1
|
Pandher R, Xue C, Gamble LD, Milazzo G, Di Giacomo S, Murray J, Cheung L, Ferrucci F, Palombo M, Purgato S, Burkhart CA, Fedtsova N, Gleiberman AS, Purmal AA, Korotchkina L, Nikiforov MA, Makarov SS, Telfer TJ, Codd R, Marshall GM, Scott DA, Osterman AL, Gudkov AV, Perini G, Haber M, Norris MD. The cell-permeable iron chelator M606 inhibits MYCN-driven neuroblastoma via an E2F3-mediated response. Proc Natl Acad Sci U S A 2025; 122:e2420011122. [PMID: 40455982 DOI: 10.1073/pnas.2420011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/16/2025] [Indexed: 06/18/2025] Open
Abstract
Despite Myc oncoproteins being major causal factors in human cancer, they remain "undruggable." The MYCN oncogene is one of the most powerful prognostic markers for the childhood cancer neuroblastoma and represents an important target for developing novel therapeutics. Here, we report the finding and characterization of M606, a selective small molecule inhibitor of MYCN, which was identified by screening a diverse chemical library. M606 reduced MYCN protein levels in neuroblastoma cell lines and upregulated hypoxia-inducible factor 1 alpha (HIF1A). Using siRNA-mediated knockdown of MYCN, c-Myc, or HIF1A in HepG2 and BE(2)-C cells followed by M606 treatment, we demonstrated that Myc downregulation and HIF1A upregulation were two independent effects of M606 treatment. M606 selectively targeted neuroblastoma cell lines expressing higher levels of MYCN protein and delayed neuroblastoma development in the TH-MYCN transgenic mouse model. Metabolomic analysis showed that M606 modulated glucose metabolism, consistent with a hypoxic response and iron deprivation. Biochemical characterization of M606 not only confirmed its iron-chelating properties but also revealed its ability to downregulate MYCN promoter activity, which could be rescued by the addition of iron. Luciferase assays identified the minimal MYCN promoter region required for the M606 response, which contained overlapping E2F transcription factor binding sites. Further evaluation defined a key role for E2F3 in the M606-mediated response. The finding of a potent cell-permeable iron chelator that can chelate iron to directly downregulate MYCN transcription via an E2F3-mediated response represents a potentially valuable therapeutic approach in the treatment of cancers overexpressing Myc oncoproteins.
Collapse
Affiliation(s)
- Ruby Pandher
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia
| | - Chengyuan Xue
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia
| | - Laura D Gamble
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Jayne Murray
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia
| | - Leanna Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia
| | - Francesca Ferrucci
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marta Palombo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | | | - Natalia Fedtsova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | | | | | | | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | | | - Thomas J Telfer
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Codd
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW 2031, Australia
| | - David A Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Bologna 40126, Italy
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia
- University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Fernandez Garcia A, Jackson J, Iyer P, Oliver EG, Funato K. MYCN as an oncogene in pediatric brain tumors. Front Oncol 2025; 15:1584978. [PMID: 40365336 PMCID: PMC12069344 DOI: 10.3389/fonc.2025.1584978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
MYCN, or N-Myc, is a member of the MYC family of transcription factors, which plays a key role in tumor formation by regulating genes involved in proliferation, differentiation, and apoptosis. MYCN is essential for neural development, especially for the appropriate growth and differentiation of neural progenitor cells, and its aberrant expression contributes to tumorigenesis. Gene amplification and mutations of this gene have been observed in a wide variety of cancer types, particularly in pediatric brain and non-brain tumors, such as neuroblastoma. Previous studies have provided extensive insights into the complex regulatory network of this transcription factor. Additionally, the presence of MYCN alterations in patient tumors serve as a key factor for risk stratification, as it correlates with poorer outcomes, and presents a significant challenge for treatment. Despite its clinical significance, therapeutic targeting of MYCN is challenging due to its structure, nuclear localization, and complex regulatory pathways. Efforts to target MYCN have focused on destabilizing the protein, modulating epigenetic mechanisms, and disrupting its transcriptional network. This review explores the role of MYCN in different subtypes of pediatric brain tumors and highlights novel ongoing therapeutic approaches. However, further research is necessary to develop more effective therapies and improve survival outcomes for patients with MYCN-driven tumor.
Collapse
Affiliation(s)
- Adriana Fernandez Garcia
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Jayden Jackson
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Poorvi Iyer
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Elissa G. Oliver
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Kosuke Funato
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Hoang TT, Herceg Z, Coulter DW, de Smith A, Arora M, Funk WE, Haynes D, Linder SH, Nogueira LM, Hughes AE, Williams LA, Schraw JM, Scheurer ME, Lupo PJ. Environmental health disparities in pediatric cancer: a report from the Fourth Symposium on Childhood Cancer Health Disparities. Pediatr Hematol Oncol 2025; 42:186-203. [PMID: 40110606 DOI: 10.1080/08880018.2025.2479479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
The 4th Symposium on Childhood Cancer Health Disparities was held at Texas Children's Hospital in Houston, Texas, on September 26, 2023. The symposium registered 94 attendees from different backgrounds (e.g. clinicians, epidemiologists, exposure assessment scientists, geospatial experts) with an interest in environmental health disparities of pediatric cancer susceptibility and treatment outcomes. The focus of the symposium was to provide an overview of the role of environmental risk factors in studies of pediatric cancer, introduce novel exposure assessment tools that can be applied to the field, and highlight opportunities to study the impact of environmental health disparities in pediatric cancer susceptibility and outcomes. This report summarizes the scientific content of the symposium and highlights priorities to advance the field.
Collapse
Affiliation(s)
- Thanh T Hoang
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon Cedex 07, France
| | - Don W Coulter
- Division of Hematology/Oncology, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adam de Smith
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Manish Arora
- The Senator Frank R. Lautenberg Environmental Health Science Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William E Funk
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David Haynes
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen H Linder
- Department of Management, Policy and Community Health, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Leticia M Nogueira
- Surveillance & Health Equity Science, American Cancer Society, Kennesaw, Georgia, USA
| | - Amy E Hughes
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lindsay A Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| | - Jeremy M Schraw
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Michael E Scheurer
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Jung EM, Heck JE, Spector LG. The relative contributions of genetic and non-genetic factors to the risk of neuroblastoma. Pediatr Investig 2025; 9:82-93. [PMID: 40241886 PMCID: PMC11998183 DOI: 10.1002/ped4.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/02/2024] [Indexed: 04/18/2025] Open
Abstract
Previous literature has well-established genetic factors as being associated with neuroblastoma (NB). About 1%-2% of NB cases are familial, with 85% of these cases predisposed to mutations in the PHOX2B and ALK genes. The genetic basis of sporadic NB has been studied through genome-wide association studies and next-generation sequencing approaches. Particularly, germline variants, as well as copy number variations, confer increased risks of NB, often with effect estimates ≥1.5, underscoring the strong genetic contributions to NB. However, the strength of the association varied in non-genetic factors. Some risk factors, such as birth defects, maternal illicit drug use, and early infections, had relatively stronger associations (effect estimates ≥1.5 or ≤0.67), while some other factors remain inconclusive. This suggests that certain non-genetic factors may play a more prominent role in NB risk, while further research is needed to clarify the impact of others. We synthesized and critically evaluated existing literature on the risk factors of NB to provide an overview, analyze the current state of knowledge, and outline a research path to address the relative contributions of genetic and non-genetic factors in NB. Future epidemiologic studies should incorporate novel methods for measuring genetic and non-genetic factors to comprehensively assess the full extent of factors contributing to NB. Furthermore, the utilization of dried blood spots holds promise to overcome technical and recruitment challenges for future studies. These strategies will contribute to a more holistic understanding of NB etiology and potentially lead to improved prevention strategies.
Collapse
Affiliation(s)
- Eun Mi Jung
- Department of PediatricsDivision of Epidemiology and Clinical Research, University of MinnesotaMinneapolisMinnesotaUSA
| | - Julia E. Heck
- College of Health and Public ServiceUniversity of North TexasDentonTexasUSA
| | - Logan G. Spector
- Department of PediatricsDivision of Epidemiology and Clinical Research, University of MinnesotaMinneapolisMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
5
|
Aierken Y, Tan K, Liu T, Lv Z. Prognosis and immune infiltration prediction in neuroblastoma based on neutrophil extracellular traps-related gene signature. Sci Rep 2025; 15:5343. [PMID: 39948114 PMCID: PMC11825912 DOI: 10.1038/s41598-025-88608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Neuroblastoma (NB) is a malignant tumor originating from the peripheral sympathetic nervous system and high-risk NB patients have a dismal prognosis. Recent studies have underscored the pivotal role of neutrophil extracellular traps (NETs) in the proliferation, metastasis and immune evasion of cancer. To explore the effect of NETs on NB, we have carried out a systematic analysis and showed several findings in the present work. First, expression profiles along with clinical data were analyzed using the training dataset GSE62564 and 36 NETs-related genes were identified to be significantly associated with overall survival. Following LASSO regression analysis, 11 genes were enrolled to construct the NETs signature, which exhibited a robust predictive capability for overall survival with exhibiting high AUC values within the training set. Validation cohorts confirmed a similar predictive efficacy. Next, NB patients were classified into subgroups based on median risk scores and differentially expressed genes were analyzed. Furthermore, the study performed comprehensive analyses encompassing functional enrichment, immune infiltration and drug sensitivity. Enrichment analysis revealed that the high-risk NBs with high-risk score displayed characteristics of oncogenic malignancy, poor prognosis and immunosuppression. Notably, the risk score exhibited a strong correlation with infiltration levels of various immune cells and the sensitivity to anti-cancer drugs, and was further recognized as an independent prognostic factor for NB patients. In summary, our study elucidates a novel NETs-related gene signature comprising 11 genes, which serves a reliable predictor for NB prognosis.
Collapse
Affiliation(s)
- Yeerfan Aierken
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Tao Liu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
6
|
Du Y, Benny PA, Shao Y, Schlueter RJ, Gurary A, Lum-Jones A, Lassiter CB, AlAkwaa FM, Tiirikainen M, Towner D, Ward WS, Garmire LX. Multiomics analysis of umbilical cord hematopoietic stem cells from a multiethnic cohort of Hawaii reveals the intergenerational effect of maternal prepregnancy obesity and risks for cancers. Gigascience 2025; 14:giaf039. [PMID: 40388307 PMCID: PMC12087453 DOI: 10.1093/gigascience/giaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Maternal obesity is a health concern that may predispose newborns to a high risk of medical problems later in life. To understand the intergenerational effect of maternal obesity, we hypothesized that the maternal obesity effect is mediated by epigenetic changes in the CD34+/CD38-/Lin- hematopoietic stem cells (uHSCs) in the offspring. To investigate this, we conducted a DNA methylation centric multiomics study. We measured DNA methylation and gene expression of the CD34+/CD38-/Lin- uHSCs and metabolomics of the cord blood, all from a multiethnic cohort from Kapiolani Medical Center for Women and Children in Honolulu, Hawaii (n=72, collected between 2016 and 2018). RESULTS Differential methylation analysis unveiled a global hypermethylation pattern in the maternal prepregnancy obese group (BH adjusted P < 0.05), after adjusting for major clinical confounders. KEGG pathway enrichment, WGCNA, and PPI analyses revealed that hypermethylated CpG sites were involved in critical biological processes, including cell cycle, protein synthesis, immune signaling, and lipid metabolism. Utilizing Shannon entropy on uHSCs methylation, we discerned notably higher quiescence of uHSCs impacted by maternal obesity. Additionally, the integration of multiomics data-including methylation, gene expression, and metabolomics-provided further evidence of dysfunctions in adipogenesis, erythropoietin production, cell differentiation, and DNA repair, aligning with the findings at the epigenetic level. Furthermore, we trained a random forest classifier using the CpG sites in the genes of the top pathways associated with maternal obesity, and applied it to predict cancer versus adjacent normal sample labels in 14 Cancer Genome Atlas (TCGA) cancer types. Five of 14 cancers showed balanced accuracy of 0.6 or higher: LUSC (0.87), PAAD (0.83), KIRC (0.71), KIRP (0.63) and BRCA (0.60). CONCLUSIONS This study revealed the significant correlation between prepregnancy maternal obesity and multiomics-level molecular changes in the uHSCs of offspring, particularly at the DNA methylation level. These maternal-obesity-associated epigenetic markers in uHSCs may contribute to increased risks in certain cancers of the offspring. Larger and multicenter cohort validation studies are warranted to follow up the current single-site study.
Collapse
Affiliation(s)
- Yuheng Du
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paula A Benny
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI 96826, USA
| | - Yuchen Shao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan J Schlueter
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI 96826, USA
| | - Alexandra Gurary
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI 96826, USA
| | - Annette Lum-Jones
- University of Hawaii Cancer Center, Population Sciences of the Pacific Program-Epidemiology, Honolulu, HI 96813, USA
| | - Cameron B Lassiter
- University of Hawaii Cancer Center, Population Sciences of the Pacific Program-Epidemiology, Honolulu, HI 96813, USA
| | - Fadhl M AlAkwaa
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maarit Tiirikainen
- University of Hawaii Cancer Center, Population Sciences of the Pacific Program-Epidemiology, Honolulu, HI 96813, USA
| | - Dena Towner
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI 96826, USA
| | - W Steven Ward
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI 96826, USA
| | - Lana X Garmire
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Bilger A, Lambert PF. Rapid-onset cancer. Tumour Virus Res 2025; 19:200312. [PMID: 39755235 PMCID: PMC11764593 DOI: 10.1016/j.tvr.2024.200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Human cancers are generally thought to develop over the course of decades. Such slow progression is well documented for a variety of cancers that we designate "slow-onset" cancers. "Rapid-onset" cancers, in contrast, can develop in a matter of months in humans or in as little as 9 days in mice. These cancers often develop under conditions that might be expected to accelerate cancer development: early development, immune deficiency, or viral infection. We will discuss rapid-onset cancers in the context of the "hallmarks of cancer" - properties cells must acquire in order to become malignant - focusing on how viruses are particularly well suited to causing rapid-onset cancer.
Collapse
Affiliation(s)
- Andrea Bilger
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA.
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Oliver TRW, Behjati S. Developmental Dysregulation of Childhood Cancer. Cold Spring Harb Perspect Med 2024; 14:a041580. [PMID: 38692740 PMCID: PMC11529852 DOI: 10.1101/cshperspect.a041580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Most childhood cancers possess distinct clinicopathological profiles from those seen in adulthood, reflecting their divergent mechanisms of carcinogenesis. Rather than depending on the decades-long, stepwise accumulation of changes within a mature cell that defines adult carcinomas, many pediatric malignancies emerge rapidly as the consequence of random errors during development. These errors-whether they be genetic, epigenetic, or microenvironmental-characteristically block maturation, resulting in phenotypically primitive neoplasms. Only an event that falls within a narrow set of spatiotemporal parameters will forge a malignant clone; if it occurs too soon then the event might be lethal, or negatively selected against, while if it is too late or in an incorrectly primed precursor cell then the necessary intracellular conditions for transformation will not be met. The precise characterization of these changes, through the study of normal tissues and tumors from patients and model systems, will be essential if we are to develop new strategies to diagnose, treat, and perhaps even prevent childhood cancer.
Collapse
Affiliation(s)
- Thomas R W Oliver
- Department of Histopathology and Cytology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
| |
Collapse
|
9
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
10
|
Morales-Suárez-Varela M, Llopis-Morales A, Doccioli C, Donzelli G. Relationship between parental exposure to radiofrequency electromagnetic fields and primarily hematopoietic neoplasms (lymphoma, leukemia) and tumors in the central nervous system in children: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:499-510. [PMID: 36944196 DOI: 10.1515/reveh-2022-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Low-frequency electromagnetic fields have grown exponentially in recent years due to technological development and modernization. The World Health Organization (WHO)/International Agency for Research on Cancer (IARC) has classified radiofrequency electromagnetic fields (RF-EMFs) as possibly carcinogenic to humans (Group 2B), and recent studies have investigated the association between exposure to electromagnetic fields in parents and possible health effects in children, especially the development of tumours of the central nervous system (CNS). The objective of this systematic review was to collate all evidence on the relationship between parental occupational exposure to electromagnetic fields and the development of CNS cancer in children and to evaluate this association. This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Embase, and Web of Science were searched from January 1990 to April 2021. The search was conducted using the following search string: "occupational" AND "child" AND "electromagnetic" AND "cancer". Seventeen articles met our inclusion criteria: 13 case-control studies, two cohort studies, and 2 meta-analyses. Most of the studies showed several methodological weaknesses that limited their results. Due to a lack of consistency regarding the outcome as well as the heterogeneity in the reviewed studies, the body of evidence for the effects of parental exposure to electromagnetic fields is not clear. Methodological heterogeneity in the way that studies were conducted could be responsible for the lack of consistency in the findings. Overall, the body of evidence allows no conclusion on the relationship between parental exposure to electromagnetic fields and the occurrence of CNS tumours in children.
Collapse
Affiliation(s)
- María Morales-Suárez-Varela
- Department of Preventive Medicine and Public Health, Food Sciences, Toxicology, and Legal Medicine, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estellés s/n, Burjassot, 46100 Valencia, Spain
- CIBER of Epidemiology and Public Health (CIBERESP). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029 Madrid
| | - Agustin Llopis-Morales
- Department of Preventive Medicine and Public Health, Food Sciences, Toxicology, and Legal Medicine, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Chiara Doccioli
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Gabriele Donzelli
- Department of Health Sciences, University of Florence, Viale GB Morgagni 48, 50134 Florence, Italy
| |
Collapse
|
11
|
Ekstrom TL, Hussain S, Bedekovics T, Ali A, Paolini L, Mahmood H, Rosok RM, Koster J, Johnsen SA, Galardy PJ. USP44 Overexpression Drives a MYC-Like Gene Expression Program in Neuroblastoma through Epigenetic Reprogramming. Mol Cancer Res 2024; 22:812-825. [PMID: 38775808 PMCID: PMC11372370 DOI: 10.1158/1541-7786.mcr-23-0454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 09/05/2024]
Abstract
Neuroblastoma is an embryonic cancer that contributes disproportionately to death in young children. Sequencing data have uncovered few recurrently mutated genes in this cancer, although epigenetic pathways have been implicated in disease pathogenesis. We used an expression-based computational screen that examined the impact of deubiquitinating enzymes on patient survival to identify potential new targets. We identified the histone H2B deubiquitinating enzyme USP44 as the enzyme with the greatest impact on survival in patients with neuroblastoma. High levels of USP44 significantly correlate with metastatic disease, unfavorable histology, advanced patient age, and MYCN amplification. The subset of patients with tumors expressing high levels of USP44 had significantly worse survival, including those with tumors lacking MYCN amplification. We showed experimentally that USP44 regulates neuroblastoma cell proliferation, migration, invasion, and neuronal development. Depletion of the histone H2B ubiquitin ligase subunit RNF20 resulted in similar findings, strongly implicating this histone mark as the target of USP44 activity in this disease. Integration of transcriptome and epigenome in analyses demonstrates a distinct set of genes that are regulated by USP44, including those in Hallmark MYC target genes in both murine embryonic fibroblasts and the SH-SY5Y neuroblastoma cell line. We conclude that USP44 is a novel epigenetic regulator that promotes aggressive features and may be a novel target in neuroblastoma. Implications: This study identifies a new genetic marker of aggressive neuroblastoma and identifies the mechanisms by which its overactivity contributes to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Thomas L. Ekstrom
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota.
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Family Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Asma Ali
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Lucia Paolini
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| | - Hina Mahmood
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Raya M. Rosok
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Jan Koster
- Department of CEMM, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | | | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
12
|
Mason NR, Cahill H, Diamond Y, McCleary K, Kotecha RS, Marshall GM, Mateos MK. Down syndrome-associated leukaemias: current evidence and challenges. Ther Adv Hematol 2024; 15:20406207241257901. [PMID: 39050114 PMCID: PMC11268035 DOI: 10.1177/20406207241257901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/13/2024] [Indexed: 07/27/2024] Open
Abstract
Children with Down syndrome (DS) are at increased risk of developing haematological malignancies, in particular acute megakaryoblastic leukaemia and acute lymphoblastic leukaemia. The microenvironment established by abnormal haematopoiesis driven by trisomy 21 is compounded by additional genetic and epigenetic changes that can drive leukaemogenesis in patients with DS. GATA-binding protein 1 (GATA1) somatic mutations are implicated in the development of transient abnormal myelopoiesis and the progression to myeloid leukaemia of DS (ML-DS) and provide a model of the multi-step process of leukaemogenesis in DS. This review summarises key genetic drivers for the development of leukaemia in patients with DS, the biology and treatment of ML-DS and DS-associated acute lymphoblastic leukaemia, late effects of treatments for DS-leukaemias and the focus for future targeted therapy.
Collapse
Affiliation(s)
- Nicola R. Mason
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Hilary Cahill
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Yonatan Diamond
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Karen McCleary
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Bone Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Glenn M. Marshall
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, Randwick, NSW, Australia School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Marion K. Mateos
- Kids Cancer Centre, Sydney Children’s Hospital, Level 1 South Wing, High Street, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
13
|
Murray JE, Valli E, Milazzo G, Mayoh C, Gifford AJ, Fletcher JI, Xue C, Jayatilleke N, Salehzadeh F, Gamble LD, Rouaen JRC, Carter DR, Forgham H, Sekyere EO, Keating J, Eden G, Allan S, Alfred S, Kusuma FK, Clark A, Webber H, Russell AJ, de Weck A, Kile BT, Santulli M, De Rosa P, Fleuren EDG, Gao W, Wilkinson-White L, Low JKK, Mackay JP, Marshall GM, Hilton DJ, Giorgi FM, Koster J, Perini G, Haber M, Norris MD. The transcriptional co-repressor Runx1t1 is essential for MYCN-driven neuroblastoma tumorigenesis. Nat Commun 2024; 15:5585. [PMID: 38992040 PMCID: PMC11239676 DOI: 10.1038/s41467-024-49871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
MYCN oncogene amplification is frequently observed in aggressive childhood neuroblastoma. Using an unbiased large-scale mutagenesis screen in neuroblastoma-prone transgenic mice, we identify a single germline point mutation in the transcriptional corepressor Runx1t1, which abolishes MYCN-driven tumorigenesis. This loss-of-function mutation disrupts a highly conserved zinc finger domain within Runx1t1. Deletion of one Runx1t1 allele in an independent Runx1t1 knockout mouse model is also sufficient to prevent MYCN-driven neuroblastoma development, and reverse ganglia hyperplasia, a known pre-requisite for tumorigenesis. Silencing RUNX1T1 in human neuroblastoma cells decreases colony formation in vitro, and inhibits tumor growth in vivo. Moreover, RUNX1T1 knockdown inhibits the viability of PAX3-FOXO1 fusion-driven rhabdomyosarcoma and MYC-driven small cell lung cancer cells. Despite the role of Runx1t1 in MYCN-driven tumorigenesis neither gene directly regulates the other. We show RUNX1T1 forms part of a transcriptional LSD1-CoREST3-HDAC repressive complex recruited by HAND2 to enhancer regions to regulate chromatin accessibility and cell-fate pathway genes.
Collapse
Affiliation(s)
- Jayne E Murray
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Chengyuan Xue
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Nisitha Jayatilleke
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Firoozeh Salehzadeh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Laura D Gamble
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology Sydney, Broadway, NSW, Australia
| | - Helen Forgham
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Eric O Sekyere
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Joanna Keating
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Georgina Eden
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Sophie Allan
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Stephanie Alfred
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Frances K Kusuma
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Ashleigh Clark
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Hannah Webber
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Amanda J Russell
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Antoine de Weck
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Benjamin T Kile
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Martina Santulli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Piergiuseppe De Rosa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Weiman Gao
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Lorna Wilkinson-White
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, NSW, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Jan Koster
- Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia.
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Kostense Z, de Ruiter J. Anaesthesia for children with cancer. BJA Educ 2024; 24:231-237. [PMID: 38899313 PMCID: PMC11184477 DOI: 10.1016/j.bjae.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 06/21/2024] Open
Affiliation(s)
- Z. Kostense
- University Medical Centre, Groningen, The Netherlands
| | - J. de Ruiter
- University Medical Centre, Groningen, The Netherlands
| |
Collapse
|
15
|
Rogne T, Wang R, Wang P, Deziel NC, Metayer C, Wiemels JL, Chen K, Warren JL, Ma X. High ambient temperature in pregnancy and risk of childhood acute lymphoblastic leukaemia: an observational study. Lancet Planet Health 2024; 8:e506-e514. [PMID: 38969477 PMCID: PMC11260908 DOI: 10.1016/s2542-5196(24)00121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND High ambient temperature is increasingly common due to climate change and is associated with risk of adverse pregnancy outcomes. Acute lymphoblastic leukaemia is the most common malignancy in children, the incidence is increasing, and in the USA disproportionately affects Latino children. We aimed to investigate the potential association between high ambient temperature in pregnancy and risk of childhood acute lymphoblastic leukaemia. METHODS We used data from California birth records (children born from Jan 1, 1982, to Dec 31, 2015) and California Cancer Registry (those diagnosed with childhood cancer in California from Jan 1, 1988, to Dec 31, 2015) to identify acute lymphoblastic leukaemia cases diagnosed in infants and children aged 14 years and younger and controls matched by sex, race, ethnicity, and date of last menstrual period. Ambient temperatures were estimated on a 1-km grid. The association between ambient temperature and acute lymphoblastic leukaemia was evaluated per gestational week, restricted to May-September, adjusting for confounders. Bayesian meta-regression was applied to identify critical exposure windows. For sensitivity analyses, we evaluated a 90-day pre-pregnancy period (assuming no direct effect before pregnancy), adjusted for relative humidity and particulate matter less than 2·5 microns in aerodynamic diameter, and constructed an alternatively matched dataset for exposure contrast by seasonality. FINDINGS 6849 cases of childhood acute lymphoblastic leukaemia were identified and, of these, 6258 had sufficient data for study inclusion. We also included 307 579 matched controls. Most of the study population were male (174 693 [55·7%] of the 313 837 included in the study) and of Latino ethnicity (174 906 [55·7%]). The peak association between ambient temperature and risk of acute lymphoblastic leukaemia was observed in gestational week 8, where a 5°C increase was associated with an odds ratio of 1·07 (95% CI 1·04-1·11). A slightly larger effect was seen among Latino children (OR 1·09 [95% CI 1·04-1·14]) than non-Latino White children (OR 1·05 [1·00-1·11]). The sensitivity analyses supported the results of the main analysis. INTERPRETATION Our findings suggest an association between high ambient temperature in early pregnancy and risk of childhood acute lymphoblastic leukaemia. Further replication and investigation of mechanistic pathways might inform mitigation strategies. FUNDING Yale Center on Climate Change and Health, The National Center for Advancing Translational Science, National Institutes of Health.
Collapse
Affiliation(s)
- Tormod Rogne
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA; Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA.
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Pin Wang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, CA, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
16
|
Williams LA, Haynes D, Sample JM, Lu Z, Hossaini A, McGuinn LA, Hoang TT, Lupo PJ, Scheurer ME. PM2.5, vegetation density, and childhood cancer: a case-control registry-based study from Texas 1995-2011. J Natl Cancer Inst 2024; 116:876-884. [PMID: 38366656 PMCID: PMC12116292 DOI: 10.1093/jnci/djae035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Air pollution is positively associated with some childhood cancers, whereas greenness is inversely associated with some adult cancers. The interplay between air pollution and greenness in childhood cancer etiology is unclear. We estimated the association between early-life air pollution and greenness exposure and childhood cancer in Texas (1995 to 2011). METHODS We included 6101 cancer cases and 109 762 controls (aged 0 to 16 years). We linked residential birth address to census tract annual average fine particulate matter <2.5 µg/m³ (PM2.5) and Normalized Difference Vegetation Index (NDVI). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) between PM2.5/NDVI interquartile range increases and cancer. We assessed statistical interaction between PM2.5 and NDVI (likelihood ratio tests). RESULTS Increasing residential early-life PM2.5 exposure was associated with all childhood cancers (OR = 1.10, 95% CI = 1.06 to 1.15), lymphoid leukemias (OR = 1.15, 95% CI = 1.07 to 1.23), Hodgkin lymphomas (OR = 1.27, 95% CI = 1.02 to 1.58), non-Hodgkin lymphomas (OR = 1.24, 95% CI = 1.02 to 1.51), ependymoma (OR = 1.27, 95% CI = 1.01 to 1.60), and others. Increasing NDVI exposure was inversely associated with ependymoma (0- to 4-year-old OR = 0.75, 95% CI = 0.58 to 0.97) and medulloblastoma (OR = 0.75, 95% CI = 0.62 to 0.91) but positively associated with malignant melanoma (OR = 1.75, 95% CI = 1.23 to 2.47) and Langerhans cell histiocytosis (OR = 1.56, 95% CI = 1.07 to 2.28). There was evidence of statistical interaction between NDVI and PM2.5 (P < .04) for all cancers. CONCLUSION Increasing early-life exposure to PM2.5 increased the risk of childhood cancers. NDVI decreased the risk of 2 cancers yet increased the risk of others. These findings highlight the complexity between PM2.5 and NDVI in cancer etiology.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| | - David Haynes
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Jeannette M Sample
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Zhanni Lu
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Ali Hossaini
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Laura A McGuinn
- Department of Family Medicine, University of Chicago, Chicago, IL, USA
| | - Thanh T Hoang
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX, USA
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX, USA
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
17
|
Pastori V, Zambanini G, Citterio E, Weiss T, Nakamura Y, Cantù C, Ronchi AE. Transcriptional repression of the oncofetal LIN28B gene by the transcription factor SOX6. Sci Rep 2024; 14:10287. [PMID: 38704454 PMCID: PMC11069503 DOI: 10.1038/s41598-024-60438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
The identification of regulatory networks contributing to fetal/adult gene expression switches is a major challenge in developmental biology and key to understand the aberrant proliferation of cancer cells, which often reactivate fetal oncogenes. One key example is represented by the developmental gene LIN28B, whose aberrant reactivation in adult tissues promotes tumor initiation and progression. Despite the prominent role of LIN28B in development and cancer, the mechanisms of its transcriptional regulation are largely unknown. Here, by using quantitative RT-PCR and single cell RNA sequencing data, we show that in erythropoiesis the expression of the transcription factor SOX6 matched a sharp decline of LIN28B mRNA during human embryo/fetal to adult globin switching. SOX6 overexpression repressed LIN28B not only in a panel of fetal-like erythroid cells (K562, HEL and HUDEP1; ≈92% p < 0.0001, 54% p = 0.0009 and ≈60% p < 0.0001 reduction, respectively), but also in hepatoblastoma HepG2 and neuroblastoma SH-SY5H cells (≈99% p < 0.0001 and ≈59% p < 0.0001 reduction, respectively). SOX6-mediated repression caused downregulation of the LIN28B/Let-7 targets, including MYC and IGF2BP1, and rapidly blocks cell proliferation. Mechanistically, Lin28B repression is accompanied by SOX6 physical binding within its locus, suggesting a direct mechanism of LIN28B downregulation that might contribute to the fetal/adult erythropoietic transition and restrict cancer proliferation.
Collapse
Affiliation(s)
- Valentina Pastori
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | - Elisabetta Citterio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Tamina Weiss
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Antonella Ellena Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy.
| |
Collapse
|
18
|
Saldana-Guerrero IM, Montano-Gutierrez LF, Boswell K, Hafemeister C, Poon E, Shaw LE, Stavish D, Lea RA, Wernig-Zorc S, Bozsaky E, Fetahu IS, Zoescher P, Pötschger U, Bernkopf M, Wenninger-Weinzierl A, Sturtzel C, Souilhol C, Tarelli S, Shoeb MR, Bozatzi P, Rados M, Guarini M, Buri MC, Weninger W, Putz EM, Huang M, Ladenstein R, Andrews PW, Barbaric I, Cresswell GD, Bryant HE, Distel M, Chesler L, Taschner-Mandl S, Farlik M, Tsakiridis A, Halbritter F. A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations. Nat Commun 2024; 15:3745. [PMID: 38702304 PMCID: PMC11068915 DOI: 10.1038/s41467-024-47945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.
Collapse
Affiliation(s)
- Ingrid M Saldana-Guerrero
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | | | - Katy Boswell
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | | | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research (ICR) & Royal Marsden NHS Trust, London, UK
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Dylan Stavish
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Rebecca A Lea
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Sara Wernig-Zorc
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Irfete S Fetahu
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Medical University of Vienna, Department of Neurology, Division of Neuropathology and Neurochemistry, Vienna, Austria
| | - Peter Zoescher
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Ulrike Pötschger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik GmbH, Vienna, Austria
| | | | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Celine Souilhol
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Sophia Tarelli
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Mohamed R Shoeb
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Polyxeni Bozatzi
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Magdalena Rados
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Maria Guarini
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michelle C Buri
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Eva M Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Miller Huang
- Children's Hospital Los Angeles, Cancer and Blood Disease Institutes, and The Saban Research Institute, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruth Ladenstein
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter W Andrews
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | | | - Helen E Bryant
- Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Martin Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research (ICR) & Royal Marsden NHS Trust, London, UK
| | | | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK.
- Neuroscience Institute, The University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
19
|
Rios P, Herlemont P, Fauque P, Lacour B, Jouannet P, Weill A, Zureik M, Clavel J, Dray-Spira R. Medically Assisted Reproduction and Risk of Cancer Among Offspring. JAMA Netw Open 2024; 7:e249429. [PMID: 38696167 PMCID: PMC11066701 DOI: 10.1001/jamanetworkopen.2024.9429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 05/05/2024] Open
Abstract
Importance Cancer is a leading cause of death among children worldwide. Treatments used for medically assisted reproduction (MAR) are suspected risk factors because of their potential for epigenetic disturbance and associated congenital malformations. Objective To assess the risk of cancer, overall and by cancer type, among children born after MAR compared with children conceived naturally. Design, Setting, and Participants For this cohort study, the French National Mother-Child Register (EPI-MERES) was searched for all live births that occurred in France between January 1, 2010, and December 31, 2021 (and followed up until June 30, 2022). The EPI-MERES was built from comprehensive data of the French National Health Data System. Data analysis was performed from December 1, 2021, to June 30, 2023. Exposure Use of assisted reproduction technologies (ART), such as fresh embryo transfer (ET) or frozen ET (FET), and artificial insemination (AI). Main Outcomes and Measures The risk of cancer was compared, overall and by cancer type, among children born after fresh ET, FET, or AI and children conceived naturally, using Cox proportional hazards regression models adjusted for maternal and child characteristics at birth. Results This study included 8 526 306 children with a mean (SD) age of 6.4 (3.4) years; 51.2% were boys, 96.4% were singletons, 12.1% were small for gestational age at birth, and 3.1% had a congenital malformation. There were 260 236 children (3.1%) born after MAR, including 133 965 (1.6%) after fresh ET, 66 165 (0.8%) after FET, and 60 106 (0.7%) after AI. A total of 9256 case patients with cancer were identified over a median follow-up of 6.7 (IQR, 3.7-9.6) years; 165, 57, and 70 were born after fresh ET, FET, and AI, respectively. The overall risk of cancer did not differ between children conceived naturally and those born after fresh ET (hazard ratio [HR], 1.12 [95% CI, 0.96 to 1.31]), FET (HR, 1.02 [95% CI, 0.78 to 1.32]), or AI (HR, 1.09 [95% CI, 0.86 to 1.38]). However, the risk of acute lymphoblastic leukemia was higher among children born after FET (20 case patients; HR 1.61 [95% CI, 1.04 to 2.50]; risk difference [RD], 23.2 [95% CI, 1.5 to 57.0] per million person-years) compared with children conceived naturally. Moreover, among children born between 2010 and 2015, the risk of leukemia was higher among children born after fresh ET (45 case patients; HR, 1.42 [95% CI, 1.06 to 1.92]; adjusted RD, 19.7 [95% CI, 2.8 to 43.2] per million person-years). Conclusions and Relevance The findings of this cohort study suggest that children born after FET or fresh ET had an increased risk of leukemia compared with children conceived naturally. This risk, although resulting in a limited number of cases, needs to be monitored in view of the continuous increase in the use of ART.
Collapse
Affiliation(s)
- Paula Rios
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, French National Agency for Medicines and Health Products Safety, French National Health Insurance, Saint-Denis, France
- Epidemiology of Childhood and Adolescent Cancers, Centre for Research in Epidemiology and Statistics, French National Institute for Health and Medical Research (INSERM) Joint Research Unit (UMR) 1153, Université Paris-Cité, Paris, France
| | - Philippe Herlemont
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, French National Agency for Medicines and Health Products Safety, French National Health Insurance, Saint-Denis, France
| | - Patricia Fauque
- INSERM UMR 1231, Université Bourgogne Franche-Comté, Dijon, France
| | - Brigitte Lacour
- Epidemiology of Childhood and Adolescent Cancers, Centre for Research in Epidemiology and Statistics, French National Institute for Health and Medical Research (INSERM) Joint Research Unit (UMR) 1153, Université Paris-Cité, Paris, France
- French National Registry of Childhood Cancers, Assistance Publique–Hôpitaux de Paris, Centre Hospitalier Régional Universitaire (CHU) Paul Brousse, Villejuif, France
- French National Registry of Childhood Solid Tumours, CHU de Nancy, Nancy, France
| | | | - Alain Weill
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, French National Agency for Medicines and Health Products Safety, French National Health Insurance, Saint-Denis, France
| | - Mahmoud Zureik
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, French National Agency for Medicines and Health Products Safety, French National Health Insurance, Saint-Denis, France
| | - Jacqueline Clavel
- Epidemiology of Childhood and Adolescent Cancers, Centre for Research in Epidemiology and Statistics, French National Institute for Health and Medical Research (INSERM) Joint Research Unit (UMR) 1153, Université Paris-Cité, Paris, France
- French National Registry of Childhood Cancers, Assistance Publique–Hôpitaux de Paris, Centre Hospitalier Régional Universitaire (CHU) Paul Brousse, Villejuif, France
- French National Registry of Childhood Solid Tumours, CHU de Nancy, Nancy, France
| | - Rosemary Dray-Spira
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products, French National Agency for Medicines and Health Products Safety, French National Health Insurance, Saint-Denis, France
| |
Collapse
|
20
|
Stokes ME, Vasciaveo A, Small JC, Zask A, Reznik E, Smith N, Wang Q, Daniels J, Forouhar F, Rajbhandari P, Califano A, Stockwell BR. Subtype-selective prenylated isoflavonoids disrupt regulatory drivers of MYCN-amplified cancers. Cell Chem Biol 2024; 31:805-819.e9. [PMID: 38061356 PMCID: PMC11031350 DOI: 10.1016/j.chembiol.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease. Applying this approach to neuroblastoma (NBL), we screened bioactive molecules in cell lines representing its MYC-dependent (MYCNA) and mesenchymal (MES) subtypes to identify selective compounds, followed by PLATESeq profiling of treated cells. This revealed compounds that disrupt a sub-network of MYCNA-specific regulatory proteins, resulting in MYCN degradation in vivo. The top hit was isopomiferin, a prenylated isoflavonoid that inhibited casein kinase 2 (CK2) in cells. Isopomiferin and its structural analogs inhibited MYC and MYCN in NBL and lung cancer cells, highlighting the general MYC-inhibiting potential of this unique scaffold.
Collapse
Affiliation(s)
- Michael E Stokes
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alessandro Vasciaveo
- Department of Systems Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Jonnell Candice Small
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Nailah Smith
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Qian Wang
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Jacob Daniels
- Department of Pharmacology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource (PMCSR), Columbia University Medical Center, New York City, NY 10032, USA
| | - Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA; Department of Chemistry, Columbia University, New York City, NY 10027, USA; Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
21
|
Wang T, Liu L, Fang J, Jin H, Natarajan S, Sheppard H, Lu M, Turner G, Confer T, Johnson M, Steinberg J, Ha L, Yadak N, Jain R, Picketts DJ, Ma X, Murphy A, Davidoff AM, Glazer ES, Easton J, Chen X, Wang R, Yang J. Conditional c-MYC activation in catecholaminergic cells drives distinct neuroendocrine tumors: neuroblastoma vs somatostatinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584622. [PMID: 38559042 PMCID: PMC10980015 DOI: 10.1101/2024.03.12.584622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The MYC proto-oncogenes (c-MYC, MYCN , MYCL ) are among the most deregulated oncogenic drivers in human malignancies including high-risk neuroblastoma, 50% of which are MYCN -amplified. Genetically engineered mouse models (GEMMs) based on the MYCN transgene have greatly expanded the understanding of neuroblastoma biology and are powerful tools for testing new therapies. However, a lack of c-MYC-driven GEMMs has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and therapy development given that c-MYC is also an important driver of many high-risk neuroblastomas. In this study, we report two transgenic murine neuroendocrine models driven by conditional c-MYC induction in tyrosine hydroxylase (Th) and dopamine β-hydroxylase (Dbh)-expressing cells. c-MYC induction in Th-expressing cells leads to a preponderance of Pdx1 + somatostatinomas, a type of pancreatic neuroendocrine tumor (PNET), resembling human somatostatinoma with highly expressed gene signatures of δ cells and potassium channels. In contrast, c-MYC induction in Dbh-expressing cells leads to onset of neuroblastomas, showing a better transforming capacity than MYCN in a comparable C57BL/6 genetic background. The c-MYC murine neuroblastoma tumors recapitulate the pathologic and genetic features of human neuroblastoma, express GD2, and respond to anti-GD2 immunotherapy. This model also responds to DFMO, an FDA-approved inhibitor targeting ODC1, which is a known MYC transcriptional target. Thus, establishing c-MYC-overexpressing GEMMs resulted in different but related tumor types depending on the targeted cell and provide useful tools for testing immunotherapies and targeted therapies for these diseases.
Collapse
|
22
|
Mengzhen Z, Xinwei H, Zeheng T, Nan L, Yang Y, Huirong Y, Kaisi F, Xiaoting D, Liucheng Y, Kai W. Integrated machine learning-driven disulfidptosis profiling: CYFIP1 and EMILIN1 as therapeutic nodes in neuroblastoma. J Cancer Res Clin Oncol 2024; 150:109. [PMID: 38427078 PMCID: PMC10907485 DOI: 10.1007/s00432-024-05630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Neuroblastoma (NB), a prevalent pediatric solid tumor, presents formidable challenges due to its high malignancy and intricate pathogenesis. The role of disulfidptosis, a novel form of programmed cell death, remains poorly understood in the context of NB. METHODS Gaussian mixture model (GMM)-identified disulfidptosis-related molecular subtypes in NB, differential gene analysis, survival analysis, and gene set variation analysis were conducted subsequently. Weighted gene co-expression network analysis (WGCNA) selected modular genes most relevant to the disulfidptosis core pathways. Integration of machine learning approaches revealed the combination of the Least absolute shrinkage and selection operator (LASSO) and Random Survival Forest (RSF) provided optimal dimensionality reduction of the modular genes. The resulting model was validated, and a nomogram assessed disulfidptosis characteristics in NB. Core genes were filtered and subjected to tumor phenotype and disulfidptosis-related experiments. RESULTS GMM clustering revealed three distinct subtypes with diverse prognoses, showing significant variations in glucose metabolism, cytoskeletal structure, and tumor-related pathways. WGCNA highlighted the red module of genes highly correlated with disulfide isomerase activity, cytoskeleton formation, and glucose metabolism. The LASSO and RSF combination yielded the most accurate and stable prognostic model, with a significantly worse prognosis for high-scoring patients. Cytological experiments targeting core genes (CYFIP1, EMILIN1) revealed decreased cell proliferation, migration, invasion abilities, and evident cytoskeletal deformation upon core gene knockdown. CONCLUSIONS This study showcases the utility of disulfidptosis-related gene scores for predicting prognosis and molecular subtypes of NB. The identified core genes, CYFIP1 and EMILIN1, hold promise as potential therapeutic targets and diagnostic markers for NB.
Collapse
Affiliation(s)
- Zhang Mengzhen
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Hou Xinwei
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Tan Zeheng
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Li Nan
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Huirong
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Fan Kaisi
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ding Xiaoting
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Liucheng
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Wu Kai
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
23
|
Xia Y, Wang C, Li X, Gao M, Hogg HDJ, Tunthanathip T, Hulsen T, Tian X, Zhao Q. Development and validation of a novel stemness-related prognostic model for neuroblastoma using integrated machine learning and bioinformatics analyses. Transl Pediatr 2024; 13:91-109. [PMID: 38323183 PMCID: PMC10839279 DOI: 10.21037/tp-23-582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a common solid tumor in children, with a dismal prognosis in high-risk cases. Despite advancements in NB treatment, the clinical need for precise prognostic models remains critical, particularly to address the heterogeneity of cancer stemness which plays a pivotal role in tumor aggressiveness and patient outcomes. By utilizing machine learning (ML) techniques, we aimed to explore the cancer stemness features in NB and identify stemness-related hub genes for future investigation and potential targeted therapy. METHODS The public dataset GSE49710 was employed as the training set for acquire gene expression data and NB sample information, including age, stage, and MYCN amplification status and survival. The messenger RNA (mRNA) expression-based stemness index (mRNAsi) was calculated and patients were grouped according to their mRNAsi value. Stemness-related hub genes were identified from the differentially expressed genes (DEGs) to construct a gene signature. This was followed by evaluating the relationship between cancer stemness and the NB immune microenvironment, and the development of a predictive nomogram. We assessed the prognostic outcomes including overall survival (OS) and event-free survival, employing machine learning methods to measure predictive accuracy through concordance indices and validation in an independent cohort E-MTAB-8248. RESULTS Based on mRNAsi, we categorized NB patients into two groups to explore the association between varying levels of stemness and their clinical outcomes. High mRNAsi was linked to the advanced International Neuroblastoma Staging System (INSS) stage, amplified MYCN, and elder age. High mRNAsi patients had a significantly poorer prognosis than low mRNAsi cases. According to the multivariate Cox analysis, the mRNAsi was an independent risk factor of prognosis in NB patients. After least absolute shrinkage and selection operator (LASSO) regression analysis, four key genes (ERCC6L, DUXAP10, NCAN, DIRAS3) most related to mRNAsi scores were discovered and a risk model was built. Our model demonstrated a significant prognostic capacity with hazard ratios (HR) ranging from 18.96 to 41.20, P values below 0.0001, and area under the receiver operating characteristic curve (AUC) values of 0.918 in the training set, suggesting high predictive accuracy which was further confirmed by external verification. Individuals with a low four-gene signature score had a favorable outcome and better immune responses. Finally, a nomogram for clinical practice was constructed by integrating the four-gene signature and INSS stage. CONCLUSIONS Our findings confirm the influence of CSC features in NB prognosis. The newly developed NB stemness-related four-gene signature prognostic signature could facilitate the prognostic prediction, and the identified hub genes may serve as promising targets for individualized treatments.
Collapse
Affiliation(s)
- Yuren Xia
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of General Surgery, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Chaoyu Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xin Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of Pathology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Mingyou Gao
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Henry David Jeffry Hogg
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Thara Tunthanathip
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Tim Hulsen
- Data Science & AI Engineering, Philips, Eindhoven, The Netherlands
| | - Xiangdong Tian
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Qiang Zhao
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| |
Collapse
|
24
|
Van Haver S, Fan Y, Bekaert SL, Everaert C, Van Loocke W, Zanzani V, Deschildre J, Maestre IF, Amaro A, Vermeirssen V, De Preter K, Zhou T, Kentsis A, Studer L, Speleman F, Roberts SS. Human iPSC modeling recapitulates in vivo sympathoadrenal development and reveals an aberrant developmental subpopulation in familial neuroblastoma. iScience 2024; 27:108096. [PMID: 38222111 PMCID: PMC10784699 DOI: 10.1016/j.isci.2023.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2024] Open
Abstract
Studies defining normal and disrupted human neural crest cell development have been challenging given its early timing and intricacy of development. Consequently, insight into the early disruptive events causing a neural crest related disease such as pediatric cancer neuroblastoma is limited. To overcome this problem, we developed an in vitro differentiation model to recapitulate the normal in vivo developmental process of the sympathoadrenal lineage which gives rise to neuroblastoma. We used human in vitro pluripotent stem cells and single-cell RNA sequencing to recapitulate the molecular events during sympathoadrenal development. We provide a detailed map of dynamically regulated transcriptomes during sympathoblast formation and illustrate the power of this model to study early events of the development of human neuroblastoma, identifying a distinct subpopulation of cell marked by SOX2 expression in developing sympathoblast obtained from patient derived iPSC cells harboring a germline activating mutation in the anaplastic lymphoma kinase (ALK) gene.
Collapse
Affiliation(s)
- Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Joke Deschildre
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Inés Fernandez Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrianna Amaro
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Alex Kentsis
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
- Molecular Pharmacology Program, MSKCC, New York, NY, USA
- Tow Center for Developmental Oncology, MSKCC, New York, NY 10065, USA
- Departments of Pediatrics, Pharmacology and Physiology & Biophysics, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | | |
Collapse
|
25
|
Iourov IY, Vorsanova SG, Yurov YB. A Paradoxical Role for Somatic Chromosomal Mosaicism and Chromosome Instability in Cancer: Theoretical and Technological Aspects. Methods Mol Biol 2024; 2825:67-78. [PMID: 38913303 DOI: 10.1007/978-1-0716-3946-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Somatic chromosomal mosaicism, chromosome instability, and cancer are intimately linked together. Addressing the role of somatic genome variations (encompassing chromosomal mosaicism and instability) in cancer yields paradoxical results. Firstly, somatic mosaicism for specific chromosomal rearrangement causes cancer per se. Secondly, chromosomal mosaicism and instability are associated with a variety of diseases (chromosomal disorders demonstrating less severe phenotypes, complex diseases), which exhibit cancer predisposition. Chromosome instability syndromes may be considered the best examples of these diseases. Thirdly, chromosomal mosaicism and instability are able to result not only in cancerous diseases but also in non-cancerous disorders (brain diseases, autoimmune diseases, etc.). Currently, the molecular basis for these three outcomes of somatic chromosomal mosaicism and chromosome instability remains incompletely understood. Here, we address possible mechanisms for the aforementioned scenarios using a system analysis model. A number of theoretical models based on studies dedicated to chromosomal mosaicism and chromosome instability seem to be valuable for disentangling and understanding molecular pathways to cancer-causing genome chaos. In addition, technological aspects of uncovering causes and consequences of somatic chromosomal mosaicism and chromosome instability are discussed. In total, molecular cytogenetics, cytogenomics, and system analysis are likely to form a powerful technological alliance for successful research against cancer.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
26
|
Mansur MB, deSouza NM, Natrajan R, Abegglen LM, Schiffman JD, Greaves M. Evolutionary determinants of curability in cancer. Nat Ecol Evol 2023; 7:1761-1770. [PMID: 37620552 DOI: 10.1038/s41559-023-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023]
Abstract
The emergence of drug-resistant cells, most of which have a mutated TP53 gene, prevents curative treatment in most advanced and common metastatic cancers of adults. Yet, a few, rarer malignancies, all of which are TP53 wild type, have high cure rates. In this Perspective, we discuss how common features of curable cancers offer insights into the evolutionary and developmental determinants of drug resistance. Acquired loss of TP53 protein function is the most common genetic change in cancer. This probably reflects positive selection in the context of strong ecosystem pressures including microenvironmental hypoxia. Loss of TP53's functions results in multiple fitness benefits and enhanced evolvability of cancer cells. TP53-null cells survive apoptosis, and tolerate potent oncogenic signalling, DNA damage and genetic instability. In addition, critically, they provide an expanded pool of self-renewing, or stem, cells, the primary units of evolutionary selection in cancer, making subsequent adaptation to therapeutic challenge by drug resistance highly probable. The exceptional malignancies that are curable, including the common genetic subtype of childhood acute lymphoblastic leukaemia and testicular seminoma, differ from the common adult cancers in originating prenatally from embryonic or fetal cells that are developmentally primed for TP53-dependent apoptosis. Plus, they have other genetic and phenotypic features that enable dissemination without exposure to selective pressures for TP53 loss, retaining their intrinsic drug hypersensitivity.
Collapse
Affiliation(s)
| | - Nandita M deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Imaging, The Royal Marsden National Health Service (NHS) Foundation Trust, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
27
|
Zhai L, Balachandran A, Larkin R, Seneviratne JA, Chung SA, Lalwani A, Tsubota S, Beck D, Kadomatsu K, Beckers A, Durink K, De Preter K, Speleman F, Haber M, Norris MD, Swarbrick A, Cheung BB, Marshall GM, Carter DR. Mitotic Dysregulation at Tumor Initiation Creates a Therapeutic Vulnerability to Combination Anti-Mitotic and Pro-Apoptotic Agents for MYCN-Driven Neuroblastoma. Int J Mol Sci 2023; 24:15571. [PMID: 37958555 PMCID: PMC10649872 DOI: 10.3390/ijms242115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
MYCN amplification occurs in approximately 20-30% of neuroblastoma patients and correlates with poor prognosis. The TH-MYCN transgenic mouse model mimics the development of human high-risk neuroblastoma and provides strong evidence for the oncogenic function of MYCN. In this study, we identified mitotic dysregulation as a hallmark of tumor initiation in the pre-cancerous ganglia from TH-MYCN mice that persists through tumor progression. Single-cell quantitative-PCR of coeliac ganglia from 10-day-old TH-MYCN mice revealed overexpression of mitotic genes in a subpopulation of premalignant neuroblasts at a level similar to single cells derived from established tumors. Prophylactic treatment using antimitotic agents barasertib and vincristine significantly delayed the onset of tumor formation, reduced pre-malignant neuroblast hyperplasia, and prolonged survival in TH-MYCN mice. Analysis of human neuroblastoma tumor cohorts showed a strong correlation between dysregulated mitosis and features of MYCN amplification, such as MYC(N) transcriptional activity, poor overall survival, and other clinical predictors of aggressive disease. To explore the therapeutic potential of targeting mitotic dysregulation, we showed that genetic and chemical inhibition of mitosis led to selective cell death in neuroblastoma cell lines with MYCN over-expression. Moreover, combination therapy with antimitotic compounds and BCL2 inhibitors exploited mitotic stress induced by antimitotics and was synergistically toxic to neuroblastoma cell lines. These results collectively suggest that mitotic dysregulation is a key component of tumorigenesis in early neuroblasts, which can be inhibited by the combination of antimitotic compounds and pro-apoptotic compounds in MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Lei Zhai
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
| | - Anushree Balachandran
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
| | - Rebecca Larkin
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
| | - Janith A. Seneviratne
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
| | - Sylvia A. Chung
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia
| | - Amit Lalwani
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Anneleen Beckers
- Department of Biomolecular Medicine, Cancer Research Institute Ghent, Ghent University, 9000 Ghent, Belgium
| | - Kaat Durink
- Department of Biomolecular Medicine, Cancer Research Institute Ghent, Ghent University, 9000 Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Cancer Research Institute Ghent, Ghent University, 9000 Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Cancer Research Institute Ghent, Ghent University, 9000 Ghent, Belgium
| | - Michelle Haber
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
| | - Murray D. Norris
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
- UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW 2031, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Belamy B. Cheung
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - Glenn M. Marshall
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Daniel R. Carter
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| |
Collapse
|
28
|
Qin X, Chen B. Comprehensive analysis and validation reveal potential MYCN regulatory biomarkers associated with neuroblastoma prognosis. J Biomol Struct Dyn 2023; 41:8902-8917. [PMID: 36300516 DOI: 10.1080/07391102.2022.2138977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
Neuroblastoma (NB) is an embryonic malignant tumor that occurs in the sympathetic nervous system. The treatment results of patients in the high-risk group are poor, and relapse and treatment failure can occur even with multiple combination treatments. The proto-oncogene MYCN is a BHLH Transcription Factor used as an independent prognostic factor for NB. The proportion of MYCN amplification in tumor tissues of high-risk patients reaches 40-50%. Hence, exploring new MYCN target genes is a meaningful approach in developing treatment for high-risk NB patients. The microarray datasets were obtained from Gene Expression Omnibus (GEO), and differentially expressed genes (DEGs) were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and miRPathDB were used for enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network and for modular analysis. The miRNet and NetworkAnalyst databases were used to predict and construct gene-miRNA and gene-TFs networks. The R2 database was used for expression, correlation, and prognostic analyses. The diagnostic value of the biomarkers was predicted by ROC analysis, and RT-qPCR was used to validate the identified hub genes. Finally, using specific MYCN siRNA and overexpressing plasmids, the correlation between the identified hub genes and MYCN was investigated. Our results showed that FBXO9, HECW2, MIB2, RNF19B, RNF213, TRIM36, and ZBTB16 are novel biomarkers that affect the prognosis of the NB patients. In addition, FBXO9, RNF19B, and TRIM36 were preliminarily confirmed as potential target genes of MYCN. Overall, FBXO9, HECW2, MIB2, RNF19B, RNF213, TRIM36, and ZBTB16 are expected to become novel biomarkers for the treatment of high-risk NB patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiuni Qin
- Guangzhou Concord Cancer Center, Guangzhou, China
| | - Bo Chen
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Zhang X, Zhu WY, Shen SY, Shen JH, Chen XD. Biological roles of RNA m7G modification and its implications in cancer. Biol Direct 2023; 18:58. [PMID: 37710294 PMCID: PMC10500781 DOI: 10.1186/s13062-023-00414-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
M7G modification, known as one of the common post-transcriptional modifications of RNA, is present in many different types of RNAs. With the accurate identification of m7G modifications within RNAs, their functional roles in the regulation of gene expression and different physiological functions have been revealed. In addition, there is growing evidence that m7G modifications are crucial in the emergence of cancer. Here, we review the most recent findings regarding the detection techniques, distribution, biological functions and Regulators of m7G. We also summarize the connections between m7G modifications and cancer development, drug resistance, and tumor microenvironment as well as we discuss the research's future directions and trends.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Wen-Yan Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shu-Yi Shen
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jia-Hao Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiao-Dong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
30
|
Li Y, Wang H, Sun B, Su G, Cang Y, Zhao L, Zhao S, Li Y, Mao B, Ma P. Smurf1 and Smurf2 mediated polyubiquitination and degradation of RNF220 suppresses Shh-group medulloblastoma. Cell Death Dis 2023; 14:494. [PMID: 37537194 PMCID: PMC10400574 DOI: 10.1038/s41419-023-06025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Sonic hedgehog (Shh)-group medulloblastoma (MB) (Shh-MB) encompasses a clinically and molecularly distinct group of cancers originating from the developing nervous system with aberrant high Shh signaling as a causative driver. We recently reported that RNF220 is required for sustained high Shh signaling during Shh-MB progression; however, how high RNF220 expression is achieved in Shh-MB is still unclear. In this study, we found that the ubiquitin E3 ligases Smurf1 and Smurf2 interact with RNF220, and target it for polyubiquitination and degradation. In MB cells, knockdown or overexpression of Smurf1 or Smurf2 promotes or inhibits cell proliferation, colony formation and xenograft growth, respectively, by controlling RNF220 protein levels, and thus modulating Shh signaling. Furthermore, in clinical human MB samples, the protein levels of Smurf1 or Smurf2 were negatively correlated with those of RNF220 or GAB1, a Shh-MB marker. Overall, this study highlights the importance of the Smurf1- and Smurf2-RNF220 axes during the pathogenesis of Shh-MB and provides new therapeutic targets for Shh-MB treatment.
Collapse
Affiliation(s)
- Yuwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650203, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bin Sun
- Laboratory of Animal Tumour Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guifeng Su
- Key Laboratory of Medicinal Chemistry for Natural Resource, School of Pharmacy, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Yu Cang
- Department of Urology, the Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Ling Zhao
- Animal Center of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shuhua Zhao
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, School of Pharmacy, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China.
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese of Academy of Sciences, Kunming, 650201, China.
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
31
|
Santana-Bejarano MB, Grosso-Martínez PR, Puebla-Mora AG, Martínez-Silva MG, Nava-Villalba M, Márquez-Aguirre AL, Ortuño-Sahagún D, Godínez-Rubí M. Pleiotrophin and the Expression of Its Receptors during Development of the Human Cerebellar Cortex. Cells 2023; 12:1733. [PMID: 37443767 PMCID: PMC10341181 DOI: 10.3390/cells12131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
During embryonic and fetal development, the cerebellum undergoes several histological changes that require a specific microenvironment. Pleiotrophin (PTN) has been related to cerebral and cerebellar cortex ontogenesis in different species. PTN signaling includes PTPRZ1, ALK, and NRP-1 receptors, which are implicated in cell differentiation, migration, and proliferation. However, its involvement in human cerebellar development has not been described so far. Therefore, we investigated whether PTN and its receptors were expressed in the human cerebellar cortex during fetal and early neonatal development. The expression profile of PTN and its receptors was analyzed using an immunohistochemical method. PTN, PTPRZ1, and NRP-1 were expressed from week 17 to the postnatal stage, with variable expression among granule cell precursors, glial cells, and Purkinje cells. ALK was only expressed during week 31. These results suggest that, in the fetal and neonatal human cerebellum, PTN is involved in cell communication through granule cell precursors, Bergmann glia, and Purkinje cells via PTPRZ1, NRP-1, and ALK signaling. This communication could be involved in cell proliferation and cellular migration. Overall, the present study represents the first characterization of PTN, PTPRZ1, ALK, and NRP-1 expression in human tissues, suggesting their involvement in cerebellar cortex development.
Collapse
Affiliation(s)
- Margarita Belem Santana-Bejarano
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Paula Romina Grosso-Martínez
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Ana Graciela Puebla-Mora
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
| | - María Guadalupe Martínez-Silva
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Mario Nava-Villalba
- Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara 44270, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Departamento de Morfología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
32
|
Rogne T, Wang R, Wang P, Deziel NC, Metayer C, Wiemels JL, Chen K, Warren JL, Ma X. High Ambient Temperature in Pregnancy and Risk of Childhood Acute Lymphoblastic Leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.19.23290227. [PMID: 37293058 PMCID: PMC10246165 DOI: 10.1101/2023.05.19.23290227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background High ambient temperature is increasingly common due to climate change and is associated with risk of adverse pregnancy outcomes. Acute lymphoblastic leukemia (ALL) is the most common malignancy in children, the incidence is increasing, and in the United States it disproportionately affects Latino children. We aimed to investigate the potential association between high ambient temperature in pregnancy and risk of childhood ALL. Methods We used data from California birth records (1982-2015) and California Cancer Registry (1988-2015) to identify ALL cases diagnosed <14 years and 50 times as many controls matched by sex, race/ethnicity, and date of last menstrual period. Ambient temperatures were estimated on a 1-km grid. Association between ambient temperature and ALL was evaluated per gestational week, restricted to May-September, adjusting for confounders. Bayesian meta-regression was applied to identify critical exposure windows. For sensitivity analyses, we evaluated a 90-day pre-pregnancy period (assuming no direct effect before pregnancy) and constructed an alternatively matched dataset for exposure contrast by seasonality. Findings Our study included 6,258 ALL cases and 307,579 controls. The peak association between ambient temperature and risk of ALL was observed in gestational week 8, where a 5 °C increase was associated with an odds ratio of 1.09 (95% confidence interval 1.04-1.14) and 1.05 (95% confidence interval 1.00-1.11) among Latino and non-Latino White children, respectively. The sensitivity analyses supported this. Interpretation Our findings suggest an association between high ambient temperature in early pregnancy and risk of childhood ALL. Further replication and investigation of mechanistic pathways may inform mitigation strategies.
Collapse
Affiliation(s)
- Tormod Rogne
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Pin Wang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, CA, USA
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
33
|
Thirant C, Peltier A, Durand S, Kramdi A, Louis-Brennetot C, Pierre-Eugène C, Gautier M, Costa A, Grelier A, Zaïdi S, Gruel N, Jimenez I, Lapouble E, Pierron G, Sitbon D, Brisse HJ, Gauthier A, Fréneaux P, Grossetête S, Baudrin LG, Raynal V, Baulande S, Bellini A, Bhalshankar J, Carcaboso AM, Geoerger B, Rohrer H, Surdez D, Boeva V, Schleiermacher G, Delattre O, Janoueix-Lerosey I. Reversible transitions between noradrenergic and mesenchymal tumor identities define cell plasticity in neuroblastoma. Nat Commun 2023; 14:2575. [PMID: 37142597 PMCID: PMC10160107 DOI: 10.1038/s41467-023-38239-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity.
Collapse
Affiliation(s)
- Cécile Thirant
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Agathe Peltier
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Simon Durand
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Amira Kramdi
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Caroline Louis-Brennetot
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Pierre-Eugène
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Margot Gautier
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Ana Costa
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Amandine Grelier
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Sakina Zaïdi
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Nadège Gruel
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- Institut Curie, Department of Translational Research, Paris, France
| | - Irène Jimenez
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
- Institut Curie, Department of Translational Research, Paris, France
- Institut Curie, Laboratoire Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Paris, France
| | - Eve Lapouble
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Gaëlle Pierron
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Déborah Sitbon
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Hervé J Brisse
- Institut Curie, Department of Imaging, PSL Research University, Paris, France
| | | | - Paul Fréneaux
- Institut Curie, Department of Biopathology, Paris, France
| | - Sandrine Grossetête
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Laura G Baudrin
- Institut Curie, Genomics of Excellence (ICGex) Platform, Paris, France. Institut Curie, Single Cell Initiative, Paris, France
| | - Virginie Raynal
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- Institut Curie, Genomics of Excellence (ICGex) Platform, Paris, France. Institut Curie, Single Cell Initiative, Paris, France
| | - Sylvain Baulande
- Institut Curie, Genomics of Excellence (ICGex) Platform, Paris, France. Institut Curie, Single Cell Initiative, Paris, France
| | - Angela Bellini
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
- Institut Curie, Department of Translational Research, Paris, France
- Institut Curie, Laboratoire Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Paris, France
| | - Jaydutt Bhalshankar
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
- Institut Curie, Department of Translational Research, Paris, France
- Institut Curie, Laboratoire Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Paris, France
| | - Angel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, INSERM U1015, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Villejuif, France
| | - Hermann Rohrer
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University, Frankfurt/M, Germany
| | - Didier Surdez
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Valentina Boeva
- Inserm, U1016, Cochin Institute, CNRS UMR8104, Paris University, Paris, France
- ETH Zürich, Department of Computer Science, Institute for Machine Learning, Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zürich, Switzerland
| | - Gudrun Schleiermacher
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
- Institut Curie, Department of Translational Research, Paris, France
- Institut Curie, Laboratoire Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Paris, France
| | - Olivier Delattre
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Isabelle Janoueix-Lerosey
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France.
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.
| |
Collapse
|
34
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
35
|
Comitani F, Nash JO, Cohen-Gogo S, Chang AI, Wen TT, Maheshwari A, Goyal B, Tio ES, Tabatabaei K, Mayoh C, Zhao R, Ho B, Brunga L, Lawrence JEG, Balogh P, Flanagan AM, Teichmann S, Huang A, Ramaswamy V, Hitzler J, Wasserman JD, Gladdy RA, Dickson BC, Tabori U, Cowley MJ, Behjati S, Malkin D, Villani A, Irwin MS, Shlien A. Diagnostic classification of childhood cancer using multiscale transcriptomics. Nat Med 2023; 29:656-666. [PMID: 36932241 PMCID: PMC10033451 DOI: 10.1038/s41591-023-02221-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/13/2023] [Indexed: 03/19/2023]
Abstract
The causes of pediatric cancers' distinctiveness compared to adult-onset tumors of the same type are not completely clear and not fully explained by their genomes. In this study, we used an optimized multilevel RNA clustering approach to derive molecular definitions for most childhood cancers. Applying this method to 13,313 transcriptomes, we constructed a pediatric cancer atlas to explore age-associated changes. Tumor entities were sometimes unexpectedly grouped due to common lineages, drivers or stemness profiles. Some established entities were divided into subgroups that predicted outcome better than current diagnostic approaches. These definitions account for inter-tumoral and intra-tumoral heterogeneity and have the potential of enabling reproducible, quantifiable diagnostics. As a whole, childhood tumors had more transcriptional diversity than adult tumors, maintaining greater expression flexibility. To apply these insights, we designed an ensemble convolutional neural network classifier. We show that this tool was able to match or clarify the diagnosis for 85% of childhood tumors in a prospective cohort. If further validated, this framework could be extended to derive molecular definitions for all cancer types.
Collapse
Affiliation(s)
- Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua O Nash
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sarah Cohen-Gogo
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Astra I Chang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Timmy T Wen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anant Maheshwari
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bipasha Goyal
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Earvin S Tio
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin Tabatabaei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Regis Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ben Ho
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Petra Balogh
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, UK
| | - Adrienne M Flanagan
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, UK
- Research Department of Pathology, University College London Cancer Institute, London, UK
| | | | - Annie Huang
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Vijay Ramaswamy
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Johann Hitzler
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jonathan D Wasserman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Rebecca A Gladdy
- Department of Surgical Oncology, Princess Margaret Cancer Centre/Mount Sinai Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - David Malkin
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anita Villani
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Meredith S Irwin
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
36
|
Liang Y, Liu Y, Zhang P, Zhang M, Du B, Cheng W, Yu Z, Li L, Wang H, Hou G, Zhang X, Zhang W. Plasma circulating cell-free MYCN gene: A noninvasive and prominent recurrence monitoring indicator of neuroblastoma. Cancer Rep (Hoboken) 2023; 6:e1688. [PMID: 35892165 PMCID: PMC9939986 DOI: 10.1002/cnr2.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
The postoperative recurrence of neuroblastoma (NB) patients is an essential reason for the high mortality of NB due to the lack of early, non-invasive, and dynamic strategies for monitoring NB recurrence. Therefore, whether the plasma circulating cell-free MYCN gene as an indicator for monitoring of NB recurrence was systematically evaluated. The MYCN copy number and NAGK (reference gene) copy number (M/N) ratio in plasma and corresponding tumor tissues of NB patients was detected using an economical, sensitive, and specific single-tube dual RT-PCR approach developed in this study. The plasma M/N ratio of the MYCN gene amplification (MNA) group (N = 25, median M/N ratio = 4.90) was significantly higher than that of the non-MNA group (N = 71, median M/N ratio = 1.22), p < .001. The M/N ratio in NB plasma (N = 60) was positively correlated with the M/N ratio in NB tumor tissue (N = 60), with a correlation coefficient of 0.9496. In particular, the results of dynamic monitoring of postoperative plasma M/N ratio of NB patients showed that an abnormal increase in M/N ratio could be detected 1-2 months before recurrence in NB patients. In summary, the single-tube double RT-PCR approach can be used to quantitatively detect MYCN copy number. The copy number of MYCN in the tissue and plasma of NB patients is consistent with each other. More importantly, the circulating cell-free MYCN gene of NB patients can be used as a monitoring indicator for early, non-invasive, and dynamic monitoring of NB recurrence.
Collapse
Affiliation(s)
- Ying Liang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Yan Liu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Pin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Mengxin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Bang Du
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Weyland Cheng
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Huanmin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Guangjun Hou
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Xianwei Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant TumorsChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
37
|
Awounou D, Lacour B, Desandes E, Guissou S, Cassoux N, Doz F, Dufour C, Minard-Colin V, Schleiermacher G, Taque S, Verschuur A, Clavel J, Goujon S. Seasonality of main childhood embryonal tumours and rhabdomyosarcoma, France, 2000-2015. Cancer Med 2023; 12:8789-8803. [PMID: 36726302 PMCID: PMC10134357 DOI: 10.1002/cam4.5624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Few studies have investigated the seasonal patterns of embryonal tumours. Based on data from the French National Registry of Childhood Cancers, the present study aimed to investigate seasonal variations in embryonal tumour incidence rates by month of birth and by month of diagnosis. The study included 6635 primary embryonal tumour cases diagnosed before the age of 15 years over the period 2000-2015 in mainland France. Assuming monthly variations in incidence rates were homogeneous over 2000-2015, we used a Poisson regression model to test for overall heterogeneity in standardised incidence ratios (SIRs) by month of birth or diagnosis. The seasonal scan statistic method was used to detect monthly excesses or deficits of embryonal tumour cases over the whole study period. The annual reproducibility of the observed monthly variations was formally tested. An overall heterogeneity in incidence rates by month of birth was observed for rhabdomyosarcoma in boys only. Based on the month of diagnosis, a seasonality was evidenced for unilateral retinoblastoma, with a lower incidence rate in the summer (SIRJul-Aug = 0.68, 95% CI = 0.52-0.87), whilst the incidence rate of rhabdomyosarcoma tended to be lower in August (SIRAug = 0.68, 95% CI = 0.52-0.89). No seasonality was detected for the other embryonal tumour groups by month of birth or month of diagnosis. This study is one of the largest to have investigated the seasonality of childhood embryonal tumours. The study showed a seasonal variation in the incidence rates by month of diagnosis for unilateral retinoblastoma and rhabdomyosarcoma. Our findings are likely to reflect a delay in consultation during the summer months. However, the role of seasonally varying environmental exposures cannot be ruled out.
Collapse
Affiliation(s)
- Danielle Awounou
- Inserm, UMR 1153 Centre of Research in Epidemiology and StatisticS (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France.,Université Paris Cité, Paris, France
| | - Brigitte Lacour
- Inserm, UMR 1153 Centre of Research in Epidemiology and StatisticS (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France.,Université Paris Cité, Paris, France.,French National Registry of Childhood Solid Tumours (RNTSE), CHU Nancy, Nancy, France
| | - Emmanuel Desandes
- Inserm, UMR 1153 Centre of Research in Epidemiology and StatisticS (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France.,Université Paris Cité, Paris, France.,French National Registry of Childhood Solid Tumours (RNTSE), CHU Nancy, Nancy, France
| | - Sandra Guissou
- Inserm, UMR 1153 Centre of Research in Epidemiology and StatisticS (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France.,Université Paris Cité, Paris, France.,French National Registry of Childhood Solid Tumours (RNTSE), CHU Nancy, Nancy, France
| | - Nathalie Cassoux
- Université Paris Cité, Paris, France.,Department of Surgical Oncology, Institut Curie, Paris, France
| | - François Doz
- Université Paris Cité, Paris, France.,SIREDO Centre (Care, Innovation, Research In Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
| | - Christelle Dufour
- Department of Paediatric and Adolescent Oncology, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Véronique Minard-Colin
- Department of Paediatric and Adolescent Oncology, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France.,Inserm, UMR 1015, Université Paris Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- SIREDO Centre (Care, Innovation, Research In Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
| | - Sophie Taque
- Department of Paediatrics, CHU Rennes, Rennes, France
| | - Arnauld Verschuur
- Department of Paediatric Haematology, Immunology and Oncology, Children Hospital of La Timone, APHM, Marseille, France
| | - Jacqueline Clavel
- Inserm, UMR 1153 Centre of Research in Epidemiology and StatisticS (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France.,Université Paris Cité, Paris, France.,French National Registry of Childhood Haematological Malignancies (RNHE), Villejuif, France
| | - Stéphanie Goujon
- Inserm, UMR 1153 Centre of Research in Epidemiology and StatisticS (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France.,Université Paris Cité, Paris, France.,French National Registry of Childhood Haematological Malignancies (RNHE), Villejuif, France
| |
Collapse
|
38
|
Cancer Is Associated with the Emergence of Placenta-Reactive Autoantibodies. Biomedicines 2023; 11:biomedicines11020316. [PMID: 36830854 PMCID: PMC9953527 DOI: 10.3390/biomedicines11020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Placenta-specific antigens are minimally expressed or unexpressed in normal adult tissues, while they are widely expressed in cancer. In the course of carcinogenesis, a vast array of autoantibodies (AAbs) is produced. Here, we used a quantitative approach to determine the reactivity of AAbs in the sera of patients with breast (BrC: N = 100, 100% female, median age: 51 years), gastric (GC: N = 30, 46.6% female, median age: 57 years), bladder (BC: N = 29, 34.4% female, median age: 57 years), and colorectal (CRC: N = 34, 41.1% female, median age: 51 years) cancers against first-trimester (FTP) and full-term placental proteome (TP) in comparison with age- and sex-matched non-cancer individuals. Human-on-human immunohistochemistry was used to determine reactive target cells in FTP. The effect of pregnancy on the emergence of placenta-reactive autoantibodies was tested using sera from pregnant women at different trimesters of pregnancy. Except for BC, patients with BrC (p < 0.0284), GC (p < 0.0002), and CRC (p < 0.0007) had significantly higher levels of placenta-reactive AAbs. BrC (p < 0.0001) and BC (p < 0.0409) in the early stages triggered higher autoantibody reactivity against FTP. The reactivities of BrC sera with FTP did not show an association with ER, PR, or HER2 expression. Pregnancy in the third trimester was associated with the induction of TP- and not FTP-reactive autoantibodies (=0.018). The reactivity of BrC sera with placental proteins was found to be independent of gravidity or abortion. BrC sera showed a very strong and specific pattern of reactivity with scattered cells beneath the syncytiotrophoblast layer. Our results reinforce the concept of the coevolution of placentation and cancer and shed light on the future clinical application of the placental proteome for the non-invasive early detection and treatment of cancer.
Collapse
|
39
|
Rösch L, Herter S, Najafi S, Ridinger J, Peterziel H, Cinatl J, Jones DTW, Michaelis M, Witt O, Oehme I. ERBB and P-glycoprotein inhibitors break resistance in relapsed neuroblastoma models through P-glycoprotein. Mol Oncol 2022; 17:37-58. [PMID: 36181342 PMCID: PMC9812835 DOI: 10.1002/1878-0261.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 02/03/2023] Open
Abstract
Chemotherapy resistance is a persistent clinical problem in relapsed high-risk neuroblastomas. We tested a panel of 15 drugs for sensitization of neuroblastoma cells to the conventional chemotherapeutic vincristine, identifying tariquidar, an inhibitor of the transmembrane pump P-glycoprotein (P-gp/ABCB1), and the ERBB family inhibitor afatinib as the top resistance breakers. Both compounds were efficient in sensitizing neuroblastoma cells to vincristine in trypan blue exclusion assays and in inducing apoptotic cell death. The evaluation of ERBB signaling revealed no functional inhibition, that is, dephosphorylation of the downstream pathways upon afatinib treatment but direct off-target interference with P-gp function. Depletion of ABCB1, but not ERRB4, sensitized cells to vincristine treatment. P-gp inhibition substantially broke vincristine resistance in vitro and in vivo (zebrafish embryo xenograft). The analysis of gene expression datasets of more than 50 different neuroblastoma cell lines (primary and relapsed) and more than 160 neuroblastoma patient samples from the pediatric precision medicine platform INFORM (Individualized Therapy For Relapsed Malignancies in Childhood) confirmed a pivotal role of P-gp specifically in neuroblastoma resistance at relapse, while the ERBB family appears to play a minor part.
Collapse
Affiliation(s)
- Lisa Rösch
- Hopp Children's Cancer Center Heidelberg (KiTZ)Germany,Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany,Faculty of BiosciencesUniversity of HeidelbergGermany
| | - Sonja Herter
- Hopp Children's Cancer Center Heidelberg (KiTZ)Germany,Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany,Faculty of BiosciencesUniversity of HeidelbergGermany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ)Germany,Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany,Department of Pediatric Oncology, Hematology and ImmunologyUniversity Hospital HeidelbergGermany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ)Germany,Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
| | - Heike Peterziel
- Hopp Children's Cancer Center Heidelberg (KiTZ)Germany,Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
| | - Jindrich Cinatl
- Institute for Medical VirologyGoethe University HospitalFrankfurt am MainGermany
| | - David T. W. Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ)Germany,Division of Pediatric Glioma ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ)Germany,Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany,Department of Pediatric Oncology, Hematology and ImmunologyUniversity Hospital HeidelbergGermany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ)Germany,Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
| |
Collapse
|
40
|
Nutraceutical Preventative and Therapeutic Potential in Neuroblastoma: From Pregnancy to Early Childhood. Life (Basel) 2022; 12:life12111762. [DOI: 10.3390/life12111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma (NB) is a highly malignant embryonic extracranial solid tumor that arises from sympathoadrenal neuroblasts of neural crest origin. In addition to genetic factors, NB has been linked to maternal exposure to a variety of substances during pregnancy. Recent interest in the potential of nutrients to prevent cancer and reduce malignancy has resulted in the identification of several nutraceuticals including resveratrol, curcumin, and molecular components of garlic, which together with certain vitamins may help to prevent NB development. As NBs arise during fetal development and progress during early childhood, specific NB inhibiting nutraceuticals and vitamins could enhance the preventative influence of maternal nutrition and breast feeding on the development and early progression of NB. In this article, we review NB inhibitory nutraceuticals and vitamins, their mechanisms of action and expound their potential as maternal nutritional supplements to reduce NB development and progression during fetal growth and early childhood, whilst at the same time enhancing maternal, fetal, and infant health.
Collapse
|
41
|
Camargo R, de Castro Moreira Dos Santos A, Cândido Guido B, Lemos Mendanha Cavalcante L, Silva Dias AC, Mendonça de Pontes R, Magalhães Furtado F, Feitosa Salviano C, Tiziani V, Martins Córdoba JC, Quezado Magalhães IM. A sensitive and inexpensive high-resolution melting-based testing algorithm for diagnosis of transient abnormal myelopoiesis and myeloid leukemia of Down syndrome. Pediatr Blood Cancer 2022; 69:e29866. [PMID: 35731576 DOI: 10.1002/pbc.29866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Patients with Down syndrome (DS) are commonly affected by a pre-leukemic disorder known as transient abnormal myelopoiesis (TAM). This condition usually undergoes spontaneous remission within the first 2 months after birth; however, in children under 5, 20%-30% of cases evolve to myeloid leukemia of Down syndrome (ML-DS). TAM and ML-DS are caused by co-operation between trisomy 21 and acquired mutations in the GATA1 gene. Currently, only next-generation sequencing (NGS)-based methodologies are sufficiently sensitive for diagnosis in samples with small GATA1 mutant clones (≤10% blasts). Alternatively, this study presents research on a new, fast, sensitive, and inexpensive high-resolution melting (HRM)-based diagnostic approach that allows the detection of most cases of GATA1 mutations, including silent TAM. The algorithm first uses flow cytometry for blast count, followed by HRM and Sanger sequencing to search for mutations on exons 2 and 3 of GATA1. We analyzed 138 samples of DS patients: 110 of asymptomatic neonates, 10 suspected of having TAM, and 18 suspected of having ML-DS. Our algorithm enabled the identification of 33 mutant samples, among them five cases of silent TAM (5/110) and seven cases of ML-DS (7/18) with blast count ≤10%, in which GATA1 alterations were easily detected by HRM. Depending on the type of genetic variation and its location, our methodology reached sensitivity similar to that obtained by NGS (0.3%) at a considerably reduced time and cost, thus making it accessible worldwide.
Collapse
Affiliation(s)
- Ricardo Camargo
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | - Agenor de Castro Moreira Dos Santos
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil.,Laboratório Central de Saúde Pública do Distrito Federal, Brasília, Brazil
| | - Bruna Cândido Guido
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | | | - Anna Carolina Silva Dias
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | | | - Felipe Magalhães Furtado
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | | | - Valdenize Tiziani
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | | | | |
Collapse
|
42
|
Loss of CASZ1 tumor suppressor linked to oncogenic subversion of neuroblastoma core regulatory circuitry. Cell Death Dis 2022; 13:871. [PMID: 36243768 PMCID: PMC9569368 DOI: 10.1038/s41419-022-05314-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
The neural crest lineage regulatory transcription factors (TFs) form a core regulatory circuitry (CRC) in neuroblastoma (NB) to specify a noradrenergic tumor phenotype. Oncogenic subversion of CRC TFs is well documented, but the role of loss of tumor suppressors plays remains unclear. Zinc-finger TF CASZ1 is a chromosome 1p36 (chr1p36) tumor suppressor. Single-cell RNA sequencing data analyses indicate that CASZ1 is highly expressed in developing chromaffin cells coincident with an expression of NB CRC TFs. In NB tumor cells, the CASZ1 tumor suppressor is silenced while CRC components are highly expressed. We find the NB CRC component HAND2 directly represses CASZ1 expression. ChIP-seq and transcriptomic analyses reveal that restoration of CASZ1 upregulates noradrenergic neuronal genes and represses expression of CRC components by remodeling enhancer activity. Our study identifies that the restored CASZ1 forms a negative feedback regulatory circuit with the established NB CRC to induce noradrenergic neuronal differentiation of NB.
Collapse
|
43
|
Song J, Ni C, Dong X, Sheng C, Qu Y, Zhu L. bub1 as a potential oncogene and a prognostic biomarker for neuroblastoma. Front Oncol 2022; 12:988415. [PMID: 36237324 PMCID: PMC9552328 DOI: 10.3389/fonc.2022.988415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeuroblastoma is the most common malignant extracranial tumor for children. Molecular mechanisms underpinning the pathogenesis of this disease are yet to be fully clarified. This study aimed to identify a novel oncogene that could be used as a biomarker informing the prognosis of neuroblastoma, and to predict its biological functions, using bioinformatics and molecular biology tools.MethodsThree data sets from the TARGET, GSE62564, and GSE85047 databases were used for analysis. Survivals of patients with high or low expression of bub1 were compared, using the Kaplan-Meier curve and log-rank test. Immune infiltration was evaluated using ESTIMATE and MCP-counter algorithms. Synthetic small interfering RNAs (siRNAs) were employed to silence bub1 expression in neuroblastoma cell lines SH-SY5Y and SK-N-SH, in order to characterize its biological functions. Gene enrichment analyses of bub1 were carried out, using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.ResultsExpression of bub1 was found to significantly affect overall survival and event-free survival of patients with neuroblastoma, positively correlate with the expressions of tpx2 and the ASPM gene, and negatively correlate with host immune infiltration. Expression of bub1 was elevated in patients with neuroblastoma. Silencing bub1 expression using siRNAs in SH-SY5Y and SK-N-SH resulted in decreased cell growth (p < 0.05), reduced migration (p < 0.05), and increased apoptosis (p < 0.05). Function analysis of bub1 revealed cancer-promoting effects, probably via regulating several important downstream molecules, including that related to the apoptosis process and epithelial-mesenchymal transition.ConclusionWe identified a potential tumor-promoting gene bub1 for neuroblastoma that could also serve as a prognostic biomarker.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Allergy and Immunology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao Ni
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Xubin Dong
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenang Sheng
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Qu
- Wenzhou Medical University-Monash Biomedicine Discovery Institute (BDI) Alliance in Clinical and Experimental Biomedicine, Wenzhou, China
| | - Libin Zhu
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Libin Zhu,
| |
Collapse
|
44
|
Jiménez C, Antonelli R, Nadal-Ribelles M, Devis-Jauregui L, Latorre P, Solé C, Masanas M, Molero-Valenzuela A, Soriano A, Sánchez de Toledo J, Llobet-Navas D, Roma J, Posas F, de Nadal E, Gallego S, Moreno L, Segura MF. Structural disruption of BAF chromatin remodeller impairs neuroblastoma metastasis by reverting an invasiveness epigenomic program. Mol Cancer 2022; 21:175. [PMID: 36057593 PMCID: PMC9440539 DOI: 10.1186/s12943-022-01643-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Epigenetic programming during development is essential for determining cell lineages, and alterations in this programming contribute to the initiation of embryonal tumour development. In neuroblastoma, neural crest progenitors block their course of natural differentiation into sympathoadrenergic cells, leading to the development of aggressive and metastatic paediatric cancer. Research of the epigenetic regulators responsible for oncogenic epigenomic networks is crucial for developing new epigenetic-based therapies against these tumours. Mammalian switch/sucrose non-fermenting (mSWI/SNF) ATP-dependent chromatin remodelling complexes act genome-wide translating epigenetic signals into open chromatin states. The present study aimed to understand the contribution of mSWI/SNF to the oncogenic epigenomes of neuroblastoma and its potential as a therapeutic target. METHODS Functional characterisation of the mSWI/SNF complexes was performed in neuroblastoma cells using proteomic approaches, loss-of-function experiments, transcriptome and chromatin accessibility analyses, and in vitro and in vivo assays. RESULTS Neuroblastoma cells contain three main mSWI/SNF subtypes, but only BRG1-associated factor (BAF) complex disruption through silencing of its key structural subunits, ARID1A and ARID1B, impairs cell proliferation by promoting cell cycle blockade. Genome-wide chromatin remodelling and transcriptomic analyses revealed that BAF disruption results in the epigenetic repression of an extensive invasiveness-related expression program involving integrins, cadherins, and key mesenchymal regulators, thereby reducing adhesion to the extracellular matrix and the subsequent invasion in vitro and drastically inhibiting the initiation and growth of neuroblastoma metastasis in vivo. CONCLUSIONS We report a novel ATPase-independent role for the BAF complex in maintaining an epigenomic program that allows neuroblastoma invasiveness and metastasis, urging for the development of new BAF pharmacological structural disruptors for therapeutic exploitation in metastatic neuroblastoma.
Collapse
Affiliation(s)
- Carlos Jiménez
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roberta Antonelli
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mariona Nadal-Ribelles
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Devis-Jauregui
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Pablo Latorre
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carme Solé
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Masanas
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Adrià Molero-Valenzuela
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Soriano
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain
| | - David Llobet-Navas
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain.,Low Prevalence Tumors. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Roma
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Soledad Gallego
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucas Moreno
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Miguel F Segura
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| |
Collapse
|
45
|
MYCN and Metabolic Reprogramming in Neuroblastoma. Cancers (Basel) 2022; 14:cancers14174113. [PMID: 36077650 PMCID: PMC9455056 DOI: 10.3390/cancers14174113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroblastoma is a pediatric cancer responsible for approximately 15% of all childhood cancer deaths. Aberrant MYCN activation, as a result of genomic MYCN amplification, is a major driver of high-risk neuroblastoma, which has an overall survival rate of less than 50%, despite the best treatments currently available. Metabolic reprogramming is an integral part of the growth-promoting program driven by MYCN, which fuels cell growth and proliferation by increasing the uptake and catabolism of nutrients, biosynthesis of macromolecules, and production of energy. This reprogramming process also generates metabolic vulnerabilities that can be exploited for therapy. In this review, we present our current understanding of metabolic reprogramming in neuroblastoma, focusing on transcriptional regulation as a key mechanism in driving the reprogramming process. We also highlight some important areas that need to be explored for the successful development of metabolism-based therapy against high-risk neuroblastoma.
Collapse
|
46
|
Abstract
Most prostate cancers initially respond to androgen deprivation therapy (ADT). With the long-term application of ADT, localized prostate cancer will progress to castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and neuroendocrine prostate cancer (NEPC), and the transcriptional network shifted. Forkhead box protein A1 (FOXA1) may play a key role in this process through multiple mechanisms. To better understand the role of FOXA1 in prostate cancer, we review the interplay among FOXA1-targeted genes, modulators of FOXA1, and FOXA1 with a particular emphasis on androgen receptor (AR) function. Furthermore, we discuss the distinct role of FOXA1 mutations in prostate cancer and clinical significance of FOXA1. We summarize possible regulation pathways of FOXA1 in different stages of prostate cancer. We focus on links between FOXA1 and AR, which may play different roles in various types of prostate cancer. Finally, we discuss FOXA1 mutation and its clinical significance in prostate cancer. FOXA1 regulates the development of prostate cancer through various pathways, and it could be a biomarker for mCRPC and NEPC. Future efforts need to focus on mechanisms underlying mutation of FOXA1 in advanced prostate cancer. We believe that FOXA1 would be a prognostic marker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Hui-Yu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tian-Ren Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
47
|
Pfeifer K, Wolfstetter G, Anthonydhason V, Masudi T, Arefin B, Bemark M, Mendoza-Garcia P, Palmer RH. Patient-associated mutations in Drosophila Alk perturb neuronal differentiation and promote survival. Dis Model Mech 2022; 15:dmm049591. [PMID: 35972154 PMCID: PMC9403751 DOI: 10.1242/dmm.049591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Activating anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK) mutations occur in pediatric neuroblastoma and are associated with poor prognosis. To study ALK-activating mutations in a genetically controllable system, we employed CRIPSR/Cas9, incorporating orthologs of the human oncogenic mutations ALKF1174L and ALKY1278S in the Drosophila Alk locus. AlkF1251L and AlkY1355S mutant Drosophila exhibited enhanced Alk signaling phenotypes, but unexpectedly depended on the Jelly belly (Jeb) ligand for activation. Both AlkF1251L and AlkY1355S mutant larval brains displayed hyperplasia, represented by increased numbers of Alk-positive neurons. Despite this hyperplasic phenotype, no brain tumors were observed in mutant animals. We showed that hyperplasia in Alk mutants was not caused by significantly increased rates of proliferation, but rather by decreased levels of apoptosis in the larval brain. Using single-cell RNA sequencing, we identified perturbations during temporal fate specification in AlkY1355S mutant mushroom body lineages. These findings shed light on the role of Alk in neurodevelopmental processes and highlight the potential of Alk-activating mutations to perturb specification and promote survival in neuronal lineages. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
48
|
Moshe Halamish H, Zlotver I, Sosnik A. Polymeric nanoparticles surface-complexed with boric acid actively target solid tumors overexpressing sialic acid. J Colloid Interface Sci 2022; 626:916-929. [PMID: 35835042 DOI: 10.1016/j.jcis.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Sialic acid is a fundamental component of the tumor microenvironment, modulates cell-cell and cell-extracellular matrix interactions and is associated with bad prognosis and clinical outcomes in different cancers. Capitalizing on the ability of boric acid to form cyclic esters with diols, in this work, we design self-assembled multi-micellar colloidal systems of an amphiphilic poly(vinyl alcohol)-g-poly(methyl methacrylate) copolymer surface-modified with boric acid for the active targeting of solid tumors that overexpress sialic acid. Nanoparticles display sizes in the 100-200 nm range and a spherical morphology, as determined by dynamic light scattering and high resolution-scanning electron microscopy, respectively. The uptake and anti-proliferative activity are assessed in 2D and 3D models of rhabdomyosarcoma in vitro. Surface boration increases the nanoparticle permeability and uptake, especially in rhabdomyosarcoma spheroids that overexpress sialic acid to a greater extent than 2D cultures. The biodistribution of non-borated and borated nanoparticles upon intravenous injection to a subcutaneous rhabdomyosarcoma murine xenograft model confirm a statistically significant increase in the intertumoral accumulation of the modified nanocarriers with respect to the unmodified counterparts and a sharp decrease in major clearance organs such as the liver. Overall, our results highlight the promise of these borated nanomaterials to actively target hypersialylated solid tumors.
Collapse
Affiliation(s)
- Hen Moshe Halamish
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel.
| |
Collapse
|
49
|
Weng Z, Lin J, He J, Gao L, Lin S, Tsang LL, Zhang H, He X, Wang G, Yang X, Zhou H, Zhao H, Li G, Zou L, Jiang X. Human embryonic stem cell-derived neural crest model unveils CD55 as a cancer stem cell regulator for therapeutic targeting in MYCN-amplified neuroblastoma. Neuro Oncol 2022; 24:872-885. [PMID: 34655293 PMCID: PMC9159429 DOI: 10.1093/neuonc/noab241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a common childhood malignant tumor of neural crest (NC) origin with remarkable heterogeneity in outcomes. Amplification of the oncogene MYCN is strongly associated with highly malignant behaviour and poor prognosis. METHODS This study aims to use a human embryonic stem cell (hESC)-derived NC model to identify novel downstream effectors of MYCN that can be potentially used as prognostic marker and/or therapeutic target. RESULTS We show that MYCN-driven NB derived from human neural crest cells (hNCCs) recapitulate the pathological and molecular features of MYCN-amplified neuroblastoma (MNA-NB). By using this platform, we identify a group of 14 surface protein-encoding genes that are associated with MYCN expression level in MNA-NB. Among these genes, high CD55 expression is correlated with poor survival in MNA-NB but not in non-MNA-NB. Furthermore, CD55 promotes tumorigenesis, tumor growth, and cancer stemness in MNA-NB cell lines (MNA-NBL) through regulating the JNK pathway. Mechanistically, MYCN binds to both canonical and noncanonical E-boxes on the promoter of CD55 to regulate its transcriptional expression. Finally, neutralizing antibody targeting CD55 significantly attenuates cancer stemness, suppresses tumor growth, and improves survival exclusively in MNA-NBL-inoculated mice. CONCLUSION MYCN shapes CD55 into a cancer stem cell regulator which represents a prognostic marker and therapeutic target of MNA-NB. The hESC-derived NC model serves as a valuable platform for investigating NB initiation and progression and developing potential therapeutic targets.
Collapse
Affiliation(s)
- Zhihui Weng
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, ShenZhen, PR China
| | - Jiacheng Lin
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, ShenZhen, PR China
| | - Jiaozi He
- Department of Clinical Oncology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Lin Gao
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, ShenZhen, PR China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, ShenZhen, PR China
| | - Lai Ling Tsang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, ShenZhen, PR China
| | - Hang Zhang
- Center for Clinical Molecular Medicine, Children’s Hospital, Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, PR China
| | - Xiaoyan He
- Center for Clinical Molecular Medicine, Children’s Hospital, Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, PR China
| | - Guang Wang
- Department of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Xuesong Yang
- Department of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, ShenZhen, PR China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, ShenZhen, PR China
| | - Lin Zou
- Center for Clinical Molecular Medicine, Children’s Hospital, Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, PR China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, ShenZhen, PR China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan,PR China
| |
Collapse
|
50
|
Schraw JM, Rodriguez KB, Scheurer ME, Foster JH, Lupo PJ. Associations of demographic and perinatal factors with childhood neuroblastoma in Texas, 1995–2011. Cancer Epidemiol 2022; 78:102165. [DOI: 10.1016/j.canep.2022.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
|