1
|
Russell CA, Fouchier RAM, Ghaswalla P, Park Y, Vicic N, Ananworanich J, Nachbagauer R, Rudin D. Seasonal influenza vaccine performance and the potential benefits of mRNA vaccines. Hum Vaccin Immunother 2024; 20:2336357. [PMID: 38619079 PMCID: PMC11020595 DOI: 10.1080/21645515.2024.2336357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Influenza remains a public health threat, partly due to suboptimal effectiveness of vaccines. One factor impacting vaccine effectiveness is strain mismatch, occurring when vaccines no longer match circulating strains due to antigenic drift or the incorporation of inadvertent (eg, egg-adaptive) mutations during vaccine manufacturing. In this review, we summarize the evidence for antigenic drift of circulating viruses and/or egg-adaptive mutations occurring in vaccine strains during the 2011-2020 influenza seasons. Evidence suggests that antigenic drift led to vaccine mismatch during four seasons and that egg-adaptive mutations caused vaccine mismatch during six seasons. These findings highlight the need for alternative vaccine development platforms. Recently, vaccines based on mRNA technology have demonstrated efficacy against SARS-CoV-2 and respiratory syncytial virus and are under clinical evaluation for seasonal influenza. We discuss the potential for mRNA vaccines to address strain mismatch, as well as new multi-component strategies using the mRNA platform to improve vaccine effectiveness.
Collapse
Affiliation(s)
- Colin A. Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
2
|
Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother 2024; 20:2307187. [PMID: 38282471 PMCID: PMC10826636 DOI: 10.1080/21645515.2024.2307187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The research and development of messenger RNA (mRNA) cancer vaccines have gradually overcome numerous challenges through the application of personalized cancer antigens, structural optimization of mRNA, and the development of alternative RNA-based vectors and efficient targeted delivery vectors. Clinical trials are currently underway for various cancer vaccines that encode tumor-associated antigens (TAAs), tumor-specific antigens (TSAs), or immunomodulators. In this paper, we summarize the optimization of mRNA and the emergence of RNA-based expression vectors in cancer vaccines. We begin by reviewing the advancement and utilization of state-of-the-art targeted lipid nanoparticles (LNPs), followed by presenting the primary classifications and clinical applications of mRNA cancer vaccines. Collectively, mRNA vaccines are emerging as a central focus in cancer immunotherapy, offering the potential to address multiple challenges in cancer treatment, either as standalone therapies or in combination with current cancer treatments.
Collapse
Affiliation(s)
- Ruhui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Qu J, Nair A, Muir GW, Loveday KA, Yang Z, Nourafkan E, Welbourne EN, Maamra M, Dickman MJ, Kis Z. Quality by design for mRNA platform purification based on continuous oligo-dT chromatography. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102333. [PMID: 39380714 PMCID: PMC11458983 DOI: 10.1016/j.omtn.2024.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Oligo-deoxythymidine (oligo-dT) ligand-based affinity chromatography is a robust method for purifying mRNA drug substances within the manufacturing process of mRNA-based products, including vaccines and therapeutics. However, the conventional batch mode of operation for oligo-dT chromatography has certain drawbacks that reduce the productivity of this process. Here, we report a new continuous oligo-dT chromatography process for the purification of in vitro transcribed mRNA, which reduces losses, improves the efficiency of oligo-dT resin use, and intensifies the chromatography process. Furthermore, the quality by design (QbD) framework was used to establish a design space for the newly developed method. The optimization of process parameters (PPs), including salt type, salt concentration, load flow rate and mRNA load concentration both in batch and the continuous mode, achieved a greater than 90% yield (mRNA recovery) along with greater than 95% mRNA integrity and greater than 99% purity. The productivity of continuous chromatography was estimated to be 5.75-fold higher, and the operating cost was estimated 15% lower, when compared with batch chromatography. Moreover, the QbD framework was further used to map the relationship between critical quality attributes and key performance indicators as a function of critical process parameters and critical material attributes.
Collapse
Affiliation(s)
- Jixin Qu
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Adithya Nair
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - George W. Muir
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Kate A. Loveday
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Zidi Yang
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Ehsan Nourafkan
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Emma N. Welbourne
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Mabrouka Maamra
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Mark J. Dickman
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Zoltán Kis
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
- Department of Chemical Engineering, Imperial College London, Roderic Hill Building, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
4
|
Lou W, Zhang L, Wang J. Current status of nucleic acid therapy and its new progress in cancer treatment. Int Immunopharmacol 2024; 142:113157. [PMID: 39288629 DOI: 10.1016/j.intimp.2024.113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Nucleic acid is an essential biopolymer in all living cells, performing the functions of storing and transmitting genetic information and synthesizing protein. In recent decades, with the progress of science and biotechnology and the continuous exploration of the functions performed by nucleic acid, more and more studies have confirmed that nucleic acid therapy for living organisms has great medical therapeutic potential. Nucleic acid drugs began to become independent therapeutic agents. As a new therapeutic method, nucleic acid therapy plays an important role in the treatment of genetic diseases, viral infections and cancers. There are currently 19 nucleic acid drugs approved by the Food and Drug Administration (FDA). In the following review, we start from principles and advantages of nucleic acid therapy, and briefly describe development history of nucleic acid drugs. And then we give examples of various RNA therapeutic drugs, including antisense oligonucleotides (ASO), mRNA vaccines, small interfering RNA (siRNA) and microRNA (miRNA), aptamers, and small activating RNA (saRNA). In addition, we also focused on the current status of nucleic acid drugs used in cancer therapy and the breakthrough in recent years. Clinical trials of nucleic acid drugs for cancer treatment are under way, conventional radiotherapy and chemotherapy combined with the immunotherapies such as checkpoint inhibitors and nucleic acid drugs may be the main prospects for successful cancer treatment.
Collapse
Affiliation(s)
- Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou 310009, China.
| |
Collapse
|
5
|
Liang Q, Tu B, Cui L. Recombinant T7 RNA polymerase production using ClearColi BL21(DE3) and animal-free media for in vitro transcription. Appl Microbiol Biotechnol 2024; 108:41. [PMID: 38180552 DOI: 10.1007/s00253-023-12939-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
In vitro transcription (IVT) using T7 RNA polymerase (RNAP) is integral to RNA research, yet producing this enzyme in E. coli presents challenges regarding endotoxins and animal-sourced toxins. This study demonstrates the viable production and characterization of T7 RNAP using ClearColi BL21(DE3) (an endotoxin-free E. coli strain) and animal-free media. Compared to BL21(DE3) with animal-free medium, soluble T7 RNAP expression is ~50% lower in ClearColi BL21(DE3). Optimal soluble T7 RNAP expression in flask fermentation is achieved through the design of experiments (DoE). Specification and functional testing showed that the endotoxin-free T7 RNAP has comparable activity to conventional T7 RNAP. After Ni-NTA purification, endotoxin levels were approximately 109-fold lower than T7 RNAP from BL21(DE3) with animal-free medium. Furthermore, a full factorial DoE created an optimal IVT system that maximized mRNA yield from the endotoxin-free and animal-free T7 RNAP. This work addresses critical challenges in recombinant T7 RNAP production through innovative host and medium combinations, avoided endotoxin risks and animal-derived toxins. Together with an optimized IVT reaction system, this study represents a significant advance for safe and reliable reagent manufacturing and RNA therapeutics. KEY POINTS: • Optimized IVT system maximizes mRNA yields, enabling the synthesis of long RNAs. • Novel production method yields endotoxin-free and animal-free T7 RNAP. • The T7 RNAP has equivalent specifications and function to conventional T7 RNAP.
Collapse
Affiliation(s)
- Qianying Liang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China
| | - Bowen Tu
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Lun Cui
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China.
- CCZU-JITRI Joint Bio-X Lab, Changzhou AiRiBio Healthcare CO., LTD, Changzhou, 213164, Jiangsu Province, China.
| |
Collapse
|
6
|
Huang L, Zhao T, Zhao W, Shao A, Zhao H, Ma W, Gong Y, Zeng X, Weng C, Bu L, Di Z, Sun S, Dai Q, Sun M, Wang L, Liu Z, Shi L, Hu J, Fang S, Zhang C, Zhang J, Wang G, Loré K, Yang Y, Lin A. Herpes zoster mRNA vaccine induces superior vaccine immunity over licensed vaccine in mice and rhesus macaques. Emerg Microbes Infect 2024; 13:2309985. [PMID: 38258878 PMCID: PMC10860463 DOI: 10.1080/22221751.2024.2309985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Herpes zoster remains an important global health issue and mainly occurs in aged and immunocompromised individuals with an early exposure history to Varicella Zoster Virus (VZV). Although the licensed vaccine Shingrix has remarkably high efficacy, undesired reactogenicity and increasing global demand causing vaccine shortage urged the development of improved or novel VZV vaccines. In this study, we developed a novel VZV mRNA vaccine candidate (named as ZOSAL) containing sequence-optimized mRNAs encoding full-length glycoprotein E encapsulated in an ionizable lipid nanoparticle. In mice and rhesus macaques, ZOSAL demonstrated superior immunogenicity and safety in multiple aspects over Shingrix, especially in the induction of strong T-cell immunity. Transcriptomic analysis revealed that both ZOSAL and Shingrix could robustly activate innate immune compartments, especially Type-I IFN signalling and antigen processing/presentation. Multivariate correlation analysis further identified several early factors of innate compartments that can predict the magnitude of T-cell responses, which further increased our understanding of the mode of action of two different VZV vaccine modalities. Collectively, our data demonstrated the superiority of VZV mRNA vaccine over licensed subunit vaccine. The mRNA platform therefore holds prospects for further investigations in next-generation VZV vaccine development.
Collapse
Affiliation(s)
- Lulu Huang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Tongyi Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Weijun Zhao
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Andong Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| | - Wenxuan Ma
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yingfei Gong
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Xianhuan Zeng
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Changzhen Weng
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Lingling Bu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Zhenhua Di
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Shiyu Sun
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qinsheng Dai
- Targeted Discovery Center, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Minhui Sun
- Targeted Discovery Center, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Limei Wang
- Advanced Medical Research Institute, Shandong University, Jinan, People’s Republic of China
| | - Zhenguang Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiesen Hu
- Firestone Biotechnologies, Shanghai, People’s Republic of China
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Cheng Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People’s Republic of China
| | - Jian Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People’s Republic of China
| | - Karin Loré
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yong Yang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Ang Lin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People’s Republic of China
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Yilmaz Demirel N, Weber M, Höfer K. Bridging the gap: RNAylation conjugates RNAs to proteins. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119826. [PMID: 39182583 DOI: 10.1016/j.bbamcr.2024.119826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
In nature, the majority of known RNA-protein interactions are transient. Our recent study has depicted a novel mechanism known as RNAylation, which covalently links proteins and RNAs. This novel modification bridges the realms of RNA and protein modifications. This review specifically explores RNAylation catalyzed by bacteriophage T4 ADP-ribosyltransferase ModB, with a focus on its protein targets and RNA substrates in the context of Escherichia coli-bacteriophage T4 interaction. Additionally, we discuss the biological significance of RNAylation and present perspectives on RNAylation as a versatile bioconjugation strategy for RNAs and proteins.
Collapse
Affiliation(s)
- Nurseda Yilmaz Demirel
- Max-Planck-Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Moritz Weber
- Max-Planck-Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Katharina Höfer
- Max-Planck-Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
8
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
9
|
Nasr SS, Paul P, Loretz B, Lehr CM. Realizing time-staggered expression of nucleic acid-encoded proteins by co-delivery of messenger RNA and plasmid DNA on a single nanocarrier. Drug Deliv Transl Res 2024; 14:3339-3353. [PMID: 39009932 DOI: 10.1007/s13346-024-01668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Co-delivery of different protein-encoding polynucleotide species with varying expression kinetics of their therapeutic product will become a prominent requirement in the realm of combined nucleic acid(NA)-based therapies in the upcoming years. The current study explores the capacity for time-staggered expression of encoded proteins by simultaneous delivery of plasmid DNA (pDNA) in the core and mRNA on the shell of the same nanocarrier. The core is based on a Gelatin Type A-pDNA coacervate, thermally stabilized to form an irreversible nanogel stable enough for the deposition of cationic coats namely, protamine sulfate or LNP-related lipid mixtures. Only the protamine-coated nanocarriers remained colloidally stable following mRNA loading and could successfully co-transfect murine dendritic cell line DC2.4 with fluorescent reporter mRNA(mCherry) and pDNA (pAmCyan1). Further investigation of the protamine-coated nanosystem only, the transfection efficiency (percentage of transfected cells) and level of protein expression (mean fluorescence intensity, MFI) of mRNA and pDNA, simultaneously delivered by the same nanocarrier, were compared and kinetically assessed over 48 h in DC2.4 using flow cytometry. The onset of transfection for both nucleotides was initially delayed, with levels < 5% at 6 h. Thereafter, mRNA transfection reached 90% after 24 h and continued to slightly increase until 48 h. In contrast, pDNA transfection was clearly slower, reaching approximately 40% after 24 h, but continuing to increase to reach 94% at 48 h. The time course of protein expression (represented by MFI) for both NAs essentially followed that of transfection. Model-independent as well as model-dependent kinetic parameters applied to the data further confirmed such time-staggered expression of the two NA's where mRNA's rate of transfection and protein expression initially exceeded those of pDNA in the first 24 h of the experiment whereas the opposite was true during the second 24 h of the experiment where pDNA displayed the higher response rates. We expect that innovative nanocarriers capable of time-staggered co-delivery of different nucleotides could open new perspectives for multi-dosing, pulsatile or sustained expression of nucleic acid-based therapeutics in protein replacement, vaccination, and CRISPR-mediated gene editing scenarios.
Collapse
Affiliation(s)
- Sarah S Nasr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Pascal Paul
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
10
|
Camperi J, Roper B, Freund E, Leylek R, Nissenbaum A, Galan C, Caothien R, Hu Z, Ko P, Lee A, Chatla K, Ayalew L, Yang F, Lippold S, Guilbaud A. Exploring the Impact of In Vitro-Transcribed mRNA Impurities on Cellular Responses. Anal Chem 2024; 96:17789-17799. [PMID: 39445393 DOI: 10.1021/acs.analchem.4c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Advances in mRNA technology have enabled mRNA-based therapies to enter a new era of medicine. Such therapies benefit from a single, standardized in vitro transcription (IVT) manufacturing process applicable to a wide range of targets. This process includes several downstream purification steps, which aim to eliminate impurities that potentially affect safety and efficacy. However, it is not fully understood which impurities are the most critical; hence, some efforts are still needed to establish the correlation between RNA impurities and their role in limiting therapeutic efficacy. To study this relationship, we produced in vitro-transcribed mRNAs using several bacteriophage T7 RNA polymerases, including one wild-type and four engineered variants. Important attributes of the mRNA such as integrity, purity, and functional activity were then measured using advanced physicochemical and cellular assays. For impurities including abortive transcripts, mRNAs containing partial poly(A) tails, and double-stranded (ds)RNA byproducts, structure-function relationships have been established by tracking cellular responses (i.e., protein expression, reactogenicity) in multiple cell models. By varying the T7 RNA polymerase, different levels of sense-antisense dsRNA byproducts were measured by mass photometry, contributing directly to immunological reactogenicity in bone marrow-derived dendritic cells. T7 RNA polymerase differences with regard to short (<20 nucleotides) 3'-loopback dsRNA byproducts were also further investigated using native mass spectrometry by precisely resolving these impurities at the nucleotide level. Overall, this study highlights the importance of developing sensitive and advanced analytical methods to characterize IVT mRNA impurities and understand their interaction with cellular machinery in order to ensure quality control of RNA-based therapies.
Collapse
Affiliation(s)
- Julien Camperi
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Roper
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Emily Freund
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca Leylek
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ariane Nissenbaum
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Carolina Galan
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Roger Caothien
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Zhilan Hu
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Peggy Ko
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Allison Lee
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kamalakar Chatla
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Luladey Ayalew
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Feng Yang
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Steffen Lippold
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Axel Guilbaud
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
11
|
Fang L, Gu W, Li R, Chen C, Cai S, Luozhong S, Chen M, Hsu A, Tsai YC, Londhe K, Jiang S. Controlling Circular RNA Encapsulation within Extracellular Vesicles for Gene Editing and Protein Replacement. ACS NANO 2024; 18:30378-30387. [PMID: 39445782 DOI: 10.1021/acsnano.4c07530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are a population of vesicular bodies originating from cells, and EVs have been proven to have the potential to deliver different cargos, such as RNAs. However, conventional methods are not able to encapsulate long RNAs into EVs efficiently or may compromise the integrity of EVs. In this study, we have devised a strategy to encapsulate long circRNAs (>1000 nt) into EVs by harnessing the sorting mechanisms of cells. This strategy utilizes the inherent richness of circular RNAs in EVs and a genetic engineering method to increase the cytoplasmic concentration of target circRNAs, facilitating highly efficient RNA back-splicing to drive the circularization of RNAs. This allows target circRNAs to load into EVs with high efficiency. Furthermore, we demonstrate the practical applications of this strategy, showing that these circRNAs can be delivered by EVs to recipient cells for protein expression and to mice for gene editing.
Collapse
Affiliation(s)
- Liang Fang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ruoxin Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Chaoxin Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Simian Cai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Annie Hsu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yi-Chih Tsai
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ketaki Londhe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Maher S, Assaly NME, Aly DM, Atta S, Fteah AM, Badawi H, Zahran MY, Kamel M. Comparative study of neutralizing antibodies titers in response to different types of COVID-19 vaccines among a group of egyptian healthcare workers. Virol J 2024; 21:277. [PMID: 39501293 PMCID: PMC11539826 DOI: 10.1186/s12985-024-02546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Defining the protective thresholds against the severe-acute-respiratory-syndrome-related corona virus-2 pandemic is a crucial challenge. To reduce the risks of severe disease, hospitalization, and death, various COVID-19 vaccines have been rapidly developed. AIM OF THE WORK This study aimed to assess the impact of three common COVID-19 vaccine types; two mRNA COVID-19 vaccines: (Pfizer/BioNTech's BNT162b2 and Moderna's mRNA-1273), one adenoviral vector vaccine: Oxford/AstraZeneca's ChAdOx1, and one inactivated vaccine (Sinovac Biotech/China's Sinovac) on the level of neutralizing antibodies, considering factors such as vaccine type, demographic characteristics, and hybrid immunity. We conducted a direct comparative analysis involving 300 healthcare workers, both with and without prior SARS-CoV-2 infection (B.1, C.36.3, and AY.32 (Delta) variants). Neutralizing antibodies levels were measured at baseline (before vaccination), before the second dose, and six months after the second dose. RESULTS The results showed a significant increase in neutralizing antibodies levels after complete vaccination with all vaccine types. Among healthcare workers, those vaccinated with mRNA vaccines (Moderna or Pfizer) exhibited the highest neutralizing antibodies titers, followed by AstraZeneca, and finally Sinovac with the lowest titer. On studying the effect of previous COVID-19 infection after vaccination, no significant difference in neutralizing antibodies levels was observed between healthcare workers vaccinated with mRNA or AstraZeneca vaccines, both with prior COVID-19 infection, following the first and six months after the second dose. CONCLUSION These findings suggest that individuals with prior COVID-19 may only require a single dose of mRNA or AstraZeneca vaccines to achieve a similar level of immunization as those without prior COVID-19 who completed the vaccination program. HIGHLIGHTS There is a significant increase in neutralizing antibodies levels after complete vaccination against COVID-19 Vaccination with mRNA vaccines exhibits the highest neutralizing antibodies titers. Vaccination with Sinovac exhibits the lowest neutralizing antibodies titers.
Collapse
Affiliation(s)
- Sara Maher
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Nihal M El Assaly
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Doaa Mamdouh Aly
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Shimaa Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Asmaa Mohamed Fteah
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hala Badawi
- Microbiology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Manal Kamel
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
13
|
Troncoso-Bravo T, Ramírez MA, Loaiza RA, Román-Cárdenas C, Papazisis G, Garrido D, González PA, Bueno SM, Kalergis AM. Advancement in the development of mRNA-based vaccines for respiratory viruses. Immunology 2024; 173:481-496. [PMID: 39161170 DOI: 10.1111/imm.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.
Collapse
Affiliation(s)
- Tays Troncoso-Bravo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Román-Cárdenas
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georgios Papazisis
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniel Garrido
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Chen J, Hu Y, Chen Y, Zhou Z, Shen Y, Wang Y, Liu Z, Li X, Su Z, Wu J. LNP-mRNA vaccine prevents type 1 diabetes in non-obese diabetes mice. J Control Release 2024; 375:513-523. [PMID: 39278354 DOI: 10.1016/j.jconrel.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Islet-antigen-specific tolerization is a key goal of experimental immunotherapies for type 1 diabetes. mRNA-based vaccines have demonstrated the feasibility of RNA delivery in inducing antigen tolerance in autoimmune diseases. In this study, mRNA vaccine, encoded tandem glutamic acid decarboxylase 65 (GAD65) epitopes and cholera toxin B subunit (CTB-GADIII), prepared by an in vitro transcription (IVT) system and encapsulated with lipid nanoparticles (LNP), was intramuscularly administered to non-obese diabetic (NOD) and cyclophosphamide (Cy)-NOD mice respectively. The results showed that the mRNA vaccines significantly reduced the incidence rate of type 1 diabetes, delayed the disease progression, improved glucose tolerance, and protected pancreatic morphology and function compared with the controls. Meanwhile, the vaccines also reduced the levels of autoantibodies to glutamic acid decarboxylase (GADA) and insulin (IAA) in the serum. Furthermore, the proportion of CD4+ T helper cell subsets was modulated in the spleen of mice treated with mRNA vaccines, in correspondence with the increased levels of IL-10 and TGF-β in serum, suggesting the possible mechanism of immune tolerance. This study provides experimental evidence for the application of mRNA vaccines encoding self-antigens in the prevention or treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jiayin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiqi Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Chen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ziqi Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiming Shen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zichuan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xianglong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhigui Su
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jie Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
15
|
Boman J, Marušič T, Seravalli TV, Skok J, Pettersson F, Nemec KŠ, Widmark H, Sekirnik R. Quality by design approach to improve quality and decrease cost of in vitro transcription of mRNA using design of experiments. Biotechnol Bioeng 2024; 121:3415-3427. [PMID: 39014536 DOI: 10.1002/bit.28806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
In vitro transcription (IVT) reaction is an RNA polymerase-catalyzed production of messenger RNA (mRNA) from DNA template, and the unit operation with highest cost of goods in the mRNA drug substance production process. To decrease the cost of mRNA production, reagents should be optimally utilized. Due to the catalytic, multicomponent nature of the IVT reaction, optimization is a multi-factorial problem, ideally suited to design-of-experiment approach for optimization and identification of design space. We derived a data-driven model of the IVT reaction and explored factors that drive process yield (in g/L), including impact of nucleoside triphosphate (NTP) concentration and Mg:NTP ratio on reaction yield and how to optimize the main cost drivers RNA polymerase and DNA template, while minimizing dsRNA formation, a critical quality attribute in mRNA products. We report a methodological approach to derive an optimum reaction design, with which cost efficiency of the reaction was improved by 44%. We demonstrate the validity of the model on mRNA construct of different lengths. Finally, we maximized the yield of the IVT reaction to 24.9 ± 1.5 g/L in batch, thus doubling the highest ever reported IVT yield.
Collapse
Affiliation(s)
- Jimmy Boman
- Sartorius Stedim Data Analytics AB, Umeå, Sweden
| | - Tjaša Marušič
- Sartorius BIA Separations d.o.o., Sartorius Company, Ajdovščina, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Janja Skok
- Sartorius BIA Separations d.o.o., Sartorius Company, Ajdovščina, Slovenia
| | | | | | | | - Rok Sekirnik
- Sartorius BIA Separations d.o.o., Sartorius Company, Ajdovščina, Slovenia
| |
Collapse
|
16
|
Ouyang H, Wei S, Gao B, Qian X, Chen Y, Lu J, Ding Y, Mao Z, Du Y, Wang W. Delivery of Synthetic Interleukin-22 mRNA to Hepatocytes via Lipid Nanoparticles Alleviates Liver Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401499. [PMID: 39082407 DOI: 10.1002/smll.202401499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 11/08/2024]
Abstract
Hepatocellular injury, a pivotal contributor to liver diseases, particularly hepatitis, lacks effective pharmacological treatments. Interleukin-22 (IL-22), crucial for liver cell survival, shows potential in treating liver diseases by regulating repair and regeneration through signal transducer and activator of transcription 3 (STAT3) activation. However, the short half-life and off-target effects limit its clinical applications. To address these issues, lipid nanoparticles are employed to deliver synthetic IL-22 mRNA (IL-22/NP) for in situ IL-22 expression in hepatocytes. The study reveals that IL-22/NP exhibits liver-targeted IL-22 expression, with increased IL-22 levels detected in the liver as early as 3 h postintravenous injection, lasting up to 96 h. Furthermore, IL-22/NP activates STAT3 signaling in an autocrine or paracrine manner to upregulate downstream factors Bcl-xL and CyclinD1, inhibiting hepatocyte apoptosis and promoting cell proliferation. The therapeutic efficacy of IL-22/NP is demonstrated in both chronic and acute liver injury models, suggesting IL-22 mRNA delivery as a promising treatment strategy for hepatitis and liver diseases involving hepatocellular injury.
Collapse
Affiliation(s)
- Hanxiang Ouyang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Xiaohui Qian
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Jingxiong Lu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Zhejiang Laboratory, Kechuang Ave., Yuhang District, Hangzhou, 311100, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
17
|
Small structural changes in siloxane-based lipidoids improve tissue-specific mRNA delivery. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01748-5. [PMID: 39468358 DOI: 10.1038/s41565-024-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
|
18
|
Richard E, Martínez-Pizarro A, Desviat LR. Exploring RNA therapeutics for urea cycle disorders. J Inherit Metab Dis 2024. [PMID: 39449289 DOI: 10.1002/jimd.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
RNA has triggered a significant shift in modern medicine, providing a promising way to revolutionize disease treatment methods. Different therapeutic RNA modalities have shown promise to replace, supplement, correct, suppress, or eliminate the expression of a targeted gene. Currently, there are 22 RNA-based drugs approved for clinical use, including the COVID-19 mRNA vaccines, whose unprecedented worldwide success has meant a definitive boost in the RNA research field. Urea cycle disorders (UCD), liver diseases with high mortality and morbidity, may benefit from the progress achieved, as different genetic payloads have been successfully targeted to liver using viral vectors, N-acetylgalactosamine (GalNAc) conjugations or lipid nanoparticles (LNP). This review explores the potential of RNA-based medicines for UCD and the ongoing development of applications targeting specific gene defects, enzymes, or transporters taking part in the urea cycle. Notably, LNP-formulated mRNA therapy has been assayed preclinically for citrullinemia type I (CTLN1), adolescent and adult citrin deficiency, argininosuccinic aciduria, arginase deficiency and ornithine transcarbamylase deficiency, in the latter case has progressed to the clinical trials phase.
Collapse
Affiliation(s)
- Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Chen J, Patel A, Mir M, Hudock MR, Pinezich MR, Guenthart B, Bacchetta M, Vunjak-Novakovic G, Kim J. Enhancing Cytoplasmic Expression of Exogenous mRNA Through Dynamic Mechanical Stimulation. Adv Healthc Mater 2024:e2401918. [PMID: 39440644 DOI: 10.1002/adhm.202401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Ionizable lipid nanoparticles (LNPs) are pivotal in combating COVID-19, and numerous preclinical and clinical studies have highlighted their potential in nucleic acid-based therapies and vaccines. However, the effectiveness of endosomal escape for the nucleic acid cargos encapsulated in LNPs is still low, leading to suboptimal treatment outcomes and side effects. Hence, improving endosomal escape is crucial for enhancing the efficacy of nucleic acid delivery using LNPs. Here, a mechanical oscillation (frequency: 65 Hz) is utilized to prompt the LNP-mediated endosomal escape. The results reveal this mechanical oscillation can induce the combination and fusion between LNPs with opposite surface charges, enhance endosomal escape of mRNA, and increase the transfection efficiency of mRNA. Additionally, cell viability remains high at 99.3% after treatment with oscillation, which is comparable to that of untreated cells. Furthermore, there is no obvious damage to mitochondrial membrane potential and Golgi apparatus integrity. Thus, this work presents a user-friendly and safe approach to enhancing endosomal escape of mRNA and boosting gene expression. As a result, this work can be potentially utilized in both research and clinical fields to facilitate LNP-based delivery by enabling more effective release of LNP-encapsulated cargos from endosomes.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Aneri Patel
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Maria R Hudock
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Brandon Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94304, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
20
|
Aldrete CA, Call CC, Sant'Anna LE, Vlahos AE, Pei J, Cong Q, Gao XJ. Orthogonalized human protease control of secreted signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576308. [PMID: 39484520 PMCID: PMC11526856 DOI: 10.1101/2024.01.18.576308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. While protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. Here, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins. We sourced a specific human protease and its FDA-approved inhibitor. We engineered cytokines (IL-2, IL-6, and IL-10) whose activities can be activated and abrogated by proteolytic cleavage. We utilized species specificity and re-localization strategies to orthogonalize the cytokines and protease from the human context that they would be deployed in. hDIRECT should enable local cytokine activation to support a variety of cell-based therapies such as muscle regeneration and cancer immunotherapy. Our work offers a proof of concept for the emerging appreciation of humanization in synthetic biology for human health.
Collapse
Affiliation(s)
- Carlos A Aldrete
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Lucas E Sant'Anna
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Alexander E Vlahos
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| |
Collapse
|
21
|
Jiao J, Qian Y, Lv Y, Wei W, Long Y, Guo X, Buerliesi A, Ye J, Han H, Li J, Zhu Y, Zhang W. Overcoming limitations and advancing the therapeutic potential of antibody-oligonucleotide conjugates (AOCs): Current status and future perspectives. Pharmacol Res 2024; 209:107469. [PMID: 39433169 DOI: 10.1016/j.phrs.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As cancer incidence rises due to an aging population, the importance of precision medicine continues to grow. Antibody-drug conjugates (ADCs) exemplify targeted therapies by delivering cytotoxic agents to specific antigens. Building on this concept, researchers have developed antibody-oligonucleotide conjugates (AOCs), which combine antibodies with oligonucleotides to regulate gene expression. This review highlights the mechanism of AOCs, emphasizing their unique ability to selectively target and modulate disease-causing proteins. It also explores the components of AOCs and their application in tumor therapy while addressing key challenges such as manufacturing complexities, endosomal escape, and immune response. The article underscores the significance of AOCs in precision oncology and discusses future directions, highlighting their potential in treating cancers driven by genetic mutations and abnormal protein expression.
Collapse
Affiliation(s)
- Jinlan Jiao
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Qian
- Dermatologic Surgery Department, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing 210042, China
| | - Yinhua Lv
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Wenqian Wei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yongxuan Long
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoling Guo
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Anya Buerliesi
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Hao Han
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
22
|
Qiao LZ, Tan YZ, Yao SJ, Lin DQ. Pore structure reconstruction to reveal the adsorption capacity limitation of current oligo-dT resins and guide new resin design. J Chromatogr A 2024; 1737:465454. [PMID: 39490193 DOI: 10.1016/j.chroma.2024.465454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
In-depth knowledge of the pore structure of chromatographic resins is instrumental for better mechanistic understanding of adsorption performance, which can be translated into strategies to guide the design of new resins. Aiming to reveal the underlying reasons of low mRNA adsorption capacities of commercial oligo-dT resins, three-dimensional (3D) pore structure reconstruction was applied to relate key pore properties to the adsorption performance. The static 3D pore analysis revealed that the amount and connectivity of the accessible pores for 100 nm-sized mRNA reduced by over 90% and 46% compared with initial pore structure of resins, respectively, which led to discontinuous transport paths for mRNA. The dynamic simulations revealed that the strong hindrance of the firstly bound mRNA to the following mRNA molecules led to less than 10% of mRNA being able to penetrate into the resins with a depth of only 1-2 μm. Based on the digital material model, a virtual nanofiber-based macroporous resin was designed to explore its potential. Simulation results demonstrated that due to large pores and high connectivity, the new resin could allow over 91% of mRNA diffusion into the resin interior, showing great potential to improve the adsorption capacity of mRNA. This work provided a new method to evaluate the limitations of commercial oligo-dT resins and obtained some valuable guidance for the structure design of next-generation resins.
Collapse
Affiliation(s)
- Liang-Zhi Qiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Zhi Tan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Huang Y, Zhang Y, Wang Z, Miao L, Tan P, Guan Y, Ran Y, Feng X, Wang Y, Guo Y, Guo X. Modified mRNA-based gene editing reveals sarcomere-based regulation of gene expression in human induced-pluripotent stem cell-derived cardiomyocytes. Int Immunopharmacol 2024; 143:113378. [PMID: 39423657 DOI: 10.1016/j.intimp.2024.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Mutations in genes coding sarcomere components are the major causes of human inherited cardiomyopathy. Genome editing is widely applied to genetic modification of human pluripotent stem cells (hPSCs) before hPSCs were differentiated into cardiomyocytes to model cardiomyopathy. Whether genetic mutations influence the early hPSC differentiation process or solely the terminally differentiated cardiomyocytes during cardiac pathogenesis remains challenging to distinguish. To solve this problem, here we harnessed chemically modified mRNA (modRNA) and synthetic single-guide RNA to develop an efficient genome editing approach in hPSC-derived cardiomyocytes (hPSC-CMs). We showed that modRNA-based CRISPR/Cas9 mutagenesis of TNNT2, the coding gene for cardiac troponin T, results in sarcomere disassembly and contractile dysfunction in hPSC-CMs. These structural and functional phenotypes were associated with profound downregulation of oxidative phosphorylation genes and upregulation of cardiac stress markers NPPA and NPPB. These data confirmed that sarcomeres regulate gene expression in hPSC-CMs and highlighted the RNA technology as a powerful tool to achieve stage-specific genome editing during hPSC differentiation.
Collapse
Affiliation(s)
- Yuqing Huang
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yueyang Zhang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Ze Wang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pingping Tan
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Guan
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Ran
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Feng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Wang
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxuan Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.
| | - Xiaoling Guo
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
24
|
Zimmer D, Schmid F, Settanni G. Ionizable Cationic Lipids and Helper Lipids Synergistically Contribute to RNA Packing and Protection in Lipid-Based Nanomaterials. J Phys Chem B 2024; 128:10165-10177. [PMID: 39366669 PMCID: PMC11493059 DOI: 10.1021/acs.jpcb.4c05057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Lipid-based nanomaterials are used as a common delivery vehicle for RNA therapeutics. They typically include a formulation containing ionizable cationic lipids, cholesterol, phospholipids, and a small molar fraction of PEGylated lipids. The ionizable cationic lipids are considered a crucial element of the formulation for the way they mediate interactions with the anionic RNA as a function of pH. Here, we show, by means of molecular dynamics simulation of lipid formulations containing two different ionizable cationic lipids (DLinDMA and DLinDAP), that the direct interactions of those lipids with RNA, taken alone, may not be sufficient to determine the level of protection and packaging of mRNA. Our simulations help and highlight how the collective behavior of the lipids in the formulation, which determines the ability to envelop the RNA, and the level of hydration of the lipid-RNA interface may also play a significant role. This allows the drawing of a hypothesis about the experimentally observed differences in the transfection efficiency of the two ionizable cationic lipids.
Collapse
Affiliation(s)
- David
Noel Zimmer
- Department
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg
9, Mainz 55128, Germany
- Faculty
of Physics and Astronomy, Ruhr University
Bochum, Universitätsstrasse
150, Bochum 44801, Germany
| | - Friederike Schmid
- Department
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg
9, Mainz 55128, Germany
| | - Giovanni Settanni
- Department
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg
9, Mainz 55128, Germany
- Faculty
of Physics and Astronomy, Ruhr University
Bochum, Universitätsstrasse
150, Bochum 44801, Germany
| |
Collapse
|
25
|
Kim HL, Saravanakumar G, Lee S, Jang S, Kang S, Park M, Sobha S, Park SH, Kim SM, Lee JA, Shin E, Kim YJ, Jeong HS, Kim D, Kim WJ. Poly(β-amino ester) polymer library with monomer variation for mRNA delivery. Biomaterials 2024; 314:122896. [PMID: 39426123 DOI: 10.1016/j.biomaterials.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Non-viral vectors for mRNA delivery primarily include lipid nanoparticles (LNPs) and polymers. While LNPs are known for their high mRNA delivery efficiency, they can induce excessive immune responses and cause off-target effects, potentially leading to side effects. In this study, we aimed to explore polymer-based mRNA delivery systems as a viable alternative to LNPs, focusing on their mRNA delivery efficiency and potential application in mRNA vaccines. We created a library of poly(β-amino ester) (PBAE) polymers by combining various amine monomers and acrylate monomers. Through screening this polymer library, we identified specific polymer nanoparticles (PNPs) that demonstrated high mRNA expression efficiency, with sustained mRNA expression for up to two weeks. Furthermore, the PNPs showed mRNA expression only at the injection site and did not exhibit liver toxicity. Additionally, when assessing immune activation, the PNPs significantly induced T-cell immune activation and were effective in the plaque reduction neutralization test. These results suggest that polymer-based mRNA delivery systems not only hold potential for use in mRNA vaccines but also show promise for therapeutic applications.
Collapse
Affiliation(s)
- Hong Lyun Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Seowon Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Subin Jang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seonwoo Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mihyeon Park
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - So-Hee Park
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Soo-Min Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Jung-Ah Lee
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Eunkyung Shin
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - You-Jin Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Hye-Sook Jeong
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Dokeun Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; OmniaMed Co, Ltd., Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
26
|
Chen J, Patel A, Mir M, Hudock MR, Pinezich MR, Guenthart B, Bacchetta M, Vunjak-Novakovic G, Kim J. Enhancing Cytoplasmic Expression of Exogenous mRNA through Dynamic Mechanical Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599708. [PMID: 38948864 PMCID: PMC11212954 DOI: 10.1101/2024.06.19.599708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Ionizable lipid nanoparticles (LNPs) have been pivotal in combating COVID-19, and numerous preclinical and clinical studies have highlighted their potential in nucleic acid-based therapies and vaccines. However, the effectiveness of endosomal escape for the nucleic acid cargos encapsulated in LNPs is still low, leading to suboptimal treatment outcomes and side effects. Hence, improving endosomal escape is crucial for enhancing the efficacy of nucleic acid delivery using LNPs. Here, a mechanical oscillation (frequency: 65 Hz) is utilized to prompt the LNP-mediated endosomal escape. The results reveal this mechanical oscillation can induce the combination and fusion between LNPs with opposite surface charges, enhance endosomal escape of mRNA, and increase the transfection efficiency of mRNA. Additionally, cell viability remains high at 99.3% after treatment with oscillation, which is comparable to that of untreated cells. Furthermore, there is no obvious damage to mitochondrial membrane potential and Golgi apparatus integrity. Thus, this work presents a user-friendly and safe approach to enhancing endosomal escape of mRNA and boosting gene expression. As a result, our work can be potentially utilized in both research and clinical fields to facilitate LNP-based delivery by enabling more effective release of LNP-encapsulated cargos from endosomes.
Collapse
|
27
|
Yang R, Cui J. Advances and applications of RNA vaccines in tumor treatment. Mol Cancer 2024; 23:226. [PMID: 39385255 PMCID: PMC11463124 DOI: 10.1186/s12943-024-02141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Compared to other types of tumor vaccines, RNA vaccines have emerged as promising alternatives to conventional vaccine therapy due to their high efficiency, rapid development capability, and potential for low-cost manufacturing and safe drug delivery. RNA vaccines mainly include mRNA, circular RNA (circRNA), and Self-amplifying mRNA(SAM). Different RNA vaccine platforms for different tumors have shown encouraging results in animal and human models. This review comprehensively describes the advances and applications of RNA vaccines in antitumor therapy. Future directions for extending this promising vaccine platform to a wide range of therapeutic uses are also discussed.
Collapse
Affiliation(s)
- Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
28
|
Leonard RA, Burke KN, Spreng RL, Macintyre AN, Tam Y, Alameh MG, Weissman D, Heaton NS. Improved influenza vaccine responses after expression of multiple viral glycoproteins from a single mRNA. Nat Commun 2024; 15:8712. [PMID: 39379405 PMCID: PMC11461824 DOI: 10.1038/s41467-024-52940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Influenza viruses cause substantial morbidity and mortality every year despite seasonal vaccination. mRNA-based vaccines have the potential to elicit more protective immune responses, but for maximal breadth and durability, it is desirable to deliver both the viral hemagglutinin and neuraminidase glycoproteins. Delivering multiple antigens individually, however, complicates manufacturing and increases cost, thus it would be beneficial to express both proteins from a single mRNA. Here, we develop an mRNA genetic configuration that allows the simultaneous expression of unmodified, full-length NA and HA proteins from a single open reading frame. We apply this approach to glycoproteins from contemporary influenza A and B viruses and, after vaccination, observe high levels of functional antibodies and protection from disease in female mouse and male ferret challenge models. This approach may further efforts to utilize mRNA technology to improve seasonal vaccine efficacy by efficiently delivering multiple viral antigens simultaneously and in their native state.
Collapse
MESH Headings
- Animals
- Ferrets
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Female
- Mice
- Male
- Neuraminidase/immunology
- Neuraminidase/genetics
- Antibodies, Viral/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Mice, Inbred BALB C
- Influenza B virus/immunology
- Influenza B virus/genetics
- Influenza A virus/immunology
- Influenza A virus/genetics
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Glycoproteins/immunology
- Glycoproteins/genetics
- Viral Proteins/immunology
- Viral Proteins/genetics
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Vaccination/methods
Collapse
Affiliation(s)
- Rebecca A Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, NC, USA
| | - Kaitlyn N Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, NC, USA
| | - Rachel L Spreng
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ying Tam
- Acuitas Theraputics, Vancouver, BC, Canada
| | - Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
29
|
Gordillo-Marañón M, Schmidt AF, Warwick A, Tomlinson C, Ytsma C, Engmann J, Torralbo A, Maclean R, Sofat R, Langenberg C, Shah AD, Denaxas S, Pirmohamed M, Hemingway H, Hingorani AD, Finan C. Disease coverage of human genome-wide association studies and pharmaceutical research and development. COMMUNICATIONS MEDICINE 2024; 4:195. [PMID: 39379679 PMCID: PMC11461613 DOI: 10.1038/s43856-024-00625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Despite the growing interest in the use of human genomic data for drug target identification and validation, the extent to which the spectrum of human disease has been addressed by genome-wide association studies (GWAS), or by drug development, and the degree to which these efforts overlap remain unclear. METHODS In this study we harmonize and integrate different data sources to create a sample space of all the human drug targets and diseases and identify points of convergence or divergence of GWAS and drug development efforts. RESULTS We show that only 612 of 11,158 diseases listed in Human Disease Ontology have an approved drug treatment in at least one region of the world. Of the 1414 diseases that are the subject of preclinical or clinical phase drug development, only 666 have been investigated in GWAS. Conversely, of the 1914 human diseases that have been the subject of GWAS, 1121 have yet to be investigated in drug development. CONCLUSIONS We produce target-disease indication lists to help the pharmaceutical industry to prioritize future drug development efforts based on genetic evidence, academia to prioritize future GWAS for diseases without effective treatments, and both sectors to harness genetic evidence to expand the indications for licensed drugs or to identify repurposing opportunities for clinical candidates that failed in their originally intended indication.
Collapse
Affiliation(s)
- María Gordillo-Marañón
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom.
| | - Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| | - Alasdair Warwick
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
| | - Chris Tomlinson
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
| | - Cai Ytsma
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
| | - Jorgen Engmann
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
| | - Ana Torralbo
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
| | - Rory Maclean
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
| | - Reecha Sofat
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
- Health Data Research, London, United Kingdom
| | - Claudia Langenberg
- Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
- Computational Medicine, Berlin Institute of Health at Charité Universitätsmedizin, Berlin, Germany
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Anoop D Shah
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals, London, United Kingdom
| | - Spiros Denaxas
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals, London, United Kingdom
- British Heart Foundation Data Science Centre, London, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Harry Hemingway
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
- Health Data Research, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals, London, United Kingdom
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| |
Collapse
|
30
|
Wu L, Yi W, Yao S, Xie S, Peng R, Zhang J, Tan W. mRNA-Based Cancer Vaccines: Advancements and Prospects. NANO LETTERS 2024. [PMID: 39375146 DOI: 10.1021/acs.nanolett.4c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The success of mRNA COVID-19 vaccines has reinvigorated research and interest in mRNA-based cancer vaccines. Despite promising results in clinical trials, therapeutic mRNA-based cancer vaccines have not yet been approved for human use. These vaccines are designed to trigger tumor regression, establish enduring antitumor memory, and mitigate adverse reactions. However, challenges such as tumor-induced immunosuppression and immunoresistance significantly hinder their application. Here, we provide an overview of the recent advances of neoantigen discovery and delivery systems for mRNA vaccines, focusing on improving clinical efficacy. Additionally, we summarize the recent clinical advances involving mRNA cancer vaccines and discuss prospective strategies for overcoming immuneresistance.
Collapse
Affiliation(s)
- Lijin Wu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Weicheng Yi
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shiyu Yao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ruizi Peng
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jing Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
31
|
Sun M, Ma B, Pan Z, Zhao Y, Tian L, Fan Y, Kong W, Wang J, Xu B, Ao Y, Guo Q, Wang X, Peng X, Li X, Cheng J, Miao L, Wang K, Hu X. Targeted Therapy of Osteoarthritis via Intra-Articular Delivery of Lipid-Nanoparticle-Encapsulated Recombinant Human FGF18 mRNA. Adv Healthc Mater 2024:e2400804. [PMID: 39363784 DOI: 10.1002/adhm.202400804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Indexed: 10/05/2024]
Abstract
Fibroblast growth factor 18 (FGF18) emerges as a promising therapeutic target for osteoarthritis (OA). In this study, a novel articular cavity-localized lipid nanoparticle (LNP) named WG-PL14 is developed. This optimized formulation has a nearly 30-fold increase in mRNA expression as well as better articular cavity enrichment compared to commercial lipids MC3 when performing intra-articular injection. Then, a mRNA sequence encoding recombinant human FGF18 (rhFGF18) for potential mRNA therapy in OA is optimized. In vitro assays confirm the translation of rhFGF18 mRNA into functional proteins within rat and human chondrocytes, promoting cell proliferation and extracellular matrix (ECM) synthesis. Subsequently, the therapeutic efficacy of the LNP-rhFGF18 mRNA complex is systematically assessed in a mouse OA model. The administration exhibits several positive outcomes, including an improved pain response, upregulation of ECM-related genes (e.g., AGRN and HAS2), and remodeling of subchondral bone homeostasis compared to a control group. Taken together, these findings underscore the potential of localized LNP-rhFGF18 mRNA therapy in promoting the regeneration of cartilage tissue and mitigating the progression of OA.
Collapse
Affiliation(s)
- Mengze Sun
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Bin Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zihang Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yun Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Liangliang Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yifei Fan
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Junyan Wang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Boyang Xu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Quanyi Guo
- Institute of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xi Wang
- State Key Laboratory of Female Fertility Promotion, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaohong Peng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Xiaoxia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jin Cheng
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
32
|
Im SH, Chung Y, Duskunovic N, Choi H, Park SH, Chung HJ. Oligonucleotide-Linked Lipid Nanoparticles as a Versatile mRNA Nanovaccine Platform. Adv Healthc Mater 2024:e2401868. [PMID: 39363681 DOI: 10.1002/adhm.202401868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/07/2024] [Indexed: 10/05/2024]
Abstract
An effective delivery platform is crucial for the development of mRNA vaccines and therapeutics. Here, a versatile platform utilizing cholesterol-modified oligonucleotides (L-oligo) that bind to the mRNA within lipid nanoparticles (LNP), and enables the effective delivery of the mRNA into target cells is introduced. mRNA incorporated into LNPs via linkage with L-oligo, termed oligonucleotide-linked LNP (lnLNP), is superior in cellular uptake and transfection efficiency in target cells in vitro and in vivo, compared to the conventional LNP formulations. It is further applied lnLNP as an mRNA vaccine platform for SARS-CoV-2, demonstrating robust induction of neutralizing activity as well as polyfunctional SARS-CoV-2-specific T-cell response in vivo. The current strategy can be versatilely applied to different LNP platforms, for vaccine and therapeutic applications against various diseases, such as infections and cancers.
Collapse
Affiliation(s)
- San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Nevena Duskunovic
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Heewon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- The Center for Epidemic Preparedness, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
33
|
Liu J, Lu F. Beyond simple tails: poly(A) tail-mediated RNA epigenetic regulation. Trends Biochem Sci 2024; 49:846-858. [PMID: 39004583 DOI: 10.1016/j.tibs.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
The poly(A) tail is an essential structural component of mRNA required for the latter's stability and translation. Recent technologies have enabled transcriptome-wide profiling of the length and composition of poly(A) tails, shedding light on their overlooked regulatory capacities. Notably, poly(A) tails contain not only adenine but also uracil, cytosine, and guanine residues. These findings strongly suggest that poly(A) tails could encode a wealth of regulatory information, similar to known reversible RNA chemical modifications. This review aims to succinctly summarize our current knowledge on the composition, dynamics, and regulatory functions of RNA poly(A) tails. Given their capacity to carry rich regulatory information beyond the genetic code, we propose the concept of 'poly(A) tail epigenetic information' as a new layer of RNA epigenetic regulation.
Collapse
Affiliation(s)
- Jingwen Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Serpico L, Zhu Y, Maia RF, Sumedha S, Shahbazi MA, Santos HA. Lipid nanoparticles-based RNA therapies for breast cancer treatment. Drug Deliv Transl Res 2024; 14:2823-2844. [PMID: 38831199 PMCID: PMC11384647 DOI: 10.1007/s13346-024-01638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Breast cancer (BC) prevails as a major burden on global healthcare, being the most prevalent form of cancer among women. BC is a complex and heterogeneous disease, and current therapies, such as chemotherapy and radiotherapy, frequently fall short in providing effective solutions. These treatments fail to mitigate the risk of cancer recurrence and cause severe side effects that, in turn, compromise therapeutic responses in patients. Over the last decade, several strategies have been proposed to overcome these limitations. Among them, RNA-based technologies have demonstrated their potential across various clinical applications, notably in cancer therapy. However, RNA therapies are still limited by a series of critical issues like off-target effect and poor stability in circulation. Thus, novel approaches have been investigated to improve the targeting and bioavailability of RNA-based formulations to achieve an appropriate therapeutic outcome. Lipid nanoparticles (LNPs) have been largely proven to be an advantageous carrier for nucleic acids and RNA. This perspective explores the most recent advances on RNA-based technology with an emphasis on LNPs' utilization as effective nanocarriers in BC therapy and most recent progresses in their clinical applications.
Collapse
Affiliation(s)
- Luigia Serpico
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
| | - Yuewen Zhu
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Renata Faria Maia
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Sumedha Sumedha
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
35
|
Yan RE, Greenfield JP. Challenges and Outlooks in Precision Medicine: Expectations Versus Reality. World Neurosurg 2024; 190:573-581. [PMID: 39425299 DOI: 10.1016/j.wneu.2024.06.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
Recent developments in technology have led to rapid advances in precision medicine, especially due to the rise of next-generation sequencing and molecular profiling. These technological advances have led to rapid advances in research, including increased tumor subtype resolution, new therapeutic agents, and mechanistic insights. Certain therapies have even been approved for molecular biomarkers across histopathological diagnoses; however, translation of research findings to the clinic still faces a number of challenges. In this review, the authors discuss several key challenges to the clinical integration of precision medicine, including the blood-brain barrier, both a lack and excess of molecular targets, and tumor heterogeneity/escape from therapy. They also highlight a few key efforts to address these challenges, including new frontiers in drug delivery, a rapidly expanding treatment repertoire, and improvements in active response monitoring. With continued improvements and developments, the authors anticipate that precision medicine will increasingly become the gold standard for clinical care.
Collapse
Affiliation(s)
- Rachel E Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
36
|
Chaudhary N, Newby AN, Whitehead KA. Non-Viral RNA Delivery During Pregnancy: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306134. [PMID: 38145340 PMCID: PMC11196389 DOI: 10.1002/smll.202306134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/25/2023] [Indexed: 12/26/2023]
Abstract
During pregnancy, the risk of maternal and fetal adversities increases due to physiological changes, genetic predispositions, environmental factors, and infections. Unfortunately, treatment options are severely limited because many essential interventions are unsafe, inaccessible, or lacking in sufficient scientific data to support their use. One potential solution to this challenge may lie in emerging RNA therapeutics for gene therapy, protein replacement, maternal vaccination, fetal gene editing, and other prenatal treatment applications. In this review, the current landscape of RNA platforms and non-viral RNA delivery technologies that are under active development for administration during pregnancy is explored. Advancements of pregnancy-specific RNA drugs against SARS-CoV-2, Zika, influenza, preeclampsia, and for in-utero gene editing are discussed. Finally, this study highlights bottlenecks that are impeding translation efforts of RNA therapies, including the lack of accurate cell-based and animal models of human pregnancy and concerns related to toxicity and immunogenicity during pregnancy. Overcoming these challenges will facilitate the rapid development of this new class of pregnancy-safe drugs.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Alexandra N. Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
37
|
Fiorucci S, Urbani G, Biagioli M, Sepe V, Distrutti E, Zampella A. Bile acids and bile acid activated receptors in the treatment of Covid-19. Biochem Pharmacol 2024; 228:115983. [PMID: 38081371 DOI: 10.1016/j.bcp.2023.115983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 09/20/2024]
Abstract
Since its first outbreak in 2020, the pandemic caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) has caused the death of almost 7 million people worldwide. Vaccines have been fundamental in disease prevention and to reduce disease severity especially in patients with comorbidities. Nevertheless, treatment of COVID-19 has been proven difficult and several approaches have failed to prevent disease onset or disease progression, particularly in patients with comorbidities. Interrogation of drug data bases has been widely used since the beginning of pandemic to repurpose existing drugs/natural substances for the prevention/treatment of COVID-19. Steroids, including bile acids such as ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) have shown to be promising for their potential in modulating SARS-CoV-2/host interaction. Bile acids have proven to be effective in preventing binding of spike protein with the Angiotensin Converting Enzyme II (ACE2), thus preventing virus uptake by the host cells and inhibiting its replication, as well as in indirectly modulating immune response. Additionally, the two main bile acid activated receptors, GPBAR1 and FXR, have proven effective in modulating the expression of ACE2, suggesting an indirect role for these receptors in regulating SARS-CoV-2 infectiveness and immune response. In this review we have examined how the potential of bile acids and their receptors as anti-COVID-19 therapies and how these biochemical mechanisms translate into clinical efficacy.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
38
|
Cai Y, Lv Z, Chen X, Jin K, Mou X. Recent advances in biomaterials based near-infrared mild photothermal therapy for biomedical application: A review. Int J Biol Macromol 2024; 278:134746. [PMID: 39147342 DOI: 10.1016/j.ijbiomac.2024.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mild photothermal therapy (MPTT) generates heat therapeutic effect at the temperature below 45 °C under near-infrared (NIR) irradiation, which has the advantages of controllable treatment efficacy, lower hyperthermia temperatures, reduced dosage, and minimized damage to surrounding tissues. Despite significant progress has been achieved in MPTT, it remains primarily in the stage of basic and clinical research and has not yet seen widespread clinical adoption. Herein, a comprehensive overview of the recent NIR MPTT development was provided, aiming to emphasize the mechanism and obstacles, summarize the used photothermal agents, and introduce various biomedical applications such as anti-tumor, wound healing, and vascular disease treatment. The challenges of MPTT were proposed with potential solutions, and the future development direction in MPTT was outlooked to enhance the prospects for clinical translation.
Collapse
Affiliation(s)
- Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaoyi Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
39
|
Xue L, Zhao G, Gong N, Han X, Shepherd SJ, Xiong X, Xiao Z, Palanki R, Xu J, Swingle KL, Warzecha CC, El-Mayta R, Chowdhary V, Yoon IC, Xu J, Cui J, Shi Y, Alameh MG, Wang K, Wang L, Pochan DJ, Weissman D, Vaughan AE, Wilson JM, Mitchell MJ. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01747-6. [PMID: 39354147 DOI: 10.1038/s41565-024-01747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/08/2024] [Indexed: 10/03/2024]
Abstract
Systemic delivery of messenger RNA (mRNA) for tissue-specific targeting using lipid nanoparticles (LNPs) holds great therapeutic potential. Nevertheless, how the structural characteristics of ionizable lipids (lipidoids) impact their capability to target cells and organs remains unclear. Here we engineered a class of siloxane-based ionizable lipids with varying structures and formulated siloxane-incorporated LNPs (SiLNPs) to control in vivo mRNA delivery to the liver, lung and spleen in mice. The siloxane moieties enhance cellular internalization of mRNA-LNPs and improve their endosomal escape capacity, augmenting their mRNA delivery efficacy. Using organ-specific SiLNPs to deliver gene editing machinery, we achieve robust gene knockout in the liver of wild-type mice and in the lungs of both transgenic GFP and Lewis lung carcinoma (LLC) tumour-bearing mice. Moreover, we showed effective recovery from viral infection-induced lung damage by delivering angiogenic factors with lung-targeted Si5-N14 LNPs. We envision that our SiLNPs will aid in the clinical translation of mRNA therapeutics for next-generation tissue-specific protein replacement therapies, regenerative medicine and gene editing.
Collapse
Affiliation(s)
- Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claude C Warzecha
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vivek Chowdhary
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Il-Chul Yoon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jingcheng Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiaxi Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Shi
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Lili Wang
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
40
|
Torella L, Santana-Gonzalez N, Zabaleta N, Gonzalez Aseguinolaza G. Gene editing in liver diseases. FEBS Lett 2024; 598:2348-2371. [PMID: 39079936 DOI: 10.1002/1873-3468.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 10/16/2024]
Abstract
The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling in vivo modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.
Collapse
Affiliation(s)
- Laura Torella
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Santana-Gonzalez
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
| |
Collapse
|
41
|
Fan M, Zheng J, Huang Y, Lu M, Shang Z, Du M. Nanoparticle-mediated universal CAR-T therapy. Int J Pharm 2024; 666:124779. [PMID: 39349228 DOI: 10.1016/j.ijpharm.2024.124779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
In recent years, chimeric antigen receptor (CAR)-T cell therapy has been highly successful in treating hematological malignancies, leading to significant advancements in the cancer immunotherapy field. However, the typical CAR-T therapy necessitates the enrichment of patients' own leukocytes for ex vivo production of CAR-T cells, this customized pattern requires a complicated and time-consuming manufacturing procedure, making it costly and less accessible. The off-the-shelf universal CAR-T strategy could reduce manufacturing costs and realize timely drug administration, presenting as an ideal substitute for typical CAR-T therapy. Utilizing nanocarriers for targeted gene delivery is one of the approaches for the realization of universal CAR-T therapy, as biocompatible and versatile nanoparticles could deliver CAR genes to generate CAR-T cells in vivo. Nanoparticle-mediated in situ generation of CAR-T cells possesses multiple advantages, including lowered cost, simplified manufacturing procedure, and shortened administration time, this strategy is anticipated to provide a potentially cost-effective alternative to current autologous CAR-T cell manufacturing, thus facilitating the prevalence and improvement of CAR-T therapy.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiayu Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingxia Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Zhi Shang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
42
|
Tapescu I, Madsen PJ, Lowenstein PR, Castro MG, Bagley SJ, Fan Y, Brem S. The transformative potential of mRNA vaccines for glioblastoma and human cancer: technological advances and translation to clinical trials. Front Oncol 2024; 14:1454370. [PMID: 39399167 PMCID: PMC11466887 DOI: 10.3389/fonc.2024.1454370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Originally devised for cancer control, mRNA vaccines have risen to the forefront of medicine as effective instruments for control of infectious disease, notably their pivotal role in combating the COVID-19 pandemic. This review focuses on fundamental aspects of the development of mRNA vaccines, e.g., tumor antigens, vector design, and precise delivery methodologies, - highlighting key technological advances. The recent, promising success of personalized mRNA vaccines against pancreatic cancer and melanoma illustrates the potential value for other intractable, immunologically resistant, solid tumors, such as glioblastoma, as well as the potential for synergies with a combinatorial, immunotherapeutic approach. The impact and progress in human cancer, including pancreatic cancer, head and neck cancer, bladder cancer are reviewed, as are lessons learned from first-in-human CAR-T cell, DNA and dendritic cell vaccines targeting glioblastoma. Going forward, a roadmap is provided for the transformative potential of mRNA vaccines to advance cancer immunotherapy, with a particular focus on the opportunities and challenges of glioblastoma. The current landscape of glioblastoma immunotherapy and gene therapy is reviewed with an eye to combinatorial approaches harnessing RNA science. Preliminary preclinical and clinical data supports the concept that mRNA vaccines could be a viable, novel approach to prolong survival in patients with glioblastoma.
Collapse
Affiliation(s)
- Iulia Tapescu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter J. Madsen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Stephen J. Bagley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Fan
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
43
|
MalagodaPathiranage K, Banerjee R, Martin C. A new approach to RNA synthesis: immobilization of stably and functionally co-tethered promoter DNA and T7 RNA polymerase. Nucleic Acids Res 2024; 52:10607-10618. [PMID: 39011885 PMCID: PMC11417385 DOI: 10.1093/nar/gkae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Current approaches to RNA synthesis/manufacturing require substantial (and incomplete) purification post-synthesis. We have previously demonstrated the synthesis of RNA from a complex in which T7 RNA polymerase is tethered to promoter DNA. In the current work, we extend this approach to demonstrate an extremely stable system of functional co-tethered complex to a solid support. Using the system attached to magnetic beads, we carry out more than 20 rounds of synthesis using the initial polymerase-DNA construct. We further demonstrate the wide utility of this system in the synthesis of short RNA, a CRISPR guide RNA, and a protein-coding mRNA. In all cases, the generation of self-templated double stranded RNA (dsRNA) impurities are greatly reduced, by both the tethering itself and by the salt-tolerance that local co-tethering provides. Transfection of the mRNA into HEK293T cells shows a correlation between added salt in the transcription reaction (which inhibits RNA rebinding that generates RNA-templated extensions) and significantly increased expression and reduced innate immune stimulation by the mRNA reaction product. These results point in the direction of streamlined processes for synthesis/manufacturing of high-quality RNA of any length, and at greatly reduced costs.
Collapse
Affiliation(s)
| | - Ruptanu Banerjee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
44
|
Fierro C, Brune D, Shaw M, Schwartz H, Knightly C, Lin J, Carfi A, Natenshon A, Kalidindi S, Reuter C, Miller J, Panther L. Safety and Immunogenicity of a Messenger RNA-Based Cytomegalovirus Vaccine in Healthy Adults: Results From a Phase 1 Randomized Clinical Trial. J Infect Dis 2024; 230:e668-e678. [PMID: 38478705 PMCID: PMC11420795 DOI: 10.1093/infdis/jiae114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/11/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND This phase 1 trial evaluated the safety, reactogenicity, and immunogenicity of mRNA-1647, a messenger RNA (mRNA)-based cytomegalovirus (CMV) vaccine, in CMV-seronegative and -seropositive adults. METHODS Participants were randomly assigned to receive 30, 90, 180, or 300 µg of mRNA-1647 or placebo on a 0-, 2-, and 6-month schedule and followed for 12 months after the last dose. RESULTS A total of 154 (80 CMV-seronegative and 74 CMV-seropositive) participants were enrolled; 118 participants were randomized to mRNA-1647 and 36 to placebo. Mean (standard deviation) age was 32.5 (8.6) and 35.1 (8.9) years in the placebo and mRNA-1647 groups, respectively, in phase B (63% and 64% female) and 42.5 (6.2) and 33.3 (8.7) years, respectively, in phase C (2% and 16% female). No deaths, related serious adverse events, or adverse events of special interest were reported. Most adverse reactions were grade ≤2 severity. Increased neutralizing antibody, binding antibody, and antigen-specific cell-mediated responses were observed across mRNA-1647 treatment groups, regardless of CMV serostatus. CONCLUSIONS This phase 1, first-in-human trial demonstrated that mRNA-1647 has an acceptable safety profile in adults and elicits humoral and cellular immune responses. Clinical Trials Registration. NCT03382405.
Collapse
Affiliation(s)
- Carlos Fierro
- Johnson County Clin-Trials, Department of Clinical Safety & Risk Management, Lenexa, Kansas
| | | | | | | | - Conor Knightly
- Moderna, Inc, Department of Clinical Development Operations, Cambridge, Massachusetts
| | - Jiang Lin
- Moderna, Inc, Department of Biostatistics, Cambridge, Massachusetts
| | - Andrea Carfi
- Moderna, Inc, Department of Research and Development, Cambridge, Massachusetts
| | - Andrew Natenshon
- Moderna, Inc, Department of Infectious Disease Development, Cambridge, Massachusetts
| | - Shiva Kalidindi
- Moderna, Inc, Department of Statistical Programming, Cambridge, Massachusetts
| | - Caroline Reuter
- Johnson County Clin-Trials, Department of Clinical Safety & Risk Management, Lenexa, Kansas
| | - Jacqueline Miller
- Moderna, Inc, Department of Infectious Diseases, Cambridge, Massachusetts
| | - Lori Panther
- Moderna, Inc, Department of Infectious Diseases, Cambridge, Massachusetts
| |
Collapse
|
45
|
Gao Y, Zhu S, Li H, Hao X, Chen W, Pan D, Qian Z. AntigenBoost: enhanced mRNA-based antigen expression through rational amino acid substitution. Brief Bioinform 2024; 25:bbae468. [PMID: 39400114 PMCID: PMC11472322 DOI: 10.1093/bib/bbae468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Messenger RNA (mRNA) vaccines represent a groundbreaking advancement in immunology and public health, particularly highlighted by their role in combating the COVID-19 pandemic. Optimizing mRNA-based antigen expression is a crucial focus in this emerging industry. We have developed a bioinformatics tool named AntigenBoost to address the challenge posed by destabilizing dipeptides that hinder ribosomal translation. AntigenBoost identifies these dipeptides within specific antigens and provides a range of potential amino acid substitution strategies using a two-dimensional scoring system. Through a combination of bioinformatics analysis and experimental validation, we significantly enhanced the in vitro expression of mRNA-derived Respiratory Syncytial Virus fusion glycoprotein and Influenza A Hemagglutinin antigen. Notably, a single amino acid substitution improved the immune response in mice, underscoring the effectiveness of AntigenBoost in mRNA vaccine design.
Collapse
Affiliation(s)
- Yumiao Gao
- NanoRibo (Shanghai) Biotechnology Co., Ltd., No. 1188 Lianhang Road, Minhang District, Shanghai 200003, China
| | - Siran Zhu
- NanoRibo (Shanghai) Biotechnology Co., Ltd., No. 1188 Lianhang Road, Minhang District, Shanghai 200003, China
| | - Huichun Li
- NanoRibo (Shanghai) Biotechnology Co., Ltd., No. 1188 Lianhang Road, Minhang District, Shanghai 200003, China
| | - Xueting Hao
- NanoRibo (Shanghai) Biotechnology Co., Ltd., No. 1188 Lianhang Road, Minhang District, Shanghai 200003, China
| | - Wen Chen
- NanoRibo (Shanghai) Biotechnology Co., Ltd., No. 1188 Lianhang Road, Minhang District, Shanghai 200003, China
| | - Deng Pan
- NanoRibo (Shanghai) Biotechnology Co., Ltd., No. 1188 Lianhang Road, Minhang District, Shanghai 200003, China
| | - Zhikang Qian
- NanoRibo (Shanghai) Biotechnology Co., Ltd., No. 1188 Lianhang Road, Minhang District, Shanghai 200003, China
| |
Collapse
|
46
|
Silas DS, Juneja B, Kaur K, Narayanareddy Gari M, You Y, Moon Y, Chen Y, Arora S, Hansen J, Muthusamy K, Fu Y, Palackal N, Pyles EA. Development of Biolayer Interferometry (BLI)-Based Double-Stranded RNA Detection Method with Application in mRNA-Based Therapeutics and Vaccines. Pharmaceutics 2024; 16:1227. [PMID: 39339263 PMCID: PMC11435032 DOI: 10.3390/pharmaceutics16091227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: In vitro-transcribed (IVT) mRNA has been established as a promising platform for therapeutics and vaccine development. Double-stranded RNA (dsRNA) is a major impurity of IVT mRNA and can trigger unfavored immune responses, potentially causing adverse events in patients. Existing dsRNA detection and quantitation methods, such as gel electrophoresis, ELISA, or homogeneous time-resolved fluorescence (HTRF), have low sensitivity or are time-consuming. A recently published lateral flow immunoassay (LFSA) was shown to be fast, but it lacks the sensitivity for dsRNA with uridine modifications. Methods: In this study, we provided a possible explanation for the reduced sensitivity of existing quantitation methods for dsRNA with modified uridines by characterizing the binding affinities of commonly used anti-dsRNA antibodies. Then, a rapid and sensitive biolayer interferometry (BLI) dsRNA detection assay utilizing Flock House Virus (FHV) B2 protein was developed to overcome the challenges in dsRNA detection and the reduced sensitivity. Results: This assay allows the detection of dsRNA with different uridine modifications (ψ, m1ψ, 5 moU) with similar sensitivity as dsRNA without modification. Furthermore, we demonstrated this method can be used to quantify both short and long dsRNA, as well as hairpin-structured dsRNA, providing a more comprehensive detection for dsRNA impurities. Moreover, we applied this assay to monitor dsRNA removal through a purification process. Conclusions: Taken together, this BLI method could enable real-time monitoring of impurities in IVT mRNA production to prevent immunogenicity stemming from dsRNA.
Collapse
Affiliation(s)
- Dharia Sara Silas
- Protein Biochemistry, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Bindiya Juneja
- Protein Biochemistry, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Keerat Kaur
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Yingjian You
- Vaccine Technology, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Youmi Moon
- Protein Biochemistry, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Yizhuo Chen
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Srishti Arora
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Johanna Hansen
- Vaccine Technology, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Kathir Muthusamy
- Protein Biochemistry, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Yue Fu
- Protein Biochemistry, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Nisha Palackal
- Protein Biochemistry, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Erica A. Pyles
- Protein Biochemistry, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| |
Collapse
|
47
|
Wang Z, Tu MJ, Liu Z, Wang KK, Fang Y, Hao N, Zhang HH, Que J, Sun X, Yu AM, Ding H. An Iterative Approach to Polish the Nanopore Sequencing Basecalling for Therapeutic RNA Quality Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612711. [PMID: 39345479 PMCID: PMC11429612 DOI: 10.1101/2024.09.12.612711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nucleotide modifications deviate nanopore sequencing readouts, therefore generating artifacts during the basecalling of sequence backbones. Here, we present an iterative approach to polish modification-disturbed basecalling results. We show such an approach is able to promote the basecalling accuracy of both artificially-synthesized and real-world molecules. With demonstrated efficacy and reliability, we exploit the approach to precisely basecall therapeutic RNAs consisting of artificial or natural modifications, as the basis for quantifying the purity and integrity of vaccine mRNAs which are transcribed in vitro , and for determining modification hotspots of novel therapeutic RNA interference (RNAi) molecules which are bioengineered (BioRNA) in vivo .
Collapse
|
48
|
Feng N, Peng Z, Zhang X, Lin Y, Hu L, Zheng L, Tang BZ, Zhang J. Strategically engineered Au(I) complexes for orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death. Nat Commun 2024; 15:8187. [PMID: 39294133 PMCID: PMC11410803 DOI: 10.1038/s41467-024-52458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Cancer is a significant cause of death around the world, and for many varieties, treatment is not successful. Therefore, there is a need for the development of innovative, efficacious, and precisely targeted treatments. Here, we develop a series of Au(I) complexes (1-4) through rational manipulation of ligand structures, thereby achieving tumor cell specific targeting and orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death. A comprehensive exploration based on in vitro and in vivo female mice experimentation shows that complex 4 exhibits proficiency in specific tumor imaging, endoplasmic reticulum targeting, and has robust therapeutic capabilities. Mechanistic elucidation indicates that the anticancer effect derives from the synergistic actions of thioredoxin reductase inhibition, highly efficient reactive oxygen species production and immunogenic cell death. This work presents a report on a robust Au(I) complex integrating three therapeutic modalities within a singular system. The strategy presented in this work provides a valuable reference for the development of high-performance therapeutic agents.
Collapse
Affiliation(s)
- Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Peng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yiling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
49
|
See SA, Bhassu S, Tang SS, Yusoff K. Newly developed mRNA vaccines induce immune responses in Litopenaeus vannamei shrimps during primary vaccination. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105264. [PMID: 39299363 DOI: 10.1016/j.dci.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 μg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
Collapse
Affiliation(s)
- SiouNing Aileen See
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| | - Swee Seong Tang
- Microbial Biochemistry Laboratory, Division of Microbiology and Molecular Genetic, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khatijah Yusoff
- Malaysia Genome Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
50
|
Li J, Xiao L, Chen Z, Fan L, Wang W, Guo R, He Z, Hu H, Jiang J, Zhao L, Zhong T, Fan B, Zhu X, Li B. A spike-based mRNA vaccine that induces durable and broad protection against porcine deltacoronavirus in piglets. J Virol 2024; 98:e0053524. [PMID: 39158273 PMCID: PMC11406889 DOI: 10.1128/jvi.00535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Coronaviruses (CoVs) are important pathogens for humans and other vertebrates, causing severe respiratory and intestinal infections that have become a threat to public health because of the potential for interspecies transmission between animals and humans. Therefore, the development of safe, effective vaccines remains a top priority for the control of CoV infection. The unique immunological characteristics of vaccines featuring messenger RNA (mRNA) present an advantageous tool for coronavirus vaccine development. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines: one encoding full-length spike (S) protein and the other encoding the spike ectodomain (Se) from porcine deltacoronavirus (PDCoV). Fourteen days after primary immunization, both mRNA vaccines induced high levels of immunoglobulin G and neutralizing antibodies in mice, with the S vaccine showing better performance than the Se vaccine. Passive immune protection of the S mRNA vaccine in suckling piglets was confirmed by the induction of robust PDCoV-specific humoral and cellular immune responses. The S mRNA vaccine also showed better protective effects than the inactivated vaccine. Our results suggest that the novel PDCoV-S mRNA-LNP vaccine may have the potential to combat PDCoV infection. IMPORTANCE As an emerging porcine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) has the potential for cross-species transmission, attracting extensive attention. Messenger RNA (mRNA) vaccines are a promising option for combating emerging and re-emerging infectious diseases, as evidenced by the demonstrated efficacy of the COVID-19 mRNA vaccine. Here, we first demonstrated that PDCoV-S mRNA-lipid nanoparticle (LNP) vaccines could induce potent humoral and cellular immune responses in mice. An evaluation of passive immune protection of S mRNA vaccines in suckling piglets confirmed that the protective effect of mRNA vaccine was better than that of inactivated vaccine. This study suggests that the PDCoV-S mRNA-LNP vaccine may serve as a potential and novel vaccine candidate for combating PDCoV infection.
Collapse
MESH Headings
- Animals
- Swine
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Coronavirus Infections/virology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Mice
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- mRNA Vaccines
- Deltacoronavirus/immunology
- Deltacoronavirus/genetics
- Nanoparticles
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- Female
- Immunity, Humoral
- Liposomes
Collapse
Affiliation(s)
- Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zhuoqi Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Liyuan Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Zhaoming He
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Hongpeng Hu
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Jianhao Jiang
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Lixiang Zhao
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Tianyi Zhong
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|