1
|
Ter Brake FHG, van Luttikhuizen SAFM, van der Wel T, Gagestein B, Florea BI, van der Stelt M, Janssen APA. Previously Published Phosphatase Probes have Limited Utility Due to their Unspecific Reactivity. Chembiochem 2024:e202400333. [PMID: 39229773 DOI: 10.1002/cbic.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
This study explores the use of activity-based protein profiling to study protein tyrosine phosphatases. With the discovery of allosteric SHP2 inhibitors, this enzyme family has resurfaced as interesting drug targets. Therefore, we envisioned that previously described direct electrophiles and quinone methide-based traps targeting phosphatases could be applied in competitive activity-based protein profiling assays. This study evaluates three direct electrophiles, specifically, a vinyl sulfonate, a vinyl sulfone, and an α-bromobenzylphosphonate as well as three quinone methide-based traps as activity-based probes. For all these moieties it was previously shown that they could selectively engage in assays with purified or overexpressed phosphatases in bacterial lysates. However, this study demonstrates that probes based on these moieties all suffer from unspecific labelling. Direct electrophiles were either unspecific or not activity-based, while quinone methide-based traps showed dependence on phosphatase activity but also resulted in unspecific labelling due to diffusion after activation. This phenomenon, termed 'bystander' labelling, occurred even with catalytically inactive SHP2 mutants. We concluded that alternative strategies or chemistries are needed to apply activity-based protein profiling in phosphatase research. Moreover, this study shows that quinone methide-based designs have limited potential in probe and inhibitor development strategies due to their intrinsic reactivity.
Collapse
Affiliation(s)
- F H G Ter Brake
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - S A F M van Luttikhuizen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - T van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - B Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - B I Florea
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - M van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - A P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| |
Collapse
|
2
|
Ye G, Sun X, Li J, Mai Y, Gao R, Zhang J. Secondary metabolites of mulberry leaves exert anti-lung cancer activity through regulating the PD-L1/PD-1 signaling pathway. J Pharm Anal 2024; 14:100926. [PMID: 38974523 PMCID: PMC11226898 DOI: 10.1016/j.jpha.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 07/09/2024] Open
Abstract
Lung cancer ranks the top of malignancies that cause cancer-related deaths worldwide. The leaves of Morus alba L are traditional Chinese medicine widely applied in respiratory diseases. Our previous work has demonstrated the anti-lung cancer effect of secondary metabolites of mulberry leaf, but their mechanism of action has still not fully elucidated. We synthesized Moracin N (MAN)-Probe conjugated with alkyne to label lung cancer cells and identified protein targets by chemical proteomic analysis. MAN and its probe exerted similar growth-inhibitory effect on human lung cancer cells. Chemical proteomic results showed that MAN targeted the programmed death ligand 1 (PD-L1) checkpoint pathway and T cell receptor (TCR) signaling pathway, indicating its immune-regulatory function. Cell-free surface plasmon resonance (SPR) results showed the direct interaction of MAN with PD-L1 protein. Molecular docking analysis demonstrated that MAN bound to E158 residue of PD-L1 protein. MAN downregulated the expression levels of PD-L1 in a time- and dose-dependent manner and disrupted the PD-L1/programmed death 1 (PD-1) binding, including other secondary metabolites of mulberry leaves Guangsangon E (GSE) and Chalcomoracin (CMR). Human peripheral blood mononuclear cells (PBMCs) co-cultured with MAN-treated A549 cells, resulting in the increase of CD8+ GZMB+ T cells and the decrease of CD8+ PD-1+ T cells. It suggested that MAN exerts anti-cancer effect through blocking the PD-L1/PD-1 signaling. In vivo, MAN combined with anti-PD-1 antibody significantly inhibited lung cancer development and metastasis, indicating their synergistic effect. Taken together, secondary metabolites of mulberry leaves target the PD-L1/PD-1 signaling, enhance T cell-mediated immunity and inhibit the tumorigenesis of lung cancer. Their modulatory effect on tumor microenvironment makes them able to enhance the therapeutic efficacy of immune checkpoint inhibitors in lung cancer.
Collapse
Affiliation(s)
- Guiqin Ye
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Laboratory, Yuhuan City Hospital, Taizhou, Zhejiang, 317600, China
- Hangzhou Medical College, Hangzhou, 311300, China
| | - Xin Sun
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jiuzhou Li
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, Shandong, 256600, China
| | - Yuanyuan Mai
- Hangzhou Medical College, Hangzhou, 311300, China
| | - Ruilan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
3
|
Kempf K, Capello Y, Melhem R, Lescoat C, Kempf O, Cornu A, Fremaux I, Chaignepain S, Groppi A, Nikolski M, Deffieux D, Génot E, Quideau S. Systemic Convergent Multitarget Interactions of Plant Polyphenols Revealed by Affinity-Based Protein Profiling of Bone Cells Using C-Glucosidic Vescal(ag)in-Bearing Chemoproteomic Probes. ACS Chem Biol 2023; 18:2495-2505. [PMID: 37948120 DOI: 10.1021/acschembio.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The ellagitannins vescalagin and vescalin, known as actin-dependent inhibitors of osteoclastic bone resorption, were mounted onto chemical probes to explore their interactions with bone cell proteins by means of affinity-based chemoproteomics and bioinformatics. The chemical reactivity of the pyrogallol units of these polyphenols toward oxidation into electrophilic ortho-quinones was exploited using NaIO4 to promote the covalent capture of target proteins, notably those expressed at lower abundance and those interacting with polyphenols at low-to-moderate levels of affinity. Different assays revealed the multitarget nature of both ellagitannins, with 100-370 statistically significant proteins captured by their corresponding probes. A much higher number of proteins were captured from osteoclasts than from osteoblasts. Bioinformatic analyses unveiled a preference for the capture of proteins having phosphorylated ligands and GTPase regulators and enabled the identification of 33 potential target proteins with systemic relevance to osteoclast differentiation and activity, as well as to the regulation of actin dynamics.
Collapse
Affiliation(s)
- Karl Kempf
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
- Department of Safety and Quality of Meat, Max Rubner-Institut (MRI), E.-C.-Baumann-Straße 20, 95326 Kulmbach, Germany
| | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
| | - Rana Melhem
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), 2 Rue Robert Escarpit, 33607 Pessac, Cedex, France
| | - Claire Lescoat
- Univ. Bordeaux, IBGC (CNRS-UMR 5095), Centre de Bioinformatique de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, Cedex, France
| | - Oxana Kempf
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
| | - Anaëlle Cornu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
| | - Isabelle Fremaux
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), 2 Rue Robert Escarpit, 33607 Pessac, Cedex, France
| | - Stéphane Chaignepain
- Univ. Bordeaux, CBMN (CNRS-UMR 5248), Centre de Génomique Fonctionnelle de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, Cedex, France
| | - Alexis Groppi
- Univ. Bordeaux, IBGC (CNRS-UMR 5095), Centre de Bioinformatique de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, Cedex, France
| | - Macha Nikolski
- Univ. Bordeaux, IBGC (CNRS-UMR 5095), Centre de Bioinformatique de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
| | - Elisabeth Génot
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), 2 Rue Robert Escarpit, 33607 Pessac, Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, Cedex 05, France
| |
Collapse
|
4
|
Jiang M, Huizenga MCW, Wirt JL, Paloczi J, Amedi A, van den Berg RJBHN, Benz J, Collin L, Deng H, Di X, Driever WF, Florea BI, Grether U, Janssen APA, Hankemeier T, Heitman LH, Lam TW, Mohr F, Pavlovic A, Ruf I, van den Hurk H, Stevens AF, van der Vliet D, van der Wel T, Wittwer MB, van Boeckel CAA, Pacher P, Hohmann AG, van der Stelt M. A monoacylglycerol lipase inhibitor showing therapeutic efficacy in mice without central side effects or dependence. Nat Commun 2023; 14:8039. [PMID: 38052772 PMCID: PMC10698032 DOI: 10.1038/s41467-023-43606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Mirjam C W Huizenga
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Jonah L Wirt
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, MD, USA
| | - Avand Amedi
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | | | - Joerg Benz
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ludovic Collin
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hui Deng
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Xinyu Di
- Metabolomics and analytics center, Leiden University, Leiden, Netherlands
| | - Wouter F Driever
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Bogdan I Florea
- Department of Bio-organic Synthesis, Leiden University, Leiden, Netherlands
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Thomas Hankemeier
- Metabolomics and analytics center, Leiden University, Leiden, Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden University & Oncode Institute, Leiden, Netherlands
| | | | - Florian Mohr
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Anto Pavlovic
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Iris Ruf
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Anna F Stevens
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Daan van der Vliet
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Matthias B Wittwer
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, MD, USA
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands.
| |
Collapse
|
5
|
Criscuolo E, De Sciscio ML, De Cristofaro A, Nicoara C, Maccarrone M, Fezza F. Computational and Experimental Drug Repurposing of FDA-Approved Compounds Targeting the Cannabinoid Receptor CB1. Pharmaceuticals (Basel) 2023; 16:1678. [PMID: 38139805 PMCID: PMC10747202 DOI: 10.3390/ph16121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The cannabinoid receptor 1 (CB1R) plays a pivotal role in regulating various physiopathological processes, thus positioning itself as a promising and sought-after therapeutic target. However, the search for specific and effective CB1R ligands has been challenging, prompting the exploration of drug repurposing (DR) strategies. In this study, we present an innovative DR approach that combines computational screening and experimental validation to identify potential Food and Drug Administration (FDA)-approved compounds that can interact with the CB1R. Initially, a large-scale virtual screening was conducted using molecular docking simulations, where a library of FDA-approved drugs was screened against the CB1R's three-dimensional structures. This in silico analysis allowed us to prioritize compounds based on their binding affinity through two different filters. Subsequently, the shortlisted compounds were subjected to in vitro assays using cellular and biochemical models to validate their interaction with the CB1R and determine their functional impact. Our results reveal FDA-approved compounds that exhibit promising interactions with the CB1R. These findings open up exciting opportunities for DR in various disorders where CB1R signaling is implicated. In conclusion, our integrated computational and experimental approach demonstrates the feasibility of DR for discovering CB1R modulators from existing FDA-approved compounds. By leveraging the wealth of existing pharmacological data, this strategy accelerates the identification of potential therapeutics while reducing development costs and timelines. The findings from this study hold the potential to advance novel treatments for a range of CB1R -associated diseases, presenting a significant step forward in drug discovery research.
Collapse
Affiliation(s)
- Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy; (E.C.); (C.N.)
| | - Maria Laura De Sciscio
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.L.D.S.); (A.D.C.)
| | - Angela De Cristofaro
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.L.D.S.); (A.D.C.)
| | - Catalin Nicoara
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy; (E.C.); (C.N.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy; (E.C.); (C.N.)
| |
Collapse
|
6
|
Hu X, Sun M, Chen Q, Zhao Y, Liang N, Wang S, Yin P, Yang Y, Lam SM, Zhang Q, Tudiyusufu A, Gu Y, Wan X, Chen M, Li H, Zhang X, Shui G, Fu S, Zhang L, Tang P, Wong CCL, Zhang Y, Zhu D. Skeletal muscle-secreted DLPC orchestrates systemic energy homeostasis by enhancing adipose browning. Nat Commun 2023; 14:7916. [PMID: 38036537 PMCID: PMC10689447 DOI: 10.1038/s41467-023-43402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
MyoD is a skeletal muscle-specifically expressed transcription factor and plays a critical role in regulating myogenesis during muscle development and regeneration. However, whether myofibers-expressed MyoD exerts its metabolic function in regulating whole body energy homeostasis in vivo remains largely unknown. Here, we report that genetic deletion of Myod in male mice enhances the oxidative metabolism of muscle and, intriguingly, renders the male mice resistant to high fat diet-induced obesity. By performing lipidomic analysis in muscle-conditioned medium and serum, we identify 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) as a muscle-released lipid that is responsible for MyoD-orchestrated body energy homeostasis in male Myod KO mice. Functionally, the administration of DLPC significantly ameliorates HFD-induced obesity in male mice. Mechanistically, DLPC is found to induce white adipose browning via lipid peroxidation-mediated p38 signaling in male mice. Collectively, our findings not only uncover a novel function of MyoD in controlling systemic energy homeostasis through the muscle-derived lipokine DLPC but also suggest that the DLPC might have clinical potential for treating obesity in humans.
Collapse
Affiliation(s)
- Xiaodi Hu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mingwei Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Qian Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yixia Zhao
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Na Liang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Yuanping Yang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Sin Man Lam
- LipidALL Technologies Company Limited, Changzhou, 213022, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianying Zhang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Alimujiang Tudiyusufu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yingying Gu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xin Wan
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Meihong Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hu Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Xiaofei Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Guanghou Shui
- LipidALL Technologies Company Limited, Changzhou, 213022, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suneng Fu
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Yong Zhang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Dahai Zhu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
7
|
Ma TP, Izrael-Tomasevic A, Mroue R, Budayeva H, Malhotra S, Raisner R, Evangelista M, Rose CM, Kirkpatrick DS, Yu K. AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues. J Proteome Res 2023. [PMID: 37285454 DOI: 10.1021/acs.jproteome.2c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in targeted covalent inhibitors have aroused significant interest for their potential in drug development for difficult therapeutic targets. Proteome-wide profiling of functional residues is an integral step of covalent drug discovery aimed at defining actionable sites and evaluating compound selectivity in cells. A classical workflow for this purpose is called IsoTOP-ABPP, which employs an activity-based probe and two isotopically labeled azide-TEV-biotin tags to mark, enrich, and quantify proteome from two samples. Here we report a novel isobaric 11plex-AzidoTMT reagent and a new workflow, named AT-MAPP, that significantly expands multiplexing power as compared to the original isoTOP-ABPP. We demonstrate its application in identifying cysteine on- and off-targets using a KRAS G12C covalent inhibitor ARS-1620. However, changes in some of these hits can be explained by modulation at the protein and post-translational levels. Thus, it would be crucial to interrogate site-level bona fide changes in concurrence to proteome-level changes for corroboration. In addition, we perform a multiplexed covalent fragment screening using four acrylamide-based compounds as a proof-of-concept. This study identifies a diverse set of liganded cysteine residues in a compound-dependent manner with an average hit rate of 0.07% in intact cell. Lastly, we screened 20 sulfonyl fluoride-based compounds to demonstrate that the AT-MAPP assay is flexible for noncysteine functional residues such as tyrosine and lysine. Overall, we envision that 11plex-AzidoTMT will be a useful addition to the current toolbox for activity-based protein profiling and covalent drug development.
Collapse
Affiliation(s)
- Taylur P Ma
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Rana Mroue
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Hanna Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Ryan Raisner
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Marie Evangelista
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Donald S Kirkpatrick
- Interline Therapeutics, Inc., South San Francisco, California 94080, United States
| | - Kebing Yu
- Fuhong Biopharma, Inc., Shanghai 201206, China
| |
Collapse
|
8
|
Kempf K, Kempf O, Capello Y, Molitor C, Lescoat C, Melhem R, Chaignepain S, Génot E, Groppi A, Nikolski M, Halbwirth H, Deffieux D, Quideau S. Synthesis of Flavonol-Bearing Probes for Chemoproteomic and Bioinformatic Analyses of Asteraceae Petals in Search of Novel Flavonoid Enzymes. Int J Mol Sci 2023; 24:ijms24119724. [PMID: 37298676 DOI: 10.3390/ijms24119724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed at searching for the enzymes that are responsible for the higher hydroxylation of flavonols serving as UV-honey guides for pollinating insects on the petals of Asteraceae flowers. To achieve this aim, an affinity-based chemical proteomic approach was developed by relying on the use of quercetin-bearing biotinylated probes, which were thus designed and synthesized to selectively and covalently capture relevant flavonoid enzymes. Proteomic and bioinformatic analyses of proteins captured from petal microsomes of two Asteraceae species (Rudbeckia hirta and Tagetes erecta) revealed the presence of two flavonol 6-hydroxylases and several additional not fully characterized proteins as candidates for the identification of novel flavonol 8-hydroxylases, as well as relevant flavonol methyl- and glycosyltransferases. Generally speaking, this substrate-based proteome profiling methodology constitutes a powerful tool for the search for unknown (flavonoid) enzymes in plant protein extracts.
Collapse
Affiliation(s)
- Karl Kempf
- ISM (CNRS-UMR 5255), University of Bordeaux, 33405 Talence CEDEX, France
| | - Oxana Kempf
- ISM (CNRS-UMR 5255), University of Bordeaux, 33405 Talence CEDEX, France
| | - Yoan Capello
- ISM (CNRS-UMR 5255), University of Bordeaux, 33405 Talence CEDEX, France
| | - Christian Molitor
- Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria
| | - Claire Lescoat
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, 33076 Bordeaux CEDEX, France
| | - Rana Melhem
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), University of Bordeaux, 33607 Pessac CEDEX, France
| | - Stéphane Chaignepain
- CBMN (CNRS-UMR 5248), Centre de Génomique Fonctionnelle de Bordeaux, University of Bordeaux, 33076 Bordeaux CEDEX, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), University of Bordeaux, 33607 Pessac CEDEX, France
| | - Alexis Groppi
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, 33076 Bordeaux CEDEX, France
- IBGC (CNRS-UMR 5095), University of Bordeaux, 33077 Bordeaux CEDEX, France
| | - Macha Nikolski
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, 33076 Bordeaux CEDEX, France
- IBGC (CNRS-UMR 5095), University of Bordeaux, 33077 Bordeaux CEDEX, France
| | - Heidi Halbwirth
- Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria
| | - Denis Deffieux
- ISM (CNRS-UMR 5255), University of Bordeaux, 33405 Talence CEDEX, France
| | - Stéphane Quideau
- ISM (CNRS-UMR 5255), University of Bordeaux, 33405 Talence CEDEX, France
- Institut Universitaire de France, 75231 Paris CEDEX 05, France
| |
Collapse
|
9
|
Mons E, Kim RQ, Mulder MPC. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Pharmaceuticals (Basel) 2023; 16:547. [PMID: 37111304 PMCID: PMC10146396 DOI: 10.3390/ph16040547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein-drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein-drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| | - Monique P. C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| |
Collapse
|
10
|
Berger N, van der Wel T, Hirschmugl B, Baernthaler T, Gindlhuber J, Fawzy N, Eichmann T, Birner-Gruenberger R, Zimmermann R, van der Stelt M, Wadsack C. Inhibition of diacylglycerol lipase β modulates lipid and endocannabinoid levels in the ex vivo human placenta. Front Endocrinol (Lausanne) 2023; 14:1092024. [PMID: 36864832 PMCID: PMC9971001 DOI: 10.3389/fendo.2023.1092024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Lipids and fatty acids are key components in metabolic processes of the human placenta, thereby contributing to the development of the fetus. Placental dyslipidemia and aberrant activity of lipases have been linked to diverse pregnancy associated complications, such as preeclampsia and preterm birth. The serine hydrolases, diacylglycerol lipase α and β (DAGLα, DAGLβ) catalyze the degradation of diacylglycerols, leading to the formation of monoacylglycerols (MAG), including one main endocannabinoid 2-arachidonoylglycerol (2-AG). The major role of DAGL in the biosynthesis of 2-AG is evident from various studies in mice but has not been investigated in the human placenta. Here, we report the use of the small molecule inhibitor DH376, in combination with the ex vivo placental perfusion system, activity-based protein profiling (ABPP) and lipidomics, to determine the impact of acute DAGL inhibition on placental lipid networks. Methods DAGLα and DAGLβ mRNA expression was detected by RT-qPCR and in situ hybridization in term placentas. Immunohistochemistry staining for CK7, CD163 and VWF was applied to localize DAGLβ transcripts to different cell types of the placenta. DAGLβ activity was determined by in- gel and MS-based activity-based protein profiling (ABPP) and validated by addition of the enzyme inhibitors LEI-105 and DH376. Enzyme kinetics were measured by EnzChek™ lipase substrate assay. Ex vivo placental perfusion experiments were performed +/- DH376 [1 µM] and changes in tissue lipid and fatty acid profiles were measured by LC-MS. Additionally, free fatty acid levels of the maternal and fetal circulations were determined. Results We demonstrate that mRNA expression of DAGLβ prevails in placental tissue, compared to DAGLα (p ≤ 0.0001) and that DAGLβ is mainly located to CK7 positive trophoblasts (p ≤ 0.0001). Although few DAGLα transcripts were identified, no active enzyme was detected applying in-gel or MS-based ABPP, which underlined that DAGLβ is the principal DAGL in the placenta. DAGLβ dependent substrate hydrolysis in placental membrane lysates was determined by the application of LEI-105 and DH376. Ex vivo pharmacological inhibition of DAGLβ by DH376 led to reduced MAG tissue levels (p ≤ 0.01), including 2-AG (p≤0.0001). We further provide an activity landscape of serine hydrolases, showing a broad spectrum of metabolically active enzymes in the human placenta. Discussion Our results emphasize the role of DAGLβ activity in the human placenta by determining the biosynthesis of 2-AG. Thus, this study highlights the special importance of intra-cellular lipases in lipid network regulation. Together, the activity of these specific enzymes may contribute to the lipid signaling at the maternal-fetal interface, with implications for function of the placenta in normal and compromised pregnancies.
Collapse
Affiliation(s)
- Natascha Berger
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas Baernthaler
- Otto Loewi Research Center, Division of Pharmacology, University of Graz, Graz, Austria
| | - Juergen Gindlhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Diagnostic and Research Center of Molecular Medicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Nermeen Fawzy
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Eichmann
- BioTechMed-Graz, Graz, Austria
- Core Facility Mass Spectrometry, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Center of Molecular Medicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Robert Zimmermann
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
11
|
Understanding and Targeting the Endocannabinoid System with Activity‐Based Protein Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Global profiling of AMG510 modified proteins identified tumor suppressor KEAP1 as an off-target. iScience 2023; 26:106080. [PMID: 36824285 PMCID: PMC9942120 DOI: 10.1016/j.isci.2023.106080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
KRAS inhibitor AMG510 covalently modifies the G12C residue and inactivates the KRAS/G12C function. Because there are many reactive cysteines in the proteome, it is important to characterize AMG510 on-target modification and off-targets. Here, we presented a streamlined workflow to measure abundant AMG510 modified peptides including that of KRAS/G12C by direct profiling, and a pan-AMG510 antibody peptide IP workflow to profile less abundant AMG510 off-targets. We identified over 300 off-target sites with three distinct kinetic patterns, expanding the AMG510 modified proteome involved in the nucleocytoplasmic transport, response to oxidative stress, adaptive immune system, and glycolysis. We found that AMG510 covalently modified cys339 of ALDOA and inhibited its enzyme activity. Moreover, AMG510 modified KEAP1 cys288 and induced NRF2 accumulation in the nuclear of NSCLC cells independent of KRAS/G12C mutation. Our study provides a comprehensive resource of protein off-targets of AMG510 and elucidates potential toxicological sideeffects for this covalent KRASG12C inhibitor.
Collapse
|
13
|
Bakker A, Kotsogianni I, Mirenda L, Straub VM, Avalos M, van den Berg RJBH, Florea BI, van Wezel GP, Janssen APA, Martin NI, van der Stelt M. Chemical Proteomics Reveals Antibiotic Targets of Oxadiazolones in MRSA. J Am Chem Soc 2022; 145:1136-1143. [PMID: 36584241 PMCID: PMC9853856 DOI: 10.1021/jacs.2c10819] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phenotypic screening is a powerful approach to identify novel antibiotics, but elucidation of the targets responsible for the antimicrobial activity is often challenging in the case of compounds with a polypharmacological mode of action. Here, we show that activity-based protein profiling maps the target interaction landscape of a series of 1,3,4-oxadiazole-3-ones identified in a phenotypic screen to have high antibacterial potency against multidrug-resistant Staphylococcus aureus. In situ competitive and comparative chemical proteomics with a tailor-made activity-based probe, in combination with transposon and resistance studies, revealed several cysteine and serine hydrolases as relevant targets. Our data showcase oxadiazolones as a novel antibacterial chemotype with a polypharmacological mode of action, in which FabH, FphC, and AdhE play a central role.
Collapse
Affiliation(s)
- Alexander
T. Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Ioli Kotsogianni
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Liza Mirenda
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Verena M. Straub
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Mariana Avalos
- Department
of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | | | - Bogdan I. Florea
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Gilles P. van Wezel
- Department
of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Antonius P. A. Janssen
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands,
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands,
| |
Collapse
|
14
|
Punt J, van der Vliet D, van der Stelt M. Chemical Probes to Control and Visualize Lipid Metabolism in the Brain. Acc Chem Res 2022; 55:3205-3217. [PMID: 36283077 PMCID: PMC9670861 DOI: 10.1021/acs.accounts.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Signaling lipids, such as the endocannabinoids, play an important role in the brain. They regulate synaptic transmission and control various neurophysiological processes, including pain sensation, appetite, memory formation, stress, and anxiety. Unlike classical neurotransmitters, lipid messengers are produced on demand and degraded by metabolic enzymes to control their lifespan and signaling actions. Chemical biology approaches have become one of the main driving forces to study and unravel the physiological role of lipid messengers in the brain. Here, we review how the development and use of chemical probes has allowed one to study endocannabinoid signaling by (i) inhibiting the biosynthetic and metabolic enzymes; (ii) visualizing the activity of these enzymes; and (iii) controlling the release and transport of the endocannabinoids. Activity-based probes were instrumental to guide the discovery of highly selective and in vivo active inhibitors of the biosynthetic (DAGL, NAPE-PLD) and metabolic (MAGL, FAAH) enzymes of endocannabinoids. These inhibitors allowed one to study the role of these enzymes in animal models of disease. For instance, the DAGL-MAGL axis was shown to control neuroinflammation and the NAPE-PLD-FAAH axis to regulate emotional behavior. Activity-based protein profiling and chemical proteomics were essential to guide the drug discovery and development of compounds targeting MAGL and FAAH, such as ABX-1431 (Lu AG06466) and PF-04457845, respectively. These experimental drugs are now in clinical trials for multiple indications, including multiple sclerosis and post-traumatic stress disorders. Activity-based probes have also been used to visualize the activity of these lipid metabolizing enzymes with high spatial resolution in brain slices, thereby showing the cell type-specific activity of these lipid metabolizing enzymes. The transport, release, and uptake of signaling lipids themselves cannot, however, be captured by activity-based probes in a spatiotemporal controlled manner. Therefore, bio-orthogonal lipids equipped with photoreactive, photoswitchable groups or photocages have been developed. These chemical probes were employed to investigate the protein interaction partners of the endocannabinoids, such as putative membrane transporters, as well as to study the functional cellular responses within milliseconds upon irradiation. Finally, genetically encoded sensors have recently been developed to monitor the real-time release of endocannabinoids with high spatiotemporal resolution in cultured neurons, acute brain slices, and in vivo mouse models. It is anticipated that the combination of chemical probes, highly selective inhibitors, and sensors with advanced (super resolution) imaging modalities, such as PharmacoSTORM and correlative light-electron microscopy, will uncover the fundamental basis of lipid signaling at nanoscale resolution in the brain. Furthermore, chemical biology approaches enable the translation of these fundamental discoveries into clinical solutions for brain diseases with aberrant lipid signaling.
Collapse
|
15
|
Gagestein B, von Hegedus JH, Kwekkeboom JC, Heijink M, Blomberg N, van der Wel T, Florea BI, van den Elst H, Wals K, Overkleeft HS, Giera M, Toes REM, Ioan-Facsinay A, van der Stelt M. Comparative Photoaffinity Profiling of Omega-3 Signaling Lipid Probes Reveals Prostaglandin Reductase 1 as a Metabolic Hub in Human Macrophages. J Am Chem Soc 2022; 144:18938-18947. [PMID: 36197299 PMCID: PMC9585591 DOI: 10.1021/jacs.2c06827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The fish oil constituent
docosahexaenoic acid (DHA, 22:6
n-3) is
a signaling lipid with anti-inflammatory properties. The molecular
mechanisms underlying the biological effect of DHA are poorly understood.
Here, we report the design, synthesis, and application of a complementary
pair of bio-orthogonal, photoreactive probes based on the polyunsaturated
scaffold DHA and its oxidative metabolite 17-hydroxydocosahexaenoic
acid (17-HDHA). In these probes, an alkyne serves as a handle to introduce
a fluorescent reporter group or a biotin-affinity tag via copper(I)-catalyzed
azide-alkyne cycloaddition. This pair of chemical probes was used
to map specific targets of the omega-3 signaling lipids in primary
human macrophages. Prostaglandin reductase 1 (PTGR1) was identified
as an interaction partner that metabolizes 17-oxo-DHA, an oxidative
metabolite of 17-HDHA. 17-oxo-DHA reduced the formation of pro-inflammatory
lipids 5-HETE and LTB4 in human macrophages and neutrophils. Our results
demonstrate the potential of comparative photoaffinity protein profiling
for the discovery of metabolic enzymes of bioactive lipids and highlight
the power of chemical proteomics to uncover new biological insights.
Collapse
Affiliation(s)
- Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Johannes H von Hegedus
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Joanneke C Kwekkeboom
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Bogdan I Florea
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Hans van den Elst
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Kim Wals
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Herman S Overkleeft
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
16
|
Gagestein B, Stevens AF, Fazio D, Florea BI, van der Wel T, Bakker AT, Fezza F, Dulk HD, Overkleeft HS, Maccarrone M, van der Stelt M. Chemical Proteomics Reveals Off-Targets of the Anandamide Reuptake Inhibitor WOBE437. ACS Chem Biol 2022; 17:1174-1183. [PMID: 35482948 PMCID: PMC9127799 DOI: 10.1021/acschembio.2c00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anandamide or N-arachidonoylethanolamine (AEA) is a signaling lipid that modulates neurotransmitter release via activation of the type 1 cannabinoid receptor (CB1R) in the brain. Termination of anandamide signaling is thought to be mediated via a facilitated cellular reuptake process that utilizes a purported transporter protein. Recently, WOBE437 has been reported as a novel, natural product-based inhibitor of AEA reuptake that is active in cellular and in vivo models. To profile its target interaction landscape, we synthesized pac-WOBE, a photoactivatable probe derivative of WOBE437, and performed chemical proteomics in mouse neuroblastoma Neuro-2a cells. Surprisingly WOBE437, unlike the widely used selective inhibitor of AEA uptake OMDM-1, was found to increase AEA uptake in Neuro-2a cells. In line with this, WOBE437 reduced the cellular levels of AEA and related N-acylethanolamines (NAEs). Using pac-WOBE, we identified saccharopine dehydrogenase-like oxidoreductase (SCCPDH), vesicle amine transport 1 (VAT1), and ferrochelatase (FECH) as WOBE437-interacting proteins in Neuro-2a cells. Further genetic studies indicated that SCCPDH and VAT1 were not responsible for the WOBE437-induced reduction in NAE levels. Regardless of the precise mechanism of action of WOB437 in AEA transport, we have identified SSCPHD, VAT1, and FECH as unprecedented off-targets of this molecule which should be taken into account when interpreting its cellular and in vivo effects.
Collapse
Affiliation(s)
- Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Anna F. Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Domenico Fazio
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Bogdan I. Florea
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Alexander T. Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, Rome 00121, Italy
| | - Hans den Dulk
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Herman S. Overkleeft
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, Rome 00143, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
17
|
Morawska MM, Moreira CG, Ginde VR, Valko PO, Weiss T, Büchele F, Imbach LL, Masneuf S, Kollarik S, Prymaczok N, Gerez JA, Riek R, Baumann CR, Noain D. Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson's disease. Sci Transl Med 2021; 13:eabe7099. [PMID: 34878820 DOI: 10.1126/scitranslmed.abe7099] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Marta M Morawska
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,ETH Zurich, Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Varun R Ginde
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Philipp O Valko
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Fabian Büchele
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Lukas L Imbach
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Sophie Masneuf
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Sedef Kollarik
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Natalia Prymaczok
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Juan A Gerez
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Roland Riek
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center of Competence Sleep and Health Zurich, University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center of Competence Sleep and Health Zurich, University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| |
Collapse
|
18
|
Yang L, Cao J, Wei J, Deng J, Hou X, Hao E, Du Z, Zou L, Li P. Antiproliferative activity of berberine in HepG2 cells via inducing apoptosis and arresting cell cycle. Food Funct 2021; 12:12115-12126. [PMID: 34787617 DOI: 10.1039/d1fo02783b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The therapeutic targets of berberine for hepatocellular carcinoma (HCC) and its detailed mechanisms remain unexplored. Here, an integration of network pharmacology, proteomic, bioinformatic and in vitro biochemical approach was proposed to reveal therapeutic targets and pathways underlying the antiproliferative activity of berberine against HepG2 cells. Results indicated that berberine caused the cytotoxicity and inhibited the growth of HepG2 cells with IC50 values ranging from 92 μM to 118 μM. Network pharmacology analysis revealed that targeting apoptosis and cell cycle pathways by berberine contributed to its antitumor efficacy against HCC. Proteomic analysis demonstrated that mitochondria-related apoptosis pathways were involved in the cytotoxic action of berberine, as evidenced by the expression of mitochondrial dysfunction-mediated proteins. Moreover, a total of 160 significantly altered proteins were screened, among which AKAP12 presented significantly increased levels under berberine treatment. Bioinformatic analysis of various public datasets showed that expression of AKAP12 in HCC liver tissues was downregulated, emphasizing its role as a tumor suppressor. Immunoblotting validated the increased levels of AKAP12, while co-immunoprecipitation identified its interaction with Cyclin D1. These data, together with flow cytometry analysis, suggested that AKAP12 mediated cell cycle arrest, thereby suppressing cell proliferation. Altogether, the antiproliferative action of berberine in HepG2 cells involves both apoptosis and cell cycle arrest. Regulating AKAP12 signalling by berberine might provide a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jiliang Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jiagang Deng
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Erwei Hao
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhengcai Du
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
19
|
|
20
|
Activation of Tenofovir Alafenamide and Sofosbuvir in the Human Lung and Its Implications in the Development of Nucleoside/Nucleotide Prodrugs for Treating SARS-CoV-2 Pulmonary Infection. Pharmaceutics 2021; 13:pharmaceutics13101656. [PMID: 34683949 PMCID: PMC8540046 DOI: 10.3390/pharmaceutics13101656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
ProTide technology is a powerful tool for the design of nucleoside/nucleotide analog prodrugs. ProTide prodrug design improves cell permeability and enhances intracellular activation. The hydrolysis of the ester bond of a ProTide is a determinant of the intracellular activation efficiency and final antiviral efficacy of the prodrug. The hydrolysis is dictated by the catalytic activity and abundance of activating enzymes. The antiviral agents tenofovir alafenamide (TAF) and sofosbuvir (SBV) are typical ProTides. Both TAF and SBV have also been proposed to treat patients with COVID-19. However, the mechanisms underlying the activation of the two prodrugs in the lung remain inconclusive. In the present study, we profiled the catalytic activity of serine hydrolases in human lung S9 fractions using an activity-based protein profiling assay. We evaluated the hydrolysis of TAF and SBV using human lung and liver S9 fractions and purified enzymes. The results showed that CatA and CES1 were involved in the hydrolysis of the two prodrugs in the human lung. More specifically, CatA exhibited a nearly 4-fold higher hydrolytic activity towards TAF than SBV, whereas the CES1 activity on hydrolyzing TAF was slightly lower than that for SBV. Overall, TAF had a nearly 4-fold higher hydrolysis rate in human lung S9 than SBV. We further analyzed protein expression levels of CatA and CES1 in the human lung, liver, and primary cells of the two tissues using proteomics data extracted from the literature. The relative protein abundance of CatA to CES1 was considerably higher in the human lung and primary human airway epithelial cells than in the human liver and primary human hepatocytes. The findings demonstrated that the high susceptivity of TAF to CatA-mediated hydrolysis resulted in efficient TAF hydrolysis in the human lung, suggesting that CatA could be utilized as a target activating enzyme when designing antiviral ester prodrugs for the treatment of respiratory virus infection.
Collapse
|
21
|
Guo H, Wang L, Deng Y, Ye J. Novel perspectives of environmental proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147588. [PMID: 34023612 DOI: 10.1016/j.scitotenv.2021.147588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/08/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
The connection among genome expression, proteome alteration, metabolism regulation and phenotype change under environmental stresses is very vague. It is a tough task for the traditional research approaches to reveal the related scientific mechanisms of the above connection at molecular and systematic levels. Proteomics approach is an insightful tool for revealing the biological functions, metabolic networks and functional protein interaction networks of cells and organisms under stresses at the systematic level. The purpose of this review is to provide an insightful guideline on how to set up a proteomic investigation for revealing biomolecule mechanisms, protein biomarkers and metabolism networks related to stress response, pollutant recognition, transport and biodegradation, and providing an insightful high-throughput approach for screening functional enzymes and effective microbes based on bioinformatics and functional verification method. Furthermore, the toxicity evaluation of pollutants and byproducts by proteomics approaches provides a scientific insight for early diagnosis of ecological risk and determination of the effectiveness of pollutant treatment techniques.
Collapse
Affiliation(s)
- Huiying Guo
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China; Institute of Orthopedic Diseases, Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Lili Wang
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Deng
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Ohira T, Ino Y, Kimura Y, Nakai Y, Kimura A, Kurata Y, Kagawa H, Kimura M, Egashira K, Matsuda C, Ohira Y, Furukawa S, Hirano H. Effects of microgravity exposure and fructo-oligosaccharide ingestion on the proteome of soleus and extensor digitorum longus muscles in developing mice. NPJ Microgravity 2021; 7:34. [PMID: 34535681 PMCID: PMC8448765 DOI: 10.1038/s41526-021-00164-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Short-chain fatty acids produced by the gut bacterial fermentation of non-digestible carbohydrates, e.g., fructo-oligosaccharide (FOS), contribute to the maintenance of skeletal muscle mass and oxidative metabolic capacity. We evaluated the effect of FOS ingestion on protein expression of soleus (Sol) and extensor digitorum longus muscles in mice exposed to microgravity (μ-g). Twelve 9-week-old male C57BL/6J mice were raised individually on the International Space Station under μ-g or artificial 1-g and fed a diet with or without FOS (n = 3/group). Regardless of FOS ingestion, the absolute wet weights of both muscles tended to decrease, and the fiber phenotype in Sol muscles shifted toward fast-twitch type following μ-g exposure. However, FOS ingestion tended to mitigate the μ-g-exposure-related decrease in oxidative metabolism and enhance glutathione redox detoxification in Sol muscles. These results indicate that FOS ingestion mildly suppresses metabolic changes and oxidative stress in antigravity Sol muscles during spaceflight.
Collapse
Affiliation(s)
- Takashi Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan. .,Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi Osaka-Sayama, Osaka, Japan. .,Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan. .,Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan.
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yusuke Nakai
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Ayuko Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yoichi Kurata
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Hiroyuki Kagawa
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Mitsuo Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Kenji Egashira
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Chie Matsuda
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Yoshinobu Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
23
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
24
|
Kloosterman AM, Cimermancic P, Elsayed SS, Du C, Hadjithomas M, Donia MS, Fischbach MA, van Wezel GP, Medema MH. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. PLoS Biol 2020; 18:e3001026. [PMID: 33351797 PMCID: PMC7794033 DOI: 10.1371/journal.pbio.3001026] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/08/2021] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial natural products constitute a wide variety of chemical compounds, many which can have antibiotic, antiviral, or anticancer properties that make them interesting for clinical purposes. Natural product classes include polyketides (PKs), nonribosomal peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). While variants of biosynthetic gene clusters (BGCs) for known classes of natural products are easy to identify in genome sequences, BGCs for new compound classes escape attention. In particular, evidence is accumulating that for RiPPs, subclasses known thus far may only represent the tip of an iceberg. Here, we present decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP genome mining algorithm aimed at the discovery of novel RiPP classes. DecRiPPter combines a Support Vector Machine (SVM) that identifies candidate RiPP precursors with pan-genomic analyses to identify which of these are encoded within operon-like structures that are part of the accessory genome of a genus. Subsequently, it prioritizes such regions based on the presence of new enzymology and based on patterns of gene cluster and precursor peptide conservation across species. We then applied decRiPPter to mine 1,295 Streptomyces genomes, which led to the identification of 42 new candidate RiPP families that could not be found by existing programs. One of these was studied further and elucidated as a representative of a novel subfamily of lanthipeptides, which we designate class V. The 2D structure of the new RiPP, which we name pristinin A3 (1), was solved using nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS) data, and chemical labeling. Two previously unidentified modifying enzymes are proposed to create the hallmark lanthionine bridges. Taken together, our work highlights how novel natural product families can be discovered by methods going beyond sequence similarity searches to integrate multiple pathway discovery criteria. This study shows that decRiPPter, an innovative algorithmic approach using pan-genomics and machine learning, can discover novel types of ribosomally synthesized peptide (RIPP) natural products, including a new class of lanthipeptides.
Collapse
Affiliation(s)
| | - Peter Cimermancic
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Chao Du
- Institute of Biology, Leiden University, the Netherlands
| | | | - Mohamed S. Donia
- Department of Molecular Biology, Princeton University, NJ, United States of America
| | | | - Gilles P. van Wezel
- Institute of Biology, Leiden University, the Netherlands
- Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, the Netherlands
- * E-mail: (GPvW); (MHM)
| | - Marnix H. Medema
- Bioinformatics group, Wageningen University, the Netherlands
- * E-mail: (GPvW); (MHM)
| |
Collapse
|
25
|
Druggable Targets in Endocannabinoid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:177-201. [PMID: 32894511 DOI: 10.1007/978-3-030-50621-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide. Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling. This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.
Collapse
|
26
|
Song K, Nho CW, Ha IJ, Kim YS. Cellular Target Proteome in Breast Cancer Cells of an Oplopane Sesquiterpenoid Isolated from Tussilago farfara. JOURNAL OF NATURAL PRODUCTS 2020; 83:2559-2566. [PMID: 32881525 DOI: 10.1021/acs.jnatprod.0c00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tussilago farfara is a traditional herbal medicine used to treat coughs, bronchitis, and asthma. Its bioactive compounds include sesquiterpenoids with anti-inflammatory, antiproliferative, neuroprotective, and other effects. Biochemical studies have highlighted the mechanisms of action, but the investigations of related molecular pathways have not specified direct molecular targets. Therefore, this study profiled cellular target proteins of a sesquiterpenoid isolated from T. farfara using quantitative chemical proteomics in MDA-MB-231 and MCF-7 human breast cancer cells. Compound 8, 7β-(3'-ethyl-cis-crotonoyloxy)-1α-(2'-methyl butyryloxy)-3,14-dehydro-Z-notonipetranone, exhibited potent antiproliferative activity based on its α,β-unsaturated carbonyl moiety, and its potential cellular target proteins were identified using a compound 8-based clickable probe. Among >200 identified proteins, 17 showed enrichment ratios of >3 in both cell lines, while recombinant 14-3-3 protein zeta and peroxiredoxin-1 were verified using isothermic calorimetry and their alkylation sites. Considering the interaction between the α,β-unsaturated carbonyl moiety of compound 8 and cysteine residues of the proteins, peptides containing Cys25 and Cys94 of 14-3-3 protein zeta and Cys83 of peroxiredoxin-1 were significantly reduced by this sesquiterpene ester. Although the results did not elucidate the effects of compound 8 in breast cancer cells, identification of potential target proteins contributes to enhanced understanding of its antiproliferative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Kwangho Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, South Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, South Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, South Korea
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
27
|
Voorneveld J, Florea BI, Bakkum T, Mendowicz RJ, van der Veer MS, Gagestein B, van Kasteren SI, van der Stelt M, Overkleeft HS, Filippov DV. Olaparib-Based Photoaffinity Probes for PARP-1 Detection in Living Cells. Chembiochem 2020; 21:2431-2434. [PMID: 32282108 PMCID: PMC7496120 DOI: 10.1002/cbic.202000042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/11/2020] [Indexed: 12/31/2022]
Abstract
The poly-ADP-ribose polymerase (PARP) is a protein from the family of ADP-ribosyltransferases that catalyzes polyadenosine diphosphate ribose (ADPR) formation in order to attract the DNA repair machinery to sites of DNA damage. The inhibition of PARP activity by olaparib can cause cell death, which is of clinical relevance in some tumor types. This demonstrates that quantification of PARP activity in the context of living cells is of great importance. In this work, we present the design, synthesis and biological evaluation of photo-activatable affinity probes inspired by the olaparib molecule that are equipped with a diazirine for covalent attachment upon activation by UV light and a ligation handle for the addition of a reporter group of choice. SDS-PAGE, western blotting and label-free LC-MS/MS quantification analysis show that the probes target the PARP-1 protein and are selectively outcompeted by olaparib; this suggests that they bind in the same enzymatic pocket. Proteomics data are available via ProteomeXchange with identifier PXD018661.
Collapse
Affiliation(s)
- Jim Voorneveld
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Bogdan I. Florea
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Bakkum
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Rafal J. Mendowicz
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Miriam S. van der Veer
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Berend Gagestein
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Sander I. van Kasteren
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Mario van der Stelt
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Dmitri V. Filippov
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
28
|
Li N, Zhan X. MASS SPECTROMETRY-BASED MITOCHONDRIAL PROTEOMICS IN HUMAN OVARIAN CANCERS. MASS SPECTROMETRY REVIEWS 2020; 39:471-498. [PMID: 32020673 DOI: 10.1002/mas.21618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The prominent characteristics of mitochondria are highly dynamic and regulatory, which have crucial roles in cell metabolism, biosynthetic, senescence, apoptosis, and signaling pathways. Mitochondrial dysfunction might lead to multiple serious diseases, including cancer. Therefore, identification of mitochondrial proteins in cancer could provide a global view of tumorigenesis and progression. Mass spectrometry-based quantitative mitochondrial proteomics fulfils this task by enabling systems-wide, accurate, and quantitative analysis of mitochondrial protein abundance, and mitochondrial protein posttranslational modifications (PTMs). Multiple quantitative proteomics techniques, including isotope-coded affinity tag, stable isotope labeling with amino acids in cell culture, isobaric tags for relative and absolute quantification, tandem mass tags, and label-free quantification, in combination with different PTM-peptide enrichment methods such as TiO2 enrichment of tryptic phosphopeptides and antibody enrichment of other PTM-peptides, increase flexibility for researchers to study mitochondrial proteomes. This article reviews isolation and purification of mitochondria, quantitative mitochondrial proteomics, quantitative mitochondrial phosphoproteomics, mitochondrial protein-involved signaling pathway networks, mitochondrial phosphoprotein-involved signaling pathway networks, integration of mitochondrial proteomic and phosphoproteomic data with whole tissue proteomic and transcriptomic data and clinical information in ovarian cancers (OC) to in-depth understand its molecular mechanisms, and discover effective mitochondrial biomarkers and therapeutic targets for predictive, preventive, and personalized treatment of OC. This proof-of-principle model about OC mitochondrial proteomics is easily implementable to other cancer types. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Na Li
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
29
|
de Boer C, McGregor NGS, Peterse E, Schröder SP, Florea BI, Jiang J, Reijngoud J, Ram AFJ, van Wezel GP, van der Marel GA, Codée JDC, Overkleeft HS, Davies GJ. Glycosylated cyclophellitol-derived activity-based probes and inhibitors for cellulases. RSC Chem Biol 2020; 1:148-155. [PMID: 34458755 PMCID: PMC8341922 DOI: 10.1039/d0cb00045k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022] Open
Abstract
Cellulases and related β-1,4-glucanases are essential components of lignocellulose-degrading enzyme mixtures. The detection of β-1,4-glucanase activity typically relies on monitoring the breakdown of purified lignocellulose-derived substrates or synthetic chromogenic substrates, limiting the activities which can be detected and complicating the tracing of activity back to specific components within complex enzyme mixtures. As a tool for the rapid detection and identification of β-1,4-glucanases, a series of glycosylated cyclophellitol inhibitors mimicking β-1,4-glucan oligosaccharides have been synthesised. These compounds are highly efficient inhibitors of HiCel7B, a well-known GH7 endo-β-1,4-glucanase. An elaborated activity-based probe facilitated the direct detection and identification of β-1,4-glucanases within a complex fungal secretome without any detectable cross-reactivity with β-d-glucosidases. These probes and inhibitors add valuable new capacity to the growing toolbox of cyclophellitol-derived probes for the activity-based profiling of biomass-degrading enzymes.
Collapse
Affiliation(s)
- Casper de Boer
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York Heslington York YO10 5DD UK
| | - Evert Peterse
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Sybrin P Schröder
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Jianbing Jiang
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Jos Reijngoud
- Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Gilles P van Wezel
- Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | | | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York Heslington York YO10 5DD UK
| |
Collapse
|
30
|
Chemical genetics strategy to profile kinase target engagement reveals role of FES in neutrophil phagocytosis. Nat Commun 2020; 11:3216. [PMID: 32587248 PMCID: PMC7316778 DOI: 10.1038/s41467-020-17027-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Chemical tools to monitor drug-target engagement of endogenously expressed protein kinases are highly desirable for preclinical target validation in drug discovery. Here, we describe a chemical genetics strategy to selectively study target engagement of endogenous kinases. By substituting a serine residue into cysteine at the DFG-1 position in the ATP-binding pocket, we sensitize the non-receptor tyrosine kinase FES towards covalent labeling by a complementary fluorescent chemical probe. This mutation is introduced in the endogenous FES gene of HL-60 cells using CRISPR/Cas9 gene editing. Leveraging the temporal and acute control offered by our strategy, we show that FES activity is dispensable for differentiation of HL-60 cells towards macrophages. Instead, FES plays a key role in neutrophil phagocytosis via SYK kinase activation. This chemical genetics strategy holds promise as a target validation method for kinases.
Collapse
|
31
|
Chen X, Wang Y, Ma N, Tian J, Shao Y, Zhu B, Wong YK, Liang Z, Zou C, Wang J. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduct Target Ther 2020; 5:72. [PMID: 32435053 PMCID: PMC7239890 DOI: 10.1038/s41392-020-0186-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Natural products are an important source of new drugs for the treatment of various diseases. However, developing natural product-based new medicines through random moiety modification is a lengthy and costly process, due in part to the difficulties associated with comprehensively understanding the mechanism of action and the side effects. Identifying the protein targets of natural products is an effective strategy, but most medicines interact with multiple protein targets, which complicate this process. In recent years, an increasing number of researchers have begun to screen the target proteins of natural products with chemical proteomics approaches, which can provide a more comprehensive array of the protein targets of active small molecules in an unbiased manner. Typically, chemical proteomics experiments for target identification consist of two key steps: (1) chemical probe design and synthesis and (2) target fishing and identification. In recent decades, five different types of chemical proteomic probes and their respective target fishing methods have been developed to screen targets of molecules with different structures, and a variety of protein identification approaches have been invented. Presently, we will classify these chemical proteomics approaches, the application scopes and characteristics of the different types of chemical probes, the different protein identification methods, and the advantages and disadvantages of these strategies.
Collapse
Affiliation(s)
- Xiao Chen
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yutong Wang
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Ma
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Tian
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yurou Shao
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Zhu
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yin Kwan Wong
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Zhen Liang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
32
|
Zhou Y, Yuan J, Fan Y, An F, Chen J, Zhang Y, Jin J, Gu M, Mao Z, Sun H, Jia Q, Zhao C, Ji M, Zhang J, Xu G, Jia E. Proteomic landscape of human coronary artery atherosclerosis. Int J Mol Med 2020; 46:371-383. [PMID: 32626919 PMCID: PMC7255452 DOI: 10.3892/ijmm.2020.4600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
In order to investigate novel biomarkers for the detection of coronary artery disease for effective therapeutic targets, a comprehensive understanding of the protein networks and protein expression abundance in coronary artery samples is required. This was established by means of liquid chromatography (LC)-mass spectrometry (MS)/MS analysis in the present study. A total of 20 human coronary artery specimens from 2 autopsied adults were employed in the present study. The natural history and histological classification of the atherosclerotic lesions of the coronary artery samples were analyzed by hematoxylin and eosin (H&E) staining, and the human coronary arterial proteome and proteomics features were characterized by MS analysis. The present study identified 2,135 proteins in the 20 coronary artery segments samples from the 2 cases. Combined with the results of H&E staining of the coronary artery samples, a total of 174 proteins, including 4 upregulated proteins and 164 downregulated proteins (excluding 6 proteins with inconsistent expression tendencies), were shown to be associated with coronary artery disease. In addition, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment of the differentially expressed proteins revealed that the mitochondrial energy metabolism may be responsible for the occurrence and development of coronary artery atherosclerosis. The human coronary arterial proteome can be considered as a complex network whose architectural characteristics vary considerably as a function of the presence or absence, and histological classification of coronary artery atherosclerosis. These data thus suggest that the prevention of mitochondrial dysfunction via the retrieval of the mitochondrial associated proteins expression may be a promising target in coronary artery disease.
Collapse
Affiliation(s)
- Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jinxia Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yinwen Fan
- Department of Cardiovascular Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining, Xinjiang 835000, P.R. China
| | - Fenghui An
- Department of Cardiovascular Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining, Xinjiang 835000, P.R. China
| | - Jiaxin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jianliang Jin
- Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mufeng Gu
- Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhiyuan Mao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Haijian Sun
- Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenhui Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingyue Ji
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guangxu Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
33
|
Mock ED, Mustafa M, Gunduz-Cinar O, Cinar R, Petrie GN, Kantae V, Di X, Ogasawara D, Varga ZV, Paloczi J, Miliano C, Donvito G, van Esbroeck ACM, van der Gracht AMF, Kotsogianni I, Park JK, Martella A, van der Wel T, Soethoudt M, Jiang M, Wendel TJ, Janssen APA, Bakker AT, Donovan CM, Castillo LI, Florea BI, Wat J, van den Hurk H, Wittwer M, Grether U, Holmes A, van Boeckel CAA, Hankemeier T, Cravatt BF, Buczynski MW, Hill MN, Pacher P, Lichtman AH, van der Stelt M. Discovery of a NAPE-PLD inhibitor that modulates emotional behavior in mice. Nat Chem Biol 2020; 16:667-675. [PMID: 32393901 DOI: 10.1038/s41589-020-0528-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Mohammed Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, NIAAA, NIH, Bethesda, MD, USA
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vasudev Kantae
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.,Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Xinyu Di
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Daisuke Ogasawara
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, MD, USA
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Anouk M F van der Gracht
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ioli Kotsogianni
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Joshua K Park
- Laboratory of Physiologic Studies, NIAAA, NIH, Bethesda, MD, USA
| | - Andrea Martella
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.,Oncode Institute, Leiden, the Netherlands
| | - Marjolein Soethoudt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ming Jiang
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.,Oncode Institute, Leiden, the Netherlands
| | - Tiemen J Wendel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.,Oncode Institute, Leiden, the Netherlands
| | - Alexander T Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Colleen M Donovan
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Bogdan I Florea
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Jesse Wat
- Pivot Park Screening Centre B.V., Oss, the Netherlands
| | | | - Matthias Wittwer
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Constant A A van Boeckel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.,Pivot Park Screening Centre B.V., Oss, the Netherlands
| | - Thomas Hankemeier
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, MD, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands. .,Oncode Institute, Leiden, the Netherlands.
| |
Collapse
|
34
|
Koenders STA, van Rooden EJ, van den Elst H, Florea BI, Overkleeft HS, van der Stelt M. STA-55, an Easily Accessible, Broad-Spectrum, Activity-Based Aldehyde Dehydrogenase Probe. Chembiochem 2020; 21:1911-1917. [PMID: 31985142 DOI: 10.1002/cbic.201900771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) convert aldehydes into carboxylic acids and are often upregulated in cancer. They have been linked to therapy resistance and are therefore potential therapeutic targets. However, only a few selective and potent inhibitors are currently available for this group of enzymes. Competitive activity-based protein profiling (ABPP) would aid the development and validation of new selective inhibitors. Herein, a broad-spectrum activity-based probe that reports on several ALDHs is presented. This probe was used in a competitive ABPP protocol against three ALDH inhibitors in lung cancer cells to determine their selectivity profiles and establish their target engagement.
Collapse
Affiliation(s)
- Sebastiaan T A Koenders
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Eva J van Rooden
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Hans van den Elst
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bogdan I Florea
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
35
|
Zhang Z, Du C, de Barsy F, Liem M, Liakopoulos A, van Wezel GP, Choi YH, Claessen D, Rozen DE. Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. SCIENCE ADVANCES 2020; 6:eaay5781. [PMID: 31998842 PMCID: PMC6962034 DOI: 10.1126/sciadv.aay5781] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
One of the hallmark behaviors of social groups is division of labor, where different group members become specialized to carry out complementary tasks. By dividing labor, cooperative groups increase efficiency, thereby raising group fitness even if these behaviors reduce individual fitness. We find that antibiotic production in colonies of Streptomyces coelicolor is coordinated by a division of labor. We show that S. coelicolor colonies are genetically heterogeneous because of amplifications and deletions to the chromosome. Cells with chromosomal changes produce diversified secondary metabolites and secrete more antibiotics; however, these changes reduced individual fitness, providing evidence for a trade-off between antibiotic production and fitness. Last, we show that colonies containing mixtures of mutants and their parents produce significantly more antibiotics, while colony-wide spore production remains unchanged. By generating specialized mutants that hyper-produce antibiotics, streptomycetes reduce the fitness costs of secreted secondary metabolites while maximizing the yield and diversity of these products.
Collapse
Affiliation(s)
- Zheren Zhang
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Chao Du
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Frédérique de Barsy
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Michael Liem
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Apostolos Liakopoulos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Gilles P. van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Young H. Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02447 Seoul, Republic of Korea
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Daniel E. Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| |
Collapse
|
36
|
van Esbroeck ACM, Varga ZV, Di X, van Rooden EJ, Tóth VE, Onódi Z, Kuśmierczyk M, Leszek P, Ferdinandy P, Hankemeier T, van der Stelt M, Pacher P. Activity-based protein profiling of the human failing ischemic heart reveals alterations in hydrolase activities involving the endocannabinoid system. Pharmacol Res 2019; 151:104578. [PMID: 31794870 DOI: 10.1016/j.phrs.2019.104578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
AIM Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. METHODS AND RESULTS Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP) enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic heart failure group; the first similar to control hearts and the second with decreased levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid anandamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accompanied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme monoacylglycerol lipase (MGLL). CONCLUSIONS Our findings suggest the presence of different biological states within the ischemic heart failure group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and biomarker discovery.
Collapse
Affiliation(s)
- Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Xinyu Di
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Eva J van Rooden
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Mariusz Kuśmierczyk
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA.
| |
Collapse
|
37
|
van Esbroeck ACM, Kantae V, Di X, van der Wel T, den Dulk H, Stevens AF, Singh S, Bakker AT, Florea BI, Stella N, Overkleeft HS, Hankemeier T, van der Stelt M. Identification of α,β-Hydrolase Domain Containing Protein 6 as a Diacylglycerol Lipase in Neuro-2a Cells. Front Mol Neurosci 2019; 12:286. [PMID: 31849602 PMCID: PMC6901982 DOI: 10.3389/fnmol.2019.00286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) is involved in neuronal differentiation. This study aimed to identify the biosynthetic enzymes responsible for 2-AG production during retinoic acid (RA)-induced neurite outgrowth of Neuro-2a cells. First, we confirmed that RA stimulation of Neuro-2a cells increases 2-AG production and neurite outgrowth. The diacylglycerol lipase (DAGL) inhibitor DH376 blocked 2-AG production and reduced neuronal differentiation. Surprisingly, CRISPR/Cas9-mediated knockdown of DAGLα and DAGLβ in Neuro-2a cells did not reduce 2-AG levels, suggesting another enzyme capable of producing 2-AG in this cell line. Chemical proteomics revealed DAGLβ and α,β-hydrolase domain containing protein (ABHD6) as the only targets of DH376 in Neuro-2a cells. Biochemical, genetic and lipidomic studies demonstrated that ABHD6 possesses DAGL activity in conjunction with its previously reported monoacylglycerol lipase activity. RA treatment of Neuro-2a cells increased by three-fold the amount of active ABHD6. Our study shows that ABHD6 exhibits significant DAG lipase activity in Neuro-2a cells in addition to its known MAG lipase activity and suggest it is involved in neuronal differentiation.
Collapse
Affiliation(s)
- Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Vasudev Kantae
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Xinyu Di
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hans den Dulk
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Anna F Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Simar Singh
- Department of Pharmacology, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Alexander T Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Bogdan I Florea
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Herman S Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Thomas Hankemeier
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
38
|
Baggelaar MP, den Dulk H, Florea BI, Fazio D, Bernabò N, Raspa M, Janssen APA, Scavizzi F, Barboni B, Overkleeft HS, Maccarrone M, van der Stelt M. ABHD2 Inhibitor Identified by Activity-Based Protein Profiling Reduces Acrosome Reaction. ACS Chem Biol 2019; 14:2295-2304. [PMID: 31525885 PMCID: PMC6878212 DOI: 10.1021/acschembio.9b00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABHD2 is a serine hydrolase that belongs to the subgroup of the α,β-hydrolase fold-containing proteins, which is involved in virus propagation, immune response, and fertilization. Chemical tools to selectively modulate the activity of ABHD2 in an acute setting are highly desired to investigate its biological role, but are currently lacking. Here, we report a library-versus-library screening using activity-based protein profiling (ABPP) to evaluate in parallel the selectivity and activity of a focused lipase inhibitor library against ABHD2 and a panel of closely related ABHD proteins. This screen resulted in the rapid identification of novel inhibitors for ABHD2. The selectivity of the inhibitor was further investigated in native mouse testis proteome by competitive ABPP, revealing a highly restricted off-target profile. The progesterone-induced acrosome reaction was reduced in a dose-dependent manner by the newly identified inhibitor, which provides further support for the key-role of ABHD2 in the P4-stimulated acrosome reaction. On this basis, the ABHD2 inhibitor is an excellent starting point for further optimization of ABHD2 inhibitors that can modulate sperm fertility and may lead to novel contraceptives.
Collapse
Affiliation(s)
| | | | | | - Domenico Fazio
- Unit of Basic and Applied Biosciences, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Nicola Bernabò
- Unit of Basic and Applied Biosciences, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Marcello Raspa
- National Research Council (IBCN), CNR-Campus International Development (EMMA INFRAFRONTIER-IMPC), Via E. Ramarini 32, 00015 Monterotondo Scalo, Italy
| | | | - Ferdinando Scavizzi
- National Research Council (IBCN), CNR-Campus International Development (EMMA INFRAFRONTIER-IMPC), Via E. Ramarini 32, 00015 Monterotondo Scalo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | | | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | | |
Collapse
|
39
|
Tang J, Fu J, Wang Y, Luo Y, Yang Q, Li B, Tu G, Hong J, Cui X, Chen Y, Yao L, Xue W, Zhu F. Simultaneous Improvement in the Precision, Accuracy, and Robustness of Label-free Proteome Quantification by Optimizing Data Manipulation Chains. Mol Cell Proteomics 2019; 18:1683-1699. [PMID: 31097671 PMCID: PMC6682996 DOI: 10.1074/mcp.ra118.001169] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
The label-free proteome quantification (LFQ) is multistep workflow collectively defined by quantification tools and subsequent data manipulation methods that has been extensively applied in current biomedical, agricultural, and environmental studies. Despite recent advances, in-depth and high-quality quantification remains extremely challenging and requires the optimization of LFQs by comparatively evaluating their performance. However, the evaluation results using different criteria (precision, accuracy, and robustness) vary greatly, and the huge number of potential LFQs becomes one of the bottlenecks in comprehensively optimizing proteome quantification. In this study, a novel strategy, enabling the discovery of the LFQs of simultaneously enhanced performance from thousands of workflows (integrating 18 quantification tools with 3,128 manipulation chains), was therefore proposed. First, the feasibility of achieving simultaneous improvement in the precision, accuracy, and robustness of LFQ was systematically assessed by collectively optimizing its multistep manipulation chains. Second, based on a variety of benchmark datasets acquired by various quantification measurements of different modes of acquisition, this novel strategy successfully identified a number of manipulation chains that simultaneously improved the performance across multiple criteria. Finally, to further enhance proteome quantification and discover the LFQs of optimal performance, an online tool (https://idrblab.org/anpela/) enabling collective performance assessment (from multiple perspectives) of the entire LFQ workflow was developed. This study confirmed the feasibility of achieving simultaneous improvement in precision, accuracy, and robustness. The novel strategy proposed and validated in this study together with the online tool might provide useful guidance for the research field requiring the mass-spectrometry-based LFQ technique.
Collapse
Affiliation(s)
- Jing Tang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; ¶Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Fu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Bo Li
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiajun Hong
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuejiao Cui
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yuzong Chen
- ‖Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Lixia Yao
- **Department of Health Sciences Research, Mayo Clinic, Rochester MN 55905, United States
| | - Weiwei Xue
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
40
|
Chen L, Keller LJ, Cordasco E, Bogyo M, Lentz CS. Fluorescent Triazole Urea Activity‐Based Probes for the Single‐Cell Phenotypic Characterization of
Staphylococcus aureus. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Linhai Chen
- Stanford University School of MedicineDepartment of Pathology 300 Pasteur Drive Stanford CA 94305 USA
- National Center for Drug ScreeningState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 189 Guoshoujing Road Shanghai 201203 China
| | - Laura J. Keller
- Stanford University School of MedicineDepartment of Chemical & Systems Biology 300 Pasteur Drive Stanford CA 94305 USA
| | - Edward Cordasco
- Stanford University School of MedicineDepartment of Pathology 300 Pasteur Drive Stanford CA 94305 USA
| | - Matthew Bogyo
- Stanford University School of MedicineDepartment of Pathology 300 Pasteur Drive Stanford CA 94305 USA
- Stanford University School of MedicineDepartment of Microbiology & Immunology 300 Pasteur Drive Stanford CA 94305 USA
| | - Christian S. Lentz
- Stanford University School of MedicineDepartment of Pathology 300 Pasteur Drive Stanford CA 94305 USA
- Department of Chemical BiologyHelmholtz-Centre for Infection Research (HZI) Braunschweig Germany
| |
Collapse
|
41
|
Chen L, Keller LJ, Cordasco E, Bogyo M, Lentz CS. Fluorescent Triazole Urea Activity-Based Probes for the Single-Cell Phenotypic Characterization of Staphylococcus aureus. Angew Chem Int Ed Engl 2019; 58:5643-5647. [PMID: 30768830 PMCID: PMC6456404 DOI: 10.1002/anie.201900511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/01/2019] [Indexed: 11/05/2022]
Abstract
Phenotypically distinct cellular (sub)populations are clinically relevant for the virulence and antibiotic resistance of a bacterial pathogen, but functionally different cells are usually indistinguishable from each other. Herein, we introduce fluorescent activity-based probes as chemical tools for the single-cell phenotypic characterization of enzyme activity levels in Staphylococcus aureus. We screened a 1,2,3-triazole urea library to identify selective inhibitors of fluorophosphonate-binding serine hydrolases and lipases in S. aureus and synthesized target-selective activity-based probes. Molecular imaging and activity-based protein profiling studies with these probes revealed a dynamic network within this enzyme family involving compensatory regulation of specific family members and exposed single-cell phenotypic heterogeneity. We propose the labeling of enzymatic activities by chemical probes as a generalizable method for the phenotyping of bacterial cells at the population and single-cell level.
Collapse
Affiliation(s)
- Linhai Chen
- Stanford University School of Medicine, Department of Pathology, 300 Pasteur Drive, Stanford, CA, 94305, USA
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Laura J Keller
- Stanford University School of Medicine, Department of Chemical & Systems Biology, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Edward Cordasco
- Stanford University School of Medicine, Department of Pathology, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Matthew Bogyo
- Stanford University School of Medicine, Department of Pathology, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Stanford University School of Medicine, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Christian S Lentz
- Stanford University School of Medicine, Department of Pathology, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Chemical Biology, Helmholtz-Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|
42
|
Zhou J, Mock ED, Martella A, Kantae V, Di X, Burggraaff L, Baggelaar MP, Al-Ayed K, Bakker A, Florea BI, Grimm SH, den Dulk H, Li CT, Mulder L, Overkleeft HS, Hankemeier T, van Westen GJP, van der Stelt M. Activity-Based Protein Profiling Identifies α-Ketoamides as Inhibitors for Phospholipase A2 Group XVI. ACS Chem Biol 2019; 14:164-169. [PMID: 30620559 PMCID: PMC6379856 DOI: 10.1021/acschembio.8b00969] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
Phospholipase A2, group XVI (PLA2G16) is a thiol hydrolase from the HRASLS family that regulates lipolysis in adipose tissue and has been identified as a host factor enabling the cellular entry of picornaviruses. Chemical tools are essential to visualize and control PLA2G16 activity, but they have not been reported to date. Here, we show that MB064, which is a fluorescent lipase probe, also labels recombinant and endogenously expressed PLA2G16. Competitive activity-based protein profiling (ABPP) using MB064 enabled the discovery of α-ketoamides as the first selective PLA2G16 inhibitors. LEI110 was identified as a potent PLA2G16 inhibitor ( Ki = 20 nM) that reduces cellular arachidonic acid levels and oleic acid-induced lipolysis in human HepG2 cells. Gel-based ABPP and chemical proteomics showed that LEI110 is a selective pan-inhibitor of the HRASLS family of thiol hydrolases (i.e., PLA2G16, HRASLS2, RARRES3 and iNAT). Molecular dynamic simulations of LEI110 in the reported crystal structure of PLA2G16 provided insight in the potential ligand-protein interactions to explain its binding mode. In conclusion, we have developed the first selective inhibitor that can be used to study the cellular role of PLA2G16.
Collapse
Affiliation(s)
- Juan Zhou
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Elliot D. Mock
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Andrea Martella
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Vasudev Kantae
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Xinyu Di
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lindsey Burggraaff
- Department
of Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marc P. Baggelaar
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Karol Al-Ayed
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Sebastian H. Grimm
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hans den Dulk
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Chun T. Li
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Laura Mulder
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerard J. P. van Westen
- Department
of Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
43
|
Janssen APA, van der Vliet D, Bakker AT, Jiang M, Grimm SH, Campiani G, Butini S, van der Stelt M. Development of a Multiplexed Activity-Based Protein Profiling Assay to Evaluate Activity of Endocannabinoid Hydrolase Inhibitors. ACS Chem Biol 2018; 13:2406-2413. [PMID: 30199617 PMCID: PMC6154214 DOI: 10.1021/acschembio.8b00534] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Endocannabinoids,
an important class of signaling lipids involved
in health and disease, are predominantly synthesized and metabolized
by enzymes of the serine hydrolase superfamily. Activity-based protein
profiling (ABPP) using fluorescent probes, such as fluorophosphonate
(FP)-TAMRA and β-lactone-based MB064, enables drug discovery
activities for serine hydrolases. FP-TAMRA and MB064 have distinct,
albeit partially overlapping, target profiles but cannot be used in
conjunction due to overlapping excitation/emission spectra. We therefore
synthesized a novel FP-probe with a green BODIPY as a fluorescent
tag and studied its labeling profile in mouse proteomes. Surprisingly,
we found that the reporter tag plays an important role in the binding
potency and selectivity of the probe. A multiplexed ABPP assay was
developed in which a probe cocktail of FP-BODIPY and MB064 visualized
most endocannabinoid serine hydrolases in mouse brain proteomes in
a single experiment. The multiplexed ABPP assay was employed to profile
endocannabinoid hydrolase inhibitor activity and selectivity in the
mouse brain.
Collapse
Affiliation(s)
| | - Daan van der Vliet
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| | - Alexander T. Bakker
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| | - Ming Jiang
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| | - Sebastian H. Grimm
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), NatSynDrugs, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), NatSynDrugs, University of Siena, Siena, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| |
Collapse
|