1
|
Gomberg-Maitland M, Badesch DB, Gibbs JSR, Grünig E, Hoeper MM, Humbert M, Kopeć G, McLaughlin VV, Meyer G, Olsson KM, Preston IR, Rosenkranz S, Souza R, Waxman AB, Perchenet L, Strait J, Xing A, Johnson-Levonas AO, Cornell AG, de Oliveira Pena J, Ardeschir Ghofrani H. Efficacy and safety of sotatercept across ranges of cardiac index in patients with pulmonary arterial hypertension: A pooled analysis of PULSAR and STELLAR. J Heart Lung Transplant 2024:S1053-2498(24)02009-6. [PMID: 39645016 DOI: 10.1016/j.healun.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND This analysis examined the effects of the activin signaling inhibitor, sotatercept, in pulmonary arterial hypertension (PAH) subgroups stratified by baseline cardiac index (CI). METHODS Pooled data from PULSAR (N = 106; NCT03496207) and STELLAR (N = 323; NCT04576988) were analyzed using 2 different CI thresholds, <2.0 and ≥2.0 liter/min/m2 as well as <2.5 and ≥2.5 liter/min/m2. Median changes from baseline at week 24 were evaluated using Hodges-Lehmann estimator and least squares (LS) means, with 95% confidence intervals and p-values (significance: p = 0.05). Categorial endpoints and time-to-clinical worsening were analyzed by Cochran-Mantel-Haenszel and Cox model respectively. RESULTS Of 429 participants, 51 had CI <2.0 and 378 ≥2.0 liter/min/m2, while 179 had CI <2.5 and 250 ≥2.5 liter/min/m2. Sotatercept significantly improved median 6-minute walk distance (range: 33.9 to 63.7 m: p < 0.001), pulmonary vascular resistance (range: -202.8 to -395.4 dyn•s•cm-5; p ≤ 0.002), and N-terminal pro-B-type natriuretic peptide (range: -317.3 to -1,041.2 pg/ml; p < 0.001) across subgroups. LS means showed reductions in pulmonary and right atrial pressures, decreased right ventricular size, and improved tricuspid annular plane systolic excursion/systolic pulmonary artery pressure. Sotatercept delayed time to first occurrence of death or a worsening event for CI ≥2.5 (hazard ratio [HR] 0.12; p < 0.001), ≥2.0 (HR 0.13; p < 0.001), and <2.5 (HR 0.21; p < 0.001) liter/min/m2. Improvements were observed in WHO functional class (all p < 0.050) and ESC/ERS risk scores (all p < 0.001). CONCLUSIONS Sotatercept demonstrated consistent efficacy and safety across CI subgroups, supporting its use in PAH patients irrespective of baseline cardiac hemodynamics.
Collapse
Affiliation(s)
- Mardi Gomberg-Maitland
- Division of Cardiovascular Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
| | - David B Badesch
- Pulmonary Hypertension Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - J Simon R Gibbs
- Department of Cardiology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Translational Lung Research Center Heidelberg (TLRC), Thoraxklinik-Heidelberg and the German Center for Lung Research, Heidelberg, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School and the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), Hannover, Germany
| | - Marc Humbert
- Université Paris-Saclay, INSERM Unité Mixte de Recherche en Santé 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique-Hôpitaux de Paris), Le Kremlin-Bicêtre, France
| | - Grzegorz Kopeć
- Department of Cardiac and Vascular Diseases, St. John Paul II Hospital in Krakow, Krakow, Poland; Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Vallerie V McLaughlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gisela Meyer
- Departamento de Circulação Pulmonar, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | - Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School and the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), Hannover, Germany
| | - Ioana R Preston
- Pulmonary and Critical Care Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Stephan Rosenkranz
- Department of Cardiology, Cologne Cardiovascular Research Center (CCRC), Heart Center, University Hospital Cologne, Cologne, Germany
| | - Rogerio Souza
- Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Brigham and Woman's Hospital, Boston, Massachusetts
| | | | | | - Aiwen Xing
- MRL, Merck & Co., Inc., Rahway, New Jersey
| | | | | | | | - H Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
2
|
Peng B, Zhou Y, Fu X, Chen L, Pan Z, Yi Q, Zhao T, Fu Z, Wang T. THBS1 mediates hypoxia driven EndMT in pulmonary hypertension. Pulm Circ 2024; 14:e70019. [PMID: 39635464 PMCID: PMC11615509 DOI: 10.1002/pul2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Long-term hypoxia is one of the main causes of pulmonary vascular remodeling in pulmonary hypertension (PH) associated with congenital heart disease (CHD) children. Endothelial to mesenchymal transition (EndMT) is an important pathological basis of pulmonary vascular remodeling in PH. We observed that Fibronectin 1 (FN1) had strong protein-protein interactions with both Thrombospondin 1 (THBS1) and Transglutaminase 2 (TGM2) in PH with venous peripheral bloods samples from pediatric patients and healthy children. LungMAP CellCards and heatmaps of human PAEC in PH patients and lung tissues in hypoxia induced PH mice model were used to show that THBS1 and FN1 were significantly elevated. We studied the relationship between THBS1 and FN1 in vivo, by using SUHX-induced PH mice model, and in vitro, by using hypoxia-induced human PAEC. The results showed that hypoxia could result in EndMT and inhibiting THBS1 could reverse EndMT in vivo and in vitro, verifying our transcriptome results. Taken together, our research demonstrated that THBS1 could mediate hypoxia driven EndMT of PH, providing a new insight of research in the pathophysiology of PH.
Collapse
Affiliation(s)
- Bingming Peng
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yingzhen Zhou
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xingmeng Fu
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Li Chen
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhengxia Pan
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Qijian Yi
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Tengteng Zhao
- Department of Medicine, Section of Physiology, Division of Pulmonary, Critical Care and Sleep MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Zhou Fu
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ting Wang
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Medicine, Section of Physiology, Division of Pulmonary, Critical Care and Sleep MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
3
|
Hlavaty A, Roustit M, Montani D, Chaumais M, Guignabert C, Humbert M, Cracowski J, Khouri C. Identifying new drugs associated with pulmonary arterial hypertension: A WHO pharmacovigilance database disproportionality analysis. Br J Clin Pharmacol 2022; 88:5227-5237. [PMID: 35679331 PMCID: PMC9795981 DOI: 10.1111/bcp.15436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/11/2022] [Accepted: 05/29/2022] [Indexed: 12/30/2022] Open
Abstract
Since the 1960s, several drugs have been linked to the onset or aggravation of pulmonary arterial hypertension (PAH): dasatinib, some amphetamine-like appetite suppressants (aminorex, fenfluramine, dexfenfluramine, benfluorex) and recreational drugs (methamphetamine). Moreover, in numerous cases, the implication of other drugs with PAH have been suggested, but the precise identification of iatrogenic aetiologies of PAH is challenging given the scarcity of this disease and the potential long latency period between drug intake and PAH onset. In this context, we used the World Health Organization's pharmacovigilance database, VigiBase, to generate new hypotheses about drug associated PAH. METHODS We used VigiBase, the largest pharmacovigilance database worldwide to generate disproportionality signals through the Bayesian neural network method. All disproportionality signals were further independently reviewed by experts in pulmonary arterial hypertension, pharmacovigilance and vascular pharmacology and their plausibility ranked according to World Health Organization causality categories. RESULTS We included 2184 idiopathic PAH cases, yielding a total of 93 disproportionality signals. Among them, 25 signals were considered very likely, 15 probable, 28 possible and 25 unlikely. Notably, we identified 4 new protein kinases inhibitors (lapatinib, lorlatinib, ponatinib and ruxolitinib), 1 angiogenesis inhibitor (bevacizumab), and several chemotherapeutics (etoposide, trastuzumab), antimetabolites (cytarabine, fludarabine, fluorouracil, gemcitabine) and immunosuppressants (leflunomide, thalidomide, ciclosporin). CONCLUSION Such signals represent plausible adverse drug reactions considering the knowledge of iatrogenic PAH, the drugs' biological and pharmacological activity and the characteristics of the reported case. Although confirmatory studies need to be performed, the signals identified may help clinicians envisage an iatrogenic aetiology when faced with a patient who develops PAH.
Collapse
Affiliation(s)
- Alex Hlavaty
- Pharmacovigilance UnitGrenoble Alpes University HospitalGrenobleFrance
| | - Matthieu Roustit
- Clinical Pharmacology Department INSERM CIC1406Grenoble Alpes University HospitalGrenobleFrance,HP2 Laboratory, Inserm U1300Grenoble Alpes University ‐ GrenobleFrance
| | - David Montani
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie LannelongueLe Plessis‐RobinsonFrance,Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance,Assistance Publique ‐ Hôpitaux de Paris (AP‐HP), Service de Pneumologie, Centre de référence Maladie Rares de l'Hypertension PulmonaireHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Marie‐Camille Chaumais
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie LannelongueLe Plessis‐RobinsonFrance,Faculté de PharmacieUniversité Paris‐SaclayChâtenay MalabryFrance,Assistance Publique ‐ Hôpitaux de Paris (AP‐HP), Service de PharmacieHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie LannelongueLe Plessis‐RobinsonFrance,Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Marc Humbert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie LannelongueLe Plessis‐RobinsonFrance,Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance,Assistance Publique ‐ Hôpitaux de Paris (AP‐HP), Service de Pneumologie, Centre de référence Maladie Rares de l'Hypertension PulmonaireHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Jean‐Luc Cracowski
- Pharmacovigilance UnitGrenoble Alpes University HospitalGrenobleFrance,HP2 Laboratory, Inserm U1300Grenoble Alpes University ‐ GrenobleFrance
| | - Charles Khouri
- Pharmacovigilance UnitGrenoble Alpes University HospitalGrenobleFrance,Clinical Pharmacology Department INSERM CIC1406Grenoble Alpes University HospitalGrenobleFrance,HP2 Laboratory, Inserm U1300Grenoble Alpes University ‐ GrenobleFrance
| |
Collapse
|
4
|
Otani N, Tomoe T, Kawabe A, Sugiyama T, Horie Y, Sugimura H, Yasu T, Nakamoto T. Recent Advances in the Treatment of Pulmonary Arterial Hypertension. Pharmaceuticals (Basel) 2022; 15:1277. [PMID: 36297387 PMCID: PMC9609229 DOI: 10.3390/ph15101277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease in which stenosis or obstruction of the pulmonary arteries (PAs) causes an increase in PA pressure, leading to right-sided heart failure and death. Basic research has revealed a decrease in the levels of endogenous vasodilators, such as prostacyclin, and an increase in the levels of endogenous vasoconstrictors, such as endothelin, in patients with PAH, leading to the development of therapeutic agents. Currently, therapeutic agents for PAH target three pathways that are selective for PAs: the prostacyclin, endothelin, and nitric oxide pathways. These treatments improve the prognosis of PAH patients. In this review, we introduce new drug therapies and provide an overview of the current therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Takaaki Nakamoto
- Department of Cardiology, Dokkyo Medical University Nikkyo Medical Center, 632 Takatoku, Nikko 321-2593, Japan
| |
Collapse
|
5
|
Alpha1B-adreneroceptor is involved in norepinephrine-induced pulmonary artery smooth muscle cell proliferation via p38 signaling. Eur J Pharmacol 2022; 931:175159. [DOI: 10.1016/j.ejphar.2022.175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
|
6
|
Song C, Kunovszki P, Beaudet A. Comparison of Healthcare Encounters and Drug Persistence in Patients With Pulmonary Arterial Hypertension Receiving Oral Selexipag, Inhaled Iloprost, or Parenteral Treprostinil: A Retrospective Database Analysis. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2022; 9:151-160. [PMID: 35800882 PMCID: PMC9178228 DOI: 10.36469/001c.35246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Background: Agents targeting the prostacyclin (PGI2) pathway are important in managing pulmonary arterial hypertension (PAH). No head-to-head clinical trials have compared outcomes between the 3 different PGI2-pathway drugs most commonly available in countries with advanced healthcare: oral selexipag, inhaled iloprost, and parenteral (subcutaneous or intravenous) treprostinil. Objectives: To conduct retrospective database analyses to describe characteristics of patients with PAH initiating therapy with these agents and compare the rate and risk of healthcare facility encounters and drug persistence. Methods: Data were obtained from the Optum™ Clinformatics® Data Mart and Truven™ Health Analytics® MarketScan® Commercial Claims and Encounters databases from July 1, 2008, to September 30, 2020 (Optum™), or October 31, 2020 (Truven™). Patients were categorized into index-drug cohorts based on first pharmacy claims for selexipag, inhaled iloprost, or parenteral treprostinil. Eligible patients were ≥18 years of age with ≥1 ICD-9-CM or ICD-10-CM diagnosis code indicating pulmonary hypertension and no diagnosis code suggesting Group 3-5 pulmonary hypertension. Rates of hospitalization (inpatient admissions), emergency room visits, or outpatient visits per person-year were calculated. Drug persistence was measured as time to discontinuation of index drug. Multivariable analyses were performed to compare outcomes with selexipag vs inhaled iloprost and parenteral treprostinil, adjusting for baseline characteristics using inverse probability of treatment weighting. Results: Overall, 583 patients were included in the Optum™ sample and 482 in the Truven™ sample. Mean (SD) age was 61.7 (14.5) and 49.3 (11.3) years, respectively; 74.4% and 75.7% of patients, respectively, were women. In the pooled samples, after adjustment for baseline characteristics, selexipag had a lower risk than inhaled iloprost or parenteral treprostinil for hospitalization (relative rate ratio [95% CI], 0.40 [0.22, 0.75], and 0.26 [0.17, 0.39]) and outpatient visits (0.66 [0.56, 0.78] and 0.76 [0.66, 0.88]). Trends toward lower risk of emergency room visits did not attain statistical significance. Drug discontinuation risk was 16% and 36% lower with selexipag vs parenteral treprostinil and inhaled iloprost, respectively. Conclusions: In real-world use, selexipag appears to be associated with lower rates of hospitalization and outpatient visits than inhaled iloprost or parenteral treprostinil. Further research is required to identify factors underlying these differences.
Collapse
Affiliation(s)
- Ci Song
- Janssen Global Commercial Strategy Organization
| | | | | |
Collapse
|
7
|
Upfront Combination Therapy: Growing the Case to Get Ahead of Pediatric Pulmonary Arterial Hypertension. Ann Am Thorac Soc 2022; 19:163-165. [PMID: 35103566 PMCID: PMC8867360 DOI: 10.1513/annalsats.202108-975ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Chronic Thromboembolic Pulmonary Hypertension: An Update. Diagnostics (Basel) 2022; 12:diagnostics12020235. [PMID: 35204326 PMCID: PMC8871284 DOI: 10.3390/diagnostics12020235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease observed in a small proportion of patients after acute pulmonary embolism (PE). CTEPH has a high morbidity and mortality rate, related to the PH severity, and a poor prognosis, which mirrors the right ventricular dysfunction involvement. Pulmonary endarterectomy (PEA) reduces pulmonary vascular resistance, making it the treatment of choice and should be offered to operable CTEPH patients, as significant symptomatic and prognostic improvement has been observed. Moreover, these patients may also benefit from the advances made in surgical techniques and pulmonary hypertension-specific medication. However, not all patients are eligible for PEA surgery, as some have either distal pulmonary vascular obstruction and/or significant comorbidities. Therefore, surgical candidates should be carefully selected by an interprofessional team in expert centers. This review aims at making an overview of the risk factors and latest developments in diagnostic tools and treatment options for CTEPH.
Collapse
|
9
|
Hu L, Zhao C, Chen Z, Hu G, Li X, Li Q. An emerging strategy for targeted therapy of pulmonary arterial hypertension: vasodilation plus vascular remodeling inhibition. Drug Discov Today 2022; 27:1457-1463. [DOI: 10.1016/j.drudis.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
10
|
Sun Y, Zhang C, Tian D, Bai J, Li Y, Yu X, Yang J, Wang X, Dong Y, Yang M, Kang Z, Zhang Q, Gao F. Application of 7.0 T ultra-high-field MRI in evaluating the structure and function of the right ventricle of the heart in rats under a chronic hypoxic environment at high altitude. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1585. [PMID: 34790791 PMCID: PMC8576710 DOI: 10.21037/atm-21-5078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/16/2021] [Indexed: 02/05/2023]
Abstract
Background Long-term exposure to a high-altitude environment with low pressure and low oxygen can cause abnormalities in the structure and function of the heart, in particular the right ventricle. Monitoring the structure and function of the right ventricle is therefore essential for early diagnosis and prognosis of high-altitude heart-related diseases. In this study, 7.0 T MRI is used to detect cardiac structure and function indicators of rats in natural plateau and plain environments. Methods Rats in two groups were raised in different environments from 6 weeks of age for a period of 12 weeks. At 18 weeks of age both groups underwent 7.0 T cardiac magnetic resonance (CMR) scanning. Professional cardiac post-processing software was used to analyze right ventricular end-diastolic volume (RVEDV), right ventricular end-systolic volume (RVESV), right ventricular stroke volume (RVSV), right ventricular ejection fraction (RVEF), Right ventricular end-diastolic myocardial mass (RV Myo mass, diast), Right ventricular end-systolic myocardial mass (RV Myo mass, syst), tricuspid valve end-diastolic caliber (TVD), tricuspid valve end-systolic caliber (TVS), right ventricular end-systolic long-axis (RVESL) and right ventricular end-diastolic long-axis (RVEDL). Prior to the CMR scan, blood was collected from the two groups of rats for evaluation of blood indicators. After the scan, the rats were sacrificed and the myocardial tissue morphology observed under a light microscope. Results In the group of rats subject to chronic hypoxia at high altitude for 12 weeks (the plateau group), red blood cell (RBC) count, hemoglobin (HGB) and hematocrit (HCT) increased (P<0.05); RVEDV, RVESV, RVSV, RV Myo mass (diast), RV Myo mass (syst), TVS, RVESL, and RVEDL also increased (P<0.05). Observation of the right ventricle of rats in the plateau group using a light microscope mainly showed a slightly widened myocardial space, myocardial cell turbidity, vacuolar degeneration, myocardial interstitial edema, vascular congestion and a small amount of inflammatory cell infiltration. Conclusions The importance of ultra-high-field MRI for monitoring the early stages of rat heart injury has been demonstrated by studying the changes in the structure and function of the right ventricle of rats subject to chronic hypoxia at high altitude over a period of 12 weeks.
Collapse
Affiliation(s)
- Yanqiu Sun
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Junhu Bai
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Yaodong Li
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaosheng Yu
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Jing Yang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Xueling Wang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Yongxing Dong
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Mei Yang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Zhiqiang Kang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, China
| | - Fabao Gao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Abstract
OBJECTIVES Pulmonary arterial hypertension symptoms in systemic lupus erythematosus patients are non-specific and early diagnosis and intervention are challenging. It remains essential to explore risk factors for pulmonary arterial hypertension in systemic lupus erythematosus patients to identify high risk patients and allow intensive monitoring. METHODS From January 2010 to December 2018, 84 patients with systemic lupus erythematosus and pulmonary arterial hypertension and 160 patients with systemic lupus erythematosus but without pulmonary arterial hypertension were enrolled. Clinical manifestations and laboratory test results were compared between the two groups to identify predictors of pulmonary arterial hypertension. Candidate pulmonary arterial hypertension risk factors were further compared among systemic lupus erythematosus-pulmonary arterial hypertension patients with different characteristics. RESULTS Among collected patient characteristics, Raynaud's phenomenon (OR 2.32, 95% CI: 1.17-4.61), digital vasculitis (OR 4.12, 95% CI: 1.48-11.49), pericardial effusion, pulmonary interstitial lesions, positive anti-u1 ribonucleoprotein antibodies, and positive anticardiolipin antibodies immunoglobulin G were associated with significantly higher risk of pulmonary arterial hypertension in systemic lupus erythematosus patients. Among these candidate risk factors, positive anti-u1 ribonucleoprotein antibody was independently associated with severe pulmonary arterial hypertension and more active disease. Digital vasculitis was independently associated with systemic lupus erythematosus alleviation, while pericardial effusion was associated with systemic lupus erythematosus deterioration. Pericardial effusion was associated with longer pulmonary arterial hypertension duration. CONCLUSION The significant association between studied clinical and laboratory indicators and risk of pulmonary arterial hypertension, pulmonary arterial hypertension and systemic lupus erythematosus characteristics suggested that these factors can be used to identify patients at higher risk of pulmonary arterial hypertension and adverse outcomes. Close monitoring may be indicated in patients with these risk factors, especially with more than one risk factor.
Collapse
|
12
|
Imbalzano E, Vatrano M, Lo Gullo A, Orlando L, Mazza A, Ciconte VA, Russo V, Giuffrida C, Di Micco P, Versace AG, Mandraffino G, Squadrito G. Prevalence of Pulmonary Hypertension in an Unselected Community-Based Population: A Retrospective Echocardiographic Study-RES-PH Study. J Pers Med 2021; 11:jpm11060489. [PMID: 34072639 PMCID: PMC8226693 DOI: 10.3390/jpm11060489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The actual prevalence of pulmonary hypertension (PH) in Italy is unknown. Echocardiography is useful in the screening of patients with suspected PH by estimation of the pulmonary artery systolic pressure (PASP) from the regurgitant tricuspid flow velocity evaluation, according to the simplified Bernoulli equation. OBJECTIVES We aimed to evaluate the frequency of suspected PH among unselected patients. METHODS We conducted a retrospective cross-sectional database search of 7005 patients, who underwent echocardiography, to estimate the prevalence of PH, between January 2013 and December 2014. Medical and echocardiographic data were collected from a stratified etiological group of PH, using criteria of the European Society of Cardiology classifications. RESULTS The mean age of the study population was 57.1 ± 20.5 years, of which 55.3% were male. The prevalence of intermediate probability of PH was 8.6%, with nearly equal distribution between men and women (51.3 vs. 48.7%; p = 0.873). The prevalence of high probability of PH was 4.3%, with slightly but not significant higher prevalence in female patients (43.2 vs. 56.8%; p = 0.671). PH is predominant in patients with chronic obstructive pulmonary disease (COPD) or left ventricle (LV) systolic dysfunction and related with age. PASP was significantly linked with left atrial increase and left ventricular ejection fraction. In addition, an increased PASP was related to an enlargement of the right heart chamber. CONCLUSIONS PH has a frequency of 4.3% in our unselected population, but the prevalence may be more relevant in specific subgroups. A larger epidemiological registry could be an adequate strategy to increase quality control and identify weak points in the evaluation and treatment of these patients.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (L.O.); (A.G.V.); (G.M.); (G.S.)
- Correspondence:
| | - Marco Vatrano
- UTIC and Cardiology, Hospital “Pugliese-Ciaccio” of Catanzaro, 88100 Catanzaro, Italy; (M.V.); (V.A.C.)
| | - Alberto Lo Gullo
- Unit of Emergency Medicine, Irccs Neurolesi Bonino Pulejo, 98100 Messina, Italy; (A.L.G.); (C.G.)
| | - Luana Orlando
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (L.O.); (A.G.V.); (G.M.); (G.S.)
| | - Alberto Mazza
- Internal Medicine Unit, Azienda ULSS 5 Polesana—Rovigo General Hospital, 45100 Rovigo, Italy;
| | - Vincenzo Antonio Ciconte
- UTIC and Cardiology, Hospital “Pugliese-Ciaccio” of Catanzaro, 88100 Catanzaro, Italy; (M.V.); (V.A.C.)
| | - Vincenzo Russo
- Department of Medical Translational Sciences, Division of Cardiology, Monaldi Hospital, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Clemente Giuffrida
- Unit of Emergency Medicine, Irccs Neurolesi Bonino Pulejo, 98100 Messina, Italy; (A.L.G.); (C.G.)
| | - Pierpaolo Di Micco
- Department of Medicine, Buonconsiglio Fatebenefratelli Hospital, 80122 Naples, Italy;
| | - Antonio Giovanni Versace
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (L.O.); (A.G.V.); (G.M.); (G.S.)
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (L.O.); (A.G.V.); (G.M.); (G.S.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (L.O.); (A.G.V.); (G.M.); (G.S.)
| |
Collapse
|
13
|
Xu S, Xu X, Zhang Z, Yan L, Zhang L, Du L. The role of RNA m 6A methylation in the regulation of postnatal hypoxia-induced pulmonary hypertension. Respir Res 2021; 22:121. [PMID: 33902609 PMCID: PMC8074209 DOI: 10.1186/s12931-021-01728-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a complex pulmonary vascular disease characterized by an imbalance in vasoconstrictor/vasodilator signaling within the pulmonary vasculature. Recent evidence suggests that exposure to hypoxia early in life can cause alterations in the pulmonary vasculature and lead to the development of PH. However, the long-term impact of postnatal hypoxia on lung development and pulmonary function remains unknown. N6-methyladenosine (m6A) regulates gene expression and governs many important biological processes. However, the function of m6A in the development of PH remains poorly characterized. Thus, the purpose of this investigation was to test the two-fold hypothesis that (1) postnatal exposure to hypoxia would alter lung development leading to PH in adult rats, and (2) m6A modification would change in rats exposed to hypoxia, suggesting it plays a role in the development of PH. METHODS Twenty-four male Sprague-Dawley rats were exposed to a hypoxic environment (FiO2: 12%) within 24 h after birth for 2 weeks. PH was defined as an increased right ventricular pressure (RVP) and pathologic changes of pulmonary vasculature measured by α-SMA immunohistochemical staining. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) was performed to analyze m6A modification changes in lung tissue in 2- and 9-week-old rats that were exposed to postnatal hypoxia. RESULTS Mean pulmonary arterial pressure, lung/body weight ratio, and the Fulton index was significantly greater in rats exposed to hypoxia when compared to control and the difference persisted into adulthood. m6A methyltransferase and demethylase proteins were significantly downregulated in postnatal hypoxia-induced PH. Distinct m6A modification peak-related genes differed between the two groups, and these genes were associated with lung development. CONCLUSIONS Our results indicate postnatal hypoxia can cause PH, which can persist into adulthood. The development and persistence of PH may be because of the continuous low expression of methyltransferase like 3 affecting the m6A level of PH-related genes. Our findings provide new insights into the impact of postnatal hypoxia and the role of m6A in the development of pulmonary vascular pathophysiology.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, People's Republic of China
| | - Xuefeng Xu
- Department of Rheumatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, People's Republic of China
| | - Ziming Zhang
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, People's Republic of China
| | - Lingling Yan
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, People's Republic of China
| | - Liyan Zhang
- Fuzhou Children Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Lizhong Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
14
|
Samidurai A, Xi L, Das A, Iness AN, Vigneshwar NG, Li PL, Singla DK, Muniyan S, Batra SK, Kukreja RC. Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. Pharmacol Ther 2021; 226:107858. [PMID: 33895190 DOI: 10.1016/j.pharmthera.2021.107858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are superfamily of enzymes that regulate the spatial and temporal relationship of second messenger signaling in the cellular system. Among the 11 different families of PDEs, phosphodiesterase 1 (PDE1) sub-family of enzymes hydrolyze both 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in a mutually competitive manner. The catalytic activity of PDE1 is stimulated by their binding to Ca2+/calmodulin (CaM), resulting in the integration of Ca2+ and cyclic nucleotide-mediated signaling in various diseases. The PDE1 family includes three subtypes, PDE1A, PDE1B and PDE1C, which differ for their relative affinities for cAMP and cGMP. These isoforms are differentially expressed throughout the body, including the cardiovascular, central nervous system and other organs. Thus, PDE1 enzymes play a critical role in the pathophysiology of diseases through the fundamental regulation of cAMP and cGMP signaling. This comprehensive review provides the current research on PDE1 and its potential utility as a therapeutic target in diseases including the cardiovascular, pulmonary, metabolic, neurocognitive, renal, cancers and possibly others.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Audra N Iness
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Navin G Vigneshwar
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| |
Collapse
|
15
|
Xu H, Ji H, Li Z, Qiao W, Wang C, Tang J. In vivo Pharmacokinetics and in vitro Release of Imatinib Mesylate-Loaded Liposomes for Pulmonary Delivery. Int J Nanomedicine 2021; 16:1221-1229. [PMID: 33628019 PMCID: PMC7898055 DOI: 10.2147/ijn.s294626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of vascular endothelial and smooth muscle cells and causes occlusion of pulmonary arterioles that eventually results in right heart failure and death. The platelet-derived growth factor (PDGF) plays a prominent role in abnormal remodeling of pulmonary resistance vessels. Imatinib mesylate (IM), a PDGF-receptor tyrosine kinase inhibitor, was able to ameliorate PAH by reversing pulmonary vascular remodeling. METHODS In the present study, IM-loaded liposomes (IM-LPs) were developed and administered via the pulmonary route to delay the drug release and improve patient compliance for the treatment of PAH. The IM-LPs were prepared by the transmembrane gradient method with the spherical vesicles. The compatibility of the IM-LPs was studied by determining the viability of pulmonary arterial smooth muscle cells (PASMCs). Particle uptake by rat PASMCs was evaluated by incubating the particles with rat PASMCs. Pharmacokinetic studies were performed in male SD rats. RESULTS The IM-LPs showed an average size of 101.6 ± 50.80 nm with a zeta potential value of 19.66 ± 0.55 mV, a PDI of 0.250 and 81.96% ± 0.98% drug entrapment efficiency, meanwhile displayed a sustained release profile. Liposomes obviously increased intracellular accumulation of Rhodamine B by PASMCs using the fluorescence microscopic. Following intratracheal administration to rats, IM-LPs not only extended the half-life of IM, but also prolonged retention of IM compared with plain IM solution after intratracheal and intravenous administration. CONCLUSION The study show potential applications of the LPs for pulmonary delivery of IM and the method for the development of LPs in sustained release of IM for better therapeutic outcomes. Conclusively, the prepared IM-LPs were well designed in nanosized ranges and may be a promising formulation for pulmonary delivery of IM.
Collapse
Affiliation(s)
- Hongfei Xu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Hongyu Ji
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People’s Republic of China
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Zerong Li
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People’s Republic of China
- Department of Pharmacy, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518028, People’s Republic of China
| | - Wenmei Qiao
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People’s Republic of China
- Department of Pharmacy, Shenzhen Luohu Hospital Group-Shenzhen Luohu Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine-Shenzhen Hospital, Shenzhen, 518001, People’s Republic of China
| | - Chenghao Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Jingling Tang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People’s Republic of China
| |
Collapse
|
16
|
Kim NH, Fisher M, Poch D, Zhao C, Shah M, Bartolome S. Long-term outcomes in pulmonary arterial hypertension by functional class: a meta-analysis of randomized controlled trials and observational registries. Pulm Circ 2020; 10:2045894020935291. [PMID: 33282180 PMCID: PMC7691927 DOI: 10.1177/2045894020935291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/28/2020] [Indexed: 11/15/2022] Open
Abstract
Limited data about the long-term prognosis and response to therapy in pulmonary
arterial hypertension patients with World Health Organization functional class
I/II symptoms are available. PubMed and Embase were searched for publications of
observational registries and randomized, controlled trials in pulmonary arterial
hypertension patients published between January 2001 and January 2018. Eligible
registries enrolled pulmonary arterial hypertension patients ≥18 years,
N > 30, and reported survival by functional class.
Randomized, controlled trial inclusion criteria were pulmonary arterial
hypertension patients ≥18 years, ≥6 months of treatment, and morbidity,
mortality, or time to worsening as end points reported by functional class. The
primary outcomes were survival for registries and clinical event rates for
randomized, controlled trials. Separate random effects models were calculated
for registries and randomized, controlled trials. Four randomized, controlled
trials (n = 2482) and 10 registries (n = 6580)
were included. Registries enrolled 9%–47% functional class I/II patients (the
vast majority being functional class II) with various pulmonary arterial
hypertension etiologies. Survival rates for functional class I/II patients at
one, two, and three years were 93% (95% confidence interval (CI): 91%–95%), 86%
(95% CI: 82%–89%), and 78% (95% CI: 73%–83%), respectively. The hazard ratio for
the treatment effect in randomized, controlled trials overall was 0.61 (95% CI:
0.51–0.74) and 0.60 (95% CI: 0.44–0.82) for functional class I/II patients and
0.62 (95% CI: 0.49–0.78) for functional class III/IV. The calculated risk of
death of 22% within three years for functional class I/II patients underlines
the need for careful assessment and optimal treatment of patients with
functional class I/II disease. The randomized, controlled trial analysis
demonstrates that current medical therapies have a beneficial treatment effect
in this population.
Collapse
Affiliation(s)
- Nick H Kim
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, USA
| | - Micah Fisher
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, USA
| | - David Poch
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, USA
| | - Carol Zhao
- Janssen Pharmaceuticals, Inc., South San Francisco, USA
| | - Mehul Shah
- Janssen Pharmaceuticals, Inc., South San Francisco, USA
| | - Sonja Bartolome
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
17
|
Zhao FY, Xu SL, Zhang CF, Liu J, Zhang Y, Yang J, Xing XQ. PDGF mediates pulmonary arterial smooth muscle cell proliferation and migration by regulating NFATc2. Mol Med Rep 2020; 23:39. [PMID: 33179105 PMCID: PMC7684858 DOI: 10.3892/mmr.2020.11677] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023] Open
Abstract
The reconstruction of pulmonary vascular structure caused by the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) is the central link in the formation of pulmonary arterial hypertension (PAH). Platelet-derived growth factor (PDGF) can regulate the proliferation and migration of PASMCs. At the same time, nuclear factor of activated T cells (NFATs) plays an important role in the development of PAH. To the best of our knowledge, there are no reports yet regarding whether PDGF regulates NFATc2 to increase the proliferation of PASMCs. The present study aimed to investigate whether PDGF affects the proliferation and migration of PASMCs by regulating NFAT, and to study the pathogenesis of PAH. PASMCs were treated with recombinant PDGF; Cell Counting Kit-8 and clone formation experiments showed that PDGF enhanced the cell viability and proliferation of PASMCs. Cell cycle distribution and molecular markers related to cell proliferation (cyclin D1, CDK4 and Proliferating Cell Nuclear Antigen) were detected by flow cytometry, and the results indicated that PDGF promoted the division of PAMSCs. The scratch migration and Transwell migration assays showed that the migratory ability of PASMCs was enhanced following PDGF treatment. Changes in NFATs (NFATc1-5) after PDGF treatment were evaluated by reverse transcription-quantitative PCR and western blotting; NFATc2 showed the most significant results. Finally, PDGF-treated cells were treated with an NFAT pathway inhibitor, cyclosporin A, or a small interfering RNA targeting NFATc2, and changes in cell proliferation and migration were evaluated to assess the role of NFATc2 in PDGF-induced cell proliferation and migration. In conclusion, PDGF may regulate PASMC proliferation and migration by regulating the expression of NFAT, further leading to the occurrence of PAH. It is proposed that NFATc2 could be used as a potential target for PAH treatment.
Collapse
Affiliation(s)
- Fang-Yun Zhao
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Shuang-Lan Xu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, P.R. China
| | - Chun-Fang Zhang
- Department of Geriatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Jie Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, P.R. China
| | - Yue Zhang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Jiao Yang
- First Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xi-Qian Xing
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, P.R. China
| |
Collapse
|
18
|
Huertas A, Tu L, Humbert M, Guignabert C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovasc Res 2020; 116:885-893. [PMID: 31813986 DOI: 10.1093/cvr/cvz308] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
This review seeks to provide an update of preclinical findings and available clinical data on the chronic persistent inflammation and its direct role on the pulmonary arterial hypertension (PAH) progression. We reviewed the different mechanisms by which the inflammatory and immune pathways contribute to the structural and functional changes occurring in the three vascular compartments: the tunica intima, tunica media, and tunica adventitia. We also discussed how these inflammatory mediator changes may serve as a biomarker of the PAH progression and summarize unanswered questions and opportunities for future studies in this area.
Collapse
Affiliation(s)
- Alice Huertas
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.,Service de Pneumologie, AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.,Service de Pneumologie, AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Li A, Zhu Z, He Y, Dong Q, Tang D, Chen Z, Huang W. DDCI-01, a novel long acting phospdiesterase-5 inhibitor, attenuated monocrotaline-induced pulmonary hypertension in rats. Pulm Circ 2020; 10:2045894020939842. [PMID: 33240482 PMCID: PMC7672744 DOI: 10.1177/2045894020939842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive, malignant heart disease, characterized by pulmonary arteriole remodeling and increased pulmonary vascular resistance, which eventually leads to right heart failure. This study sought to evaluate the effects of a novel long-acting phospdiesterase-5 inhibitor, namely DDCI-01, as an early intervention for monocrotaline-induced pulmonary hypertensive rats. To establish this model, 50 mg/kg of monocrotaline was intraperitoneally injected into rats. At Day 7 after monocrotaline injection, two doses of DDCI-01 (3 or 9 mg/kg/day) or tadalafil (at 3 or 9 mg/kg/day) were intragastrically administered. The rats were anesthetized with pentobarbital for hemodynamic and echocardiographic measurements, at Day 21 after monocrotaline injection. Compared to the monocrotaline group, DDCI-01 at 3 and 9 mg/kg/day (P) reduced the mean pulmonary arterial pressure (mPAP), right ventricular systolic pressure, right ventricular transverse diameter, pulmonary arterial medial wall thickness (WT%), and right ventricle hypertrophy. However, no significant difference in the indices mentioned as above was found between DDCI-01 (3 mg/kg/day) and tadalafil (3 mg/kg/day). In addition, DDCI-01 at 9 mg/kg/day resulted in lower mPAP and WT%, as well as higher cyclic guanosine monophosphate levels in the lung and plasma compared with the same dose of tadalafil (9 mg/kg/day) (all P < 0.05). These findings suggested that DDCI-01 improved monocrotaline-induced pulmonary hypertension in rats, and a dose of DDCI-01 of 9 mg/kg/day might be more effective than the same dose of tadalafil in monocrotaline-induced pulmonary hypertension in rats.
Collapse
Affiliation(s)
- Ailing Li
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Zhongkai Zhu
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Yangke He
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Qian Dong
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dianyong Tang
- Internation Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Zhongzhu Chen
- Internation Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Wei Huang
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
20
|
Xing J, Wang M, Hong J, Gao Y, Liu Y, Gu H, Dong J, Li L. TRPM7 channel inhibition exacerbates pulmonary arterial hypertension through MEK/ERK pathway. Aging (Albany NY) 2020; 11:4050-4065. [PMID: 31219801 PMCID: PMC6629001 DOI: 10.18632/aging.102036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
Cellular senescence is an important mechanism of autonomous tumor suppression, while its consequence such as the senescence-associated secretory phenotype (SASP) may drive tumorigenesis and age-related diseases. Therefore, controlling the cell fate optimally when encountering senescence stress is helpful for anti-cancer or anti-aging treatments. To identify genes essential for senescence establishment or maintenance, we carried out a CRISPR-based screen with a deliberately designed single-guide RNA (sgRNA) library. The library comprised of about 12,000 kinds of sgRNAs targeting 1378 senescence-associated genes selected by integrating the information of literature mining, protein-protein interaction network, and differential gene expression. We successfully detected a dozen gene deficiencies potentially causing senescence bypass, and their phenotypes were further validated with a high true positive rate. RNA-seq analysis showed distinct transcriptome patterns of these bypass cells. Interestingly, in the bypass cells, the expression of SASP genes was maintained or elevated with CHEK2, HAS1, or MDK deficiency; but neutralized with MTOR, CRISPLD2, or MORF4L1 deficiency. Pathways of some age-related neurodegenerative disorders were also downregulated with MTOR, CRISPLD2, or MORF4L1 deficiency. The results demonstrated that disturbing these genes could lead to distinct cell fates as a consequence of senescence bypass, suggesting that they may play essential roles in cellular senescence.
Collapse
Affiliation(s)
- Junhui Xing
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyu Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Hong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yueqiao Gao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuzhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Heping Gu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Spaczyńska M, Rocha SF, Oliver E. Pharmacology of Pulmonary Arterial Hypertension: An Overview of Current and Emerging Therapies. ACS Pharmacol Transl Sci 2020; 3:598-612. [PMID: 32832865 DOI: 10.1021/acsptsci.0c00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension is a rare and devastating disease characterized by an abnormal chronic increase in pulmonary arterial pressure above 20 mmHg at rest, with a poor prognosis if not treated. Currently, there is not a single fully effective therapy, even though a dozen of drugs have been developed in the last decades. Pulmonary arterial hypertension is a multifactorial disease, meaning that several molecular mechanisms are implicated in its pathology. The main molecular pathways regulating the pulmonary vasomotor tone-endothelin, nitric oxide, and prostacyclin-are the most biologically and therapeutically explored to date. However, drugs targeting these pathways have already found their limitations. In the last years, translational research and clinical trials have made a strong effort in suggesting and testing novel therapeutic strategies for this disease. These approaches involve targeting the main molecular pathways with novel drugs, drug repurposing for novel targets, and also using combinatorial therapies. In this review, we summarize current strategies and drugs targeting the endothelin, nitric oxide, and prostacyclin pathways, as well as, the emerging new drugs proposed to cope with vascular remodelling, metabolic switch, perivascular inflammation, epigenetic modifications, estrogen deregulation, serotonin, and other neurohumoral mechanisms characteristic of this disease. Nowadays, pulmonary arterial hypertension remains an incurable disease; however, the incoming new knowledge makes us believe that new promising therapies are coming to the clinical arena soon.
Collapse
Affiliation(s)
- Monika Spaczyńska
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Susana F Rocha
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,Centro de Investigaciones Biomédicas en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
22
|
Kuwabara Y, Tanaka-Ishikawa M, Abe K, Hirano M, Hirooka Y, Tsutsui H, Sunagawa K, Hirano K. Proteinase-activated receptor 1 antagonism ameliorates experimental pulmonary hypertension. Cardiovasc Res 2020; 115:1357-1368. [PMID: 30423156 DOI: 10.1093/cvr/cvy284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS Pulmonary hypertension (PH) is characterized by progressive increases in pulmonary vascular resistance (PVR). Thrombotic lesions are common pathological findings. The pulmonary artery has a unique property regarding the vasoconstrictive response to thrombin, which is mediated by proteinase-activated receptor 1 (PAR1). We aim to elucidate the role of PAR1 in the development and progression of PH. METHODS AND RESULTS A rat model of monocrotaline-induced PH and a mouse model of hypoxia (Hx)-induced PH were used to investigate the effects of atopaxar (a PAR1 antagonist) and PAR1 knockout on haemodynamic parameters, right ventricular hypertrophy (RVH), vascular remodelling and survival. In perfused lung preparations, the pressor response to PAR1 agonist was significantly augmented in monocrotaline-induced PH. Both the preventive and therapeutic administration of atopaxar significantly inhibited the increase in PVR and the development of RVH and prolonged survival. A real-time PCR revealed that the level of PAR1 mRNA in the pulmonary artery was significantly higher than that in any of the systemic arteries examined in control rats, and the level was significantly up-regulated in monocrotaline-induced PH. PAR1 gene knockout significantly attenuated the haemodynamic and histological findings in the mouse model of Hx-induced PH. CONCLUSION The specific expression of PAR1 in the pulmonary artery and its up-regulation were suggested to play a critical role in the development and progression of experimental PH in murine models. PAR1 is a potential therapeutic target for the treatment of PH.
Collapse
Affiliation(s)
- Yukimitsu Kuwabara
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan.,Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Mariko Tanaka-Ishikawa
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan.,Department of Anesthesiology and Critical Care, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Mayumi Hirano
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
23
|
Impact of Nutrition on Pulmonary Arterial Hypertension. Nutrients 2020; 12:nu12010169. [PMID: 31936113 PMCID: PMC7019983 DOI: 10.3390/nu12010169] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by sustained vasoconstriction, vascular remodeling, inflammation, and in situ thrombosis. Although there have been important advances in the knowledge of the pathophysiology of PAH, it remains a debilitating, limiting, and rapidly progressive disease. Vitamin D and iron deficiency are worldwide health problems of pandemic proportions. Notably, these nutritional alterations are largely more prevalent in PAH patients than in the general population and there are several pieces of evidence suggesting that they may trigger or aggravate disease progression. There are also several case reports associating scurvy, due to severe vitamin C deficiency, with PAH. Flavonoids such as quercetin, isoflavonoids such as genistein, and other dietary polyphenols including resveratrol slow the progression of the disease in animal models of PAH. Finally, the role of the gut microbiota and its interplay with the diet, host immune system, and energy metabolism is emerging in multiple cardiovascular diseases. The alteration of the gut microbiota has also been reported in animal models of PAH. It is thus possible that in the near future interventions targeting the nutritional status and the gut dysbiosis will improve the outcome of these patients.
Collapse
|
24
|
Sabashnikov A, Mohite PN, Zeriouh M, Zych B, García-Sáez D, Maier J, Weymann A, Fatullayev J, Mahesh B, Popov AF, Stock U, De Robertis F, Bahrami T, Wahlers T, Carby M, Simon AR, Reed A. The role of extracorporeal life support in the management with severe idiopathic pulmonary artery hypertension undergoing lung transplantation: are those patients referred too late? J Thorac Dis 2019; 11:S929-S937. [PMID: 31183172 DOI: 10.21037/jtd.2019.04.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Idiopathic pulmonary artery hypertension (iPAH) is a relatively minor indication for lung transplantation (LTx) with comparatively poorer outcomes. Extracorporeal life support (ECLS) in various forms is increasingly being used in the management of this entity. However, the data and experience with this therapy remains limited. We evaluated the role of ECLS in the management of severe iPAH patients as a bridge to LTx as well as post LTx support. Methods A retrospective analysis of iPAH patients that received LTx between January 2007 and May 2014 was performed. Early- and mid-term outcomes were analyzed for this patient cohort. Also, early and mid-term outcomes after LTx were compared to the control group of patients with other diagnoses using unadjusted analysis and 1:3 propensity score matching. Results Of 321 LTx performed during the study period in our centre 15 patients had iPAH as a cause of end-stage lung disease. Four iPAH (27%) patients were bridged to LTx utilizing ECLS in the form of veno-arterial ECMO and extra-corporeal CO2 removal device, whereas 9 patients (60%) required ECLS support for primary graft dysfunction (PGD) after surgery. Patients with iPAH required more frequently on-pump LTx, both pre and post LTx ECLS, and had significantly lower pO2/FiO2 ratio at 24, 48 and 72 hours after LTx. Also iPAH patients had significantly longer ICU and hospital stay. Whereas the incidence of postoperative bronchiolitis obliterans syndrome (BOS) and rejection was comparable to the control group, overall cumulative survival with up to 6 years follow-up was significantly poorer in the iPAH group. After propensity score matching, the results in terms of postoperative outcomes remained as in the unadjusted analysis. Conclusions ECLS is an essential tool in the armamentarium of any lung transplant program treating iPAH with a potential of bridge patients to transplantation and to overcome graft dysfunction after LTx. Despite utilization of ECLS in the management of iPAH, the outcomes in terms of primary graft failure and survival remain poor compared to patients with other diagnoses.
Collapse
Affiliation(s)
- Anton Sabashnikov
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK.,Department of Cardiothoracic Surgery, University Hospital of Cologne, Cologne, Germany
| | - Prashant N Mohite
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Mohamed Zeriouh
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK.,Department of Cardiothoracic Surgery, University Hospital of Cologne, Cologne, Germany
| | - Bartlomiej Zych
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Diana García-Sáez
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Johanna Maier
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK.,Department of Cardiothoracic Surgery, University Hospital of Cologne, Cologne, Germany
| | - Alexander Weymann
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Javid Fatullayev
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK.,Department of Cardiothoracic Surgery, University Hospital of Cologne, Cologne, Germany
| | - Balakrishnan Mahesh
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Aron-Frederik Popov
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Ulrich Stock
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Fabio De Robertis
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Toufan Bahrami
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, University Hospital of Cologne, Cologne, Germany
| | - Martin Carby
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - André R Simon
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| | - Anna Reed
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Middlesex, London, UK
| |
Collapse
|
25
|
Demographics, treatment trends, and survival rate in incident pulmonary artery hypertension in Korea: A nationwide study based on the health insurance review and assessment service database. PLoS One 2018; 13:e0209148. [PMID: 30566510 PMCID: PMC6300275 DOI: 10.1371/journal.pone.0209148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/02/2018] [Indexed: 11/19/2022] Open
Abstract
Epidemiologic data regarding pulmonary arterial hypertension (PAH) have relied on registries from Western countries. We assessed the current status of PAH in the Korean population. The Health Insurance Review and Assessment Service (HIRA) claim database, which comprises nationwide medical insurance data of Koreans from 2008–2016, was assessed to determine the current status of PAH. Overall, 1,307 patients were newly diagnosed with PAH from 2008–2016 (0.0005%, annual incidence: 4.84 patients/1 million people/year). The mean age at diagnosis was 44±13 years (range 18–65) and patients were mostly women (n = 906, 69.3%). Cases of idiopathic PAH (51.6%) accounted for the largest proportion, followed by acquired PAH (APAH) associated with congenital heart disease (25.8%) and APAH with connective tissue disease (17.2%). Overall, 807 (61.7%) patients received a single PAH-specific treatment based on their last prescription, of which bosentan (50.6%) was the most frequently used. Only 240 (18.4%) patients received combination therapy, with the bosentan-beraprost combination (32.9%) being the most common. During the mean follow-up of 1.9 years, the 1-, 2-, 3-, and 5-year estimated survival rates were 85%, 62%, 54%, and 46%, respectively. The prevalence and incidence of PAH in the Korean population is currently comparable with that in previous registries. The 5-year survival rate was slightly higher in the Korean population than previously reported.
Collapse
|
26
|
Zheng YG, Ma H, Chen L, Jiang XM, Zhou L, Lin S, Chen SL. Efficacy and safety of oral targeted therapies in pulmonary arterial hypertension: a meta-analysis of randomized clinical trials. Pulm Circ 2018; 8:2045894018798183. [PMID: 30124134 PMCID: PMC6124186 DOI: 10.1177/2045894018798183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oral targeted therapies play an important role in the treatment of pulmonary
arterial hypertension (PAH). Several new oral agents have emerged for PAH in
recent years. However, whether they provide a survival advantage is still not
clear. This meta-analysis aimed to assess the efficacy and safety of oral
targeted therapies, especially on predefined clinical worsening events. Trials
were searched in the Cochrane Library, EMBASE, and PUBMED databases through June
2018. We calculated risk ratios for dichotomous data and weighted mean
differences with 95% confidence intervals (CI) for continuous data. Twenty-five
trials with a total of 6847 participants were included in the meta-analysis.
Oral targeted therapies were associated with significant risk reduction in
clinical worsening compared with placebo (relative risk [RR] 0.64; 95%
CI = 0.58–0.70; P < 0.001). This reduction in risk was
driven by reduction in non-fatal endpoints, including PAH-related admissions to
hospital (RR = 0.66; 95% CI = 0.56–0.76; P < 0.001),
treatment escalation (RR = 0.43; 95% CI = 0.28–0.66;
P < 0.001), and symptomatic progression (RR = 0.55; 95%
CI = 0.48–0.64; P < 0.001), but not by reduction of
mortality (RR = 0.87; 95% CI = 0.68–1.12; P = 0.215). Oral
targeted therapies were also associated with improvement in 6-min walk distance
(26.62 m; 95% CI = 20.54–32.71; P < 0.001) and World Health
Organization functional class (RR = 1.36; 95% CI = 1.20–1.54;
P < 0.001). The results of this meta-analysis showed the
benefits of oral treatments on clinical worsening events in PAH. However, these
oral agents did not show any survival benefit in the short-term follow-up.
Collapse
Affiliation(s)
- Ya-Guo Zheng
- 1 Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Ma
- 2 Department of Echocardiography, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Chen
- 1 Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Min Jiang
- 1 Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Zhou
- 1 Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Song Lin
- 1 Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shao-Liang Chen
- 1 Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Shi R, Zhu D, Wei Z, Fu N, Wang C, Liu L, Zhang H, Liang Y, Xing J, Wang X, Wang Y. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition. Life Sci 2018; 207:442-450. [PMID: 29969608 DOI: 10.1016/j.lfs.2018.06.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
AIMS Endothelial-to-mesenchymal transition (EndoMT) was shown to lead to endothelial cell (EC) dysfunction in pulmonary arterial hypertension (PAH). Baicalein was reported to inhibit epithelial-to-mesenchymal transition (EMT), a biological process that has many regulatory pathways in common with EndoMT. Whether it can attenuate PAH by inhibiting EndoMT remains obscure. MAIN METHODS PAH was induced by a single subcutaneous injection of MCT (60 mg/kg) in male Sprague Dawley rats. Two weeks after MCT administration, the rats in the treatment groups received baicalein orally (50 or 100 mg/kg/day) for an additional 2 weeks. Hemodynamic changes and right ventricular hypertrophy (RVH) were evaluated on day 28. Cardiopulmonary interstitial fibrosis was detected using Masson's trichrome, Picrosirius-red, and immunohistochemical staining. The reactivity of pulmonary arteries (PAs) was examined ex vivo. The protein expresson of EndoMT molecules, bone morphogenetic protein receptor 2 (BMPR2), and nuclear factor-κB (NF-κB) was examined to explore the mechanism of protective action of baicalein. KEY FINDINGS Baicalein (50 and 100 mg/kg) significantly alleviated MCT-induced PAH and cardiopulmonary interstitial fibrosis. Furthermore, baicalein treatment enhanced PA responsiveness to acetylcholine (ACh) in PAH rats. The upregulation of EndoMT molecules (N-cadherin, vimentin, Snail, and Slug) strongly suggest that EndoMT participates in MCT-induced PAH, which was reversed by baicalein (50 and 100 mg/kg) treatment. Moreover, baicalein partially reversed MCT-induced reductions in BMPR2 and NF-κB activation in the PAs. SIGNIFICANCE Baicalein attenuated MCT-induced PAH in rats by inhibiting EndoMT partially via the NF-κB-BMPR2 pathway. Thus, baicalein might be considered as a promising treatment option for PAH.
Collapse
Affiliation(s)
- Ruizan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China.
| | - Diying Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Zehui Wei
- Department of Pharmacology, Peace Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Naijie Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Chang Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Linhong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Huifeng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Yueqin Liang
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan 030001, China
| | - Jianfeng Xing
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan 030001, China
| | - Xuening Wang
- Department of Cardiovascular Surgery, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan 030032, China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
28
|
Klinke A, Berghausen E, Friedrichs K, Molz S, Lau D, Remane L, Berlin M, Kaltwasser C, Adam M, Mehrkens D, Mollenhauer M, Manchanda K, Ravekes T, Heresi GA, Aytekin M, Dweik RA, Hennigs JK, Kubala L, Michaëlsson E, Rosenkranz S, Rudolph TK, Hazen SL, Klose H, Schermuly RT, Rudolph V, Baldus S. Myeloperoxidase aggravates pulmonary arterial hypertension by activation of vascular Rho-kinase. JCI Insight 2018; 3:97530. [PMID: 29875311 PMCID: PMC6124430 DOI: 10.1172/jci.insight.97530] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/19/2018] [Indexed: 01/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) remains a disease with limited therapeutic options and dismal prognosis. Despite its etiologic heterogeneity, the underlying unifying pathophysiology is characterized by increased vascular tone and adverse remodeling of the pulmonary circulation. Myeloperoxidase (MPO), an enzyme abundantly expressed in neutrophils, has potent vasoconstrictive and profibrotic properties, thus qualifying as a potential contributor to this disease. Here, we sought to investigate whether MPO is causally linked to the pathophysiology of PAH. Investigation of 2 independent clinical cohorts revealed that MPO plasma levels were elevated in subjects with PAH and predicted adverse outcome. Experimental analyses showed that, upon hypoxia, right ventricular pressure was less increased in Mpo-/- than in WT mice. The hypoxia-induced activation of the Rho-kinase pathway, a critical subcellular signaling pathway yielding vasoconstriction and structural vascular remodeling, was blunted in Mpo-/- mice. Mice subjected to i.v. infusion of MPO revealed activation of Rho-kinase and increased right ventricular pressure, which was prevented by coinfusion of the Rho-kinase inhibitor Y-27632. In the Sugen5416/hypoxia rat model, PAH was attenuated by the MPO inhibitor AZM198. The current data demonstrate a tight mechanistic link between MPO, the activation of Rho-kinase, and adverse pulmonary vascular function, thus pointing toward a potentially novel avenue of treatment.
Collapse
Affiliation(s)
- Anna Klinke
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
- International Clinical Research Center, Centre of Biomolecular and Cellular Engineering (CBCE), St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Eva Berghausen
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Kai Friedrichs
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Simon Molz
- University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Lau
- University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Remane
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Matthias Berlin
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Charlotte Kaltwasser
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Matti Adam
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Kashish Manchanda
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Thorben Ravekes
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | | | - Metin Aytekin
- Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Raed A. Dweik
- Pulmonary and Critical Care Medicine, Respiratory Institute, and
| | - Jan K. Hennigs
- Cardiovascular Institute, Stanford University, School of Medicine, Stanford, California, USA
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Kubala
- International Clinical Research Center, Centre of Biomolecular and Cellular Engineering (CBCE), St. Anne’s University Hospital Brno, Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Erik Michaëlsson
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stephan Rosenkranz
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Tanja K. Rudolph
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hans Klose
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralph T. Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Giessen, Germany
| | - Volker Rudolph
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Xu SZ, Yan Liang, Li XP, Li XM, Shuai ZW, Leng RX, Pan HF, Ye DQ. Features associated with pulmonary arterial hypertension in Chinese hospitalized systemic lupus erythematosus patients. Clin Rheumatol 2018. [PMID: 29520672 DOI: 10.1007/s10067-018-4056-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an increasingly recognized complication of systemic lupus erythematosus (SLE). This study aims to estimate the point prevalence of PAH and identify risk factors for PAH in a large cohort of hospitalized SLE patients. We have collected the medical records of patients hospitalized with SLE at the First Affiliated Hospital of Anhui Medical University and Anhui Provincial Hospital. Resting transthoracic echocardiography (TTE) was used to estimate pulmonary artery pressure (PAP) and PAH was defined as systolic PAP (PASP) > 30 mmHg. Patients with other connective tissue diseases, aPL syndrome, left heart disease, valvular heart disease, congenital heart disease, HIV, and portal hypertension were excluded because of diseases affecting the PAP. We assessed potential risk factors for PAH such as thrombogenic factors, SLE clinical manifestations, laboratory abnormalities and disease activity. Ninety-five were diagnosed with PAH of 1639 patients with SLE. The presence of high fibrinogen, serositis, and thrombocytopenia were significantly higher in patients with PAH than in those without PAH (all P < 0.05). Multivariate logistic regression found the associations between high fibrinogen (OR = 1.629), serositis (OR = 2.866), and thrombocytopenia (OR = 1.825) with PAH. The point prevalence of PAH was 5.8% in our cohort of patients with SLE. The significant association of high fibrinogen, serositis, and thrombocytopenia with PAH suggested that hypercoagulable state, organ damage, and hematological abnormality may all contribute to the development of PAH in SLE. This is important, as it is treatable.
Collapse
Affiliation(s)
- Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xiang-Pei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui, 230001, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui, 230001, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China. .,Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
30
|
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is an uncommon and late complication of pulmonary embolism resulting from misguided remodelling of residual pulmonary thromboembolic material and small-vessel arteriopathy. CTEPH is the only form of pulmonary hypertension (PH) potentially curable by pulmonary endarterectomy (PEA). Unfortunately, several patients have either an unacceptable risk-benefit ratio for undergoing the surgical intervention or develop persistent PH after PEA. Novel medical and endovascular therapies can be considered for them. The soluble guanylate cyclase stimulator riociguat is recommended for the treatment of patients with inoperable disease or with recurrent/persistent PH after PEA. Other drugs developed for the treatment of other forms of PH, as prostanoids, phosphodiesterase-5 inhibitors and endothelin receptor antagonists have been used in the treatment of CTEPH, with limited benefit. Balloon pulmonary angioplasty is a novel and promising technique and is progressively emerging from the pioneering phase. Highly specialized training level and complex protocols of postoperative care are mandatory to consolidate the technical success of the surgical and endovascular intervention.
Collapse
Affiliation(s)
| | - Paolo Prandoni
- Department of Cardiac Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| |
Collapse
|
31
|
Gu Z, Zhang C, Wei A, Cui M, Pu J, Lin H, Liu X. Incidence and risk of respiratory tract infection associated with specific drug therapy in pulmonary arterial hypertension: a systematic review. Sci Rep 2017; 7:16218. [PMID: 29176655 PMCID: PMC5701205 DOI: 10.1038/s41598-017-16349-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
Specific drug therapy has been proven to improve functional capacity and slow disease progression in pulmonary arterial hypertension (PAH), regretfully with the data on the risk of respiratory tract infection (RTI) associated with specific drug therapy being limited. Databases of Medline, Embase, Cochrane Library and the ClinicalTrials.gov Website were searched for randomized controlled trials (RCTs) that reported the RTI data of PAH-specific drug therapy in patients. The primacy outcome was assessed by employing a fixed-effects model. Totally, 24 trials involving 6307 patients were included in the analysis. PAH-specific drug therapy was not significantly associated with the increased risk of both RTI (19.4% vs. 21.1% RR 1.02, 95%CI 0.92-1.14, P = 0.69) and serious RTI (4.3% vs. 5.0% RR 0.99, 95%CI 0.77-1.26, P = 0.93) compared to placebo. The results were consistent across the key subgroups. No heterogeneity between the studies (I2 = 35.8% for RTI, and I2 = 0.0% for serious RTI) and no publication bias was identified. In conclusion, no significant increase in RTI had been found in PAH-specific drug therapy when compared with placebo. Whereas, RTI in PAH patients is still worthy of clinical attention.
Collapse
Affiliation(s)
- Zhichun Gu
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Chi Zhang
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Anhua Wei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Cui
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Houwen Lin
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Xiaoyan Liu
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
32
|
Takagi K, Yamakuchi M, Matsuyama T, Kondo K, Uchida A, Misono S, Hashiguchi T, Inoue H. IL-13 enhances mesenchymal transition of pulmonary artery endothelial cells via down-regulation of miR-424/503 in vitro. Cell Signal 2017; 42:270-280. [PMID: 29102771 DOI: 10.1016/j.cellsig.2017.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) has a major effect on life expectancy with functional degeneracy of the lungs and right heart. Interleukin-13 (IL-13), one of the type 2 cytokines mainly associated with allergic diseases, has recently been reported to be associated with Schistosomiasis-associated PAH which shares pathological features with other forms of PAH, such as idiopathic PAH and connective tissue disease-associated PAH. But a direct pathological role of IL-13 in the development of PAH has not been explored. We examined the effects of recombinant human IL-13 on the function of primary human pulmonary artery endothelial cells (HPAECs) to examine how IL-13 influences exacerbation of PAH. IL-13 increased the expression of Rictor, which is a key molecule of mammalian target of rapamycin complex 2. Treatment of IL-13 induced HPAEC migration via Rictor. Rictor was directly regulated by both miR-424 and 503 (miR-424/503). Therefore, IL-13 increases Rictor level by regulating miR-424/503, causing the increase of HPAEC migration. Since enhancement of HPAEC migration in the lung is thought to be associated with PAH, these data suggest that IL-13 takes some roles in exacerbating PAH.
Collapse
Affiliation(s)
- Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Kiyotaka Kondo
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
33
|
Wang N, Chang Y, Chen L, Guo YJ, Zhao YS, Guo QH, Ji ES. Tanshinone IIA protects against chronic intermittent hypoxia-induced myocardial injury via activating the endothelin 1 pathway. Biomed Pharmacother 2017; 95:1013-1020. [PMID: 28922718 DOI: 10.1016/j.biopha.2017.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 01/31/2023] Open
Abstract
Tanshinone IIA (Tan IIA) may exert significant protective effects against heart oxidative stress damage in obstructive sleep apnoea (OSA) syndrome. Chronic intermittent hypoxia (CIH)-triggered left ventricular dysfunction is used in a rat model to mimic CIH in OSA patients. 48 rats were randomly divided into three groups: normal control (NC) group, CIH group and CIH+Tan IIA group with 16 rats in each group. At the end of experiment (day 21), the blood pressure, Plasma ET-1 and NO content, hemodynamic indexes, heart histology, myocardial apoptosis as well as the expression of eNOS, ET-1, ETA receptor and ETB receptor were compared among different groups. Tan IIA was able to inhibit the increase of blood pressure induced by CIH. Meanwhile, rat cardiac function in Tan IIA group was evaluated by hemodynamic indexes, histopathological examination. Higher ventricular eNOS activity was induced by Tan IIA with a reduction in both ET-1 and ETA receptor expression. However, Tan IIA largely inhibited the decrease of ETB receptor expression. This study demonstrated that Tan IIA has the potential to benefit rat heart against CIH via endothelin system.
Collapse
Affiliation(s)
- Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Yue Chang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Lingling Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ya-Jing Guo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ya-Shuo Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Qiu-Hong Guo
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
34
|
|
35
|
Sharma S, Lang IM. Current understanding of the pathophysiology of chronic thromboembolic pulmonary hypertension. Thromb Res 2017. [PMID: 28624155 DOI: 10.1016/j.thromres.2017.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a unique form of pulmonary hypertension arising from fibrotic obliteration of major pulmonary arteries. Pro-thrombotic states, large clot burden and impaired dissolution are believed to contribute to the occurrence and progression of thrombosis after an acute pulmonary embolic event. Recent data utilizing several models have facilitated the understanding of clot resolution. This review summarizes current knowledge on pathophysiological mechanisms of major vessel occlusion in CTEPH.
Collapse
Affiliation(s)
- Smriti Sharma
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Vaidya B, Pangallo M, Ruffenach G, Cunningham CM, Perron JC, Kolluru S, Eghbali M, Gupta V. Advances in treatment of pulmonary arterial hypertension: patent review. Expert Opin Ther Pat 2017; 27:907-918. [DOI: 10.1080/13543776.2017.1313232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Matthew Pangallo
- School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christine Marie Cunningham
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeanette C. Perron
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | | | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| |
Collapse
|
37
|
Pepke-Zaba J, Ghofrani HA, Hoeper MM. Medical management of chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2017; 26:26/143/160107. [DOI: 10.1183/16000617.0107-2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) results from incomplete resolution of acute pulmonary emboli, organised into fibrotic material that obstructs large pulmonary arteries, and distal small-vessel arteriopathy. Pulmonary endarterectomy (PEA) is the treatment of choice for eligible patients with CTEPH; in expert centres, PEA has low in-hospital mortality rates and excellent long-term survival. Supportive medical therapy consists of lifelong anticoagulation plus diuretics and oxygen, as needed.An important recent advance in medical therapy for CTEPH is the arrival of medical therapies for patients with inoperable disease or persistent/recurrent pulmonary hypertension after PEA. The soluble guanylate cyclase stimulator riociguat is licensed for the treatment of CTEPH in patients with inoperable disease or with recurrent/persistent pulmonary hypertension after PEA. Clinical trials of this agent have shown improvements in patients' haemodynamics and exercise capacity. Phosphodiesterase-5 inhibitors, endothelin receptor antagonists and prostanoids have been used in the treatment of CTEPH, but evidence of benefit is limited. Challenges in the future development of medical therapy for CTEPH include better understanding of the underlying pathology, end-points to monitor the condition's progress, and the optimisation of pulmonary arterial hypertension therapies in relation to diverse patient characteristics and emerging options such as balloon pulmonary angioplasty.
Collapse
|
38
|
Baumgart B, Guha M, Hennan J, Li J, Woicke J, Simic D, Graziano M, Wallis N, Sanderson T, Bunch RT. In vitro and in vivo evaluation of dasatinib and imatinib on physiological parameters of pulmonary arterial hypertension. Cancer Chemother Pharmacol 2017; 79:711-723. [PMID: 28283735 DOI: 10.1007/s00280-017-3264-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/17/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) results from occlusion or vasoconstriction of pulmonary vessels, leading to progressive right ventricular failure. Dasatinib, a BCR-ABL1 tyrosine kinase inhibitor (TKI) approved for the treatment of chronic myelogenous leukemia, has been associated with PAH. In contrast, the BCR-ABL1 TKI imatinib has demonstrated anti-vasoproliferative properties and has been investigated as a potential treatment for PAH. Here we describe studies evaluating the effects of dasatinib and imatinib on cardiovascular and pulmonary functions to understand the reported differential consequences of the two TKIs in a clinical setting. METHODS The direct effects of dasatinib and imatinib were explored in vivo to investigate possible mechanisms of dasatinib-induced PAH. In addition, effects of dasatinib and imatinib on PAH-related mediators were evaluated in vitro. RESULTS In rats, both TKIs increased plasma nitric oxide (NO), did not induce PAH-related structural or molecular changes in PA or lungs, and did not alter hemodynamic lung function compared with positive controls. Similarly, in the pulmonary artery endothelial cells and smooth muscle cells co-culture model, imatinib and dasatinib increased NO and decreased endothelin-1 protein and mRNA. CONCLUSIONS The results of these studies indicated that dasatinib did not induce physiological changes or molecular signatures consistent with PAH when compared to positive controls. Instead, dasatinib induced changes consistent with imatinib. Both dasatinib and imatinib induced biochemical and structural changes consistent with a protective effect for PAH. These data suggest that other factors of unclear etiology contributed to the development of PAH in patients treated with dasatinib.
Collapse
Affiliation(s)
- Bethany Baumgart
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA.
| | - Mausumee Guha
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA
| | - James Hennan
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA
| | - Julia Li
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA
| | - Jochen Woicke
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA
| | - Damir Simic
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA
| | - Michael Graziano
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA
| | - Nicola Wallis
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA
| | - Thomas Sanderson
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA
| | - Roderick Todd Bunch
- Bristol-Myers Squibb Pharmaceutical Company, 777 Scudders Mill Road, Princeton, NJ, 08536, USA
| |
Collapse
|
39
|
Elnaggar MA, Subbiah R, Han DK, Joung YK. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv 2017; 14:1341-1353. [PMID: 28117595 DOI: 10.1080/17425247.2017.1285904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahmoud A. Elnaggar
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
40
|
Drogalis-Kim D, Jefferies J, Wilmot I, Alejos J. Right sided heart failure and pulmonary hypertension: New insights into disease mechanisms and treatment modalities. PROGRESS IN PEDIATRIC CARDIOLOGY 2016. [DOI: 10.1016/j.ppedcard.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Plasma Proteomic Study in Pulmonary Arterial Hypertension Associated with Congenital Heart Diseases. Sci Rep 2016; 6:36541. [PMID: 27886187 PMCID: PMC5122864 DOI: 10.1038/srep36541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH) has serious consequence and plasma protein profiles in CHD-PAH are unknown. We aimed to reveal the differential plasma proteins in 272 CHD patients with or without PAH. Various types of CHD-PAH were studied. Differential plasma proteins were first detected by iTRAQ proteomic technology and those with significant clinical relevance were selected for further ELISA validation in new cohort of patients. Among the 190 differential plasma proteins detected by iTRAQ, carbamoyl-phosphate synthetase I (CPSI, related to urea cycle and endogenous nitric oxide production) and complement factor H-related protein 2 (CFHR2, related to complement system and coagulant mechanism) were selected for further ELISA validation in new cohort of 152 patients. Both CPSI and CFHR2 were down-regulated with decreased plasma levels (p < 0.01). Thus, we for the first time in CHD-PAH patients identified a large number of differential plasma proteins. The decreased CPSI expression in CHD-PAH patients may reveal a mechanism related to endogenous nitric oxide and the decrease of CFHR2 protein may demonstrate the deficiency of the immune system and coagulation mechanism. The findings may open a new direction for translational medicine in CHD-PAH with regard to the diagnosis and progress of the disease.
Collapse
|
42
|
Rathinasabapathy A, Bruce E, Espejo A, Horowitz A, Sudhan DR, Nair A, Guzzo D, Francis J, Raizada MK, Shenoy V, Katovich MJ. Therapeutic potential of adipose stem cell-derived conditioned medium against pulmonary hypertension and lung fibrosis. Br J Pharmacol 2016; 173:2859-79. [PMID: 27448286 PMCID: PMC5275771 DOI: 10.1111/bph.13562] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary hypertension (PH) and pulmonary fibrosis (PF) are life threatening cardiopulmonary diseases. Existing pharmacological interventions have failed to improve clinical outcomes or reduce disease-associated mortality. Emerging evidence suggests that stem cells offer an effective treatment approach against various pathological conditions. It has been proposed that their beneficial actions may be mediated via secretion of paracrine factors. Herein, we evaluated the therapeutic potential of conditioned media (CM) from adipose stem cells (ASCs) against experimental models of PH and PF. EXPERIMENTAL APPROACH Monocrotaline (MCT) or bleomycin (Bleo) was injected into male Sprague-Dawley rats to induce PH or PF respectively. A subset of MCT and Bleo animals were treated with ASCs or CM. Echocardiographic and haemodynamic measurements were performed at the end of the study. Lung and heart tissues were harvested for RNA, protein and histological measurements. KEY RESULTS CM treatment attenuated MCT-induced PH by improving pulmonary blood flow and inhibiting cardiac remodelling. Further, histological studies revealed that right ventricular fibrosis, pulmonary vessel wall thickness and pericyte distribution were significantly decreased by CM administration. Likewise, CM therapy arrested the progression of PF in the Bleo model by reducing collagen deposition. Elevated expression of markers associated with tissue remodelling and inflammation were significantly reduced in both PF and PH lungs. Similar results were obtained with ASCs administration. CONCLUSIONS AND IMPLICATIONS Our study indicates that CM treatment is as effective as ASCs in treating PH and PF. These beneficial effects of CM may provide an innovative approach to treat cardiopulmonary disorders.
Collapse
Affiliation(s)
- Anandharajan Rathinasabapathy
- Pharmacodynamics, University of Florida, Gainesville, FL, USA
- Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin Bruce
- Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Andrew Espejo
- Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Alana Horowitz
- Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Dhivya R Sudhan
- Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Anand Nair
- Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, USA
- Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Dominic Guzzo
- Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Joseph Francis
- Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Mohan K Raizada
- Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Vinayak Shenoy
- Pharmacodynamics, University of Florida, Gainesville, FL, USA.
- Pharmaceutical and Biomedical Sciences, California Health Sciences University, Clovis, CA, USA.
| | | |
Collapse
|
43
|
Tu L, Ghigna MR, Phan C, Bordenave J, Le Hiress M, Thuillet R, Ricard N, Huertas A, Humbert M, Guignabert C. [Towards new targets for the treatment of pulmonary arterial hypertension : Importance of cell-cell communications]. Biol Aujourdhui 2016; 210:65-78. [PMID: 27687598 DOI: 10.1051/jbio/2016010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 11/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disorder in which mechanical obstruction of the pulmonary vascular bed is largely responsible for the rise in mean pulmonary arterial pressure (mPAP), resulting in a progressive functional decline despite current available therapeutic options. There are multiple mechanisms predisposing to and/or promoting the aberrant pulmonary vascular remodeling in PAH, and these involve not only altered crosstalk between cells within the vascular wall but also sustained inflammation and dysimmunity, cell accumulation in the vascular wall and excessive activation of some growth factor-stimulated signaling pathways, in addition to the interaction of systemic hormones, local growth factors, cytokines, and transcription factors. Heterozygous germline mutations in the bone morphogenetic protein receptor, type-2 (BMPR2) gene, a gene encoding a receptor for the transforming growth factor (TGF)-β superfamily, can predispose to the disease. Although the spectrum of therapeutic options for PAH has expanded in the last 20 years, available therapies remain essentially palliative. Over the past decade, however, a better understanding of key regulators of this irreversible remodeling of the pulmonary vasculature has been obtained. New and more effective approaches are likely to emerge. The present article profiles the innovative research into novel pathways and therapeutic targets that may lead to the development of targeted agents in PAH.
Collapse
Affiliation(s)
- Ly Tu
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France - Service de Pathologie, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Carole Phan
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Jennifer Bordenave
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Morane Le Hiress
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Nicolas Ricard
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Alice Huertas
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France - AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, France
| | - Marc Humbert
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France - AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, France
| | - Christophe Guignabert
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
44
|
Hansen T, Galougahi KK, Celermajer D, Rasko N, Tang O, Bubb KJ, Figtree G. Oxidative and nitrosative signalling in pulmonary arterial hypertension — Implications for development of novel therapies. Pharmacol Ther 2016; 165:50-62. [DOI: 10.1016/j.pharmthera.2016.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
More K, Athalye‐Jape GK, Rao SC, Patole SK. Endothelin receptor antagonists for persistent pulmonary hypertension in term and late preterm infants. Cochrane Database Syst Rev 2016; 2016:CD010531. [PMID: 27535894 PMCID: PMC8588275 DOI: 10.1002/14651858.cd010531.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Endothelin, a powerful vasoconstrictor, is one of the mediators in the causation of persistent pulmonary hypertension of the newborn (PPHN). Theoretically, endothelin receptor antagonists (ETRA) have the potential to improve the outcomes of infants with PPHN. OBJECTIVES To assess the efficacy and safety of ETRA in the treatment of PPHN in full-term, post-term and late preterm infants.To assess the efficacy and safety of selective ETRAs (which block only the ETA receptors) and non-selective ETRAs (which block both ETA and ETB receptors) separately. SEARCH METHODS CENTRAL (Cochrane Central Register of Controlled Trials), MEDLINE, EMBASE and CINAHL databases were searched until December 2015. SELECTION CRITERIA Randomised, cluster-randomised or quasi-randomised controlled trials were eligible. DATA COLLECTION AND ANALYSIS Two review authors independently searched the literature, selected the studies, assessed the risk of bias and extracted the data. A fixed-effect model was used for meta-analysis. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the quality of evidence. MAIN RESULTS Two randomised controlled trials of ETRA met the inclusion criteria. Both studies utilized oral Bosentan. The first study was done in a setting where inhaled nitric oxide (iNO) therapy was not available. Forty-seven infants (≥ 34 weeks' gestation) were randomised to receive either Bosentan or placebo. The second study was a multicentre study where iNO therapy was the standard of care for PPHN. Twenty-one infants were randomised to receive either 'iNO plus Bosentan' or 'iNO plus placebo'.In the first study, there was no significant difference in the incidence of death before hospital discharge between the Bosentan and placebo groups (1/23 vs 3/14; RR 0.20, 95% CI 0.02 to 1.77; RD -0.17, 95% CI -0.40 to 0.06). A higher proportion of infants in the Bosentan group showed improvement in oxygenation index (OI) at the end of therapy (21/24 vs 3/15; RR 4.38, 95% CI 1.57 to 12.17; RD 0.68, 95% CI 0.43 to 0.92; number needed to treat for a beneficial outcome (NNTB) 1.5). The duration of mechanical ventilation was lower in the Bosentan group (4.3 ± 0.9 vs 11.5 ± 0.6 days; MD -7.20, 95% CI -7.64 to -6.76). There was no significant difference in adverse neurological outcomes at six months (0/23 vs 4/14; RR 0.07, 95% CI 0.00 to 1.20; RD -0.29, 95% CI -0.52 to -0.05). The study suffered from a high risk of attrition bias since 8/23 infants in the placebo group were excluded from various analyses. Since the protocol for the study could not be accessed, the study suffered from unclear risk of reporting bias.In the second study, there was no significant difference in the incidence of treatment failure needing extracorporeal membrane oxygenation (ECMO) between the 'iNO plus Bosentan' vs 'iNO plus placebo' groups (1/13 vs 0/8; RR 1.93, 95% CI 0.09 to 42.35; RD 0.08, 95% CI -0.14 to 0.30). There was no significant difference in the median time to wean from iNO ('iNO plus Bosentan': 3.7 days (95% CI 1.17 to 6.95); 'iNO plus placebo': 2.9 days (95% CI 1.26 to 4.23); P = 0.34). There were no significant differences in the OI 0, 3, 5, 12, 24, 48 and 72 hours of treatment between the groups. There were no significant differences in the time to complete weaning from mechanical ventilation (median 10.8 days (CI 3.21 to 12.21) versus 8.6 days (CI 3.71 to 9.66); P = 0.24). The study had unequal distribution to the Bosentan group (N = 13) and the placebo group (N = 8). The methods used for generating random sequence numbers and allocation concealment were unclear, resulting in unclear risk of selection bias.Both studies reported that Bosentan was well tolerated and no major adverse effects were noted. Data from the two studies was not pooled given the heterogenous nature of the clinical settings and the modalities used for the treatment of PPHN.Overall, the quality of evidence was considered low, given the small sample size of the included studies, the numerical imbalance between the groups due to randomisation and attrition, and unclear risk of bias on some of the important domains. AUTHORS' CONCLUSIONS There is inadequate evidence to support the use of ETRAs either as stand-alone therapy or as adjuvant to inhaled nitric oxide in PPHN. Adequately powered RCTs are needed.
Collapse
Affiliation(s)
- Kiran More
- Christchurch Women's HospitalDepartment of NeonatologyCanterburyNew Zealand
- University of OtagoDunedinNew Zealand
| | - Gayatri K Athalye‐Jape
- Princess Margaret Hospital and King Edward HospitalDepartment of NeonatologyRoberts RoadSubiacoWestern AustraliaAustralia6008
| | - Shripada C Rao
- King Edward Memorial Hospital for Women and Princess Margaret Hospital for ChildrenCentre for Neonatal Research and EducationPerth, Western AustraliaAustralia6008
| | - Sanjay K Patole
- King Edward Memorial HospitalSchool of Paediatrics and Child Health, School of Women's and Infant's Health, University of Western Australia374 Bagot RdSubiacoPerthWestern AustraliaAustralia6008
| | | |
Collapse
|
46
|
Shmal'ts AA, Gorbachevskiy SV. Riociguat and sildenafil for pulmonary hypertension: similarity and difference. ACTA ACUST UNITED AC 2016. [DOI: 10.18093/0869-0189-2016-26-1-85-91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A. A. Shmal'ts
- A.N.Bakulev Federal Academic Center of Cardiovascular Surgery, Healthcare Ministry of Russia: 135, Rublevskoe roadway, Moscow, 121552, Russia;
Russian State Medical Postgraduate Academy, Healthcare Ministry of Russia: 2 / 1, Barrikadnaya str., Moscow, 123995, Russi
| | - S. V. Gorbachevskiy
- A.N.Bakulev Federal Academic Center of Cardiovascular Surgery, Healthcare Ministry of Russia: 135, Rublevskoe roadway, Moscow, 121552, Russia;
Russian State Medical Postgraduate Academy, Healthcare Ministry of Russia: 2 / 1, Barrikadnaya str., Moscow, 123995, Russi
| |
Collapse
|
47
|
Waxman AB, Farber HW. Using Clinical Trial End Points to Risk Stratify Patients With Pulmonary Arterial Hypertension. Circulation 2016; 132:2152-61. [PMID: 26621638 DOI: 10.1161/circulationaha.114.012328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aaron B Waxman
- From Pulmonary and Critical Care Medicine, Center for Pulmonary Heart Disease (A.B.W.), Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (A.B.W.); and Pulmonary Hypertension Center, Boston Medical Center, Boston University School of Medicine, Boston, MA (H.W.F.).
| | - Harrison W Farber
- From Pulmonary and Critical Care Medicine, Center for Pulmonary Heart Disease (A.B.W.), Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (A.B.W.); and Pulmonary Hypertension Center, Boston Medical Center, Boston University School of Medicine, Boston, MA (H.W.F.)
| |
Collapse
|
48
|
Liposomal Aerosols of Nitric Oxide (NO) Donor as a Long-Acting Substitute for the Ultra-Short-Acting Inhaled NO in the Treatment of PAH. Pharm Res 2016; 33:1696-710. [PMID: 27048347 DOI: 10.1007/s11095-016-1911-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/17/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE This study seeks to develop a liposomal formulation of diethylenetriamine NONOate (DN), a long acting nitric oxide (NO) donor, with a goal to replace inhaled NO (iNO) in the treatment of pulmonary arterial hypertension (PAH). METHODS Liposomal formulations were prepared by a lipid film hydration method and modified with a cell penetrating peptide, CAR. The particles were characterized for size, polydispersity index (PDI), zeta potential, entrapment efficiency, storage and nebulization stability, and in-vitro release profiles. The cellular uptake and transport were assessed in rat alveolar macrophages (NR8383) and transforming growth factor β (TGF-β) activated rat pulmonary arterial smooth muscle cells (PASMCs). The fraction of the formulation that enters the systemic circulation, after intratracheal administration, was determined in an Isolated Perfused Rat Lung (IPRL) model. The safety of the formulations were assessed using an MTT assay and by measuring injury markers in the bronchoalveolar lavage (BAL) fluid; the pharmacological efficacy was evaluated by monitoring the changes in the mean pulmonary arterial (mPAP) and systemic pressure (mSAP) in a monocrotaline (MCT) induced-PAH rat model RESULTS Liposome size, zeta potential, and entrapment efficiency were 171 ± 4 nm, -37 ± 3 mV, and 46 ± 5%, respectively. The liposomes released 70 ± 5% of the drug in 8 h and were stable when stored at 4°C. CAR-conjugated-liposomes were taken up more efficiently by PASMCs than liposomes-without-CAR; the uptake of the formulations by rat alveolar macrophages was minimal. DN-liposomes did not increase lung weight, protein quantity, and levels of injury markers in the BAL fluid. Intratracheal CAR-liposomes reduced the entry of liposomes from the lung to blood; the formulations produced a 40% reduction in mPAP for 180 minutes. CONCLUSION This study establishes the proof-of-concept that peptide modified liposomal formulations of long-acting NO donor can be an alternative to short-acting iNO.
Collapse
|
49
|
Kang Z, Ji Y, Zhang G, Qu Y, Zhang L, Jiang W. Ponatinib attenuates experimental pulmonary arterial hypertension by modulating Wnt signaling and vasohibin-2/vasohibin-1. Life Sci 2016; 148:1-8. [PMID: 26860892 DOI: 10.1016/j.lfs.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 01/18/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
AIMS An abnormal ratio of vasohibin-2/vasohibin-1 may be involved in the abnormal angiogenesis and vascular remodeling during pulmonary arterial hypertension (PAH). MAIN METHODS To evaluate the pharmacological actions of Ponatinib (AP) in experimental model of PAH, the effects of AP on TGF-β1-mediated endothelial-mesenchymal transition (EndoMT) in human pulmonary microvascular endothelial cells (HPMEC), and the hypoxic human pulmonary artery smooth muscle cells (HPASMC) proliferation and HPMEC in vitro, and on bleomycin (BLM)-induced PAH in vivo were investigated. KEY FINDINGS AP treatment resulted in a reduction of EndoMT in HPMECs with a decrease of vimentin, whereas an increase of VE-cadherin, reduction of fibroblast growth factor (FGF-2), vascular endothelial growth factor (VEGF) and vasohibin-2 (VASH-2), whereas an increase of vasohibin-1 (VASH-1) in the hypoxic HPMEC, a reduction of the HPASMC proliferation with decreases of wnt5a, β-catenin and cyclin D1 expression. AP ameliorated BLM-induced PAH in rats with reductions of FGF-2, VEGF, von Willebrand factor (vWF) and VASH-2 expression, whereas an increase of VASH-1 expression. AP ameliorated BLM-induced PAH in rats with reductions of the pathological score and the collagen deposition. In addition, AP ameliorated hemodynamics and right ventricular hypertrophy. SIGNIFICANCES Our results identified a therapeutic potential of AP in PAH therapy might be modulated VASH-2/VASH-1 and the Wnt signaling.
Collapse
Affiliation(s)
- Zechun Kang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, PR China
| | - Yunxia Ji
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, PR China
| | - Guanghua Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, PR China
| | - Yubei Qu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, PR China
| | - Liang Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, PR China
| | - Wanglin Jiang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
50
|
Dumas SJ, Humbert M, Cohen-Kaminsky S. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?]. Biol Aujourdhui 2016; 210:171-189. [PMID: 28327277 DOI: 10.1051/jbio/2016022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 11/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, complex and multifactorial disease in which pulmonary vascular remodeling plays a major role ending in right heart failure and death. Current specific therapies of PAH that mainly target the vasoconstriction/vasodilatation imbalance are not curative. Bi-pulmonary transplantation remains the only option in patients resistant to current therapies. It is thus crucial to identify novel vascular anti-remodeling therapeutic targets. This remodeling displays several properties of cancer cells, especially overproliferation and apoptosis resistance of pulmonary vascular cells, hallmarks of cancer related to the metabolic shift known as the "Warburg effect". The latter is characterized by a shift of ATP production, from oxidative phosphorylation to low rate aerobic glycolysis. In compensation, the cancer cells exhibit exacerbated glutaminolysis thus resulting in glutamine addiction, necessary to their overproliferation. Glutamine intake results in glutamate production, a molecule at the crossroads of energy metabolism and cancer cell communication, thus contributing to cell proliferation. Accordingly, therapeutic strategies targeting glutamate production, its release into the extracellular space and its membrane receptors have been suggested to treat different types of cancers, not only in the central nervous system but also in the periphery. We propose that similar strategies targeting glutamatergic signaling may be considered in PAH, especially as they could affect not only the vascular remodeling but also the right heart hypertrophy known to involve the glutaminolysis pathway. Ongoing studies aim to characterize the involvement of the glutamate pathway and its receptors in vascular remodeling, and the therapeutic potential of specific molecules targeting this pathway.
Collapse
Affiliation(s)
- Sébastien J Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|