of C. albicans, C. tropicalis and G. candidum was inhibited at level of 95.31, 96.65, and 93.63 %, respectively at 75 % MIC of chitosan/Fe2O3/CuO-nanocomposite. The exposed C. tropicalis to chitosan/Fe2O3/CuO-nanocomposite showed severe damag of cytoplasm membrane with cell wall rupture. Chitosan/Fe2O3/CuO-nanocomposite reflected anticancer potential against human skin cancer (A-431) cells with IC50 of 77.79 ± 1.37 μg/mL. Moreover, wound heals was induced by chitosan/Fe2O3/CuO-nanocomposite with closure level 92.76 %. Molecular docking studies suggested strong binding of C. tropicalis (PDB ID: 8BH8) and A-431 (PDB ID: 5JJX) proteins with CuO nanoparticles and FeO nanoparticles.
Collapse
Affiliation(s)
- Aisha M H Al-Rajhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
| | - Nashwa Hagagy
- Department of Biology, College of Science & Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.
| | - Amna A Saddiq
- Department of Biology Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Tarek M Abdelghany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11725, Egypt.
| |
Collapse
|
21
|
Ridha-Salman H, Al-Zubaidy AA, Abbas AH, Hassan DM, Malik SA. The alleviative effects of canagliflozin on imiquimod-induced mouse model of psoriasis-like inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03406-y. [PMID: 39254877 DOI: 10.1007/s00210-024-03406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Psoriasis is a life-long immune-mediated dermatosis with thickened, reddish, and flaky skin patches. Canagliflozin is a gliflozin antidiabetic with non-classical remarkable antioxidative, anti-inflammatory, anti-proliferative, and immune-modulating effects. The aim of this study is to examine the probable effects of topical canagliflozin on a mouse model of imiquimod-provoked psoriasis-like dermatitis. The study evaluated 20 Swiss white mice, sorted haphazardly into 4 groups of 5 animals each. Every mouse, with the exception of the control group, had imiquimod applied topically to their shaved backs for 7 days. The control group included healthy mice that were not given any treatment. Mice in the other three groups underwent topical treatment with vehicle (induction group), 0.05% clobetasol propionate ointment (clobetasol group), or 4% canagliflozin emulgel (canagliflozin 4% group) on exactly the same day as imiquimod cream was administered. Topical canagliflozin markedly lowered the intensity of imiquimod-provoked psoriasis eruptions, featuring redness, glossy-white scales, and acanthosis, while also correcting histopathological aberrations. Canagliflozin administration to imiquimod-exposed animals resulted in significantly decreased cutaneous concentrations of inflammatory mediators such as IL-8, IL-17, IL-23, and TNF-α, with raised levels of IL-10. Canagliflozin further lowered proliferative factors involving Ki-67 and PCNA, diminished oxidative indicators such as MDA and MPO, and augmented the activity of antioxidant markers, notably SOD and CAT. Canagliflozin might alleviate the imiquimod-induced animal model of psoriasis, probably thanks to its profound anti-inflammatory, antioxidant, antiangiogenic, and antiproliferative activities.
Collapse
Affiliation(s)
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| | - Dhuha M Hassan
- Pedodontic, Orthodontic and Preventive Department, College of Dentistry, Babylon University, Babylon, Iraq
| | - Samir A Malik
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| |
Collapse
|
22
|
Wang Z, Xu J, Du W. Antagonistic interaction between caffeine and ketamine in zebrafish: Implications for aquatic toxicity. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100437. [PMID: 38993654 PMCID: PMC11237865 DOI: 10.1016/j.ese.2024.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
The coexistence of caffeine (CF) and ketamine (KET) in surface waters across Asia has been widely reported. Previous studies have implied that CF and KET may share a mechanism of action. However, the combined toxicity of these two chemicals on aquatic organisms remains unclear at environmental levels, and the underlying mechanisms are not well understood. Here we demonstrate that KET antagonizes the adverse effects of CF on zebrafish larvae by modulating the gamma-aminobutyric acid (GABA)ergic synapse pathway. Specifically, KET (10-250 ng L-1) ameliorates the locomotor hyperactivity and impaired circadian rhythms in zebrafish larvae induced by 2 mg L-1 of CF, showing a dose-dependent relationship. Additionally, the developmental abnormalities in zebrafish larvae exposed to CF are mitigated by KET, with an incidence rate reduced from 26.7% to 6.7%. The competition between CF and KET for binding sites on the GABA-A receptor (in situ and in silico) elucidates the antagonistic interactions between the two chemicals. Following a seven-day recovery period, the adverse outcomes of CF exposure persist in the fish, whereas the changes observed in the CF + KET groups are significantly alleviated, especially with KET at 10 ng L-1. Based on these results, it is imperative to further assess the environmental risks associated with CF and KET co-pollution. This pilot study underscores the utility of systems toxicology approaches in estimating the combined toxicity of environmental chemicals on aquatic organisms. Moreover, the nighttime behavioral functions of fish could serve as a sensitive biomarker for evaluating the toxicity of psychoactive substances.
Collapse
Affiliation(s)
- Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jindong Xu
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, PR China
| |
Collapse
|
23
|
Neupane K, Narayan A, Sen Mojumdar S, Adhikari G, Garen CR, Woodside MT. Direct observation of prion-like propagation of protein misfolding templated by pathogenic mutants. Nat Chem Biol 2024; 20:1220-1226. [PMID: 39009686 DOI: 10.1038/s41589-024-01672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2024] [Indexed: 07/17/2024]
Abstract
Many neurodegenerative diseases feature misfolded proteins that propagate via templated conversion of natively folded molecules. However, crucial questions about how such prion-like conversion occurs and what drives it remain unsolved, partly because technical challenges have prevented direct observation of conversion for any protein. We observed prion-like conversion in single molecules of superoxide dismutase-1 (SOD1), whose misfolding is linked to amyotrophic lateral sclerosis. Tethering pathogenic misfolded SOD1 mutants to wild-type molecules held in optical tweezers, we found that the mutants vastly increased misfolding of the wild-type molecule, inducing multiple misfolded isoforms. Crucially, the pattern of misfolding was the same in the mutant and converted wild-type domains and varied when the misfolded mutant was changed, reflecting the templating effect expected for prion-like conversion. Ensemble measurements showed decreased enzymatic activity in tethered heterodimers as conversion progressed, mirroring the single-molecule results. Antibodies sensitive to disease-specific epitopes bound to the converted protein, implying that conversion produced disease-relevant misfolded conformers.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Supratik Sen Mojumdar
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, India
| | - Gaurav Adhikari
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Enogieru AB, Iyoha EN. Role of Nitric Oxide, TNF-α and Caspase-3 in Lead Acetate-Exposed Rats Pretreated with Aqueous Rosmarinus officinalis Leaf Extract. Biol Trace Elem Res 2024; 202:4021-4031. [PMID: 38012512 DOI: 10.1007/s12011-023-03974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Lead (Pb) toxicity is a worldwide significant public health challenge causing several neurological disorders. Reports indicate that plants rich in antioxidants, such as Rosmarinus officinalis (RO), can counteract Pb accumulation and its toxicity in the brain. Due to a dearth of literature evidence demonstrating the protective activity of RO against Pb toxicity, this study investigated such activity in Wistar rats. Thirty-six Wistar rats were allocated into six groups (n=6), namely I (control), II (lead acetate [Pb]; 100 mg/kg b.w.), III (100 mg/kg of RO and 100 mg/kg of Pb), IV (200 mg/kg of RO and 100 mg/kg of Pb), V (100 mg/kg b.w. of RO) and VI (200 mg/kg b.w. of RO). After 28 days, neurobehavioural, antioxidant, lipid peroxidation, apoptotic and inflammatory activities as well as the histology of the cerebellum were evaluated. Body weight, locomotion and exploration as well as antioxidant enzymes were significantly (p < 0.05) decreased in Pb-exposed rats when compared to control. Conversely, lipid peroxidation, nitric oxide, tumour necrosis factor-alpha and caspase-3 activities were significantly (p < 0.05) upregulated in the Pb-exposed rats when compared to control. These parameters were, however, significantly (p<0.05) attenuated in the RO-pretreated rats when compared to Pb-exposed rats. Cerebellar histology of the Pb-exposed rats showed severe degeneration of the Purkinje cells whereas the RO-pretreated rats showed better cerebellar architecture. These findings demonstrate that the neuroprotective activity of RO is facilitated via its effective antioxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Adaze Bijou Enogieru
- Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin City, Edo State, Nigeria.
| | - Etinosa Nathan Iyoha
- Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
25
|
Leung RKL, Jin L, Kong HK, Su C, Ren X, Liu X, Wang Y, Hu M, Kwok KWH, Wu RSS, Chui APY, Fang JKH. Development of a multiple-biomarker approach using the green-lipped mussel Perna viridis for marine pollution monitoring: a case study in Victoria Harbour, Hong Kong. MARINE POLLUTION BULLETIN 2024; 206:116684. [PMID: 39083912 DOI: 10.1016/j.marpolbul.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Pollutants often exist as mixtures in environmental settings, creating a challenge in selecting the most effective combination of biomarkers for routine monitoring. This study was conducted seasonally in Victoria Harbour, Hong Kong, to compare the responses of nine biomarkers in the green-lipped mussel Perna viridis with respect to its tissue levels of persistent organic pollutants and heavy metals. Multivariate statistical techniques were utilised to determine the single best predictor and optimal subset of biomarkers in P. viridis for each of the four scenarios: representing overall biomarker responses in the dry season, and wet season, as well as correlating tissue levels of mixed pollutants in the dry season, and wet season. Our findings recommend lysosomal destabilisation, and the nucleic acid ratio of RNA to DNA, as the core biomarkers in P. viridis for marine pollution monitoring. The non-specificity of these biomarkers allows effective identification of pollution hotspots and guides further detailed assessment.
Collapse
Affiliation(s)
- Ryan Kar-Long Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Hang-Kin Kong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Chen Su
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xingchao Ren
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Kevin Wing Hin Kwok
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Land and Space, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Apple Pui-Yi Chui
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - James Kar-Hei Fang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Land and Space, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
26
|
Vornic I, Nesiu A, Ardelean AM, Todut OC, Pasare VC, Onel C, Raducan ID, Furau CG. Antioxidant Defenses, Oxidative Stress Responses, and Apoptosis Modulation in Spontaneous Abortion: An Immunohistochemistry Analysis of First-Trimester Chorionic Villi. Life (Basel) 2024; 14:1074. [PMID: 39337859 PMCID: PMC11432807 DOI: 10.3390/life14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) and apoptosis are critical factors in placental development and function. Their interplay influences trophoblast proliferation, differentiation, and invasion, as well as vascular development. An imbalance between these processes can lead to pregnancy-related disorders such as preeclampsia, intrauterine growth restriction, and even spontaneous abortion. Our study seeks to elucidate the associations between preventive antioxidant/protective OS response factors-glutathione (GSH), MutT Homolog 1 (MTH1), and apoptotic regulation modulators-tumor protein p53 and B-cell lymphoma (Bcl-2) transcripts, in the context of spontaneous abortion (30 samples) versus elective termination of pregnancy (20 samples), using immunohistochemistry (IHC) to determine their proteomic expression in chorionic villi within abortive fetal placenta tissue samples. Herein, comparative statistical analyses revealed that both OS response factors, GSH and MTH1, were significantly under-expressed in spontaneous abortion cases as compared to elective. Conversely, for apoptotic regulators, p53 expression was significantly higher in spontaneous abortion cases, whereas Bcl-2 expression was significantly lower in spontaneous abortion cases. These findings suggest that a strong pro-apoptotic signal is prevalent within spontaneous abortion samples, alongside reduced anti-apoptotic protection, depleted antioxidant defenses and compromised oxidative DNA damage prevention/repair, as compared to elective abortion controls. Herein, our hypothesis that OS and apoptosis are closely linked processes contributing to placental dysfunction and spontaneous abortion was thus seemingly corroborated. Our results further highlight the importance of maintaining redox homeostasis and apoptotic regulation for a successful pregnancy. Understanding the mechanisms underlying this interplay is essential for developing potential therapies to manage OS, promote placentation, and avoid unwanted apoptosis, ultimately improving pregnancy outcomes. Antioxidant supplementation, modulation of p53 activity, and the enhancement of DNA repair mechanisms may represent potential approaches to mitigate OS and apoptosis in the placenta. Further research is needed to explore these strategies and their efficacy in preventing spontaneous abortion.
Collapse
Affiliation(s)
- Ioana Vornic
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Alexandru Nesiu
- Discipline of Urology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Ana Maria Ardelean
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Oana Cristina Todut
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Victoria Cristina Pasare
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Cristina Onel
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Ionuț Daniel Raducan
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Cristian George Furau
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| |
Collapse
|
27
|
Almuhawish MA, Kotb E, Alkhaldi E, Ahmed AA. Production and Antibacterial Activity of Atypical Siderophore from Pseudomonas sp. QCS59 Recovered from Harpachene schimperi. Pharmaceuticals (Basel) 2024; 17:1126. [PMID: 39338291 PMCID: PMC11434927 DOI: 10.3390/ph17091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Among sixty-eight pseudomonads, isolate QCS59 from the rhizosphere of H. schimperi was selected based on its siderophore level. Production was optimal in Kings B supplemented with 2% peptone and 0.5% fructose at pH 6.5 and 25 °C for 72 h. Additionally, the threshold potential of iron was found at a concentration of 10 µM. After purification, the acidified siderophore presented a maximum absorption peak of 360 nm, while the neutral form presented a maximum of 414 nm, confirming its pyoverdine (PVD) nature. Furthermore, a major peak appeared at a retention time (RT) of 27.5 min during RP-HPLC, confirming its homogeneity. Interestingly, it demonstrated effective antibacterial activity, especially against Escherichia coli ATCC 8739, with a minimum inhibitory concentration (MIC) of 6.3 µg/mL and a minimum bactericidal concentration (MBC) of 12.5 µg/mL. At ½ the MIC value, it inhibited 82.1% of well-established biofilms of Salmonella enterica. There was an increase in malondialdehyde (MDA) and antioxidative enzymes, especially catalase (CAT) in the treated bacteria because of the peroxidation of membrane lipids and oxidative stress, respectively. SEM proved cellular lysis and surface malformation in most of the treated bacteria. This study concludes that QCS59 siderophore is a promising antibacterial candidate for treating wastewater bacteria and skin pathogens.
Collapse
Affiliation(s)
- Mashael A. Almuhawish
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Essam Kotb
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Eida Alkhaldi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Asmaa A. Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University, Cairo P.O. Box 11751, Egypt;
| |
Collapse
|
28
|
König S, Strassheimer F, Brandner NI, Schröder JH, Urban H, Harwart LF, Hehlgans S, Steinbach JP, Ronellenfitsch MW, Luger AL. Superoxide dismutase 1 mediates adaptation to the tumor microenvironment of glioma cells via mammalian target of rapamycin complex 1. Cell Death Discov 2024; 10:379. [PMID: 39187509 PMCID: PMC11347576 DOI: 10.1038/s41420-024-02145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
In glioblastoma (GB) cells oxidative stress is induced by both, conditions of the tumor microenvironment as well as by therapeutic interventions. Upregulation of superoxide dismutase 1 (SOD1), a key enzyme for oxidative defense and downstream target of mammalian target of rapamycin complex 1 (mTORC1) is a candidate mechanism to sustain survival and proliferation of tumor cells. SOD1 was inhibited by shRNA mediated gene suppression, CRISPR/Cas9 knockout and pharmacological inhibition in human (primary) GB cells. SOD1 activity was determined by SOD1/2 activity assay. ROS levels, cell death and the NADPH/NADP-ratio were measured under normal and starvation conditions. To study the mTORC1-SOD1 axis, mTORC1 activated TSC2 knockdown cells (TSC2sh) were analyzed. Genetic and pharmacological inhibition of SOD1 correlated with decreased SOD1 activity, increased ROS and enhanced the sensitivity of glioma cells towards starvation- and hypoxia-induced cell death. This was accompanied by a decreased NADPH/NADP-ratio. Furthermore, combination therapy of SOD1 and mTORC1 inhibition partially rescued the protective effect of mTORC1 inhibitor monotherapy. SOD1 mediates adaptation of GB cells to stress conditions in the tumor microenvironment in a mTORC1-dependent manner. Moreover, SOD1 activation contributes to the cell death resistance conferred by mTORC1 inhibitors under hypoxic conditions.
Collapse
Affiliation(s)
- Sven König
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Florian Strassheimer
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Nadja I Brandner
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Jan-Hendrik Schröder
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Hans Urban
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Leander F Harwart
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Goethe University Frankfurt, University Hospital, Department of Radiotherapy and Oncology, Frankfurt am Main, Germany
| | - Joachim P Steinbach
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Anna-Luisa Luger
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Golatkar V, Bhatt LK. Artesunate attenuates isoprenaline induced cardiac hypertrophy in rats via SIRT1 inhibiting NF-κB activation. Eur J Pharmacol 2024; 977:176709. [PMID: 38843948 DOI: 10.1016/j.ejphar.2024.176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Cardiac Hypertrophy is an adaptive response of the body to physiological and pathological stimuli, which increases cardiomyocyte size, thickening of cardiac muscles and progresses to heart failure. Downregulation of SIRT1 in cardiomyocytes has been linked with the pathogenesis of cardiac hypertrophy. The present study aimed to investigate the effect of Artesunate against isoprenaline induced cardiac hypertrophy in rats via SIRT1 inhibiting NF-κB activation. Experimental cardiac hypertrophy was induced in rats by subcutaneous administration of isoprenaline (5 mg/kg) for 14 days. Artesunate was administered simultaneously for 14 days at a dose of 25 mg/kg and 50 mg/kg. Artesunate administration showed significant dose dependent attenuation in mean arterial pressure, electrocardiogram, hypertrophy index and left ventricular wall thickness compared to the disease control group. It also alleviated cardiac injury biomarkers and oxidative stress. Histological observation showed amelioration of tissue injury in the artesunate treated groups compared to the disease control group. Further, artesunate treatment increased SIRT1 expression and decreased NF-kB expression in the heart. The results of the study show the cardioprotective effect of artesunate via SIRT1 inhibiting NF-κB activation in cardiomyocytes.
Collapse
Affiliation(s)
- Vaishnavi Golatkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
30
|
Hijam AC, Tongbram YC, Nongthombam PD, Meitei HN, Koijam AS, Rajashekar Y, Haobam R. Neuroprotective potential of traditionally used medicinal plants of Manipur against rotenone-induced neurotoxicity in SH-SY5Y neuroblastoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118197. [PMID: 38636579 DOI: 10.1016/j.jep.2024.118197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alternanthera sessilis (L.) R. Br. ex DC., Eryngium foetidum L., and Stephania japonica (Thunb.) Miers plants are traditionally used to treat various central nervous system disorders like paralysis, epilepsy, seizure, convulsion, chronic pain, headache, sleep disturbances, sprain, and mental disorders. However, their possible neuroprotective effects have not been evaluated experimentally so far. AIM OF THE STUDY The study aims to examine the neuroprotective potential of the three plants against cytotoxicity induced by rotenone in SH-SY5Y neuroblastoma cells and assess its plausible mechanisms of neuroprotection. MATERIALS AND METHODS The antioxidant properties of the plant extracts were determined chemically by DPPH and ABTS assay methods. The cytotoxicity of rotenone and the cytoprotective activities of the extracts were evaluated using MTT assays. Microtubule-associated protein 2 (MAP2) expression studies in cells were performed to assess neuronal survival after rotenone and extract treatments. Mitochondrial membrane potential and intracellular levels of reactive oxygen species were evaluated using Rhodamine 123 and DCF-DA dye, respectively. Catalase, glutathione peroxidase, and superoxide dismutase activities were also measured. Apoptotic nuclei were examined using DAPI staining. Liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS) analysis of the plant extracts was also performed. RESULTS The methanol extracts of A. sessilis, S. japonica, and E. foetidum showed excellent free radical scavenging activities. MAP2 expression studies show that A. sessilis and S. japonica have higher neuroprotective effects against rotenone-induced neurotoxicity in SH-SY5Y cells than E. foetidum. Pre-treating cells with the plant extracts reverses the rotenone-induced increase in intracellular ROS. The plant extracts could also restore the reduced mitochondrial membrane potential induced by rotenone treatment and reinstate rotenone-induced increases in catalase, glutathione peroxidase, and superoxide dismutase activities. All the extracts inhibited rotenone-induced changes in nuclear morphology and DNA condensation, an early event of cellular apoptosis. LC-QTOF-MS analysis of the plant extracts shows the presence of neuroprotective compounds. CONCLUSIONS The plant extracts showed neuroprotective activities against rotenone-treated SH-SY5Y cells through antioxidant and anti-apoptotic mechanisms. These findings support the ethnopharmacological uses of these plants in treating neurological disorders. They probably are a good source of neuroprotective compounds that could be further explored to develop treatment strategies for neurodegenerative diseases like Parkinson's disease.
Collapse
Affiliation(s)
- Aruna Chanu Hijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Pooja Devi Nongthombam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Yallapa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India.
| |
Collapse
|
31
|
Nazmeen A, Maiti S, Maiti S. Dialyl-sulfide with trans-chalcone prevent breast cancer prohibiting SULT1E1 malregulations and oxidant-stress induced HIF1a-MMPs induction. Genes Cancer 2024; 15:41-59. [PMID: 39132498 PMCID: PMC11315411 DOI: 10.18632/genesandcancer.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND In some breast cancers, altered estrogen-sulfotransferase (SULT1E1) and its inactivation by oxidative-stress modifies E2 levels. Parallelly, hypoxia-inducible tissue-damaging factors (HIF1α) are induced. The proteins/genes expressions of these factors were verified in human-breast-cancer tissues. SULT1E1 inducing-drugs combinations were tested for their possible protective effects. METHODS Matrix-metalloproteases (MMP2/9) activity and SULT1E1-HIF1α protein/gene expression (Western-blot/RTPCR) were assessed in breast-cancers versus adjacent-tissues. Oxidant-stress neutralizer, chalcone (trans-1,3-diaryl-2-propen-1-ones) and SULT1E1-inducer pure dialyl-sulfide (garlic; Allium sativum) were tested to prevent cancer causing factors in rat, in-vitro and in-vivo. The antioxidant-enzymes SOD1/catalase/GPx/LDH and matrix-degenerating MMP2/9 activities were assessed (gel-zymogram). Histoarchitecture (HE-staining) and tissue SULT1E1-localization (immuno-histochemistry) were screened. Extensive statistical-analysis were performed. RESULTS Human cancer-tissue expresses higher SULT1E1, HIF1α protein/mRNA and lower LDH activity. Increase of MMP2/9 activities commenced tissue damage. However, chalcone and DAS significantly induced SULT1E1 gene/protein, suppressed HIF1α expression, MMP2/9 activities in rat tissues. Correlation and group statistics of t-test suggest significant link of oxidative-stress (MDA) with SULT1E1 (p = 0.006), HIF1α (p = 0.006) protein-expression. The non-protein-thiols showed negative correlation (p = 0.001) with HIF1α. These proteins and SULT1E1-mRNA expressions were significantly higher in tumor (p < 0.05). Correlation data suggest, SULT1E1 is correlated with non-protein-thiols. CONCLUSIONS Breast cancers associate with SULT1E1, HIF1α and MMPs deregulations. For the first time, we are revealing that advanced cancer tissue with elevated SULT1E1-protein may reactivate in a reducing-state initiated by chalcone, but remain dormant in an oxidative environment. Furthermore, increased SULT1E1 protein synthesis is caused by DAS-induced mRNA expression. The combined effects of the drugs might decrease MMPs and HIF1α expressions. Further studies are necessary.
Collapse
Affiliation(s)
- Aarifa Nazmeen
- Department of Biochemistry, Cell and Molecular Therapeutics Lab, Oriental Institute of Science and Technology, Midnapore 721101, India
| | - Sayantani Maiti
- Department of Biochemistry, Cell and Molecular Therapeutics Lab, Oriental Institute of Science and Technology, Midnapore 721101, India
| | - Smarajit Maiti
- Haldia Institute of Health Sciences, ICARE, Haldia, East Midnapore, India
- AgriCure Biotech Research Society, Midnapore, WB, India
| |
Collapse
|
32
|
Sáringer S, Terjéki G, Varga Á, Maléth J, Szilágyi I. Optimization of Interfacial Properties Improved the Stability and Activity of the Catalase Enzyme Immobilized on Plastic Nanobeads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16338-16348. [PMID: 39066719 PMCID: PMC11308775 DOI: 10.1021/acs.langmuir.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The immobilization of catalase (CAT), a crucial oxidoreductase enzyme involved in quenching reactive oxygen species, on colloids and nanoparticles presents a promising strategy to improve dispersion and storage stability while maintaining its activity. Here, the immobilization of CAT onto polymeric nanoparticles (positively (AL) or negatively (SL) charged) was implemented directly (AL) or via surface functionalization (SL) with water-soluble chitosan derivatives (glycol chitosan (GC) and methyl glycol chitosan (MGC)). The interfacial properties were optimized to obtain highly stable AL-CAT, SL-GC-CAT, and SL-MGC-CAT dispersions, and confocal microscopy confirmed the presence of CAT in the composites. Assessment of hydrogen peroxide decomposition ability revealed that applying chitosan derivatives in the immobilization process not only enhanced colloidal stability but also augmented the activity and reusability of CAT. In particular, the use of MGC has led to significant advances, indicating its potential for industrial and biomedical applications. Overall, the findings highlight the advantages of using chitosan derivatives in CAT immobilization processes to maintain the stability and activity of the enzyme as well as provide important data for the development of processable enzyme-based nanoparticle systems to combat reactive oxygen species.
Collapse
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gergő Terjéki
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Árpád Varga
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - József Maléth
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
33
|
Paller CJ, Zahurak ML, Mandl A, Metri NA, Lalji A, Heath E, Kelly WK, Hoimes C, Barata P, Taksey J, Garrison DA, Patra K, Milne GL, Anders NM, Nauroth JM, Durham JN, Marshall CH, Markowski MC, Eisenberger MA, Antonarakis ES, Carducci MA, Denmeade SR, Levine M. High-Dose Intravenous Vitamin C Combined with Docetaxel in Men with Metastatic Castration-Resistant Prostate Cancer: A Randomized Placebo-Controlled Phase II Trial. CANCER RESEARCH COMMUNICATIONS 2024; 4:2174-2182. [PMID: 39076107 PMCID: PMC11333993 DOI: 10.1158/2767-9764.crc-24-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
High-dose intravenous vitamin C (HDIVC) administered to produce pharmacologic concentrations shows promise in preclinical models and small clinical trials, but larger prospective randomized trials are lacking. We evaluated the clinical benefit of combining HDIVC with docetaxel in patients with progressive metastatic castration-resistant prostate cancer (mCRPC). In this double-blind, placebo-controlled phase II trial, 47 patients were randomized 2:1 to receive docetaxel (75 mg/m2 i.v.) with either HDIVC (1 g/kg) or placebo. Coprimary endpoints were PSA50 response and adverse event rates. Secondary endpoints included overall survival, radiographic progression-free survival, and quality of life measured using the Functional Assessment of Cancer Therapy-Prostate instrument. Correlative analyses included pharmacokinetics and oxidative stress markers. Eighty-nine percent of patients previously had three or more lines of therapy. The PSA50 response rate was 41% in the HDIVC group and 33% in the placebo group (P = 0.44), with comparable adverse event rates in both groups. There were no significant differences in Functional Assessment of Cancer Therapy-Prostate scores. The median radiographic progression-free survival was not significantly different between the HDIVC and placebo groups, with durations of 10.1 and 10.0 months (HR, 1.35; 95% confidence interval, 0.66-2.75; P = 0.40), respectively. The median overall survival was 15.2 months in the HDIVC group and 29.5 months in the placebo group (HR, 1.98; 95% confidence interval, 0.85-4.58; P = 0.11). HDIVC did not decrease F2-isoprostanes, indicators of oxidative stress. The study was suspended after prespecified interim analysis indicated futility in achieving primary endpoints. In this patient population, combining HDIVC with docetaxel did not improve PSA response, toxicity, or other clinical outcomes compared with docetaxel alone. Findings do not support the routine use of HDIVC in mCRPC treatment outside of clinical trials. SIGNIFICANCE This is the first randomized, placebo-controlled, double-blind trial to evaluate HDIVC in cancer treatment. The addition of HDIVC to docetaxel in patients with mCRPC does not improve PSA response, toxicity, or other clinical outcomes compared with docetaxel alone. The routine use of HDIVC in mCRPC treatment is not supported outside of clinical trials.
Collapse
Affiliation(s)
- Channing J. Paller
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Marianna L. Zahurak
- Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland.
| | - Adel Mandl
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Nicole A. Metri
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Aliya Lalji
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | | | | | | | - Pedro Barata
- Case Western Reserve University/University Hospitals, Cleveland, Ohio.
| | - Jason Taksey
- Maryland Oncology Hematology, US Oncology, Annapolis, Maryland.
| | - Dominique A. Garrison
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Kartick Patra
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Nicole M. Anders
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Julie M. Nauroth
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Jennifer N. Durham
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Catherine H. Marshall
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Mark C. Markowski
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Mario A. Eisenberger
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | | | - Michael A. Carducci
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Samuel R. Denmeade
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
34
|
Ramamurthy K, Madesh S, Priya PS, Ayub R, Aljawdah HM, Arokiyaraj S, Guru A, Arockiaraj J. Textile azo dye, Sudan Black B, inducing hepatotoxicity demonstrated in in vivo zebrafish larval model. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1811-1829. [PMID: 38970761 DOI: 10.1007/s10695-024-01371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Environmental pollution, particularly from textile industry effluents, raises concerns globally. The aim of this study is to investigate the hepatotoxicity of Sudan Black B (SBB), a commonly used textile azo dye, on embryonic zebrafish. SBB exposure led to concentration-dependent mortality, reaching 100% at 0.8 mM, accompanied by growth retardation and diverse malformations in zebrafish. Biochemical marker analysis indicated adaptive responses to SBB, including increased SOD, CAT, NO, and LDH, alongside decreased GSH levels. Liver morphology analysis unveiled significant alterations, impacting metabolism and detoxification. Also, glucose level was declined and lipid level elevated in SBB-exposed in vivo zebrafish. Inflammatory gene expressions (TNF-α, IL-10, and INOS) showcased a complex regulatory interplay, suggesting an organismal attempt to counteract pro-inflammatory states during SBB exposure. The increased apoptosis revealed a robust hepatic cellular response due to SBB, aligning with observed liver tissue damage and inflammatory events. This multidimensional study highlights the intricate web of responses due to SBB exposure, which is emphasizing the need for comprehensive understanding and targeted mitigation strategies. The findings bear the implications for both aquatic ecosystems and potentially parallels to human health, underscoring the imperative for sustained research in this critical domain.
Collapse
Affiliation(s)
- Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Selvam Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Rashid Ayub
- College of Science, King Saud University, P.O. Box 2454, 11451, Riyadh, Saudi Arabia
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
35
|
Hu C, Huang R, Xia J, Hu X, Xie D, Jin Y, Qi W, Zhao C, Hu Z. A nanozyme-functionalized bilayer hydrogel scaffold for modulating the inflammatory microenvironment to promote osteochondral regeneration. J Nanobiotechnology 2024; 22:445. [PMID: 39069607 PMCID: PMC11283693 DOI: 10.1186/s12951-024-02723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The incidence of osteochondral defects caused by trauma, arthritis or tumours is increasing annually, but progress has not been made in terms of treatment methods. Due to the heterogeneous structure and biological characteristics of cartilage and subchondral bone, the integration of osteochondral repair is still a challenge. RESULTS In the present study, a novel bilayer hydrogel scaffold was designed based on anatomical characteristics to imitate superficial cartilage and subchondral bone. The scaffold showed favourable biocompatibility, and the addition of an antioxidant nanozyme (LiMn2O4) promoted reactive oxygen species (ROS) scavenging by upregulating antioxidant proteins. The cartilage layer effectively protects against chondrocyte degradation in the inflammatory microenvironment. Subchondral bionic hydrogel scaffolds promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) by regulating the AMPK pathway in vitro. Finally, an in vivo rat preclinical osteochondral defect model confirmed that the bilayer hydrogel scaffold efficiently promoted cartilage and subchondral bone regeneration. CONCLUSIONS In general, our biomimetic hydrogel scaffold with the ability to regulate the inflammatory microenvironment can effectively repair osteochondral defects. This strategy provides a promising method for regenerating tissues with heterogeneous structures and biological characteristics.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Ruipeng Huang
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Xianjing Hu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhu, 325000, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Yang Jin
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Weiming Qi
- Zhejiang Center for Medical Device Evaluation, Zhejiang Medical Products Administration, Hangzhou, 310009, China.
| | - Chengliang Zhao
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
36
|
Kochanowsky R, Carothers K, Roxas BAP, Anwar F, Viswanathan VK, Vedantam G. Clostridioides difficile superoxide reductase mitigates oxygen sensitivity. J Bacteriol 2024; 206:e0017524. [PMID: 38953644 PMCID: PMC11270899 DOI: 10.1128/jb.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Clostridioides difficile causes a serious diarrheal disease and is a common healthcare-associated bacterial pathogen. Although it has a major impact on human health, the mechanistic details of C. difficile intestinal colonization remain undefined. C. difficile is highly sensitive to oxygen and requires anaerobic conditions for in vitro growth. However, the mammalian gut is not devoid of oxygen, and C. difficile tolerates moderate oxidative stress in vivo. The C. difficile genome encodes several antioxidant proteins, including a predicted superoxide reductase (SOR) that is upregulated upon exposure to antimicrobial peptides. The goal of this study was to establish SOR enzymatic activity and assess its role in protecting C. difficile against oxygen exposure. Insertional inactivation of sor rendered C. difficile more sensitive to superoxide, indicating that SOR contributes to antioxidant defense. Heterologous C. difficile sor expression in Escherichia coli conferred protection against superoxide-dependent growth inhibition, and the corresponding cell lysates showed superoxide scavenging activity. Finally, a C. difficile SOR mutant exhibited global proteome changes under oxygen stress when compared to the parent strain. Collectively, our data establish the enzymatic activity of C. difficile SOR, confirm its role in protection against oxidative stress, and demonstrate SOR's broader impacts on the C. difficile vegetative cell proteome.IMPORTANCEClostridioides difficile is an important pathogen strongly associated with healthcare settings and capable of causing severe diarrheal disease. While considered a strict anaerobe in vitro, C. difficile has been shown to tolerate low levels of oxygen in the mammalian host. Among other well-characterized antioxidant proteins, the C. difficile genome encodes a predicted superoxide reductase (SOR), an understudied component of antioxidant defense in pathogens. The significance of the research reported herein is the characterization of SOR's enzymatic activity, including confirmation of its role in protecting C. difficile against oxidative stress. This furthers our understanding of C. difficile pathogenesis and presents a potential new avenue for targeted therapies.
Collapse
Affiliation(s)
- Rebecca Kochanowsky
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Katelyn Carothers
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Bryan Angelo P. Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, Arizona, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, Arizona, USA
- Southern Arizona VA Healthcare System, Tucson, Arizona, USA
| |
Collapse
|
37
|
Wu H, Tang H, Zou X, Huang Q, Wang S, Sun M, Ye Z, Wang H, Wu Y, Sun L, Chen Y, Tang H. Role of the PARP1/NF-κB Pathway in DNA Damage and Apoptosis of TK6 Cells Induced by Hydroquinone. Chem Res Toxicol 2024; 37:1187-1198. [PMID: 38837948 DOI: 10.1021/acs.chemrestox.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Hydroquinone(HQ) is a widely used industrial raw material and is a topical lightening product found in over-the-counter products. However, inappropriate exposure to HQ can pose certain health hazards. This study aims to explore the mechanisms of DNA damage and cell apoptosis caused by HQ, with a focus on whether HQ activates the nuclear factor-κB (NF-κB) pathway to participate in this process and to investigate the correlation between the NF-κB pathway activation and poly(ADP-ribose) polymerase 1(PARP1). Through various experimental techniques, such as DNA damage detection, cell apoptosis assessment, cell survival rate analysis, immunofluorescence, and nuclear-cytoplasmic separation, the cytotoxic effects of HQ were verified, and the activation of the NF-κB pathway was observed. Simultaneously, the relationship between the NF-κB pathway and PARP1 was verified by shRNA interference experiments. The results showed that HQ could significantly activate the NF-κB pathway, leading to a decreased cell survival rate, increased DNA damage, and cell apoptosis. Inhibiting the NF-κB pathway could significantly reduce HQ-induced DNA damage and cell apoptosis and restore cell proliferation and survival rate. shRNA interference experiments further indicated that the activation of the NF-κB pathway was regulated by PARP1. This study confirmed the important role of the NF-κB pathway in HQ-induced DNA damage and cell apoptosis and revealed that the activation of the NF-κB pathway was mediated by PARP1. This research provides important clues for a deeper understanding of the toxic mechanism of HQ.
Collapse
Affiliation(s)
- Haipeng Wu
- Guangdong Medical University, Dongguan 523808, China
| | - Huan Tang
- Guangdong Medical University, Dongguan 523808, China
| | - Xiangli Zou
- Guangdong Medical University, Dongguan 523808, China
| | - Qihao Huang
- Guangdong Medical University, Dongguan 523808, China
| | - Shimei Wang
- Guangdong Medical University, Dongguan 523808, China
| | - Mingzhu Sun
- Guangdong Medical University, Dongguan 523808, China
| | - Zhongming Ye
- Guangdong Medical University, Dongguan 523808, China
| | - Huanhuan Wang
- Guangdong Medical University, Dongguan 523808, China
| | - Yao Wu
- Guangdong Medical University, Dongguan 523808, China
| | - Lei Sun
- Guangdong Medical University, Dongguan 523808, China
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
38
|
El-Shater SN, Abo-El-Sooud K, Tolba A, Gamal M, Awad MA, Ibrahim M, Tayeh M, Swielim GA. Effect of in-ovo inoculation of betaine on hatchability, serum antioxidant levels, muscle gene expression and intestinal development of broiler chicks. J Anim Physiol Anim Nutr (Berl) 2024; 108:883-890. [PMID: 38353323 DOI: 10.1111/jpn.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 07/09/2024]
Abstract
This study investigated the effects of in-ovo inoculation of betaine on hatchability, hatching weight, and intestinal development, as well as serum and expression levels of some antioxidants in the posthatched chicks. A total of 350 fertile eggs of Hubbard efficiency plus breeder's flock were incubated at normal incubation temperature (37.5°C) and randomly assembled into 3 groups with 4 replicates, and 25 eggs per each. The experimental groups were allocated as noninjected control group (CN), diluent-injected group (CP, 0.1 mL saline), and betaine-injected group (B, 2.5 mg in 0.1 mL saline). The injections were performed in the air cells of the eggs on the 12th day of the embryonic phase. Hatchability percentage, hatching weight, serum-reduced glutathione (GSH), and superoxide dismutase (SOD) were estimated in 7-day-old chicks. Moreover, expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and SOD were determined in the breast skeletal muscles of chicks. Jejunum histo-morphometric analysis was assessed with computerised morphometric measurements. The results revealed that the hatchability percentage was not influenced by in-ovo injection of betaine or vehicle while betaine significantly increased the hatchling's weight of chicks. Moreover, there were a significant increase in SOD and Nrf2 mRNA expression levels. In-ovo injection of betaine significantly induced positive effects on intestinal morphometry by ameliorating the jejunal villus length, the ratio of villus height to villus width, and absorptive surface area.
Collapse
Affiliation(s)
- Saad N El-Shater
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Abo-El-Sooud
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman Tolba
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud Gamal
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A Awad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Moataz Ibrahim
- R&D Department, Feed Division, Cairo Poultry Company, Giza, Egypt
| | - Mahmoud Tayeh
- Danisco Animal Nutrition & Health, IFF, Leiden, Netherlands
| | - Gamal A Swielim
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
39
|
Harindintwali JD, He C, Wen X, Liu Y, Wang M, Fu Y, Xiang L, Jiang J, Jiang X, Wang F. A comparative evaluation of biochar and Paenarthrobacter sp. AT5 for reducing atrazine risks to soybeans and bacterial communities in black soil. ENVIRONMENTAL RESEARCH 2024; 252:119055. [PMID: 38710429 DOI: 10.1016/j.envres.2024.119055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Application of biochar and inoculation with specific microbial strains offer promising approaches for addressing atrazine contamination in agricultural soils. However, determining the optimal method necessitates a comprehensive understanding of their effects under similar conditions. This study aimed to evaluate the effectiveness of biochar and Paenarthrobacter sp. AT5, a bacterial strain known for its ability to degrade atrazine, in reducing atrazine-related risks to soybean crops and influencing bacterial communities. Both biochar and strain AT5 significantly improved atrazine degradation in both planted and unplanted soils, with the most substantial reduction observed in soils treated with strain AT5. Furthermore, bioaugmentation with strain AT5 outperformed biochar in enhancing soybean growth, photosynthetic pigments, and antioxidant defenses. While biochar promoted higher soil bacterial diversity compared to strain AT5, the latter selectively enriched specific bacterial populations. Additionally, soil inoculated with strain AT5 displayed a notable increase in the abundance of key genes associated with atrazine degradation (trzN, atzB, and atzC), surpassing the effects observed with biochar addition, thus highlighting its effectiveness in mitigating atrazine risks in soil.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Geographical Sciences, Nantong University, Nantong, 226001, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074, Aachen, Germany.
| |
Collapse
|
40
|
Chen Y, Liu J, Xu Y, Sun C, Qu W, Du H, He M, Huo J, Sun J, Huang J, Yin J. Comparison of Polygonatum sibiricum Polysaccharides Found in Young and Mature Rhizomes. Foods 2024; 13:2010. [PMID: 38998515 PMCID: PMC11240938 DOI: 10.3390/foods13132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The main active component of Polygonatum sibiricum (P. sibiricum) rhizome is Polygonatum sibiricum Polysaccharide (PsP) with antioxidant function. At present, only the mature rhizome of P. sibiricum is used to extract PsP, while the young rhizome of by-product is discarded directly as waste, resulting in significant wastage of P. sibiricum resources. We used ultrasound-assisted extraction-deep eutectic solvents (UAE-DESs) method to extract PsP of young and mature rhizomes, respectively. The extraction rate, structure composition and antioxidant ability of PsP between young and mature rhizomes were compared, so as to provide references for comprehensive utilization of P. sibiricum resources. The PsP extraction rate (33.88 ± 1.95%) of young rhizome was close to that (45.08 ± 1.92%) of mature rhizomes. The main component (PsP-2) of the PsP in young rhizome contained six kinds of monosaccharides, which belonged to acidic polysaccharides. The above characteristics of the PsP of young rhizome were similar to those of mature rhizome. The PsP of young rhizome also exhibited similar biological activity to that of the mature rhizome, which indicated even more advantages in DPPH free radical scavenging ability. The results of this study support the utility of the young rhizome, consequently helping to avoid unnecessary waste and provide reference for comprehensive utilization of P. sibiricum.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing Liu
- Aer-Bio Active Health Institute, Beijing 100043, China
| | - Yifan Xu
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chaoqun Sun
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Wenjie Qu
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hanchen Du
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Menglu He
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Junsheng Huo
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing Sun
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jian Huang
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jiyong Yin
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
41
|
Chen J, Fan X, Chen J, Luo X, Huang X, Zhou Z, He Y, Feng S, Jiao Y, Wang R, Ji M, Miao J, Zhang M, Wu B. Effects of hesperidin on the histological structure, oxidative stress, and apoptosis in the liver and kidney induced by NiCl 2. Front Vet Sci 2024; 11:1424711. [PMID: 38983771 PMCID: PMC11231102 DOI: 10.3389/fvets.2024.1424711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
The aim of this study was to investigate the effect of hesperidin on the liver and kidney dysfunctions induced by nickel. The mice were divided into six groups: nickel treatment with 80 mg/kg, 160 mg/kg, 320 mg/kg hesperidin groups, 0.5% CMC-Na group, nickel group, and blank control group. Histopathological techniques, biochemistry, immunohistochemistry, and the TUNEL method were used to study the changes in structure, functions, oxidative injuries, and apoptosis of the liver and kidney. The results showed that hesperidin could alleviate the weight loss and histological injuries of the liver and kidney induced by nickel, and increase the levels of lactate dehydrogenase (LDH), alanine aminotransferase (GPT), glutamic oxaloacetic transaminase (GOT) in liver and blood urea nitrogen (BUN), creatinine (Cr) and N-acetylglucosidase (NAG) in kidney. In addition, hesperidin could increase the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) in the liver and kidney, decrease the content of malondialdehyde (MDA) and inhibit cell apoptosis. It is suggested that hesperidin could help inhibit the toxic effect of nickel on the liver and kidney.
Collapse
Affiliation(s)
- Jinquan Chen
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Xinmei Fan
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Juan Chen
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Xin Luo
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Xin Huang
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Ziling Zhou
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Yue He
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Shaohua Feng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Yuqing Jiao
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Ruiqing Wang
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Menya Ji
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Jing Miao
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Mengyuan Zhang
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University, Nanchong, China
| |
Collapse
|
42
|
Tharmatt A, Sahel DK, Jatyan R, Kumari A, Mishra A, Mittal A, Chitkara D. Lipo-polymeric nano-complexes for dermal delivery of a model protein. RSC Adv 2024; 14:20351-20364. [PMID: 38932980 PMCID: PMC11200120 DOI: 10.1039/d4ra02337d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Delivering macromolecules across the skin poses challenges due to the barrier properties of stratum corneum. Different strategies have been reported to cross this barrier, such as chemical penetration enhancers and physical methods like microneedles, sonophoresis, electroporation, laser ablation, etc. Herein, we explored a cationic lipo-polymeric nanocarrier to deliver a model protein across the skin. A cationic amphiphilic lipo-polymer was used to prepare blank nanoplexes, which were subsequently complexed with anionic fluorescein-tagged bovine serum albumin (FITC-BSA). Blank nanoplexes and FITC-BSA complexed nanoplexes showed sizes of 93.72 ± 5.8 (PDI-0.250) and 145.9 ± 3.2 nm (PDI-0.258), respectively, and zeta potentials of 25.6 ± 7.0 mV and 9.17 ± 1.20 mV. In vitro cell culture, and toxicity studies showed optimal use of these nanocarriers, with hemocompatibility data indicating non-toxicity. Ex vivo skin permeation analysis showed a skin permeation rate of 33% after 24 h. The optimized formulation was loaded in a carbopol-based gel that exhibits non-Newtonian flow characteristics with shear-thinning behavior and variable thixotropy. The nanoplexes delivered via gel demonstrated skin permeation of 57% after 24 h in mice skin ex vivo. In vivo skin toxicity testing confirmed the low toxicity profile of these nanocarriers. These results are promising for the transdermal/dermal delivery of macromolecules, such as protein therapeutics, using nanoplexes.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Reena Jatyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Anupma Kumari
- Centre for Comparative Medicine, Institute of Liver and Biliary Sciences (ILBS) New Delhi 110070 India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur Rajasthan India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| |
Collapse
|
43
|
Ali H, Mahmood I, Ali MF, Waheed A, Jawad H, Hussain S, Abasi F, Zulfiqar U, Siddiqui MH, Alamri S. Individual and interactive effects of amino acid and paracetamol on growth, physiological and biochemical aspects of Brassica napus L . under drought conditions. Heliyon 2024; 10:e31544. [PMID: 38882271 PMCID: PMC11176763 DOI: 10.1016/j.heliyon.2024.e31544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Drought stress poses a significant threat to Brassica napus (L.), impacting its growth, yield, and profitability. This study investigates the effects of foliar application of individual and interactive pharmaceutical (Paracetamol; 0 and 250 mg L-1) and amino acid (0 and 4 ml/L) on the growth, physiology, and yield of B. napus under drought stress. Seedlings were subjected to varying levels of drought stress (100% field capacity (FC; control) and 50% FC). Sole amino acid application significantly improved chlorophyll content, proline content, and relative water contents, as well as the activities of antioxidative enzymes (such as superoxide dismutase and catalase) while potentially decreased malondialdehyde and hydrogen peroxide contents under drought stress conditions. Pearson correlation analysis revealed strong positive correlations between these parameters and seed yield (R2 = 0.8-1), indicating their potential to enhance seed yield. On the contrary, sole application of paracetamol exhibited toxic effects on seedling growth and physiological aspects of B. napus. Furthermore, the combined application of paracetamol and amino acids disrupted physio-biochemical functions, leading to reduced yield. Overall, sole application of amino acids proves to be more effective in ameliorating the negative effects of drought on B. napus.
Collapse
Affiliation(s)
- Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Imran Mahmood
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Muhammad Faizan Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Alishba Waheed
- Department of Life Sciences, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan Punjab, 64200, Pakistan
| | - Husnain Jawad
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Sadam Hussain
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Fozia Abasi
- Department of Life Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
44
|
Buján GE, D'Alessio L, Serra HA, Guelman LR, Molina SJ. Assessment of Hippocampal-Related Behavioral Changes in Adolescent Rats of both Sexes Following Voluntary Intermittent Ethanol Intake and Noise Exposure: A Putative Underlying Mechanism and Implementation of a Non-pharmacological Preventive Strategy. Neurotox Res 2024; 42:29. [PMID: 38856796 DOI: 10.1007/s12640-024-00707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Ethanol (EtOH) intake and noise exposure are particularly concerning among human adolescents because the potential to harm brain. Unfortunately, putative underlying mechanisms remain to be elucidated. Moreover, implementing non-pharmacological strategies, such as enriched environments (EE), would be pertinent in the field of neuroprotection. This study aims to explore possible underlying triggering mechanism of hippocampus-dependent behaviors in adolescent animals of both sexes following ethanol intake, noise exposure, or a combination of both, as well as the impact of EE. Adolescent Wistar rats of both sexes were subjected to an intermittent voluntary EtOH intake paradigm for one week. A subgroup of animals was exposed to white noise for two hours after the last session of EtOH intake. Some animals of both groups were housed in EE cages. Hippocampal-dependent behavioral assessment and hippocampal oxidative state evaluation were performed. Results show that different hippocampal-dependent behavioral alterations might be induced in animals of both sexes after EtOH intake and sequential noise exposure, that in some cases are sex-specific. Moreover, hippocampal oxidative imbalance seems to be one of the potential underlying mechanisms. Additionally, most behavioral and oxidative alterations were prevented by EE. These findings suggest that two frequently found environmental agents may impact behavior and oxidative pathways in both sexes in an animal model. In addition, EE resulted a partially effective neuroprotective strategy. Therefore, it could be suggested that the implementation of a non-pharmacological approach might also potentially provide neuroprotective advantages against other challenges. Finally, considering its potential for translational human benefit might be worth.
Collapse
Affiliation(s)
- G E Buján
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - L D'Alessio
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - H A Serra
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - L R Guelman
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina.
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - S J Molina
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
45
|
Pilger BI, Castro A, Vasconcellos FF, Moura KF, Signini ÉDF, Marqueze LFB, Fiorenza-Neto EA, Rocha MT, Pedroso GS, Cavaglieri CR, Ferreira AG, Figueiredo C, Minuzzi LG, Gatti da Silva GH, Castro GS, Lira FS, Seelaender M, Pinho RA. Obesity-dependent molecular alterations in fatal COVID-19: A retrospective postmortem study of metabolomic profile of adipose tissue. J Cell Biochem 2024; 125:e30566. [PMID: 38591648 DOI: 10.1002/jcb.30566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
We investigated the effects of obesity on metabolic, inflammatory, and oxidative stress parameters in the adipose tissue of patients with fatal COVID-19. Postmortem biopsies of subcutaneous adipose tissue were obtained from 25 unvaccinated inpatients who passed from COVID-19, stratified as nonobese (N-OB; body mass index [BMI], 26.5 ± 2.3 kg m-2) or obese (OB BMI 34.2 ± 5.1 kg m-2). Univariate and multivariate analyses revealed that body composition was responsible for most of the variations detected in the metabolome, with greater dispersion observed in the OB group. Fifteen metabolites were major segregation factors. Results from the OB group showed higher levels of creatinine, myo-inositol, O-acetylcholine, and succinate, and lower levels of sarcosine. The N-OB group showed lower levels of glutathione peroxidase activity, as well as higher content of IL-6 and adiponectin. We revealed significant changes in the metabolomic profile of the adipose tissue in fatal COVID-19 cases, with high adiposity playing a key role in these observed variations. These findings highlight the potential involvement of metabolic and inflammatory pathways, possibly dependent on hypoxia, shedding light on the impact of obesity on disease pathogenesis and suggesting avenues for further research and possible therapeutic targets.
Collapse
Affiliation(s)
- Bruna I Pilger
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Alex Castro
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Franciane F Vasconcellos
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Karen F Moura
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Étore De Favari Signini
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Luis Felipe B Marqueze
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Edson A Fiorenza-Neto
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Mateus T Rocha
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Giulia S Pedroso
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Claudia R Cavaglieri
- Exercise Physiology Laboratory, Faculty of Physical Education, University of Campinas, Campinas, Brazil
| | - Antonio G Ferreira
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Luciele G Minuzzi
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Guilherme H Gatti da Silva
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Gabriela S Castro
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Ricardo A Pinho
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
46
|
Mahmoud NE, Abdel-Gawad H, Abdelhameed RM. Post-synthetic modification of nano-chitosan using gibberellic acid: Foliar application on sorghum under salt stress conditions and estimation of biochemical parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108655. [PMID: 38744086 DOI: 10.1016/j.plaphy.2024.108655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
The challenge of desert farming with a high salt level has become an ecological task due to salt stress negatively affecting plant growth and reproduction. The current study deals with the cultivation of sorghum under salt stress conditions to counteract the effect of chitosan and gibberellic acid (GA3). Here, the effects of chitosan, GA3 and nano-composite (GA3@chitosan) on biochemical contents, growth and seed yield of sorghum under salinity stress conditions were studied. The results showed that spraying with GA3@chitosan increased sorghum grain yield by 2.07, 1.81 and 1.64 fold higher than salinity stressed plants, chitosan treatment and GA3 treatment, respectively. Additionally, compared to the control of the same variety, the GA3@chitosan spraying treatment improved the concentration of microelements in the grains of the Shandweel-1 and Dorado by 24.51% and 18.39%, respectively for each variety. Furthermore, spraying GA3@chitosan on sorghum varieties increased the accumulation of the macroelements N, P, and K by 34.03%, 47.61%, and 8.67% higher than salt-stressed plants, respectively. On the other hand, the proline and glycinebetaine content in sorghum leaves sprayed with nano-composite were drop by 51.04% and 11.98% less than stressed plants, respectively. The results showed that, in Ras Sudr, the Shandweel-1 variety produced more grain per feddan than the Dorado variety. These findings suggest that GA3@chitosan improves the chemical and biochemical components leading to a decrease in the negative effect of salt stress on the plant which reflects in the high-yield production of cultivated sorghum plants in salt conditions.
Collapse
Affiliation(s)
- Noura E Mahmoud
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Hassan Abdel-Gawad
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
47
|
Redolfi-Bristol D, Yamamoto K, Marin E, Zhu W, Mazda O, Riello P, Pezzotti G. Exploring the cellular antioxidant mechanism against cytotoxic silver nanoparticles: a Raman spectroscopic analysis. NANOSCALE 2024; 16:9985-9997. [PMID: 38695726 DOI: 10.1039/d4nr00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Silver nanoparticles (AgNPs) hold great promise for several different applications, from colorimetric sensors to antimicrobial agents. Despite their widespread incorporation in consumer products, limited understanding of the detrimental effects and cellular antioxidant responses associated with AgNPs at sublethal concentrations persists, raising concerns for human and ecological well-being. To address this gap, we synthesized AgNPs of varying sizes and evaluated their cytotoxicity against human dermal fibroblasts (HDF). Our study revealed that toxicity of AgNPs is a time- and size-dependent process, even at low exposure levels. AgNPs exhibited low short-term cytotoxicity but high long-term impact, particularly for the smallest NPs tested. Raman microspectroscopy was employed for in-time investigations of intracellular molecular variations during the first 24 h of exposure to AgNPs of 35 nm. Subtle protein and lipid degradations were detected, but no discernible damage to the DNA was observed. Signals associated with antioxidant proteins, such as superoxide dismutase (SOD), catalase (CAT) and metallothioneins (MTs), increased over time, reflecting the heightened production of these defense agents. Fluorescence microscopy further confirmed the efficacy of overexpressed antioxidant proteins in mitigating ROS formation during short-term exposure to AgNPs. This work provides valuable insights into the molecular changes and remedial strategies within the cellular environment, utilizing Raman microspectroscopy as an advanced analytical technique. These findings offer a novel perspective on the cytotoxicity mechanism of AgNPs, contributing to the development of safer materials and advice on regulatory guidelines for their biomedical applications.
Collapse
Affiliation(s)
- Davide Redolfi-Bristol
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Pietro Riello
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hiraka-ta, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| |
Collapse
|
48
|
Melo D, Ferreira F, Teles MJ, Porto G, Coimbra S, Rocha S, Santos-Silva A. Catalase, Glutathione Peroxidase, and Peroxiredoxin 2 in Erythrocyte Cytosol and Membrane in Hereditary Spherocytosis, Sickle Cell Disease, and β-Thalassemia. Antioxidants (Basel) 2024; 13:629. [PMID: 38929068 PMCID: PMC11201268 DOI: 10.3390/antiox13060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2) can counteract the deleterious effects of oxidative stress (OS). Their binding to the red blood cell (RBC) membrane has been reported in non-immune hemolytic anemias (NIHAs). Our aim was to evaluate the relationships between CAT, GPx, and Prx2, focusing on their role at the RBC membrane, in hereditary spherocytosis (HS), sickle cell disease (SCD), β-thalassemia (β-thal), and healthy individuals. The studies were performed in plasma and in the RBC cytosol and membrane, evaluating OS biomarkers and the enzymatic activities and/or the amounts of CAT, GPx, and Prx2. The binding of the enzymes to the membrane appears to be the primary protective mechanism against oxidative membrane injuries in healthy RBCs. In HS (unsplenectomized) and β-thal, translocation from the cytosol to the membrane of CAT and Prx2, respectively, was observed, probably to counteract lipid peroxidation. RBCs from splenectomized HS patients showed the highest membrane-bound hemoglobin, CAT, and GPx amounts in the membrane. SCD patients presented the lowest amount of enzyme linkage, possibly due to structural changes induced by sickle hemoglobin. The OS-induced changes and antioxidant response were different between the studied NIHAs and may contribute to the different clinical patterns in these patients.
Collapse
Affiliation(s)
- Daniela Melo
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Fátima Ferreira
- Hematology Service, Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal;
| | - Maria José Teles
- Laboratory Hematology Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Imuno-Hemotherapy Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
| | - Graça Porto
- Imuno-Hemotherapy Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Center for Predictive and Preventive Genetics (CGPP), Institute for Molecular and Cellular Biology (CGPP/IBMC), 4200-135 Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Susana Coimbra
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
- 1H-TOXRUN–One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Susana Rocha
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| |
Collapse
|
49
|
Beck NS, Seo Y, Park T, Jun SS, Im JI, Hong SY. Oxidative stress in patients with coronavirus disease and end-stage renal disease: a pilot study. BMC Nephrol 2024; 25:155. [PMID: 38702607 PMCID: PMC11069245 DOI: 10.1186/s12882-024-03584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Oxidative stress, an imbalance between reactive oxygen species production and antioxidant capacity, increases in patients with coronavirus disease (COVID-19) or renal impairment. We investigated whether combined COVID-19 and end-stage renal disease (ESRD) would increase oxidative stress levels compared to each disease alone. METHODS Oxidative stress was compared among three groups. Two groups comprised patients with COVID-19 referred to the hospital with or without renal impairment (COVID-ESRD group [n = 18]; COVID group [n = 17]). The third group (ESRD group [n = 18]) comprised patients without COVID-19 on maintenance hemodialysis at a hospital. RESULTS The total oxidative stress in the COVID-ESRD group was lower than in the COVID group (p = 0.047). The total antioxidant status was higher in the COVID-ESRD group than in the ESRD (p < 0.001) and COVID (p < 0.001) groups after controlling for covariates. The oxidative stress index was lower in the COVID-ESRD group than in the ESRD (p = 0.001) and COVID (p < 0.001) groups. However, the three oxidative parameters did not differ significantly between the COVID and COVID-ESRD groups. CONCLUSIONS The role of reactive oxygen species in the pathophysiology of COVID-19 among patients withESRD appears to be non-critical. Therefore, the provision of supplemental antioxidants may not confer a therapeutic advantage, particularly in cases of mild COVID-19 in ESRD patients receiving hemodialysis. Nonetheless, this area merits further research.
Collapse
Affiliation(s)
- Nam-Seon Beck
- Department of Pediatrics, Chung-Ang Jeil Hospital, Chungbuk, South Korea
| | - Yeonju Seo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Sang-Sin Jun
- Department of Neurology, Chung-Ang Jeil Hospital, Chungbuk, South Korea
| | - Joung-Il Im
- Department of Orthopedic Surgery, Chung-Ang Jeil Hospital, Chungbuk, South Korea
| | - Sae-Yong Hong
- Department of Nephrology, Chung-Ang Jeil Hospital, Chungbuk, South Korea.
| |
Collapse
|
50
|
Liu Z, Ye J, Zhang R, Li Y, Guan F, Zhang T, Huang J, Min X, Zhang T. Fractionation and antioxidation activities of polysaccharides from Zanthoxylum bungeanum Maxim. Food Chem 2024; 439:138050. [PMID: 38029566 DOI: 10.1016/j.foodchem.2023.138050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Zanthoxylum bungeanum has a lengthy history of widespread use as a food ingredient in China. However, the composition of Zanthoxylum bungeanum polysaccharide remains ambiguous, and the antioxidant effect has received limited attention. This study aimed to extract water-soluble polysaccharide from the dried pericarp of Zanthoxylum bungeanum, referred to as WZBP, which was fractionated into a neutral component (WZBP-N) and three pectic components (WZBP-A-I, WZBP-A-II, WZBP-A-III). The findings indicated that WZBP-A-III is a pectic polysaccharide "smooth region" without many side chains. All components of WZBP exhibited a notable capacity for scavenging free radicals, with WZBP-A-III demonstrating the most potent antioxidation activity, and WZBP-A-III also observed to effectively extend the lifespan of Drosophila melanogaster and enhanced the activity of antioxidant enzymes. These results provide valuable insight and direction for future research on Zanthoxylum bungeanum polysaccharide as an antioxidant agent.
Collapse
Affiliation(s)
- Ziyi Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Jingyu Ye
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Renqun Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yiqing Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Fanqi Guan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Tong Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|