1
|
Yang J, Wang H, Li B, Liu J, Zhang X, Wang Y, Peng J, Gao L, Wang X, Hu S, Zhang W, Hong L. Inhibition of ACSS2 triggers glycolysis inhibition and nuclear translocation to activate SIRT1/ATG5/ATG2B deacetylation axis, promoting autophagy and reducing malignancy and chemoresistance in ovarian cancer. Metabolism 2025; 162:156041. [PMID: 39362518 DOI: 10.1016/j.metabol.2024.156041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of cancer, characterized by a high dependence on glycolysis and an enhanced utilization of acetate as an alternative carbon source. ACSS2 is a critical regulator of acetate metabolism, playing a significant role in the development and progression of various malignancies. ACSS2 facilitates the conversion of acetate to acetyl-CoA, which participates in multiple metabolic pathways and functions as an epigenetic regulator of protein acetylation, thereby modulating key cellular processes such as autophagy. However, the roles and intrinsic connections of ACSS2, glycolysis, protein acetylation, and autophagy in ovarian cancer (OC) remain to be elucidated. BASIC PROCEDURES Utilizing clinical specimens and online databases, we analysed the expression of ACSS2 in OC and its relationship with clinical prognosis. By knocking down ACSS2, we evaluated its effects on the malignant phenotype, acetate metabolism, glycolysis, and autophagy. The metabolic alterations in OC cells were comprehensively analysed using Seahorse assays, transmission electron microscopy, membrane potential measurements, and stable-isotope labeling techniques. CUT&TAG and co-immunoprecipitation techniques were employed to explore the deacetylation of autophagy-related proteins mediated by ACSS2 via SIRT1. Additionally, through molecular docking, transcriptome sequencing, and metabolomics analyses, we validated the pharmacological effects of paeonol on ACSS2 and the glycolytic process in OC cells. Finally, both in vitro and in vivo experiments were performed to investigate the impact of paeonol on autophagy and its anti-OC effects mediated through the ACSS2/SIRT1 deacetylation axis. MAIN FINDINGS ACSS2 is significantly upregulated in OC and is associated with poor prognosis. Knockdown of ACSS2 inhibits OC cells proliferation, migration, invasion, angiogenesis, and platinum resistance, while reducing tumour burden in vivo. Mechanistically, inhibiting ACSS2 reduces acetate metabolism and suppresses glycolysis by targeting HXK2. This glycolytic reduction promotes the translocation of ACSS2 from the cytoplasm to the nucleus, leading to increased expression of the deacetylase SIRT1. SIRT1 mediates the deacetylation of autophagy-related proteins, such as ATG5 and ATG2B, thereby significantly activating autophagy in OC cells and exerting antitumor effects. Paeonol inhibits acetate metabolism and glycolysis in OC cells by targeting ACSS2. Paeonol activates autophagy through the ACSS2/SIRT1/ATG5/ATG2B deacetylation axis, demonstrating inhibition of OC in vitro and in vivo. PRINCIPAL CONCLUSIONS Pae can serve as an effective, low-toxicity, multi-targeted drug targeting ACSS2 and glycolysis. It activates autophagy through the ACSS2/SIRT1/ATG5/ATG2B deacetylation signalling cascade, thereby exerting anti-OC effects. Our study provides new insights into the malignant mechanisms of OC and offers a novel strategy for its treatment.
Collapse
Affiliation(s)
- Jiang Yang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China; Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, PR China
| | - Haoyu Wang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Bingshu Li
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jingchun Liu
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Ying Wang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jiaxin Peng
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Likun Gao
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Xinqi Wang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Siyuan Hu
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Wenyi Zhang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Li Hong
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
2
|
Lin QX, Song WW, Xie WX, Deng YT, Gong YN, Liu YR, Tian Y, Zhao WY, Tian L, Gu DN. Sequential treatment of anti-PD-L1 therapy prior to anti-VEGFR2 therapy contributes to more significant clinical benefits in non-small cell lung cancer. Neoplasia 2025; 59:101077. [PMID: 39561585 PMCID: PMC11617296 DOI: 10.1016/j.neo.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Anti-angiogenic therapy and immune checkpoint blockade therapy are currently important treatments for non-small cell lung cancer. However, the combined use of the two therapies is controversial, and few studies have investigated the effects of different time sequences of the two therapies on treatment outcomes. METHODS The tumor-bearing mouse model was established and the mice were divided into four groups, including AA-ICB sequence group, ICB-AA sequence group, synchronization group and the control group. Immunohistochemistry was used to assess tumor microvessels and PD-L1 expression. Selected immune cell populations were evaluated using flow cytometry. Meta-analysis and clinical information were used to elucidate the clinical effects of administration sequence. RESULTS We found that anti-PD-L1 treatment followed by anti-VEGFR2 therapy exerts the best inhibitory effect on tumor growth. Different sequences of anti-angiogenic therapy and immune checkpoint blockade therapy resulted in different proportions of tumor microvessels and immune cell populations in the tumor microenvironment. We further revealed that the administration of anti-PD-L1 before anti-VEGFR brought more normalized tumor blood vessels and CD8+T cell infiltration and reduced immunosuppressive cells in the tumor microenvironment. Subsequent re-transplantation experiments confirmed the long-term benefits of this treatment strategy. The meta-analysis reinforced that immunotherapy prior to anti-angiogenic therapy or combination therapy have better therapeutic effects in advanced non-small cell lung cancer. CONCLUSION Our study demonstrated that the therapeutic effect of anti-angiogenic treatment after immune checkpoint therapy was superior to that of concurrent therapy, whereas anti-angiogenic therapy followed by immunotherapy did not bring more significant clinical benefits than independent monotherapy.
Collapse
Affiliation(s)
- Qiao-Xin Lin
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Wen Song
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Xia Xie
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Ting Deng
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan-Na Gong
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Ru Liu
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ya Zhao
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dian-Na Gu
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
To A, Yu Z, Sugimura R. Recent advancement in the spatial immuno-oncology. Semin Cell Dev Biol 2024; 166:22-28. [PMID: 39705969 DOI: 10.1016/j.semcdb.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Recent advancements in spatial transcriptomics and spatial proteomics enabled the high-throughput profiling of single or multi-cell types and cell states with spatial information. They transformed our understanding of the higher-order architectures and paired cell-cell interactions within a tumor microenvironment (TME). Within less than a decade, this rapidly emerging field has discovered much crucial fundamental knowledge and significantly improved clinical diagnosis in the field of immuno-oncology. This review summarizes the conceptual frameworks to understand spatial omics data and highlights the updated knowledge of spatial immuno-oncology.
Collapse
Affiliation(s)
- Alex To
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Zou Yu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, University of Hong Kong, Hong Kong; Centre for Translational Stem Cell Biology, Hong Kong.
| |
Collapse
|
4
|
Liang C, Wang Y, Zhao R, Du J, Yao J, Khan AUR, Zhu Y, Xia H, Zhu T. Multifunctional hybrid poly(ester-urethane)urea/resveratrol electrospun nanofibers for a potential vascularizing matrix. SOFT MATTER 2024; 21:55-67. [PMID: 39624984 DOI: 10.1039/d4sm00937a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The challenges for clinical application of small-diameter vascular graft are mainly acute/chronic thrombosis, inadequate endothelialization, intimal hyperplasia caused by inflammation, oxidative stress, and the mismatch of mechanical compliance after transplantation. How to construct an effective regenerative microenvironment through a material with uniform dispersion of active components is the premise of maintaining patency of a vascular graft. In this study, we have compounded poly(ester-urethane)urea (PEUU) with various optimized concentrations of resveratrol (Res) by homogeneous emulsion blending, followed by electrospinning into the hybrid PEUU/Res nanofibers (P/R-0, P/R-0.5, P/R-1.0, and P/R-1.5). Then the microstructure, surface wettability, mechanical properties, degradation, Res sustained release properties, hemocompatibility, and cytocompatibility of P/R were evaluated comprehensively. The results indicate that Res can be gradually released from the P/R, and both the hydrophilicity and antioxidant ability of the nanofiber gradually increase with the increase of Res content. Moreover, with the increase of Res, the viability and proliferation behavior of HUVECs were significantly improved. Meanwhile, tube formation and migration experiments showed that Res promoted the formation of a neovascularization network. In brief, it is concluded that P/R-1.0 is the optimal candidate with a uniform microstructure, moderate wettability, optimized mechanical properties, reliable hemocompatibility and cytocompatibility, and strongest ability to promote endothelial growth for the vascularizing matrix.
Collapse
Affiliation(s)
- Chen Liang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Yanan Wang
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, 1 Fengshan Rd., Weihai 264400, Shandong, P. R. China
| | - Renliang Zhao
- Orthopedics Research Institute, Trauma Medical Center, Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Ln., Chengdu 610041, Sichuan, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Jin Yao
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Atta Ur Rehman Khan
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China.
- Shanghai Key Laboratory of Pancreatic Neoplasms Translational Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China
| | - Huitang Xia
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Rd., Jinan 250014, Shandong, P. R. China.
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, 16766 Jingshi Rd., Jinan 250014, Shangdong, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| |
Collapse
|
5
|
Huang Y, Zhang C, Zhang L, Chen X, Fan W. Chemical Synthesis and Multihybridization of Small-Sized Hollow Mesoporous Organosilica Nanoparticles Toward Advanced Theranostics. Acc Chem Res 2024; 57:3465-3477. [PMID: 39576957 DOI: 10.1021/acs.accounts.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
ConspectusAs one of the most widely used nanomaterials, mesoporous silica nanoparticles (MSNs) have received extensive attraction due to their desirable physicochemical performances of high stability, large surface area, and tunable pore sizes. Besides, the U.S. Food and Drug Administration (FDA) has recognized that silica-based nanoparticles are generally safe for biomedical applications. However, the poor biodegradation and inert Si-O-Si framework of inorganic MSNs severely impair their diverse biomedical applications. A promising strategy to improve the physicochemical properties of MSNs is the incorporation of functional organic moieties into their framework to construct mesoporous organosilica nanoparticles (MONs), which exhibit distinct advantages over traditional inorganic MSNs, such as adjustable organosilica framework, excellent biocompatibility, stimuli-responsive biodegradability, and even improved therapeutic effects. Moreover, the emerging hollow-structured MONs (HMONs) with an internal cavity can offer a large drug loading capacity and thus become increasingly attractive and promising theranostic nanoplatforms in biomedicine. In recent years, numerous studies have delved into establishing multifunctional HMONs with sizes ranging in diameters from 50 to 200 nm for desirable biological responses. With the gradual deepening of research, small-sized HMONs with diameters below 50 nm (sub-50 nm HMONs) demonstrate unparalleled advantages in extending blood circulation time, reducing the risk of vascular occlusion, and achieving high tumor accumulation, thus leading to a growing interest in the design, development, and translation of sub-50 nm HMONs. However, the mechanism of the chemical synthesis and structural regulation of sub-50 nm HMONs is still unclear, which is detrimental to further structural hybridization and surface functionalization.In this account, we will focus on the structural design, chemical synthesis, adjustable framework hybridization, multifunctional surface modification, and versatile biomedical applications of small-sized HMONs. First, we will illustrate the chemical approaches for controllable synthesis of HMONs and the underlying mechanism of particle size regulation below 50 nm. Subsequently, the basic principles and design strategies of multihybridization of sub-50 nm HMONs based on framework hybridization, surface modulation, and in situ polymerization will be systematically discussed. Through diverse functionalization strategies, a series of sub-50 nm multihybridized HMONs-based nanotheranostics are established, and their applications in multimodal biomedical imaging and highly efficient synergistic treatment of various diseases (e.g., cancer, glaucoma, bacterial infection, etc.) will be accounted. Finally, we will summarize the current status and potential challenges of HMONs in clinic trials, as well as provide a comprehensive outlook on the future development of sub-50 nm HMONs. These innovative sub-50 nm HMONs hold the potential to introduce novel theranostic modalities for a variety of systemic disorders and to advance smart promising nanomedicine in the near future.
Collapse
Affiliation(s)
- Yuhang Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Cheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Liyuan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, Singapore 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Kurebayashi Y, Sugimoto K, Tsujikawa H, Matsuda K, Nomura R, Ueno A, Masugi Y, Yamazaki K, Effendi K, Takeuchi H, Itoi T, Hasegawa Y, Abe Y, Kitago M, Ojima H, Sakamoto M. Spatial Dynamics of T- and B-Cell Responses Predicts Clinical Outcome of Resectable and Unresectable Hepatocellular Carcinoma. Clin Cancer Res 2024; 30:5666-5680. [PMID: 39417698 DOI: 10.1158/1078-0432.ccr-24-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Immunotherapies have led to a paradigm shift in the treatment of hepatocellular carcinoma (HCC). Studies have revealed the single-cell catalogs of tumor-infiltrating immune cells and the trajectories of their differentiation. Nevertheless, the spatial distribution of these immune cells with distinct phenotypes in the tumor microenvironment and their clinicopathologic significance in resectable and unresectable HCCs are still largely unclear. EXPERIMENTAL DESIGN We analyzed the spatial dynamics of intratumoral CD4 and CD8 T cells and their association with B and plasma cells using 283 surgically resected HCC samples, 58 unresectable HCC samples before combined immunotherapy [atezolizumab plus bevacizumab (Atezo + Bev)], and autopsy specimens from 50 cases of advanced-stage HCC through multiplex IHC combined with transcriptomic and driver gene mutation analyses. Classification based on the spatial dynamics of T- and B-cell responses (refined immunosubtype) was developed, and its clinicopathologic significance was analyzed. RESULTS We found that stem-like CD4 and CD8 T cells were mainly observed in T-cell aggregates and T-cell zone of tertiary lymphoid structure (TLS). The differentiation of T follicular helper cells was associated with the development of TLS, whereas the differentiation of CXCL13-expressing CD4 TCXCL13 cells with a phenotype resembling T peripheral helper cells was associated with the development of the lymphoplasmacytic microenvironment. The refined immunosubtype could predict clinical outcomes of resectable HCC after surgery and unresectable HCC after Atezo + Bev therapy. The immune microenvironment of metastatic lesions tended to reflect those of primary lesions. CONCLUSIONS We revealed the spatial dynamics of T- and B-cell responses in HCC, which is closely associated with the clinical outcome after surgical resection or Atezo + Bev therapy.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Diagnostic Pathology, National Hospital Organization Saitama Hospital, Saitama, Japan
| | - Kosuke Matsuda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Rui Nomura
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Division of Molecular Pathology, Research Institute, Tochigi Cancer Center, Tochigi, Japan
| | - Kathryn Effendi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hirohito Takeuchi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Division of Molecular Pathology, Research Institute, Tochigi Cancer Center, Tochigi, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- School of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
7
|
Cui JY, Ma J, Gao XX, Sheng ZM, Pan ZX, Shi LH, Zhang BG. Unraveling the role of cancer-associated fibroblasts in colorectal cancer. World J Gastrointest Oncol 2024; 16:4565-4578. [PMID: 39678792 PMCID: PMC11577382 DOI: 10.4251/wjgo.v16.i12.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
Within the intricate milieu of colorectal cancer (CRC) tissues, cancer-associated fibroblasts (CAFs) act as pivotal orchestrators, wielding considerable influence over tumor progression. This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC, thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions. Through a comprehensive synthesis of current knowledge, this review delineates insights into CAFs-mediated modulation of cancer cell proliferation, invasiveness, immune evasion, and neovascularization, elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors. Additionally, recognizing the high level of heterogeneity within CAFs is crucial, as they encompass a range of subtypes, including myofibroblastic CAFs, inflammatory CAFs, antigen-presenting CAFs, and vessel-associated CAFs. Innovatively, the symbiotic relationship between CAFs and the intestinal microbiota is explored, shedding light on a novel dimension of CRC pathogenesis. Despite remarkable progress, the orchestrated dynamic functions of CAFs remain incompletely deciphered, underscoring the need for continued research endeavors for therapeutic advancements in CRC management.
Collapse
Affiliation(s)
- Jia-Yu Cui
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Ma
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Xin Gao
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhi-Mei Sheng
- Affiliated Hospital of Shandong Second Medical University, Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zi-Xin Pan
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Li-Hong Shi
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Bao-Gang Zhang
- Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
8
|
Wang L, Ge Y, Yin L, Zong D, Li Y, Wu J, He X. Dynamic changes in serum adenosine and the adenosine metabolism-based signature for prognosis in HER2-positive metastatic breast cancer patients. Heliyon 2024; 10:e39545. [PMID: 39669152 PMCID: PMC11636132 DOI: 10.1016/j.heliyon.2024.e39545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 12/14/2024] Open
Abstract
Aims Adenosine metabolism in the breast cancer microenvironment is critical for tumor immunity. However, the prognostic significance of adenosine in breast cancer remains unclear. We aimed to dynamically monitor serum adenosine levels in patients with HER2-positive metastatic breast cancer (MBC) patients and to explore its predictive significance in trastuzumab therapy. Methods The sequencing and clinical data were downloaded from TCGA and GSE176078. Adenosine-related differentially expressed genes was analyzed by "DESeq2" package. Multivariate Cox and lasso-penalized Cox regressions were used to construct prognostic risk signatures. The risk scores were calculated from the identified expression of the hub genes. Bioinformatic analyses were performed using R with related packages. We also enrolled the metastatic breast cancer patients with HER2-positive from in our center and classified them into different groups according to the clinical outcomes assessed by enhanced CT. The adenosine levels were dynamically detected, and the difference in immune microenvironment between the subgroups was assessed by the immune cells that were recorded in our center. Results A total of 109 breast cancer patients with HER2-positive MBC were enrolled, and the expressions of 22 adenosine-related genes were filtered and matched from the TCGA database. The survival model based on the 15 differentially expressed genes was established, and the risk scores of each patient were the prognostic risk factors. Single-cell transcriptome sequencing data identified transcriptomic differences in patients with HER2-positive breast cancer. We also confirmed the predictive value of serum adenosine in the clinical progression of HER2-positive MBC patients. The different immune microenvironment between the subgroups supported the reliability of the predictive ability of adenosine in HER2-positive MBC patients. Conclusions The dynamic change of adenosine is a predictive biomarker for monitoring disease progression. The adenosine metabolism-based signature has the potential application in the prognosis of HER2-positive MBC patients.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Yizhi Ge
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Li Yin
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Dan Zong
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Yang Li
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Jianfeng Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
9
|
Shi X, Askari Rizvi SF, Yang Y, Liu G. Emerging nanomedicines for macrophage-mediated cancer therapy. Biomaterials 2024; 316:123028. [PMID: 39693782 DOI: 10.1016/j.biomaterials.2024.123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Tumor-associated macrophages (TAMs) contribute to tumor progression by promoting angiogenesis, remodeling the tumor extracellular matrix, inducing tumor invasion and metastasis, as well as immune evasion. Due to the high plasticity of TAMs, they can polarize into different phenotypes with distinct functions, which are primarily categorized as the pro-inflammatory, anti-tumor M1 type, and the anti-inflammatory, pro-tumor M2 type. Notably, anti-tumor macrophages not only directly phagocytize tumor cells, but also present tumor-specific antigens and activate adaptive immunity. Therefore, targeted regulation of TAMs to unleash their potential anti-tumor capabilities is crucial for improving the efficacy of cancer immunotherapy. Nanomedicine serves as a promising vehicle and can inherently interact with TAMs, hence, emerging as a new paradigm in cancer immunotherapy. Due to their controllable structures and properties, nanomedicines offer a plethora of advantages over conventional drugs, thus enhancing the balance between efficacy and toxicity. In this review, we provide an overview of the hallmarks of TAMs and discuss nanomedicines for targeting TAMs with a focus on inhibiting recruitment, depleting and reprogramming TAMs, enhancing phagocytosis, engineering macrophages, as well as targeting TAMs for tumor imaging. We also discuss the challenges and clinical potentials of nanomedicines for targeting TAMs, aiming to advance the exploitation of nanomedicine for cancer immunotherapy.
Collapse
Affiliation(s)
- Xueying Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Syed Faheem Askari Rizvi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China; Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Punjab, Pakistan
| | - Yinxian Yang
- School of Pharmaceutical Sciences, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| |
Collapse
|
10
|
Youssef E, Zhao S, Purcell C, Olson GL, El-Deiry WS. Targeting the SMURF2-HIF1α axis: a new frontier in cancer therapy. Front Oncol 2024; 14:1484515. [PMID: 39697237 PMCID: PMC11652374 DOI: 10.3389/fonc.2024.1484515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
The SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) has emerged as a critical regulator in cancer biology, modulating the stability of Hypoxia-Inducible Factor 1-alpha (HIF1α) and influencing a network of hypoxia-driven pathways within the tumor microenvironment (TME). SMURF2 targets HIF1α for ubiquitination and subsequent proteasomal degradation, disrupting hypoxic responses that promote cancer cell survival, metabolic reprogramming, angiogenesis, and resistance to therapy. Beyond its role in HIF1α regulation, SMURF2 exerts extensive control over cellular processes central to tumor progression, including chromatin remodeling, DNA damage repair, ferroptosis, and cellular stress responses. Notably, SMURF2's ability to promote ferroptotic cell death through GSTP1 degradation offers an alternative pathway to overcome apoptosis resistance, expanding therapeutic options for refractory cancers. This review delves into the multifaceted interactions between SMURF2 and HIF1α, emphasizing how their interplay impacts metabolic adaptations like the Warburg effect, immune evasion, and therapeutic resistance. We discuss SMURF2's dual functionality as both a tumor suppressor and, in certain contexts, an oncogenic factor, underscoring its potential as a highly versatile therapeutic target. Furthermore, modulating the SMURF2-HIF1α axis presents an innovative approach to destabilize hypoxia-dependent pathways, sensitizing tumors to chemotherapy, radiotherapy, and immune-based treatments. However, the complexity of SMURF2's interactions necessitate a thorough assessment of potential off-target effects and challenges in specificity, which must be addressed to optimize its clinical application. This review concludes by proposing future directions for research into the SMURF2-HIF1α pathway, aiming to refine targeted strategies that exploit this axis and address the adaptive mechanisms of aggressive tumors, ultimately advancing the landscape of precision oncology.
Collapse
Affiliation(s)
- Emile Youssef
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Medical & Pharmacovigilance, Kapadi, Inc., Raleigh, NC, United States
| | - Shuai Zhao
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Connor Purcell
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Gary L. Olson
- Medicinal Chemistry & Drug Discovery, Provid Pharmaceuticals, Inc., Monmouth Junction, NJ, United States
| | - Wafik S. El-Deiry
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Santio NM, Ganesh K, Kaipainen PP, Halme A, Seyednasrollah F, Arbash E, Hänninen S, Kivelä R, Carpen O, Saharinen P. Endothelial Pim3 kinase protects the vascular barrier during lung metastasis. Nat Commun 2024; 15:10514. [PMID: 39627185 PMCID: PMC11615401 DOI: 10.1038/s41467-024-54445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Endothelial cells (ECs) form a tissue-specific barrier for disseminating cancer cells in distant organs. However, the molecular regulation of the ECs in the metastatic niche remains unclear. Here, we analyze using scRNA-Seq, the transcriptional reprogramming of lung ECs six hours after the arrival of melanoma cells in mouse lungs. We discover a reactive capillary EC cluster (rCap) that increases from general capillary ECs in response to infiltrating cancer cells. rCap is enriched for angiogenic and inflammatory pathways and is also found in human lung datasets. The JAK-STAT activated oncogenic Pim3 kinase is a marker of rCap, being upregulated in spontaneous metastasis models. Notably, PIM inhibition increases vascular leakage and metastatic colonization and impairs the EC barrier by decreasing the junctional cadherin-5 and catenins α, β and δ. These results highlight the pulmonary endothelium's plasticity and its protection by PIM3, which may impair the efficacy of PIM inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Niina M Santio
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Keerthana Ganesh
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Pihla P Kaipainen
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Aleksi Halme
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Fatemeh Seyednasrollah
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Emad Arbash
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Hänninen
- Systems Oncology, Research Programs Unit University of Helsinki, Finland, Helsinki
| | - Riikka Kivelä
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Faculty of Sport and Health Sciences University of Jyväskylä, Jyväskylä, Finland
| | - Olli Carpen
- Systems Oncology, Research Programs Unit University of Helsinki, Finland, Helsinki
- Pathology/HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland.
- Department of Biochemistry and Developmental Biology, Faculty of Medicine University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Xu Q, Shao D. Leveraging the synergy between anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system cancers. Front Immunol 2024; 15:1487610. [PMID: 39691707 PMCID: PMC11649667 DOI: 10.3389/fimmu.2024.1487610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
The response rates to immunotherapy vary widely depending on the type of cancer and the specific treatment used and can be disappointingly low for many solid tumors. Fortunately, due to their complementary mechanisms of action, immunotherapy and anti-angiogenic therapy have synergistic effects in cancer treatment. By normalizing the tumor vasculature, anti-angiogenic therapy can improve blood flow and oxygenation to facilitate better immune cell infiltration into the tumor and enhance the effectiveness of immunotherapy. It also reduces immunosuppressive factors and enhances immune activation, to create a more favorable environment for immune cells to attack the tumor. Their combination leverages the strengths of both therapies to enhance anti-tumor effects and improve patient outcomes. This review discusses the vasculature-immunity crosstalk in the tumor microenvironment and summarizes the latest advances in combining anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system tumors.
Collapse
Affiliation(s)
| | - Dong Shao
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow
University, Changzhou, Jiangsu, China
| |
Collapse
|
13
|
Ielpo S, Barberini F, Dabbagh Moghaddam F, Pesce S, Cencioni C, Spallotta F, De Ninno A, Businaro L, Marcenaro E, Bei R, Cifaldi L, Barillari G, Melaiu O. Crosstalk and communication of cancer-associated fibroblasts with natural killer and dendritic cells: New frontiers and unveiled opportunities for cancer immunotherapy. Cancer Treat Rev 2024; 131:102843. [PMID: 39442289 DOI: 10.1016/j.ctrv.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are critical mediators of anti-cancer immune responses. In addition to their individual roles, NK cells and DCs are involved in intercellular crosstalk which is essential for the initiation and coordination of adaptive immunity against cancer. However, NK cell and DC activity is often compromised in the tumor microenvironment (TME). Recently, much attention has been paid to one of the major components of the TME, the cancer-associated fibroblasts (CAFs), which not only contribute to extracellular matrix (ECM) deposition and tumor progression but also suppress immune cell functions. It is now well established that CAFs support T cell exclusion from tumor nests and regulate their cytotoxic activity. In contrast, little is currently known about their interaction with NK cells, and DCs. In this review, we describe the interaction of CAFs with NK cells and DCs, by secreting and expressing various mediators in the TME of adult solid tumors. We also provide a detailed overview of ongoing clinical studies evaluating the targeting of stromal factors alone or in combination with immunotherapy based on immune checkpoint inhibitors. Finally, we discuss currently available strategies for the selective depletion of detrimental CAFs and for a better understanding of their interaction with NK cells and DCs.
Collapse
Affiliation(s)
- Simone Ielpo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Barberini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy; Pasteur Institute Italy-Fondazione Cenci Bolognetti, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
14
|
Tang L, He D, Su B. Nrf2: A critical participant in regulation of apoptosis, ferroptosis, and autophagy in gastric cancer. Acta Histochem 2024; 126:152203. [PMID: 39342913 DOI: 10.1016/j.acthis.2024.152203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Nuclear factor erythroid 2-related factor-2 (Nrf2) is a specific transcription factor that maintains redox homeostasis by regulating the expression of anti-oxidative stress-related genes. Hyperactivation of Nrf2 is involved in tumor progression and is associated with chemoresistance in a large number of solid tumors. Programmatic cell death (PCD), such as apoptosis, ferroptosis, and autophagy, plays a crucial role in tumor development and chemotherapy sensitivity. Accumulating evidence suggests that some anti-tumor compounds and genes can induce massive production of reactive oxygen species (ROS) via inhibiting Nrf2 expression, which exacerbates oxidative stress and promotes Gastric cancer (GC) cell death, thereby enhancing the sensitivity of GC cells to chemotherapy-induced PCD. In this review, we summarize the role of antitumor drugs in interfering in three different types of PCD (apoptosis, ferroptosis, and autophagy) in GC cells by modulating Nrf2 expression, as well as the molecular mechanisms through which targeting Nrf2 brings about PCD and chemosensitivity. It is reasonable to believe that Nrf2 serves as a potential therapeutic target, and targeting Nrf2 by drug or gene regulation could provide a new strategy for the treatment of GC.
Collapse
Affiliation(s)
- LiJie Tang
- Institute of Pharmacy and Pharmacology, School of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - DongXiu He
- Institute of Pharmacy and Pharmacology, School of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo Su
- Institute of Pharmacy and Pharmacology, School of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
15
|
Moynihan A, Boland P, Cucek J, Erzen S, Hardy N, McEntee P, Rojc J, Cahill R. Technical and functional design considerations for a real-world interpretable AI solution for NIR perfusion analysis (including cancer). EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108273. [PMID: 38538505 DOI: 10.1016/j.ejso.2024.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2024] [Accepted: 03/16/2024] [Indexed: 12/02/2024]
Abstract
Near infrared (NIR) analysis of tissue perfusion via indocyanine green fluorescence assessment is performed clinically during surgery for a range of indications. Its usefulness can potentially be further enhanced through the application of interpretable artificial intelligence (AI) methods to improve dynamic interpretation accuracy in these and also open new applications. While its main use currently is for perfusion assessment as a tissue health check prior to performing an anastomosis, there is increasing interest in using fluorophores for cancer detection during surgical interventions with most research being based on the paradigm of static imaging for fluorophore uptake hours after preoperative dosing. Although some image boosting and relative estimation of fluorescence signals is already inbuilt into commercial NIR systems, fuller implementation of AI methods can enable actionable predictions especially when applied during the dynamic, early inflow-outflow phase that occurs seconds to minutes after ICG (or indeed other fluorophore) administration. Already research has shown that such methods can accurately differentiate cancer from benign tissue in the operating theatre in real time in principle based on their differential signalling and could be useful for tissue perfusion classification more generally. This can be achieved through the generation of fluorescence intensity curves from an intra-operative NIR video stream. These curves are processed to adjust for image disturbances and curve features known to be influential in tissue characterisation are extracted. Existing machine learning based classifiers can then use these features to classify the tissue in question according to prior training sets. The use of this interpretable methodology enables accurate classification algorithms to be built with modest training sets in comparison to those required for deep learning modelling in addition to achieving compliance with medical device regulations. Integration of the multiple algorithms required to achieve this classification into a desktop application or medical device could make the use of this method accessible and useful to (as well as useable by) surgeons without prior training in computer technology. This document details some technical and functional design considerations underlying such a novel recommender system to advance the foundational concept and methodology as software as medical device for in situ cancer characterisation with relevance more broadly also to other tissue perfusion applications.
Collapse
Affiliation(s)
- A Moynihan
- UCD Centre for Precision Surgery, University College Dublin, Ireland
| | - P Boland
- UCD Centre for Precision Surgery, University College Dublin, Ireland
| | - J Cucek
- Arctur, Nova Gorica, Slovenia
| | - S Erzen
- Arctur, Nova Gorica, Slovenia
| | - N Hardy
- UCD Centre for Precision Surgery, University College Dublin, Ireland
| | - P McEntee
- UCD Centre for Precision Surgery, University College Dublin, Ireland
| | - J Rojc
- Arctur, Nova Gorica, Slovenia
| | - R Cahill
- UCD Centre for Precision Surgery, University College Dublin, Ireland; Department of Surgery, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
16
|
Surya C, Lakshminarayana ABV, Ramesh SH, Kunjiappan S, Theivendren P, Santhana Krishna Kumar A, Ammunje DN, Pavadai P. Advancements in breast cancer therapy: The promise of copper nanoparticles. J Trace Elem Med Biol 2024; 86:127526. [PMID: 39298835 DOI: 10.1016/j.jtemb.2024.127526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent cancer among women worldwide and poses significant treatment challenges. Traditional therapies often lead to adverse side effects and resistance, necessitating innovative approaches for effective management. OBJECTIVE This review aims to explore the potential of copper nanoparticles (CuNPs) in enhancing breast cancer therapy through targeted drug delivery, improved imaging, and their antiangiogenic properties. METHODS The review synthesizes existing literature on the efficacy of CuNPs in breast cancer treatment, addressing common challenges in nanotechnology, such as nanoparticle toxicity, scalability, and regulatory hurdles. It proposes a novel hybrid method that combines CuNPs with existing therapeutic modalities to optimize treatment outcomes. RESULTS CuNPs demonstrate the ability to selectively target cancer cells while sparing healthy tissues, leading to improved therapeutic efficacy. Their unique physicochemical properties facilitate efficient biodistribution and enhanced imaging capabilities. Additionally, CuNPs exhibit antiangiogenic activity, which can inhibit tumor growth by preventing the formation of new blood vessels. CONCLUSION The findings suggest that CuNPs represent a promising avenue for advancing breast cancer treatment. By addressing the limitations of current therapies and proposing innovative solutions, this review contributes valuable insights into the future of nanotechnology in oncology.
Collapse
Affiliation(s)
- Chandana Surya
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | | | - Sameera Hammigi Ramesh
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung City 80424, Taiwan; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| |
Collapse
|
17
|
Maggi E, Munari E, Landolina N, Mariotti FR, Azzarone B, Moretta L. T cell landscape in the microenvironment of human solid tumors. Immunol Lett 2024; 270:106942. [PMID: 39486594 DOI: 10.1016/j.imlet.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
T cells are the main effectors involved in anti-tumor immunity, mediating most of the adaptive response towards cancer. After priming in lymph nodes, tumor antigens-specific naïve T lymphocytes proliferate and differentiate into effector CD4+ and CD8+ T cells that migrate from periphery into tumor sites aiming to eliminate cancer cells. Then while most effector T cells die, a small fraction persists and recirculates as long-lived memory T cells which generate enhanced immune responses when re-encountering the same antigen. A number of T (and non-T) cell subsets, stably resides in non-lymphoid peripheral tissues and may provide rapid immune response independently of T cells recruited from blood, against the reemergence of cancer cells. When tumor grows, however, tumor cells have evaded immune surveillance of effector cells (NK and CTL cells) which are exhausted, thus favoring the local expansion of T (and non-T) regulatory cells. In this review, the current knowledge of features of T cells present in the tumor microenvironment (TME) of solid adult and pediatric tumors, the mechanisms upregulating immune-checkpoint molecules and transcriptional and epigenetic landscapes leading to dysfunction and exhaustion of T effector cells are reviewed. The interaction of T cells with cancer- or TME non-neoplastic cells and their secreted molecules shape the T cell profile compromising the intrinsic plasticity of T cells and, therefore, favoring immune evasion. In this phase regulatory T cells contribute to maintain a high immunosuppressive TME thus facilitating tumor cell proliferation and metastatic spread. Despite the advancements of cancer immunotherapy, many tumors are unresponsive to immune checkpoint inhibitors, or therapeutical vaccines or CAR T cell-based adoptive therapy: some novel strategies to improve these T cell-based treatments are lastly proposed.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | | | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy.
| |
Collapse
|
18
|
Urra H, Aravena R, González-Johnson L, Hetz C. The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment. Trends Cancer 2024; 10:1161-1173. [PMID: 39472237 DOI: 10.1016/j.trecan.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024]
Abstract
The tumor microenvironment (TME) represents a dynamic network of cancer cells, stromal cells, immune mediators, and extracellular matrix components, crucial for cancer progression. Stress conditions such as oncogene activation, nutrient deprivation, and hypoxia disrupt the endoplasmic reticulum (ER), activating the unfolded protein response (UPR), the main adaptive mechanism to restore ER function. The UPR regulates cancer progression by engaging cell-autonomous and cell-non-autonomous mechanisms, reprogramming the stroma and promoting immune evasion, angiogenesis, and invasion. This review explores the role of UPR beyond cancer cells, focusing on how ER stress signaling reshapes the TME, supporting tumor growth. The therapeutic potential of targeting the UPR is also discussed.
Collapse
Affiliation(s)
- Hery Urra
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Raúl Aravena
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago 7510602, Chile
| | - Lucas González-Johnson
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Claudio Hetz
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato, CA, USA.
| |
Collapse
|
19
|
Misawa K, Bhat H, Adusumilli PS, Hou Z. Combinational CAR T-cell therapy for solid tumors: Requisites, rationales, and trials. Pharmacol Ther 2024; 266:108763. [PMID: 39617146 DOI: 10.1016/j.pharmthera.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved potent antitumor efficacy in hematological malignancies; however, because of limitations in CAR T-cell recruitment, infiltration, activation, and functional persistence in the tumor, its efficacy in solid tumors has been suboptimal. To overcome these challenges, combinational strategies that include chemotherapy, radiation therapy, or immune checkpoint inhibitor agent therapy with CAR T-cell therapy are being investigated. The established functional characteristics of the abovementioned therapies provide a rationale for the use of a combinational approach with CAR T cells. Chemotherapy reshapes the peritumoral stroma, decreases the immunosuppressive cell population, and promotes a proinflammatory milieu, all of which allow for increased recruitment, infiltration, and accumulation of CAR T cells. Radiation therapy promotes a chemokine gradient, which augments tumor infiltration by CAR T cells and further increases expression of tumor-associated antigens, allowing for increased activation of CAR T cells. Immune checkpoint inhibitor agent therapy inactivates T-cell exhaustion pathways-most notably, the PD1/PDL1 pathway-thereby improving the functional persistence of CAR T cells and promoting endogenous immunity. In this review, we discuss the requisites and rationales for combinational therapy, and we review 25 ongoing phase I and II clinical trials, of which 4 use chemotherapy, 3 use radiation therapy, 11 use immunotherapy, and 7 use another agent. While safety, efficacy, and improved outcomes are the primary goals of these ongoing studies, the knowledge gained from them will help pave the way for subsequent studies focused on optimizing combinational regimens and identifying predictive biomarkers.
Collapse
Affiliation(s)
- Kyohei Misawa
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Hina Bhat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Luan Y, Jia R, Chai P, Fan X. m 6A and beyond: RNA modifications shaping angiogenesis. Trends Mol Med 2024:S1471-4914(24)00302-2. [PMID: 39609142 DOI: 10.1016/j.molmed.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
RNA modifications are crucial post-transcriptional processes that significantly influence gene expression, RNA stability, nuclear transport, and translational capacity. Angiogenesis, the formation of new blood vessels, is a physiological process that is dysregulated in many pathological conditions, including ocular diseases, immune disorders, and cancer. In this review, we compile the current understanding of the intricate relationship between various RNA modifications and angiogenic mechanisms, spotlighting emerging evidence that underscore their pivotal regulatory roles in both physiological and pathological angiogenesis. Furthermore, we delve into recent advances in innovative therapeutic approaches that target RNA modifications to modulate angiogenesis, offering insights into their potential as novel treatment modalities.
Collapse
Affiliation(s)
- Yu Luan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
21
|
Weerasinghe HN, Burrage PM, Jr DVN, Burrage K. Agent-based modeling for the tumor microenvironment (TME). MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:7621-7647. [PMID: 39696854 DOI: 10.3934/mbe.2024335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cancer is a disease that arises from the uncontrolled growth of abnormal (tumor) cells in an organ and their subsequent spread into other parts of the body. If tumor cells spread to surrounding tissues or other organs, then the disease is life-threatening due to limited treatment options. This work applies an agent-based model to investigate the effect of intra-tumoral communication on tumor progression, plasticity, and invasion, with results suggesting that cell-cell and cell-extracellular matrix (ECM) interactions affect tumor cell behavior. Additionally, the model suggests that low initial healthy cell densities and ECM protein densities promote tumor progression, cell motility, and invasion. Furthermore, high ECM breakdown probabilities of tumor cells promote tumor invasion. Understanding the intra-tumoral communication under cellular stress can potentially lead to the design of successful treatment strategies for cancer.
Collapse
Affiliation(s)
- Hasitha N Weerasinghe
- School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Pamela M Burrage
- School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Dan V Nicolau Jr
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia
- Department of Computer Science, University of Oxford, United Kingdom
| |
Collapse
|
22
|
Xu J, Tang Z. Progress on angiogenic and antiangiogenic agents in the tumor microenvironment. Front Oncol 2024; 14:1491099. [PMID: 39629004 PMCID: PMC11611712 DOI: 10.3389/fonc.2024.1491099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
The development of tumors and their metastasis relies heavily on the process of angiogenesis. When the volume of a tumor expands, the resulting internal hypoxic conditions trigger the body to enhance the production of various angiogenic factors. These include vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and transforming growth factor-α (TGF-α), all of which work together to stimulate the activation of endothelial cells and catalyze angiogenesis. Antiangiogenic therapy (AAT) aims to normalize tumor blood vessels by inhibiting these angiogenic signals. In this review, we will explore the molecular mechanisms of angiogenesis within the tumor microenvironment, discuss traditional antiangiogenic drugs along with their limitations, examine new antiangiogenic drugs and the advantages of combination therapy, and consider future research directions in the field of antiangiogenic drugs. This comprehensive overview aims to provide insights that may aid in the development of more effective anti-tumor treatments.
Collapse
Affiliation(s)
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
23
|
Mu X, Zhou Y, Yu Y, Zhang M, Liu J. The roles of cancer stem cells and therapeutic implications in melanoma. Front Immunol 2024; 15:1486680. [PMID: 39611156 PMCID: PMC11602477 DOI: 10.3389/fimmu.2024.1486680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Melanoma is a highly malignant skin tumor characterized by high metastasis and poor prognosis. Recent studies have highlighted the pivotal role of melanoma stem cells (MSCs)-a subpopulation of cancer stem cells (CSCs)-in driving tumor growth, metastasis, therapeutic resistance, and recurrence. Similar to CSCs in other cancers, MSCs possess unique characteristics, including specific surface markers, dysregulated signaling pathways, and the ability to thrive within complex tumor microenvironment (TME). This review explored the current landscape of MSC research, discussing the identification of MSC-specific surface markers, the role of key signaling pathways such as Wnt/β-catenin, Notch, and Hedgehog (Hh), and how interactions within the TME, including hypoxia and immune cells, contribute to MSC-mediated drug resistance and metastatic behavior. Furthermore, we also investigated the latest therapeutic strategies targeting MSCs, such as small-molecule inhibitors, immune-based approaches, and novel vaccine developments, with an emphasis on their potential to overcome melanoma progression and improve clinical outcomes. This review aims to provide valuable insights into the complex roles of MSCs in melanoma biology and offers perspectives for future research and therapeutic advances against this challenging disease.
Collapse
Affiliation(s)
- Xiaoli Mu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Zhou
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongxin Yu
- The Department of Plastic and Reconstructive Surgery, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyi Zhang
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiyan Liu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Nikitovic D, Kukovyakina E, Berdiaki A, Tzanakakis A, Luss A, Vlaskina E, Yagolovich A, Tsatsakis A, Kuskov A. Enhancing Tumor Targeted Therapy: The Role of iRGD Peptide in Advanced Drug Delivery Systems. Cancers (Basel) 2024; 16:3768. [PMID: 39594723 PMCID: PMC11592346 DOI: 10.3390/cancers16223768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Chemotherapy remains the primary therapeutic approach in treating cancer. The tumor microenvironment (TME) is the complex network surrounding tumor cells, comprising various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as ECM components, blood vessels, and signaling molecules. The often stiff and dense network of the TME interacts dynamically with tumor cells, influencing cancer growth, immune response, metastasis, and resistance to therapy. The effectiveness of the treatment of solid tumors is frequently reduced due to the poor penetration of the drug, which leads to attaining concentrations below the therapeutic levels at the site. Cell-penetrating peptides (CPPs) present a promising approach that improves the internalization of therapeutic agents. CPPs, which are short amino acid sequences, exhibit a high ability to pass cell membranes, enabling them to deliver drugs efficiently with minimal toxicity. Specifically, the iRGD peptide, a member of CPPs, is notable for its capacity to deeply penetrate tumor tissues by binding simultaneously integrins ανβ3/ανβ5 and neuropilin receptors. Indeed, ανβ3/ανβ5 integrins are characteristically expressed by tumor cells, which allows the iRGD peptide to home onto tumor cells. Notably, the respective dual-receptor targeting mechanism considerably increases the permeability of blood vessels in tumors, enabling an efficient delivery of co-administered drugs or nanoparticles into the tumor mass. Therefore, the iRGD peptide facilitates deeper drug penetration and improves the efficacy of co-administered therapies. Distinctively, we will focus on the iRGD mechanism of action, drug delivery systems and their application, and deliberate future perspectives in developing iRGD-conjugated therapeutics. In summary, this review discusses the potential of iRGD in overcoming barriers to drug delivery in cancer to maximize treatment efficiency while minimizing side effects.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ekaterina Kukovyakina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Alexandros Tzanakakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Anna Luss
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Elizaveta Vlaskina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Anne Yagolovich
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Aristides Tsatsakis
- Forensic Medicine Department, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| |
Collapse
|
25
|
Wang X, Song J, Qiu Q, Su Y, Wang L, Cao X. A Stacked Multimodality Model Based on Functional MRI Features and Deep Learning Radiomics for Predicting the Early Response to Radiotherapy in Nasopharyngeal Carcinoma. Acad Radiol 2024:S1076-6332(24)00771-2. [PMID: 39496536 DOI: 10.1016/j.acra.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND This study aimed to construct and assess a comprehensive model that integrates MRI-derived deep learning radiomics, functional imaging (fMRI), and clinical indicators to predict early efficacy of radiotherapy in nasopharyngeal carcinoma (NPC). METHODS This retrospective study recruited NPC patients with radiotherapy from two Chinese hospitals between October 2018 and July 2022, divided into a training set (hospital I, 194 cases), an internal validation set (hospital I, 82 cases), and an external validation set (hospital II, 40 cases). We extracted 3404 radiomic features and 2048 deep learning features from multi-sequence MRI includes T1WI, CE-T1WI, T2WI and T2WI/FS. Additionally, both the Apparent diffusion coefficient (ADC), its maximum (ADCmax) and Tumor blood flow (TBF), its maximum (TBFmax) were obtained by Diffusion-weighted imaging (DWI) and Arterial spin labeling (ASL) respectively. We used four classifiers (LR, XGBoost, SVM and KNN) and stacked algorithm as model construction methods. The area under the receiver operating characteristic curve (AUC) and decision curve analysis was used to assess models. RESULTS The manual radiomics model based on XGBoost and the deep learning model based on KNN (the AUCs in the training set: 0.909, 0.823, respectively) showed better predictive efficacy than other machine learning algorithms. The stacked model that integrated MRI-based deep learning radiomics, fMRI, and hematological indicators, has the strongest efficacy prediction ability of AUC in the training set [0.984 (95%CI: 0.972-0.996)], the internal validation set [0.936 (95%CI: 0.885-0.987)], and the external validation set [0.959 (95%CI: 0.901-1.000)]. CONCLUSION Our research has developed a clinical-radiomics integrated model based on MRI which can predict early radiotherapy response in NPC and provide guidance for personalized treatment.
Collapse
Affiliation(s)
- Xiaowen Wang
- Shandong University Cancer Center, Jinan, Shandong, China (X.W.); Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China (X.W., X.C.)
| | - Jian Song
- Medical Imageology, Shandong Medical College, Jinan, China (J.S.)
| | - Qingtao Qiu
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Q.Q., Y.S., L.W.)
| | - Ya Su
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Q.Q., Y.S., L.W.)
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Q.Q., Y.S., L.W.)
| | - Xiujuan Cao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China (X.W., X.C.).
| |
Collapse
|
26
|
Tang H, Liu X, Ke J, Tang Y, Luo S, Li XK, Huang M. New perspectives of exosomes in urologic malignancies - Mainly focus on biomarkers and tumor microenvironment. Pathol Res Pract 2024; 263:155645. [PMID: 39476607 DOI: 10.1016/j.prp.2024.155645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/10/2024]
Abstract
Bladder cancer (BCa) and renal cell carcinoma (RCC) are prevalent urologic malignancies (UM) characterized by high morbidity and frequent recurrence. Current diagnostic approaches, often invasive, often indicate an advanced disease stage. And the complex tumor microenvironment often promotes tumor progression and induces resistance to chemotherapy. Current diagnostic and therapeutic modalities often fail to achieve satisfactory outcomes for patients. Exosomes transport diverse cargoes, including cytokines, proteins, lipids, non-coding RNAs, and microRNAs, crucial for intercellular communication. Exosomes have shown potential as biomarkers for UM, participating in tumor progression, especially within the tumor microenvironment (TME), including tumor cell apoptosis, proliferation, migration, invasion, depletion of immune cell function, epithelial-mesenchymal transition (EMT), angiogenesis, and more.In this review, we summarize research advances related to exosomes in UM, focusing on the role of exosomes as biomarkers in bladder and renal cancer, highlighting their significance within the TME.
Collapse
Affiliation(s)
- Hai Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xing Liu
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwei Ke
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiquan Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Songtao Luo
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xu Kun Li
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingwei Huang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
27
|
Tolue Ghasaban F, Moghbeli M. Long non-coding RNAs as the pivotal regulators of epithelial mesenchymal transition through WNT/β-catenin signaling pathway in tumor cells. Pathol Res Pract 2024; 263:155683. [PMID: 39471528 DOI: 10.1016/j.prp.2024.155683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Tumor cell invasion is considered as one of the main therapeutic challenges in cancer patients, which leads to distant metastasis and reduced prognosis. Therefore, investigation of the factors involved in tumor cell invasion improves the therapeutic methods to reduce tumor metastasis. Epithelial-mesenchymal transition (EMT) process has a pivotal role in tumor cell invasion and metastasis, during which tumor cells gain the invasive ability by losing epithelial characteristics and acquiring mesenchymal characteristics. WNT/β-catenin signaling pathway has a key role in tumor cell invasion by regulation of EMT process. Long non-coding RNAs (lncRNAs) have also an important role in EMT process through the regulation of WNT/β-catenin pathway. Deregulation of lncRNAs is associated with tumor metastasis in different tumor types. Therefore, in the present review, we investigated the role of lncRNAs in EMT process and tumor cell invasion through the regulation of WNT/β-catenin pathway. It has been reported that lncRNAs mainly induced the EMT process and tumor cell invasion through the activation of WNT/β-catenin pathway. LncRNAs that regulate the WNT/β-catenin mediated EMT process can be introduced as the prognostic markers as well as suitable therapeutic targets to reduce the tumor metastasis in cancer patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Wei X, Leng X, Liang J, Liu J, Chi L, Deng H, Sun D. Pharmacological potential of natural medicine Astragali Radix in treating intestinal diseases. Biomed Pharmacother 2024; 180:117580. [PMID: 39413615 DOI: 10.1016/j.biopha.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Due to changes in diet and lifestyle, the prevalence of intestinal diseases has been increasing annually. Current treatment methods exhibit several limitations, including adverse reactions and drug resistance, necessitating the development of new, safe, and effective therapies. Astragali Radix, a natural medicine utilized for over two millennia, offers unique advantages in treating intestinal ailments due to its multi-component and multi-target properties. This study aims to review the effective components of Astragali Radix that provide intestinal protection and to explore its pharmacological effects and molecular mechanisms across various intestinal diseases. This will provide a comprehensive foundation for using Astragali Radix in treating intestinal diseases and serve as a reference for future research directions. The active components of Astragali Radix with protective effects on the intestines include astragaloside (AS)-IV, AS-III, AS-II, astragalus polysaccharide (APS), cycloastagenol, calycosin, formononetin, and ononin. Astragali Radix and its active components primarily address intestinal diseases such as colorectal cancer (CRC), inflammatory bowel disease (IBD), and enterocolitis through mechanisms including anti-inflammatory actions, antioxidative stress responses, anti-proliferation and invasion activities, regulation of programmed cell death, immunoregulation, restoration of the intestinal epithelial barrier, and modulation of the intestinal microbiota and its metabolites. Consequently, Astragali Radix demonstrates significant intestinal protective activity and represents a promising natural treatment for intestinal diseases. However, the pharmacological actions and mechanisms of some active components in Astragali Radix remain unexplored. Moreover, further comprehensive toxicological and clinical studies are required to ascertain its safety and clinical effectiveness.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jiahui Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Jinan 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Hualiang Deng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Dajuan Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
29
|
Yu D, Xu H, Zhou J, Fang K, Zhao Z, Xu K. PDPN/CCL2/STAT3 feedback loop alter CAF heterogeneity to promote angiogenesis in colorectal cancer. Angiogenesis 2024; 27:809-825. [PMID: 39115624 DOI: 10.1007/s10456-024-09941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/31/2024] [Indexed: 11/15/2024]
Abstract
Colorectal cancer (CRC) is one of the common clinical malignancies and the fourth leading cause of cancer-related death in the world. The tumor microenvironment (TME) plays a crucial role in promoting tumor angiogenesis, and cancer-associated fibroblasts (CAFs) are one of the key components of the tumor microenvironment. However, due to the high heterogeneity of CAFs, elucidating the molecular mechanism of CAF-mediated tumor angiogenesis remained elusive. In our study, we found that there is pro-angiogenic functional heterogeneity of CAFs in colorectal cancer and we clarified that Podoplanin (PDPN) can specifically label CAF subpopulations with pro-angiogenic functions. We also revealed that PDPN + CAF could maintain CAF heterogeneity by forming a PDPN/CCL2/STAT3 feedback loop through autocrine CCL2, while activate STAT3 signaling pathway in endothelial cells to promote angiogenesis through paracrine CCL2. We demonstrated WP1066 could inhibit colorectal cancer angiogenesis by blocking both the PDPN/CCL2/STAT3 feedback loop in CAFs and the STAT3 signaling pathway in endothelial cells. Altogether, our study suggests that STAT3 could be a potential therapeutic target for blocking angiogenesis in colorectal cancer. We provide theoretical basis and new therapeutic strategies for the clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Die Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hanzheng Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jinzhe Zhou
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Kai Fang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China.
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Zekun Zhao
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, China.
| |
Collapse
|
30
|
Furube T, Nakashima D, Matsuda S, Mikami K, Hatakeyama T, Takeuchi M, Fukuda K, Ueno A, Okita H, Kawakubo H, Nakamura M, Nagura T, Kitagawa Y. Evaluating stiffness of gastric wall using laser resonance frequency analysis for gastric cancer. Cancer Sci 2024. [PMID: 39468628 DOI: 10.1111/cas.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Tumor stiffness is drawing attention as a novel axis that is orthogonal to existing parameters such as pathological examination. We developed a new diagnostic method that focuses on differences in stiffness between tumor and normal tissue. This study comprised a clinical application of laser resonance frequency analysis (L-RFA) for diagnosing gastric cancer. L-RFA allows for precise and contactless evaluation of tissue stiffness. We used a laser to create vibrations on a sample's surface that were then measured using a vibrometer. The data were averaged and analyzed to enhance accuracy. In the agarose phantom experiments, a clear linear correlation was observed between the Young's modulus of the phantoms (0.34-0.71 MPa) and the summation of normalized vibration peaks (Score) in the 1950-4050 Hz range (R2 = 0.93145). Higher Young's moduli also resulted in lower vibration peaks at the excitation frequency, signal-to-noise (S/N) ratios, and harmonic peaks. We also conducted L-RFA measurements on gastric cancer specimens from two patients who underwent robot-assisted distal gastrectomy. Our results revealed significant waveform differences between tumor and normal regions, similar to the findings in agarose phantoms, with tumor regions exhibiting lower vibration peaks at the excitation frequency, S/N ratios, and harmonic peaks. Statistical analysis confirmed significant differences in the score between normal and tumor regions (p = 0.00354). L-RFA was able to assess tumor stiffness and holds great promise as a noninvasive diagnostic tool for gastric cancer.
Collapse
Affiliation(s)
- Tasuku Furube
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Nakashima
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Clinical Biomechanics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Satoru Matsuda
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiro Mikami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Takuto Hatakeyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masashi Takeuchi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihisa Ueno
- Division of Diagnostic Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hajime Okita
- Division of Diagnostic Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takeo Nagura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Clinical Biomechanics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
31
|
Deng G, Wang P, Su R, Sun X, Wu Z, Huang Z, Gu L, Yu H, Zhao Z, He Y, Huo M, Zhang C, Yin S. SPI1 +CD68 + macrophages as a biomarker for gastric cancer metastasis: a rationale for combined antiangiogenic and immunotherapy strategies. J Immunother Cancer 2024; 12:e009983. [PMID: 39455096 PMCID: PMC11529461 DOI: 10.1136/jitc-2024-009983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) have been demonstrated to be associated with tumor progression. However, the different subpopulations of TAMs and their roles in gastric cancer (GC) remain poorly understood. This study aims to assess the effects of Spi-1 proto-oncogene (SPI1)+CD68+ TAMs in GC. METHODS The distribution of SPI1+CD68+ TAMs in GC tissue was estimated by immunohistochemistry, immunofluorescence, and flow cytometry. Single-cell transcriptome analysis and multiplex fluorescence immunohistochemistry were applied to explore the role of SPI1+CD68+ TAMs in an immune contexture. SPI1 overexpression or knockdown cells were constructed to evaluate its role in macrophage polarization and angiogenesis in vitro and in vivo. Chromatin immunoprecipitation was used to verify the mechanism of SPI1 transcriptional function. The effect of combined antiangiogenic and immunotherapy was further validated using mouse peritoneal metastasis models. RESULTS Single-cell transcriptome analysis and immunohistochemistry demonstrated that SPI1 was expressed in macrophages, with a higher enrichment in metastatic lesions than in primary tumors. Higher SPI1+CD68+ TAMs infiltration was associated with poor overall survival. Mechanically, SPI1 promoted the M2-type macrophage polarization. SPI1 could bind to the promoter of vascular endothelial growth factor A and facilitate angiogenesis. Moreover, the level of SPI1+CD68+ TAMs infiltration was closely related to the efficacy of immunotherapy, especially when combined with antiangiogenic therapy. CONCLUSIONS The present study showed that SPI1+CD68+ TAMs are a promising biomarker for predicting prognosis, antiangiogenic drug sensitivity, and combination target of immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Guofei Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rishun Su
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xuezeng Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhen Wu
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing, China
| | - Zhangsen Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liang Gu
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hong Yu
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhenzhen Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Songcheng Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Zhao X, Qiao R, Hao M, Xu L, Wang D, Lu Y, Li J, Wu J, Li Y, Cheng T, Zhang W, Zhao J, Wang P. Vascular endothelial growth factor receptor 2 as a potential host target for the inhibition of enterovirus replication. J Virol 2024; 98:e0112924. [PMID: 39287389 PMCID: PMC11542593 DOI: 10.1128/jvi.01129-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Because host kinases are key regulators of multiple signaling pathways in response to viral infections, we previously screened a kinase inhibitor library using rhabdomyosarcoma cells and human intestinal organoids in parallel to identify potent inhibitors against EV-A71 infection. We found that Rho-associated coiled-coil-containing protein kinase (Rock) inhibitor efficiently suppressed the EV-A71 replication and further revealed Rock1 as a novel EV-A71 host factor. In this study, subsequent analysis found that a variety of vascular endothelial growth factor receptor (VEGFR) inhibitors also had potent antiviral effects. Among the hits, Pazopanib, with a selectivity index as high as 254, which was even higher than that of Pirodavir, a potent broad-spectrum picornavirus inhibitor targeting viral capsid protein VP1, was selected for further analysis. We demonstrated that Pazopanib not only efficiently suppressed the replication of EV-A71 in a dose-dependent manner, but also exhibited broad-spectrum anti-enterovirus activity. Mechanistically, Pazopanib probably induces alterations in host cells, thereby impeding viral genome replication and transcription. Notably, VEGFR2 knockdown and overexpression suppressed and facilitated EV-A71 replication, respectively, indicating that VEGFR2 is a novel host dependency factor for EV-A71 replication. Transcriptome analysis further proved that VEGFR2 potentially plays a crucial role in combating EV-A71 infection through the TSAd-Src-PI3K-Akt pathway. These findings expand the range of potential antiviral candidates of anti-enterovirus therapeutics and suggest that VEGFR2 may be a key host factor involved in EV-A71 replication, making it a potential target for the development of anti-enterovirus therapeutics. IMPORTANCE As the first clinical case was identified in the United States, EV-A71, a significant neurotropic enterovirus, has been a common cause of hand, foot, and mouth disease (HFMD) in infants and young children. Developing an effective antiviral agent for EV-A71 and other human enteroviruses is crucial, as these viral pathogens consistently cause outbreaks in humans. In this study, we demonstrated that multiple inhibitors against VEGFRs effectively reduced EV-A71 replication, with Pazopanib emerging as the top candidate. Furthermore, Pazopanib also attenuated the replication of other enteroviruses, including CVA10, CVB1, EV-D70, and HRV-A, displaying broad-spectrum anti-enterovirus activity. Given that Pazopanib targets various VEGFRs, we narrowed the focus to VEGFR2 using knockdown and overexpression experiments. Transcriptomic analysis suggests that Pazopanib's potential downstream targets involve the TSAd-Src-PI3K-Akt pathway. Our work may contribute to identifying targets for antiviral inhibitors and advancing treatments for human enterovirus infections.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Shanghai Sci-Tech Inno
Center for Infection & Immunity, National Medical Center for
Infectious Diseases, Huashan Hospital, Institute of Infection and
Health, Fudan University,
Shanghai, China
- Shanghai Pudong
Hospital, Fudan University Pudong Medical Center, State Key Laboratory
of Genetic Engineering, MOE Engineering Research Center of Gene
Technology, School of Life Sciences, Shanghai Institute of Infectious
Disease and Biosecurity, Fudan
University, Shanghai,
China
| | - Rui Qiao
- Shanghai Pudong
Hospital, Fudan University Pudong Medical Center, State Key Laboratory
of Genetic Engineering, MOE Engineering Research Center of Gene
Technology, School of Life Sciences, Shanghai Institute of Infectious
Disease and Biosecurity, Fudan
University, Shanghai,
China
| | - Meng Hao
- Greater Bay Area
Institute of Precision Medicine (Guangzhou), Fudan University, Nansha
District, Guangzhou,
China
| | - Longfa Xu
- State Key Laboratory
of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory,
School of Life Sciences, School of Public Health, Xiamen
University, Xiamen,
China
| | - Dong Wang
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
China
| | - Yinying Lu
- Shanghai Sci-Tech Inno
Center for Infection & Immunity, National Medical Center for
Infectious Diseases, Huashan Hospital, Institute of Infection and
Health, Fudan University,
Shanghai, China
| | - Jiayan Li
- Shanghai Pudong
Hospital, Fudan University Pudong Medical Center, State Key Laboratory
of Genetic Engineering, MOE Engineering Research Center of Gene
Technology, School of Life Sciences, Shanghai Institute of Infectious
Disease and Biosecurity, Fudan
University, Shanghai,
China
| | - Jing Wu
- Department of
Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and
Biosafety Emergency Response, National Medical Center for Infectious
Diseases, Huashan Hospital, Shanghai Medical College, Fudan
University, Shanghai,
China
| | - Yi Li
- Human Phenome
Institute, Fudan University,
Shanghai, China
| | - Tong Cheng
- State Key Laboratory
of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory,
School of Life Sciences, School of Public Health, Xiamen
University, Xiamen,
China
| | - Wenhong Zhang
- Department of
Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and
Biosafety Emergency Response, National Medical Center for Infectious
Diseases, Huashan Hospital, Shanghai Medical College, Fudan
University, Shanghai,
China
| | - Jincun Zhao
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
China
- Guangzhou Laboratory,
Bio-Island, Guangzhou,
China
- Shanghai Institute for
Advanced Immunochemical Studies, School of Life Science and Technology,
ShanghaiTech University,
Shanghai, China
- Institute for
Hepatology, National Clinical Research Center for Infectious Disease,
Shenzhen Third People’s Hospital; The Second Affiliated Hospital,
School of Medicine, Southern University of Science and
Technology, Shenzhen,
China
| | - Pengfei Wang
- Shanghai Pudong
Hospital, Fudan University Pudong Medical Center, State Key Laboratory
of Genetic Engineering, MOE Engineering Research Center of Gene
Technology, School of Life Sciences, Shanghai Institute of Infectious
Disease and Biosecurity, Fudan
University, Shanghai,
China
| |
Collapse
|
33
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
34
|
Pączek S, Zajkowska M, Mroczko B. Pigment Epithelial-Derived Factor in Pancreatic and Liver Cancers-From Inflammation to Cancer. Biomedicines 2024; 12:2260. [PMID: 39457573 PMCID: PMC11504982 DOI: 10.3390/biomedicines12102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Gastrointestinal (GI) cancers are among the leading causes of mortality worldwide. Despite the emergence of new possibilities that offer hope regarding the successful treatment of these cancers, they still represent a significant global health burden. These cancers can arise from various cell types within the gastrointestinal tract and may exhibit different characteristics, behaviors, and treatment approaches. Both the prognosis and the outcomes of GI treatment remain problematic because these tumors are primarily diagnosed in advanced clinical stages. Current biomarkers exhibit limited sensitivity and specificity. Therefore, when developing strategies for the diagnosis and treatment of GI cancers, it is of fundamental importance to discover new biomarkers capable of addressing the challenges of early-stage diagnosis and the presence of lymph node metastases. Pigment epithelial-derived factor (PEDF) has garnered interest due to its inhibitory effects on the migration and proliferation of cancer cells. This protein has been suggested to be involved in various inflammation-related diseases, including cancer, through various mechanisms. It was also observed that reducing the level of PEDF is sufficient to trigger an inflammatory response. This suggests that PEDF is an endogenous anti-inflammatory factor. Overall, PEDF is a versatile protein with diverse biological functions that span across different tissues and organ systems. Its multifaceted activities make it an intriguing target for therapeutic interventions in various diseases, including cancer, neurodegeneration, and metabolic disorders. This review, for the first time, summarizes the role of PEDF in the pathogenesis of selected GI cancers and its potential utility in early diagnosis, prognosis, and therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
| | - Monika Zajkowska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland
| |
Collapse
|
35
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Zhang F, Cui J, Zhang Y, Yan M, Wu X, Liu X, Yan D, Zhang Z, Han T, Tan H, Wang D, Tang BZ. Regulating Aggregation-Induced Emission Luminogen for Multimodal Imaging-Navigated Synergistic Therapy Involving Anti-Angiogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302713. [PMID: 39206553 PMCID: PMC11515900 DOI: 10.1002/advs.202302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2024] [Indexed: 09/04/2024]
Abstract
As a new avenue for cancer research, phototheranostics has shown inexhaustible and vigorous vitality as it permits real-time diagnosis and concurrent in situ therapy upon non-invasive light-initiation. However, construction of an advanced material, allowing prominent phototheranostic outputs and synchronously surmounting the inherent deficiency of phototheranostics, would be an appealing yet significantly challenging task. Herein, an aggregation-induced emission (AIE)-active luminogen (namely DBD-TM) featured by intensive electron donor-acceptor strength and twisted architecture with finely modulated intramolecular motion, is tactfully designed and prepared. DBD-TM simultaneously possessed fluorescence emission in the second near-infrared (NIR-II) region and high-efficiency photothermal conversion. By integrating DBD-TM with anti-angiogenic agent sorafenib, a versatile nanomaterial is smoothly fabricated and utilized for trimodal imaging-navigated synergistic therapy involving photothermal therapy and anti-angiogenesis toward cancer. This advanced approach is capable of affording accurate tumor diagnosis, complete tumor elimination, and largely restrained tumor recurrence, evidently denoting a prominent theranostic formula beyond phototheranostics. This study will offer a blueprint for exploiting a new generation of cancer theranostics.
Collapse
Affiliation(s)
- Fei Zhang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
- Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsSchool of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyHubei437000China
| | - Jie Cui
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Yao Zhang
- School of Health Service and ManagementShanxi University of Chinese Medicine121 University StreetJinzhongShanxi030619China
| | - Miao Yan
- Department of ChemistryXinzhou Normal UniversityXinzhouShanxi034000China
| | - Xiaoxiao Wu
- Xianning Public Inspection and Testing CenterXianningHubei437000China
| | - Xue Liu
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Dingyuan Yan
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Zhijun Zhang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Ting Han
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518034China
| | - Dong Wang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
37
|
Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int 2024; 48:1406-1449. [PMID: 39054741 DOI: 10.1002/cbin.12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaivy Malik
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| |
Collapse
|
38
|
Belibasakis GN, Seneviratne CJ, Jayasinghe RD, Vo PT, Bostanci N, Choi Y. Bacteriome and mycobiome dysbiosis in oral mucosal dysplasia and oral cancer. Periodontol 2000 2024; 96:95-111. [PMID: 38501658 PMCID: PMC11579824 DOI: 10.1111/prd.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
It has long been considered that the oral microbiome is tightly connected to oral health and that dysbiotic changes can be detrimental to the occurrence and progression of dysplastic oral mucosal lesions or oral cancer. Improved understanding of the concepts of microbial dysbiosis together with advances in high-throughput molecular sequencing of these pathologies have charted in greater microbiological detail the nature of their clinical state. This review discusses the bacteriome and mycobiome associated with oral mucosal lesions, oral candidiasis, and oral squamous cell carcinoma, aiming to delineate the information available to date in pursuit of advancing diagnostic and prognostic utilities for oral medicine.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | | | - Ruwan Duminda Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Phuc Thi‐Duy Vo
- Department of Immunology and Molecular Microbiology, School of DentistrySeoulKorea
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of DentistrySeoulKorea
| |
Collapse
|
39
|
Song PR, Wan ZP, Huang GG, Song ZL, Zhang T, Tong LJ, Fang Y, Tang HT, Xue Y, Zhan ZS, Feng F, Li Y, Shi WH, Huang YQ, Chen Y, Duan WH, Ding J, Zhang A, Xie H. Discovery of a novel BTK inhibitor S-016 and identification of a new strategy for the treatment of lymphomas including BTK inhibitor-resistant lymphomas. Acta Pharmacol Sin 2024; 45:2163-2173. [PMID: 38834683 PMCID: PMC11420226 DOI: 10.1038/s41401-024-01311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Bruton's tyrosine kinase (BTK) has emerged as a therapeutic target for B-cell malignancies, which is substantiated by the efficacy of various irreversible or reversible BTK inhibitors. However, on-target BTK mutations facilitating evasion from BTK inhibition lead to resistance that limits the therapeutic efficacy of BTK inhibitors. In this study we employed structure-based drug design strategies based on established BTK inhibitors and yielded a series of BTK targeting compounds. Among them, compound S-016 bearing a unique tricyclic structure exhibited potent BTK kinase inhibitory activity with an IC50 value of 0.5 nM, comparable to a commercially available BTK inhibitor ibrutinib (IC50 = 0.4 nM). S-016, as a novel irreversible BTK inhibitor, displayed superior kinase selectivity compared to ibrutinib and significant therapeutic effects against B-cell lymphoma both in vitro and in vivo. Furthermore, we generated BTK inhibitor-resistant lymphoma cells harboring BTK C481F or A428D to explore strategies for overcoming resistance. Co-culture of these DLBCL cells with M0 macrophages led to the polarization of M0 macrophages toward the M2 phenotype, a process known to support tumor progression. Intriguingly, we demonstrated that SYHA1813, a compound targeting both VEGFR and CSF1R, effectively reshaped the tumor microenvironment (TME) and significantly overcame the acquired resistance to BTK inhibitors in both BTK-mutated and wild-type BTK DLBCL models by inhibiting angiogenesis and modulating macrophage polarization. Overall, this study not only promotes the development of new BTK inhibitors but also offers innovative treatment strategies for B-cell lymphomas, including those with BTK mutations.
Collapse
Affiliation(s)
- Pei-Ran Song
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhi-Peng Wan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Ge-Ge Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Zi-Lan Song
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Zhang
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lin-Jiang Tong
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Fang
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Tian Tang
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yu Xue
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zheng-Sheng Zhan
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fang Feng
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Li
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Hao Shi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Yu-Qing Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Yi Chen
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Hu Duan
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jian Ding
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hua Xie
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
40
|
Zhu J, Mei J, He Y, Zou Y, Hu X. Chlorogenic acid exhibits antitumor effect in patient-derived xenograft models and hydrogel-embedded tissue culture drug susceptibility test of tongue cancer. Heliyon 2024; 10:e37523. [PMID: 39309775 PMCID: PMC11416273 DOI: 10.1016/j.heliyon.2024.e37523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Chlorogenic acid (CGA) is one of the effective components of Chinese medicine plant such as honeysuckle and Eucommia ulmoides. CGA can inhibits various cancer types, but its effectivity against tongue cancer remains unknown. In the present study, we utilized patient-derived xenograft (PDX) models in conjunction with hydrogel-embedded drug sensitivity tests (HDST) to demonstrate the inhibitory effects of CGA on tongue cancer tissues in both in vivo and ex vivo experimental paradigms. Immunohistochemical (IHC) analysis and TUNEL staining revealed that CGA downregulated the expression of CD31 and Ki-67, while concurrently promoting apoptosis. Furthermore, the involvement of the EGFR-AKT-MMP9 signaling cascade in the tumor-suppressive effects of CGA was confirmed using network pharmacology analysis and immunofluorescent validation techniques. Overall, our findings indicate that CGA robustly inhibits tongue cancer in cellular and organismal models. The EGFR-AKT-MMP9 axis plays a highly significant role in mediating this bioactivity, thereby positioning CGA as a promising candidate for further investigation in oncology. The multifaceted therapeutic potential of CGA, as evidenced by its ability to disrupt angiogenesis, suppress cell proliferation, and induce apoptosis, underscores its value as a novel therapeutic agent for the treatment of tongue cancer.
Collapse
Affiliation(s)
- Jia Zhu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Jiaqi Mei
- Department of Hematology, University Hospitals and University of the Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanqiao He
- Nanchang Royo Biotech Co., Ltd, Nanchang, Jiangxi, China
- Center of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Zou
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Xiaoping Hu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| |
Collapse
|
41
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
42
|
Huang F, Huang Q, Liao X, Gao Y. Prediction of high-risk prostate cancer based on the habitat features of biparametric magnetic resonance and the omics features of contrast-enhanced ultrasound. Heliyon 2024; 10:e37955. [PMID: 39323806 PMCID: PMC11423289 DOI: 10.1016/j.heliyon.2024.e37955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Rationale and objectives To predict high-risk prostate cancer (PCa) by combining the habitat features of biparametric magnetic resonance imaging (bp-MRI) with the omics features of contrast-enhanced ultrasound (CEUS). Materials and methods This study retrospectively collected patients with PCa confirmed by histopathology from January 2020 to June 2023. All patients underwent bp-MRI and CEUS of the prostate, followed by a targeted and transrectal systematic prostate biopsy. The cases were divided into the intermediate-low-risk group (Gleason score ≤7, n = 59) and high-risk group (Gleason score ≥8, n = 33). Radiomics prediction models, namely, MRI_habitat, CEUS_intra, and MRI-CEUS models, were developed based on the habitat features of bp-MRI, the omics features of CEUS, and a merge of features of the two, respectively. Predicted probabilities, called radscores, were then obtained. Clinical-radiological indicators were screened to construct clinic models, which generated clinic scores. The omics-clinic model was constructed by combining the radscore of MRI-CEUS and the clinic score. The predictive performance of all the models was evaluated using the receiver operating characteristic curve. Results The area under the curve (AUC) values of the MRI-CEUS model were 0.875 and 0.842 in the training set and test set, respectively, which were higher than those of the MR_habitat (training set: 0.846, test set: 0.813), CEUS_intra (training set: 0.801, test set: 0.743), and clinic models (training set: 0.722, test set: 0.611). The omics-clinic model achieved a higher AUC (train set: 0.986, test set: 0.898). Conclusions The combination of the habitat features of bp-MRI and the omics features of CEUS can help predict high-risk PCa.
Collapse
Affiliation(s)
- Fangyi Huang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Qun Huang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Xinhong Liao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Yong Gao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi, China
| |
Collapse
|
43
|
Li P, Zhou M, Gan X, Yuan C, Li G, Jin GN, Ding ZY. Regulator of nonsense transcripts 3B is a prognostic biomarker and associated with immune cell infiltration in lung squamous cell and hepatocellular carcinoma. Discov Oncol 2024; 15:479. [PMID: 39331207 PMCID: PMC11436519 DOI: 10.1007/s12672-024-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE The characteristic of RENT3B in cancer remains ambiguous. We aimed to study the relationship between RENT3B and immune infiltration in liver hepatocellular carcinoma (LIHC) and lung squamous cell carcinoma (LUSC). PATIENTS AND METHODS We investigated the expression levels of RENT3B using ONCOMINE and TIMER databases, and assessed the interrelationship between RENT3B expression and survival using PrognoScan, GEPIA, and Kaplan-Meier plotter. Additionally, we examined the association between RENT3B and immune cells in the tumor microenvironment (TME), as well as markers of immune cells, using TIMER. Subsequently, we performed prognostic analysis based on the expression level of RENT3B within specific immune cell subgroups. Furthermore, we evaluated the promoter methylation profile of RENT3B between tumor and normal tissues in LIHC and LUSC using the DNMIVD database. RESULTS RENT3B exhibited increased levels in both in LIHC and LUSC. High RENT3B expression was associated with unfavorable prognosis in LIHC, whereas it indicated a beneficial prognosis in LUSC. In LIHC, the expression of RENT3B positively correlated with immune infiltration levels of B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells. However, in LUSC, the expression of RENT3B showed a negative correlation with immune infiltration levels of B cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells. RENT3B exhibited positive correlations with 42 immune markers in LIHC, while it displayed negative associations with 10 immune markers in LUSC. Despite variations in immune cell enrichment and reduction subgroups, high RENT3B expression consistently indicated poor prognosis in LIHC, whereas it remained favorable in LUSC. Additionally, there were no significant differences observed in RENT3B promoter methylation between tumor and normal tissues in both LIHC and LUSC. CONCLUSION RENT3B can affect the overall tumor prognosis and is associated with immune infiltration, especially in LIHC and LUSC. Consequently, RENT3B can become a prognostic biomarker for LIHC and LUSC.
Collapse
Affiliation(s)
- Pengcheng Li
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Mi Zhou
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Xiaoli Gan
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Ganxun Li
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Guan-Nan Jin
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
- Department of Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
44
|
He Y, Li G, Wu Y, Cai N, Chen Z, Mei B, Chen X, Zhang B, Jin G, Ding Z. Actin like 6A is a prognostic biomarker and associated with immune cell infiltration in cancers. Discov Oncol 2024; 15:503. [PMID: 39333441 PMCID: PMC11436596 DOI: 10.1007/s12672-024-01388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
PURPOSE To investigate the role of Actin like 6 A (ACTL6A) in cancer and explore the potential mechanism of its function. METHODS Differential expression of ACTL6A was analyzed using Oncomine and TIMER database. Then, we downloaded data sets from TCGA database. The correlation between ACTL6A expression and survival in pan-cancer were analyzed by "survival", "survminer" R package and PrognoScan database. STRING (v 11.0) and stringAPP for Cytoscape v3.7.2 were used to predict ACTL6A associated genes. Copy number and methylation alterations of ACTL6A were analyzed using cBioPortal and GSCALite. Transcription factors were downloaded from The Human Transcription Factors Database and analyzed using "limma" R package, JASPAR and PROMO database. Correlations analysis between ACTL6A and immune cells were performed using TIMER and GEPIA database. RESULTS In our studies, we found that ACTL6A was widely upregulated in cancers, which might be attributed to its gene amplifications. Moreover, ACTL6A might regulated by transcription factors (TFs), including E2F1, YY1, CDX2 and HOXD10. In addition, high ACTL6A expression was associated with poor prognosis in most cancers. Meanwhile, ACTL6A was associated with the infiltration of immune cells, especially in liver hepatocellular carcinoma and brain lower grade glioma. CONCLUSION Amplification of ACTL6A is correlated with poor prognosis and contribute to immune cells infiltration in LIHC and LGG, which may provide immune-related therapeutic targets to guide clinical strategies.
Collapse
Affiliation(s)
- Yi He
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Ganxun Li
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Yu Wu
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Ning Cai
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Zeyu Chen
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Bin Mei
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Guannan Jin
- Department of Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jie Fang Avenue, Wuhan, 430000, China.
| | - Zeyang Ding
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
45
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
46
|
Huang Y, Chen S, Yao N, Lin S, Zhang J, Xu C, Wu C, Chen G, Zhou D. Molecular mechanism of PARP inhibitor resistance. Oncoscience 2024; 11:69-91. [PMID: 39318358 PMCID: PMC11420906 DOI: 10.18632/oncoscience.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi) are the first-approved anticancer drug designed to exploit synthetic lethality. PARPi selectively kill cancer cells with homologous recombination repair deficiency (HRD), as a result, PARPi are widely employed to treated BRCA1/2-mutant ovarian, breast, pancreatic and prostate cancers. Currently, four PARPi including Olaparib, Rucaparib, Niraparib, and Talazoparib have been developed and greatly improved clinical outcomes in cancer patients. However, accumulating evidences suggest that required or de novo resistance emerged. In this review, we discuss the molecular mechanisms leading to PARPi resistances and review the potential strategies to overcome PARPi resistance.
Collapse
Affiliation(s)
- Yi Huang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Simin Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Nan Yao
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Shikai Lin
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Junyi Zhang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chengrui Xu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chenxuan Wu
- School of Public Health, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Danyang Zhou
- Department of Respiratory, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210012, Jiangsu, P.R. China
| |
Collapse
|
47
|
Jia J, Wang Y, Li M, Wang F, Peng Y, Hu J, Li Z, Bian Z, Yang S. Neutrophils in the premetastatic niche: key functions and therapeutic directions. Mol Cancer 2024; 23:200. [PMID: 39277750 PMCID: PMC11401288 DOI: 10.1186/s12943-024-02107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Metastasis has been one of the primary reasons for the high mortality rates associated with tumours in recent years, rendering the treatment of current malignancies challenging and representing a significant cause of recurrence in patients who have undergone surgical tumour resection. Halting tumour metastasis has become an essential goal for achieving favourable prognoses following cancer treatment. In recent years, increasing clarity in understanding the mechanisms underlying metastasis has been achieved. The concept of premetastatic niches has gained widespread acceptance, which posits that tumour cells establish a unique microenvironment at distant sites prior to their migration, facilitating their settlement and growth at those locations. Neutrophils serve as crucial constituents of the premetastatic niche, actively shaping its microenvironmental characteristics, which include immunosuppression, inflammation, angiogenesis and extracellular matrix remodelling. These characteristics are intimately associated with the successful engraftment and subsequent progression of tumour cells. As our understanding of the role and significance of neutrophils in the premetastatic niche deepens, leveraging the presence of neutrophils within the premetastatic niche has gradually attracted the interest of researchers as a potential therapeutic target. The focal point of this review revolves around elucidating the involvement of neutrophils in the formation and shaping of the premetastatic niche (PMN), alongside the introduction of emerging therapeutic approaches aimed at impeding cancer metastasis.
Collapse
Affiliation(s)
- Jiachi Jia
- Zhengzhou University, Zhengzhou, 450000, China
| | - Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengjia Li
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingnan Peng
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhilei Bian
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
48
|
Bell CF, Baylis RA, Lopez NG, Ma WF, Gao H, Wang F, Bamezai S, Fu C, Kojima Y, Adkar SS, Luo L, Miller CL, Leeper NJ. BST2 induces vascular smooth muscle cell plasticity and phenotype switching during cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612298. [PMID: 39314286 PMCID: PMC11418980 DOI: 10.1101/2024.09.10.612298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Smooth muscle cell (SMC) plasticity and phenotypic switching play prominent roles in the pathogenesis of multiple diseases, but their role in tumorigenesis is unknown. We investigated whether and how SMC diversity and plasticity plays a role in tumor angiogenesis and the tumor microenvironment. Methods and Results We use SMC-specific lineage-tracing mouse models and single cell RNA sequencing to observe the phenotypic diversity of SMCs participating in tumor vascularization. We find that a significant proportion of SMCs adopt a phenotype traditionally associated with macrophage-like cells. These cells are transcriptionally similar to 'resolution phase' M2b macrophages, which have been described to have a role in inflammation resolution. Computationally predicted by the ligand-receptor algorithm CellChat, signaling from BST2 on the surface of tumor cells to PIRA2 on SMCs promote this phenotypic transition; in vitro SMC assays demonstrate upregulation of macrophage transcriptional programs, and increased proliferation, migration, and phagocytic ability when exposed to BST2. Knockdown of BST2 in the tumor significantly decreases the transition towards a macrophage-like phenotype, and cells that do transition have a comparatively higher inflammatory signal typically associated with anti-tumor effect. Conclusion As BST2 is known to be a poor prognostic marker in multiple cancers where it is associated with an M2 macrophage-skewed TME, these studies suggest that phenotypically switched SMCs may have a previously unidentified role in this immunosuppressive milieu. Further translational work is needed to understand how this phenotypic switch could influence the response to anti-cancer agents and if targeted inhibition of SMC plasticity would be therapeutically beneficial.
Collapse
|
49
|
Zhang C, Hu J, Liu Z, Deng H, Xiao J, Yi Z, He Y, Xiao Z, Huang J, Liang H, Fan B, Wang Z, Chen J, Zu X. Hsa_circ_0000520 suppresses vasculogenic mimicry formation and metastasis in bladder cancer through Lin28a/PTEN/PI3K signaling. Cell Mol Biol Lett 2024; 29:118. [PMID: 39237880 PMCID: PMC11378395 DOI: 10.1186/s11658-024-00627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM) is a potential cause of resistance to antiangiogenic therapy and is closely related to the malignant progression of tumors. It has been shown that noncoding RNAs play an important role in the formation of VM in malignant tumors. However, the role of circRNAs in VM of bladder cancer and the regulatory mechanisms are unclear. METHODS Firstly, hsa_circ_0000520 was identified to have circular character by Sanger sequencing and Rnase R assays. Secondly, the potential clinical value of hsa_circ_0000520 was explored by quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH) of clinical specimens. Thirdly, the role of hsa_circ_0000520 in bladder cancer invasion, migration, and VM formation was examined by in vivo and in vitro experiments. Finally, the regulatory mechanisms of hsa_circ_0000520 in the malignant progression of bladder cancer were elucidated by RNA binding protein immunoprecipitation (RIP), RNA pulldown, co-immunoprecipitation (co-IP), qRT-PCR, Western blot (WB), and fluorescence co-localization. RESULTS Hsa_circ_0000520 was characterized as a circular RNA and was lowly expressed in bladder cancer compared with the paracancer. Bladder cancer patients with high expression of hsa_circ_0000520 had better survival prognosis. Functionally, hsa_circ_0000520 inhibited bladder cancer invasion, migration, and VM formation. Mechanistically, hsa_circ_0000520 acted as a scaffold to promote binding of UBE2V1/UBC13 to Lin28a, further promoting the ubiquitous degradation of Lin28a, improving PTEN mRNA stability, and inhibiting the phosphorylation of the PI3K/AKT pathway. The formation of hsa_circ_0000520 in bladder cancer was regulated by RNA binding protein QKI. CONCLUSIONS Hsa_circ_0000520 inhibits metastasis and VM formation in bladder cancer and is a potential target for bladder cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haisu Liang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Urology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
50
|
Wei Z, Li J, Zhong L, Yang D, Li W, Chen W, Zhou H, He Y, Song W, Wang B, Zeng L. DDR1 Drives Malignant Progression of Gastric Cancer by Suppressing HIF-1α Ubiquitination and Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308395. [PMID: 39024501 PMCID: PMC11425230 DOI: 10.1002/advs.202308395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/07/2024] [Indexed: 07/20/2024]
Abstract
The extracellular matrix (ECM) has been demonstrated to be dysregulated and crucial for malignant progression in gastric cancer (GC), but the mechanism is not well understood. Here, that discoidin domain receptor 1 (DDR1), a principal ECM receptor, is recognized as a key driver of GC progression is reported. Mechanistically, DDR1 directly interacts with the PAS domain of hypoxia-inducible factor-1α (HIF-1α), suppresses its ubiquitination and subsequently strengthens its transcriptional regulation of angiogenesis. Additionally, DDR1 upregulation in GC cells promotes actin cytoskeleton reorganization by activating HIF-1α/ Ras Homolog Family Member A (RhoA)/Rho-associated protein kinase 1 (ROCK1) signaling, which in turn enhances the metastatic capacity. Pharmacological inhibition of DDR1 suppresses GC progression and angiogenesis in patient-derived xenograft (PDX) and organoid models. Taken together, this work first indicates the effects of the DDR1-HIF-1α axis on GC progression and reveals the related mechanisms, providing experimental evidence for DDR1 as a therapeutic target for GC.
Collapse
Affiliation(s)
- Zhewei Wei
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Jin Li
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Li Zhong
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Dongjie Yang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Wuguo Li
- Laboratory Animal CenterThe First Affiliated HospitalSun Yat‐sen University58 Zhongshan 2nd RoadGuangzhou510080China
| | - Wei Chen
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Hao Zhou
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| | - Wu Song
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Boyan Wang
- Reproductive Medicine CenterThe First Affiliated Hospital of Sun Yat‐sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Leli Zeng
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer ResearchScientific Research CenterThe BiobankThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityNo. 628 Zhenyuan RoadShenzhenGuangdong518107China
| |
Collapse
|