1
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Zhang ZQ, Li JY, Bao YW, Song YQ, Song DX, Wang C, Zhu XH. Immunocytes do not mediate food intake and the causal relationship with allergic rhinitis: a comprehensive Mendelian randomization. Front Nutr 2024; 11:1432283. [PMID: 39399526 PMCID: PMC11466801 DOI: 10.3389/fnut.2024.1432283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background Observational studies indicate a correlation between food intake and allergic rhinitis. The potential interplay between the immune system and allergic rhinitis might contribute causally to both food intake and allergic rhinitis, providing promising therapeutic avenues. However, elucidating the causal relationship and immune-mediated mechanisms between food intake and allergic rhinitis remains a pending task. Methods We utilized a two-sample Mendelian randomization (MR) methodology to explore the causal relationship between food intake and allergic rhinitis. Furthermore, we investigated the potential causal relationship of immune cell signals with allergic rhinitis, as well as the potential causal relationship between food intake and immune cell signals. Moreover, employing both two-step Mendelian randomization and multivariable Mendelian randomization, we delved into the mediating role of immune cell signals in the causal relationship between food intake and allergic rhinitis. Leveraging publicly accessible genetic datasets, our analysis encompassed 903 traits, comprising 171 food intake features, 731 immune cell features, and one trait related to allergic rhinitis. Result We found causal relationships between seven types of food intake and allergic rhinitis, as well as between 30 immune cell phenotypes and allergic rhinitis. Furthermore, our two-step Mendelian randomization analysis and multivariable Mendelian randomization analysis indicate that immune cells do not mediate the causal relationship between food intake and allergic rhinitis. Conclusion To the best of our knowledge, we are the first to incorporate a large-scale dataset integrating immune cell features, food intake features, and allergic rhinitis into Mendelian randomization analysis. Our research findings indicate that there are causal relationships between six types of food intake and allergic rhinitis, as well as between 30 immune cell phenotypes and allergic rhinitis. Additionally, immune cells do not mediate these relationships.
Collapse
Affiliation(s)
- Zhi-qiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing-yang Li
- Department of Clinical Medicine, The First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - You-wei Bao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Qi Song
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-xu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin-hua Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Jiang S, Song B, Liu Z, Shen S, Qian W, Sun J, Chen G, Zhu Y. Neuronal activity in the anterior paraventricular nucleus of thalamus positively correlated with sweetener consumption in mice. Neurosci Res 2024; 205:16-26. [PMID: 38364907 DOI: 10.1016/j.neures.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Although the brain can discriminate between various sweet substances, the underlying neural mechanisms of this complex behavior remain elusive. This study examines the role of the anterior paraventricular nucleus of the thalamus (aPVT) in governing sweet preference in mice. We fed the mice six different diets with equal sweetness for six weeks: control diet (CD), high sucrose diet (HSD), high stevioside diet (HSSD), high xylitol diet (HXD), high glycyrrhizin diet (HGD), and high mogroside diet (HMD). The mice exhibited a marked preference specifically for the HSD and HSSD. Following consumption of these diets, c-Fos expression levels in the aPVT were significantly higher in these two groups compared to the others. Utilizing fiber photometry calcium imaging, we observed rapid activation of aPVT neurons in response to sucrose and stevioside intake, but not to xylitol or water. Our findings suggest that aPVT activity aligns with sweet preference in mice, and notably, stevioside is the sole plant-based sweetener that elicits an aPVT response comparable to that of sucrose.
Collapse
Affiliation(s)
- Shaolei Jiang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; The Brain Cognition and Brain Diseases Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Bo Song
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhongdong Liu
- Grain College, Henan University of Technology, Zhengzhou 450001, China; Instituto de Física da Universidade de São Paulo, Sã o Paulo 05508-090, Brazil
| | - Shuifa Shen
- Hefei lnstitutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Jinhua 322100, China
| | - Weiliang Qian
- Instituto de Física da Universidade de São Paulo, Sã o Paulo 05508-090, Brazil
| | - Jing Sun
- Department of Anesthesiology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, No.2004 Hongli Road, Shenzhen 518028, China
| | - Gaowei Chen
- The Brain Cognition and Brain Diseases Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Yingjie Zhu
- The Brain Cognition and Brain Diseases Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| |
Collapse
|
4
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Lai TT, Tsai YH, Liou CW, Fan CH, Hou YT, Yao TH, Chuang HL, Wu WL. The gut microbiota modulate locomotion via vagus-dependent glucagon-like peptide-1 signaling. NPJ Biofilms Microbiomes 2024; 10:2. [PMID: 38228675 DOI: 10.1038/s41522-024-00477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Locomotor activity is an innate behavior that can be triggered by gut-motivated conditions, such as appetite and metabolic condition. Various nutrient-sensing receptors distributed in the vagal terminal in the gut are crucial for signal transduction from the gut to the brain. The levels of gut hormones are closely associated with the colonization status of the gut microbiota, suggesting a complicated interaction among gut bacteria, gut hormones, and the brain. However, the detailed mechanism underlying gut microbiota-mediated endocrine signaling in the modulation of locomotion is still unclear. Herein, we show that broad-spectrum antibiotic cocktail (ABX)-treated mice displayed hypolocomotion and elevated levels of the gut hormone glucagon-like peptide-1 (GLP-1). Blockade of the GLP-1 receptor and subdiaphragmatic vagal transmission rescued the deficient locomotor phenotype in ABX-treated mice. Activation of the GLP-1 receptor and vagal projecting brain regions led to hypolocomotion. Finally, selective antibiotic treatment dramatically increased serum GLP-1 levels and decreased locomotion. Colonizing Lactobacillus reuteri and Bacteroides thetaiotaomicron in microbiota-deficient mice suppressed GLP-1 levels and restored the hypolocomotor phenotype. Our findings identify a mechanism by which specific gut microbes mediate host motor behavior via the enteroendocrine and vagal-dependent neural pathways.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Tian Hou
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115202, Taiwan
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
6
|
Badaut J, Ghersi-Egea JF, Thorne RG, Konsman JP. Blood-brain borders: a proposal to address limitations of historical blood-brain barrier terminology. Fluids Barriers CNS 2024; 21:3. [PMID: 38183042 PMCID: PMC10770911 DOI: 10.1186/s12987-023-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 01/07/2024] Open
Abstract
Many neuroscientists use the term Blood-Brain Barrier (BBB) to emphasize restrictiveness, often equating or reducing the notion of BBB properties to tight junction molecules physically sealing cerebral endothelial cells, rather than pointing out the complexity of this biological interface with respect to its selectivity and variety of exchange between the general blood circulation and the central nervous tissue. Several authors in the field find it unfortunate that the exquisitely dynamic interfaces between blood and brain continue to be viewed primarily as obstructive barriers to transport. Although the term blood-brain interface is an excellent descriptor that does not convey the idea of a barrier, it is important and preferable for the spreading of an idea beyond specialist communities to try to appeal to well-chosen metaphors. Recent evidence reviewed here indicates that blood-brain interfaces are more than selective semi-permeable membranes in that they display many dynamic processes and complex mechanisms for communication. They are thus more like 'geopolitical borders'. Furthermore, some authors working on blood-brain interface-relevant issues have started to use the word border, for example in border-associated macrophages. Therefore, we suggest adopting the term Blood-Brain Border to better communicate the flexibility of and movement across blood-brain interfaces.
Collapse
Affiliation(s)
- Jerome Badaut
- Brain Molecular Imaging Lab, UMR 5536, CNRS, RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Jean-François Ghersi-Egea
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR 5292, Lyon-1 University, Bron, France.
| | - Robert G Thorne
- Denali Therapeutics, Inc, 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
- Department of Pharmaceutics, University of Minnesota, 9-177 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.
| | - Jan Pieter Konsman
- UMR 5164, CNRS, ImmunoConcEpT, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
7
|
Rayatpour A, Radahmadi M, Izadi MS, Ghasemi M. Effects of sub-chronic CRH administration into the hypothalamic paraventricular and central amygdala nuclei in male rats with a focus on food intake biomarkers. AN ACAD BRAS CIENC 2023; 95:e20200221. [PMID: 38088701 DOI: 10.1590/0001-3765202320200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2023] Open
Abstract
CRH neurons are found in the paraventricular nucleus(PVN) and central amygdala(CeA) nuclei. This study investigated the effects of sub-chronic CRH administration into the PVN and CeA nuclei on food intake biomarkers in rats divided into five groups: control, two shams, and two CRH-PVN and CRH-CeA groups(receiving CRH in nuclei for seven days). The CRH-PVN group had significantly higher cumulative food intake and food intake trends than the CRH-CeA group. The CRH-CeA and CRH-PVN groups exhibited significant increases in food intake during hours 1 and 2, respectively. Moreover, to be time-dependent, food intake is modulated by different brain nuclei. The CRH signaling pathway appeared to be activated later in the PVN than CeA. Both groups exhibited significantly higher leptin levels, the CRH-PVN group exhibited higher ghrelin levels and lower glucose levels. Repetitive administration of CRH into the PVN and CeA significantly reduced body weight differences. CRH administration into the PVN affected both leptin and ghrelin levels, but ghrelin had a greater impact on glucose variations and cumulative food intake than leptin. Finally, CRH administration into the PVN and CeA likely activated the HPA axis, and the CeA had a greater impact on the stress circuit than on food intake behavior.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Isfahan University of Medical Sciences, Department of Physiology, School of Medicine, Hezar Jerib street, Isfahan, Iran
| | - Maryam Radahmadi
- Isfahan University of Medical Sciences, Department of Physiology, School of Medicine, Hezar Jerib street, Isfahan, Iran
| | - Mina S Izadi
- Isfahan University of Medical Sciences, Department of Physiology, School of Medicine, Hezar Jerib street, Isfahan, Iran
| | - Maedeh Ghasemi
- Isfahan University of Medical Sciences, Department of Physiology, School of Medicine, Hezar Jerib street, Isfahan, Iran
| |
Collapse
|
8
|
Dera AM, Shen T, Thackray AE, Hinton EC, King JA, James L, Morgan PS, Rush N, Miyashita M, Batterham RL, Stensel DJ. The influence of physical activity on neural responses to visual food cues in humans: A systematic review of functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2023; 152:105247. [PMID: 37236384 DOI: 10.1016/j.neubiorev.2023.105247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
This systematic review examined whether neural responses to visual food-cues measured by functional magnetic resonance imaging (fMRI) are influenced by physical activity. Seven databases were searched up to February 2023 for human studies evaluating visual food-cue reactivity using fMRI alongside an assessment of habitual physical activity or structured exercise exposure. Eight studies (1 exercise training, 4 acute crossover, 3 cross-sectional) were included in a qualitative synthesis. Structured acute and chronic exercise appear to lower food-cue reactivity in several brain regions, including the insula, hippocampus, orbitofrontal cortex (OFC), postcentral gyrus and putamen, particularly when viewing high-energy-density food cues. Exercise, at least acutely, may enhance appeal of low-energy-density food-cues. Cross-sectional studies show higher self-reported physical activity is associated with lower reactivity to food-cues particularly of high-energy-density in the insula, OFC, postcentral gyrus and precuneus. This review shows that physical activity may influence brain food-cue reactivity in motivational, emotional, and reward-related processing regions, possibly indicative of a hedonic appetite-suppressing effect. Conclusions should be drawn cautiously given considerable methodological variability exists across limited evidence.
Collapse
Affiliation(s)
- Abdulrahman M Dera
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; College of Sport Sciences, Jeddah University, Saudi Arabia; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Tonghui Shen
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Elanor C Hinton
- National Institute for Health and Care Research (NIHR) Bristol Biomedical Centre Diet and Physical Activity Theme, University of Bristol, UK; Oxford Medical Products Limited, Witney Business and Innovation Centre, Witney, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Lewis James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK
| | - Paul S Morgan
- Radiological Sciences, School of Medicine, University of Nottingham, UK; National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK
| | - Nathan Rush
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK
| | - Masashi Miyashita
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan; Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong
| | - Rachel L Batterham
- Department of Medicine, Centre for Obesity Research, University College London, UK; National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, UK; Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan; Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
9
|
Pepe RB, Lottenberg AM, Fujiwara CTH, Beyruti M, Cintra DE, Machado RM, Rodrigues A, Jensen NSO, Caldas APS, Fernandes AE, Rossoni C, Mattos F, Motarelli JHF, Bressan J, Saldanha J, Beda LMM, Lavrador MSF, Del Bosco M, Cruz P, Correia PE, Maximino P, Pereira S, Faria SL, Piovacari SMF. Position statement on nutrition therapy for overweight and obesity: nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO-2022). Diabetol Metab Syndr 2023; 15:124. [PMID: 37296485 PMCID: PMC10251611 DOI: 10.1186/s13098-023-01037-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a chronic disease resulting from multifactorial causes mainly related to lifestyle (sedentary lifestyle, inadequate eating habits) and to other conditions such as genetic, hereditary, psychological, cultural, and ethnic factors. The weight loss process is slow and complex, and involves lifestyle changes with an emphasis on nutritional therapy, physical activity practice, psychological interventions, and pharmacological or surgical treatment. Because the management of obesity is a long-term process, it is essential that the nutritional treatment contributes to the maintenance of the individual's global health. The main diet-related causes associated with excess weight are the high consumption of ultraprocessed foods, which are high in fats, sugars, and have high energy density; increased portion sizes; and low intake of fruits, vegetables, and grains. In addition, some situations negatively interfere with the weight loss process, such as fad diets that involve the belief in superfoods, the use of teas and phytotherapics, or even the avoidance of certain food groups, as has currently been the case for foods that are sources of carbohydrates. Individuals with obesity are often exposed to fad diets and, on a recurring basis, adhere to proposals with promises of quick solutions, which are not supported by the scientific literature. The adoption of a dietary pattern combining foods such as grains, lean meats, low-fat dairy, fruits, and vegetables, associated with an energy deficit, is the nutritional treatment recommended by the main international guidelines. Moreover, an emphasis on behavioral aspects including motivational interviewing and the encouragement for the individual to develop skills will contribute to achieve and maintain a healthy weight. Therefore, this Position Statement was prepared based on the analysis of the main randomized controlled studies and meta-analyses that tested different nutrition interventions for weight loss. Topics in the frontier of knowledge such as gut microbiota, inflammation, and nutritional genomics, as well as the processes involved in weight regain, were included in this document. This Position Statement was prepared by the Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), with the collaboration of dietitians from research and clinical fields with an emphasis on strategies for weight loss.
Collapse
Affiliation(s)
- Renata Bressan Pepe
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Ana Maria Lottenberg
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
- Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), Rua Mato Grosso 306 – cj 1711, Sao Paulo, SP 01239-040 Brazil
| | - Clarissa Tamie Hiwatashi Fujiwara
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Mônica Beyruti
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Dennys Esper Cintra
- Centro de Estudos em Lipídios e Nutrigenômica – CELN – University of Campinas, Campinas, SP Brazil
| | - Roberta Marcondes Machado
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Alessandra Rodrigues
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Natália Sanchez Oliveira Jensen
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | | | - Ariana Ester Fernandes
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Carina Rossoni
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Mattos
- Programa de Obesidade e Cirurgia Bariátrica do Hospital Universitário Clementino Fraga Filho da UFRJ, Rio de Janeiro, RJ Brazil
| | - João Henrique Fabiano Motarelli
- Núcleo de Estudos e Extensão em Comportamento Alimentar e Obesidade (NEPOCA) da Universidade de São Paulo - FMRP/USP, Ribeirão Preto, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | - Lis Mie Masuzawa Beda
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Maria Sílvia Ferrari Lavrador
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Mariana Del Bosco
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Patrícia Cruz
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | | | - Priscila Maximino
- Instituto PENSI - Fundação José Luiz Egydio Setúbal, Instituto Pensi, Fundação José Luiz Egydio Setúbal, Hospital Infantil Sabará, São Paulo, SP Brazil
| | - Silvia Pereira
- Núcleo de Saúde Alimentar da Sociedade Brasileira de Cirurgia Bariátrica e Metabólica, São Paulo, Brazil
| | | | | |
Collapse
|
10
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Manzano MA, Strong DR, Rhee KE, Liang J, Boutelle KN. Discordance between assessments of food cue responsiveness: Implications for assessment in youth with overweight/obesity. Appetite 2023; 186:106575. [PMID: 37100119 DOI: 10.1016/j.appet.2023.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023]
Abstract
Food cue responsiveness (FCR), broadly defined as behavioral, cognitive, emotional and/or physiological responses to external appetitive cues outside of physiological need, contributes to overeating and obesity among youth and adults. A variety of measures purportedly assess this construct, ranging from youth- or parent-report surveys to objective eating tasks. However, little research has assessed their convergence. It is especially important to evaluate this in children with overweight/obesity (OW/OB), as reliable and valid assessments of FCR are essential to better understand the role of this critical mechanism in behavioral interventions. The present study examined the relationship between five measures of FCR in a sample of 111 children with OW/OB (mean age = 10.6, mean BMI percentile = 96.4; 70% female; 68% white; 23% Latinx). Assessments included: objectively measured eating in the absence of hunger (EAH), parasympathetic activity when exposed to food, parent reported food responsiveness subscale from the Child Eating Behavior Questionnaire (CEBQ-FR), child self-reported Power of Food total score (C-PFS), and child self-reported Food Cravings Questionnaire total score (FCQ-T). Statistically significant spearman correlations were found between EAH and CEBQ-FR (ρ = 0.19, p < 0.05) and parasympathetic reactivity to food cues with both C-PFS (ρ = -0.32, p = 0.002) and FCQ-T (ρ = -0.34, p < 0.001). No other associations were statistically significant. These relationships remained significant in subsequent linear regression models controlling for child age and gender. The lack of concordance between measures assessing highly conceptually related constructs is of concern. Future studies should seek to elucidate a clear operationalization of FCR, examine the associations between FCR assessments in children and adolescents with a range of weight statuses, and evaluate how to best revise these measures to accurately reflect the latent construct being assessed.
Collapse
Affiliation(s)
- Michael A Manzano
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, United States; University of California San Diego, Department of Pediatrics, United States.
| | - David R Strong
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, United States
| | - Kyung E Rhee
- University of California San Diego, Department of Pediatrics, United States
| | - June Liang
- University of California San Diego, Department of Pediatrics, United States
| | - Kerri N Boutelle
- University of California San Diego, Department of Pediatrics, United States; University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, United States; University of California San Diego, Department of Psychiatry, United States
| |
Collapse
|
12
|
de Lara-Sánchez SS, Sánchez-Pérez AM. Probiotics Treatment Can Improve Cognition in Patients with Mild Cognitive Impairment: A Systematic Review. J Alzheimers Dis 2022; 89:1173-1191. [DOI: 10.3233/jad-220615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In recent years, the existence of the gut-brain axis and the impact of intestinal microbiota on brain function has received much attention. Accumulated evidence has prompted the postulation of the infectious hypothesis underlying or facilitating neurodegenerative diseases, such as Alzheimer’s disease. Under this hypothesis, intervention with probiotics could be useful at a preventive and therapeutic level. Objective: The objective of this systematic review is to reveal a benefit of improved cognitive function following the use of probiotics in individuals with mild cognitive impairment. Methods: We searched bibliographic databases and analyzed in detail the evidence and methodological quality of five recent randomized, double-blind, placebo-controlled clinical trials using the Cochrane Tool and the SIGN checklist. Results: Overall, and with satisfactory methodological quality, the studies evaluated support the use of probiotics as a weapon to slow the progression of cognitive decline in subjects with mild cognitive impairment. The literature review also indicates that maximum benefit of probiotics is found in subjects with incipient cognitive dysfunction and has no effect in those with advanced disease or absence of disease. Conclusion: These results support the intervention with probiotics, especially as a preventive approach. However, caution is required in the interpretation of the results as microbiota has not been evaluated in all studies, and further large-scale research with a prolonged study period is necessary to ensure the translatability of the results into real practice.
Collapse
Affiliation(s)
| | - Ana María Sánchez-Pérez
- Faculty of Health Sciences, University Jaume I. Avda Sos Banyat, s/n. Castellon, Spain
- Institute of Advances Materials (INAM), University Jaume I. Avda Sos Banyat, s/n. Castellon, Spain
| |
Collapse
|
13
|
The metabolic hormone adiponectin affects the correlation between nutritional status and pneumococcal vaccine response in vulnerable indigenous children. PLoS One 2022; 17:e0270736. [PMID: 35862344 PMCID: PMC9302759 DOI: 10.1371/journal.pone.0270736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Almost 200 million children worldwide are either undernourished or overweight. Only a few studies have addressed the effect of variation in nutritional status on vaccine response. We previously demonstrated an association between stunting and an increased post-vaccination 13-valent pneumococcal conjugate vaccine (PCV13) response. In this prospective study, we assessed to what extent metabolic hormones may be a modifier in the association between nutritional status and PCV13 response.
Methods
Venezuelan children aged 6 weeks to 59 months were vaccinated with a primary series of PCV13. Nutritional status and serum levels of leptin, adiponectin and ghrelin were measured upon vaccination and their combined effect on serum post-vaccination antibody concentrations was assessed by generalized estimating equations multivariable regression analysis.
Results
A total of 210 children were included, of whom 80 were stunted, 81 had a normal weight and 49 were overweight. Overweight children had lower post-vaccination antibody concentrations than normal weight children (regression coefficient -1.15, 95% CI -2.22 –-0.072). Additionally, there was a significant adiponectin-nutritional status interaction. In stunted children, higher adiponectin serum concentrations were associated with lower post-PCV13 antibody concentrations (regression coefficient -0.19, 95% CI -0.24 –-0.14) while the opposite was seen in overweight children (regression coefficient 0.14, 95% CI 0.049–0.22).
Conclusion
Metabolic hormones, in particular adiponectin, may modify the effect of nutritional status on pneumococcal vaccine response. These findings emphasize the importance of further research to better understand the immunometabolic pathways underlying vaccine response and enable a future of optimal personalized vaccination schedules.
Collapse
|
14
|
Sato T, Sassone-Corsi P. Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep 2022; 23:e52412. [PMID: 35412705 PMCID: PMC9066069 DOI: 10.15252/embr.202152412] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24-h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high-fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Merabet N, Lucassen PJ, Crielaard L, Stronks K, Quax R, Sloot PMA, la Fleur SE, Nicolaou M. How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Front Neuroendocrinol 2022; 65:100972. [PMID: 34929260 DOI: 10.1016/j.yfrne.2021.100972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Chronic stress contributes to the onset of type 2 diabetes (T2D), yet the underlying etiological mechanisms are not fully understood. Responses to stress are influenced by earlier experiences, sex, emotions and cognition, and involve a complex network of neurotransmitters and hormones, that affect multiple biological systems. In addition, the systems activated by stress can be altered by behavioral, metabolic and environmental factors. The impact of stress on metabolic health can thus be considered an emergent process, involving different types of interactions between multiple variables, that are driven by non-linear dynamics at different spatiotemporal scales. To obtain a more comprehensive picture of the links between chronic stress and T2D, we followed a complexity science approach to build a causal loop diagram (CLD) connecting the various mediators and processes involved in stress responses relevant for T2D pathogenesis. This CLD could help develop novel computational models and formulate new hypotheses regarding disease etiology.
Collapse
Affiliation(s)
- Nadège Merabet
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Paul J Lucassen
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Loes Crielaard
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Karien Stronks
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Rick Quax
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Peter M A Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands; National Centre of Cognitive Research, ITMO University, St. Petersburg, Russian Federation
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, the Netherlands.
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands.
| |
Collapse
|
16
|
Guo S, Cázarez-Márquez F, Jiao H, Foppen E, Korpel NL, Grootemaat AE, Liv N, Gao Y, van der Wel N, Zhou B, Nie G, Yi CX. Specific Silencing of Microglial Gene Expression in the Rat Brain by Nanoparticle-Based Small Interfering RNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5066-5079. [PMID: 35041392 PMCID: PMC8815040 DOI: 10.1021/acsami.1c22434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
Microglia are the major innate immune cells in the brain and are essential for maintaining homeostasis in a neuronal microenvironment. Currently, a genetic tool to modify microglial gene expression in specific brain regions is not available. In this report, we introduce a tailor-designed method that uses lipid and polymer hybridized nanoparticles (LPNPs) for the local delivery of small interfering RNAs (siRNAs), allowing the silencing of specific microglial genes in the hypothalamus. Our physical characterization proved that this LPNP-siRNA was uniform and stable. We demonstrated that, due to their natural phagocytic behavior, microglial cells are the dominant cell type taking up these LPNPs in the hypothalamus of rats. We then tested the silencing efficiency of LPNPs carrying a cluster of differentiation molecule 11b (CD11b) or Toll-like receptor 4 (TLR4) siRNA using different in vivo and in vitro approaches. In cultured microglial cells treated with LPNP-CD11b siRNA or LPNP-TLR4 siRNA, we found a silencing efficiency at protein expression levels of 65 or 77%, respectively. In line with this finding, immunohistochemistry and western blotting results from in vivo experiments showed that LPNP-CD11b siRNA significantly inhibited microglial CD11b protein expression in the hypothalamus. Furthermore, following lipopolysaccharide (LPS) stimulation of cultured microglial cells, gene expression of the TLR4 downstream signaling component myeloid differentiation factor 88 and its associated cytokines was significantly inhibited in LPNP-TLR4 siRNA-treated microglial cells compared with cells treated with LPNP-scrambled siRNA. Finally, after LPNP-TLR4 siRNA injection into the rat hypothalamus, we observed a significant reduction in microglial activation in response to LPS compared with the control rats injected with LPNP-scrambled siRNA. Our results indicate that LPNP-siRNA is a promising tool to manipulate microglial activity locally in the brain and may serve as a prophylactic approach to prevent microglial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Shanshan Guo
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Fernando Cázarez-Márquez
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands
Institute for Neuroscience, Institute of
the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Han Jiao
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, School
of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ewout Foppen
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands
Institute for Neuroscience, Institute of
the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Nikita L. Korpel
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands
Institute for Neuroscience, Institute of
the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Anita E. Grootemaat
- Cellular
Imaging Core Facility, Amsterdam University Medical Centre (UMC),
location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nalan Liv
- Section
Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Yuanqing Gao
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, School
of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Nicole van der Wel
- Cellular
Imaging Core Facility, Amsterdam University Medical Centre (UMC),
location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bing Zhou
- Institute
of Synthetic Biology, Shenzhen Institutes
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangjun Nie
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chun-Xia Yi
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
Eikelboom R, Hewitt R, Adams KL. Sucrose solution concentration and the intermittent access induced consumption increase. Physiol Behav 2022; 243:113640. [PMID: 34740580 DOI: 10.1016/j.physbeh.2021.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Animals fed ad libitum consume less of a preferred additional food with daily access than with access only once every few days. With 4% sucrose solution, rats can drink over twice as much in a day if they receive it every fourth day compared to daily access. These differences are maintained when all rats are put on the same schedule. We explored the intermittency effect with 1, 4, 8, and 16% sucrose solutions available for 23 h daily or every third day in adult male rats. The consumption difference was only evident with the 4% solution. In a second experiment with a 16% solution, only a small difference was seen in the first phase. When the sucrose concentration was lowered to 4% in a second phase with alternate day access, the rats with prior every third-day access showed an immediate, pronounced elevation in consumption compared to rats with initial daily access. These results suggest that intermittency induces a long-lasting elevation in the sucrose solution's value for rats, but it may only be evident under the appropriate testing conditions. The relevance of this increased consumption for understanding human obesity and binge eating is discussed.
Collapse
Affiliation(s)
- Roelof Eikelboom
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada.
| | - Randelle Hewitt
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Kerry L Adams
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
18
|
Li X, Hui S, Mirek ET, Jonsson WO, Anthony TG, Lee WD, Zeng X, Jang C, Rabinowitz JD. Circulating metabolite homeostasis achieved through mass action. Nat Metab 2022; 4:141-152. [PMID: 35058631 PMCID: PMC9244777 DOI: 10.1038/s42255-021-00517-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022]
Abstract
Homeostasis maintains serum metabolites within physiological ranges. For glucose, this requires insulin, which suppresses glucose production while accelerating its consumption. For other circulating metabolites, a comparable master regulator has yet to be discovered. Here we show that, in mice, many circulating metabolites are cleared via the tricarboxylic acid cycle (TCA) cycle in linear proportionality to their circulating concentration. Abundant circulating metabolites (essential amino acids, serine, alanine, citrate, 3-hydroxybutyrate) were administered intravenously in perturbative amounts and their fluxes were measured using isotope labelling. The increased circulating concentrations induced by the perturbative infusions hardly altered production fluxes while linearly enhancing consumption fluxes and TCA contributions. The same mass action relationship between concentration and consumption flux largely held across feeding, fasting and high- and low-protein diets, with amino acid homeostasis during fasting further supported by enhanced endogenous protein catabolism. Thus, despite the copious regulatory machinery in mammals, circulating metabolite homeostasis is achieved substantially through mass action-driven oxidation.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sheng Hui
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Xianfeng Zeng
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Cholsoon Jang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
| | - Joshua D Rabinowitz
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
19
|
OUP accepted manuscript. Nutr Rev 2022; 80:1942-1957. [DOI: 10.1093/nutrit/nuac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Demerdash HM. Weight regain after bariatric surgery: Promoters and potential predictors. World J Meta-Anal 2021; 9:438-454. [DOI: 10.13105/wjma.v9.i5.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is globally viewed as chronic relapsing disease. Bariatric surgery offers the most efficient and durable weight loss approach. However, weight regain after surgery is a distressing issue as obesity can revert. Surgical procedures were originally designed to reduce food intake and catalyze weight loss, provided that its role is marginalized in long-term weight maintenance. Consequently, it is essential to establish a scientifically standardized applicable definitions for weight regain, which necessitates enhanced comprehension of the clinical situation, as well as have realistic expectations concerning weight loss. Moreover, several factors are proposed to influence weight regain as psychological, behavioral factors, hormonal, metabolic, anatomical lapses, as well as genetic predisposition. Recently, there is a growing evidence of utilization of scoring system to anticipate excess body weight loss, along with characterizing certain biomarkers that identify subjects at risk of suboptimal weight loss after surgery. Furthermore, personalized counseling is warranted to help select bariatric procedure, reinforce self-monitoring skills, motivate patient, encourage mindful eating practices, to avoid recidivism.
Collapse
Affiliation(s)
- Hala Mourad Demerdash
- Department of Clinical Pathology, Alexandria University Hospitals, Alexandria 21311, Egypt
| |
Collapse
|
21
|
Zheng Y, Chen Z. Targeting Histamine and Histamine Receptors for the Precise Regulation of Feeding. Curr Top Behav Neurosci 2021; 59:355-387. [PMID: 34622397 DOI: 10.1007/7854_2021_258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Histamine has long been accepted as an anorexigenic agent. However, lines of evidence have suggested that the roles of histamine in feeding behaviors are much more complex than previously thought, being involved in satiety, satiation, feeding motivation, feeding circadian rhythm, and taste perception and memory. The functional diversity of histamine makes it a viable target for clinical management of obesity and other feeding-related disorders. Here, we update the current knowledge about the functions of histamine in feeding and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on weight control and discuss insights into future research on the roles of histamine in feeding. Despite the recent progress in histamine research, the histaminergic feeding circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
22
|
Chrobok L, Klich JD, Sanetra AM, Jeczmien-Lazur JS, Pradel K, Palus-Chramiec K, Kepczynski M, Piggins HD, Lewandowski MH. Rhythmic neuronal activities of the rat nucleus of the solitary tract are impaired by high-fat diet - implications for daily control of satiety. J Physiol 2021; 600:751-767. [PMID: 34490628 DOI: 10.1113/jp281838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Temporal partitioning of daily food intake is crucial for survival and involves the integration of internal circadian states and external influences such as the light-dark cycle and dietary composition. These intrinsic and extrinsic factors are interdependent with misalignment of circadian rhythms promoting body weight gain, while consumption of a calorie-dense diet elevates the risk of obesity and blunts circadian rhythms. Recently, we defined the circadian properties of the dorsal vagal complex of the brainstem, a structure implicated in the control of food intake and autonomic tone, but whether and how 24 h rhythms in this area are influenced by diet remains unresolved. Here we focused on a key structure of this complex, the nucleus of the solitary tract (NTS). We used a combination of immunohistochemical and electrophysiological approaches together with daily monitoring of body weight and food intake to interrogate how the neuronal rhythms of the NTS are affected by a high-fat diet. We report that short-term consumption of a high-fat diet increases food intake during the day and blunts NTS daily rhythms in neuronal discharge. Additionally, we found that a high-fat diet dampens NTS responsiveness to metabolic neuropeptides, and decreases orexin immunoreactive fibres in this structure. These alterations occur without prominent body weight gain, suggesting that a high-fat diet acts initially to reduce activity in the NTS to disinhibit mechanisms that suppress daytime feeding. KEY POINTS: The dorsal vagal complex of the rodent hindbrain possesses intrinsic circadian timekeeping mechanisms In particular, the nucleus of the solitary tract (NTS) is a robust circadian oscillator, independent of the master suprachiasmatic clock Here, we reveal that rat NTS neurons display timed daily rhythms in their neuronal activity and responsiveness to ingestive cues These daily rhythms are blunted or eliminated by a short-term high-fat diet, together with increased consumption of calories during the behaviourally quiescent day Our results help us better understand the circadian control of satiety by the brainstem and its malfunctioning under a high-fat diet.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Jasmin D Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Mariusz Kepczynski
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
23
|
Kuwahara A, Matsuda K, Kuwahara Y, Asano S, Inui T, Marunaka Y. Microbiota-gut-brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system. Biomed Res 2021; 41:199-216. [PMID: 33071256 DOI: 10.2220/biomedres.41.199] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The microbiota-gut-brain axis transmits bidirectional communication between the gut and the central nervous system and links the emotional and cognitive centers of the brain with peripheral gut functions. This communication occurs along the axis via local, paracrine, and endocrine mechanisms involving a variety of gut-derived peptide/amine produced by enteroendocrine cells. Neural networks, such as the enteric nervous system, and the central nervous system, including the autonomic nervous system, also transmit information through the microbiota-gut-brain axis. Recent advances in research have described the importance of the gut microbiota in influencing normal physiology and contributing to disease. We are only beginning to understand this bidirectional communication system. In this review, we summarize the available data supporting the existence of these interactions, highlighting data related to the contribution of enteroendocrine cells and the enteric nervous system as an interface between the gut microbiota and brain.
Collapse
Affiliation(s)
- Atsukazu Kuwahara
- Research Unit for Epithelial Physiology and Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University
| | - Kyoko Matsuda
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Yuko Kuwahara
- Research Unit for Epithelial Physiology and Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | | | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology and Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University.,Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association
| |
Collapse
|
24
|
Stice E, Bohon C, Gau JM, Rohde P. Factors that predict persistence versus non-persistence of eating disorder Symptoms: A prospective study of high-risk young women. Behav Res Ther 2021; 144:103932. [PMID: 34280585 DOI: 10.1016/j.brat.2021.103932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Investigate baseline factors that prospectively predict persistence versus non-persistence of behavioral and cognitive eating disorder symptoms because knowledge of maintenance factors, which is limited, could inform the design of more effective eating disorder treatments. Data from 4 prevention trials that targeted young women with body image concerns (N = 1952; M age 19.7, SD 5.7) and collected interview-assessed data on behavioral and cognitive symptoms over 1-year follow-up were combined to address this aim. Greater binge eating severity predicted binge eating persistence. Greater dieting, binge eating frequency and severity, weight/shape overvaluation, and feeling fat predicted compensatory behavior persistence. Lower BMI predicted low BMI persistence. Greater thin-ideal internalization, body dissatisfaction, dieting, negative affect, binge eating frequency, binge eating severity, compensatory behaviors, weight/shape overvaluation, fear of fatness or weight gain, and feeling fat predicted weight/shape overvaluation persistence. Greater thin-ideal internalization, dieting, compensatory behaviors, weight/shape overvaluation, fear of fatness or weight gain, and feeling fat predicted persistence of fear of fatness or weight gain. Results provide support for intervention targets of several extant eating disorder treatments and identified novel maintenance factors not commonly targeted in treatments (e.g., negative affect). Results also imply that certain features of eating disorders predict symptom persistence.
Collapse
Affiliation(s)
- Eric Stice
- Stanford University, Psychiatry and Behavioral Sciences, 401 Quarry Road, Stanford, CA, 94305-5719, USA.
| | - Cara Bohon
- Stanford University, Psychiatry and Behavioral Sciences, 401 Quarry Road, Stanford, CA, 94305-5719, USA.
| | - Jeff M Gau
- Oregon Research Institute, 1776 Millrace Drive, Eugene, OR, 97403, USA.
| | - Paul Rohde
- Oregon Research Institute, 1776 Millrace Drive, Eugene, OR, 97403, USA.
| |
Collapse
|
25
|
|
26
|
Impact of food-derived bioactive peptides on gut function and health. Food Res Int 2021; 147:110485. [PMID: 34399481 DOI: 10.1016/j.foodres.2021.110485] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract (GIT) is the largest interface between our body and the environment. It is an organ system extending from the mouth to the anus and functions for food intake, digestion, transport and absorption of nutrients, meanwhile providing protection from environmental factors, like toxins, antigens, and pathogens. Diet is one of the leading factors modulating the function of the GIT. Bioactive peptides presenting naturally in food or derived from food proteins during digestion or processing have been revealed multifunctional in diverse biological processes, including maintaining gut health and function. This review summarizes the available evidence regarding the effects of food-derived bioactive peptides on gut function and health. Findings and insights from studies based on in vitro and animal models are discussed. The gastrointestinal mucosa maintains a delicate balance between immune tolerance to nutrients and harmful components, which is crucial for the digestive system's normal functions. Dietary bioactive peptides positively impact gastrointestinal homeostasis by modulating the barrier function, immune responses, and gut microbiota. However, there is limited clinical evidence on the safety and efficacy of bioactive peptides, much less on the applications of dietary peptides for the treatment or prevention of diseases related to the GIT. Further study is warranted to establish the applications of bioactive peptides in regulating gut health and function.
Collapse
|
27
|
Presseller EK, Clark KE, Fojtu C, Juarascio AS. An empirical examination of appetite hormones and cognitive and behavioral bulimic symptomatology. Eat Weight Disord 2021; 26:1129-1137. [PMID: 32951131 PMCID: PMC8095371 DOI: 10.1007/s40519-020-01009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/03/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Existing literature has demonstrated that appetite hormones are frequently dysregulated in individuals with bulimic-spectrum eating disorders (BN-EDs). Although dysregulations in appetite hormones may maintain BN-EDs, very limited research has examined the association between dysregulated appetite hormones and cognitive and behavioral bulimic symptoms. We hypothesized that greater frequency of behavioral symptoms and severity of cognitive symptoms of BN-EDs would correlate with greater dysregulation in appetite hormones. METHODS The association between ghrelin, cortisol, leptin, GLP-1, and amylin levels and eating pathology was examined in treatment-seeking adults with BN-EDs (N = 33). Participants completed bloodwork to assess fasting blood hormone levels and bulimic symptoms were measured by the Eating Disorder Examination. Pearson partial correlations were run to examine the association between hormone levels and eating pathology, controlling for BMI. RESULTS Contrary to hypotheses, none of the appetite hormones tested were significantly associated with frequency of behavioral ED symptoms (p range = 0.13-0.97, negligible to small effect sizes). Global eating pathology was positively associated with leptin (p = 0.03) and negatively associated with GLP-1 (p = 0.03) and amylin (p = 0.04), with medium effect sizes. Post hoc analyses indicated significantly stronger associations between appetite hormones and cognitive eating pathology than between appetite hormones and frequency of binge eating [GLP-1 (p = 0.02) and amylin (p = 0.02)] or compensatory behaviors [leptin (p = 0.03), GLP-1 (p = 0.02), and amylin (p = 0.04)]. CONCLUSION In individuals with BN-EDs, appetite hormones may be more strongly associated with cognitive symptoms than behavioral symptoms. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
Affiliation(s)
- Emily K Presseller
- Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, PA, 19104, USA. .,Department of Psychology, Drexel University, Philadelphia, PA, USA.
| | - Kelsey E Clark
- Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, PA, 19104, USA.,Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - Caroline Fojtu
- Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, PA, 19104, USA.,Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - Adrienne S Juarascio
- Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, PA, 19104, USA.,Department of Psychology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
28
|
Ulker I, Ayyildiz F, Yildiran H. Validation of the Turkish version of the power of food scale in adult population. Eat Weight Disord 2021; 26:1179-1186. [PMID: 33006077 DOI: 10.1007/s40519-020-01019-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/11/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The Power of Food Scale (PFS) is a tool for measuring the hedonic impact of food environments rich in palatable foods. The purpose of this study was to validate the Turkish version of PFS (PFS-Tr) in a large adult population. METHODS Data were obtained from 505 Turkish adults aged between 19 and 64 years. The PFS-Tr and Dutch Eating Behavior Questionnaire (DEBQ) were completed by all participants. RESULTS PFS-Tr compared with the original English version of PFS, items 5 and 13, which showed the highest error covariance under the food available factor. To provide general criteria, items 5 and 13 were removed. After these two items were removed, the Cronbach's alpha coefficient was 0.922 for PFS-Tr and Cronbach's alpha values for "food available", "food present", and "food taste" were found to be 0.849, 0.797, and 0.82, respectively. Besides, the Cronbach's alpha coefficient was 0.93 for DEBQ. In addition, a linear association was found between BMI and mean score of PFS-Tr with a model fit (R2 = 0.02) and PFS-Tr was positively correlated with DEBQ (r 0.497 p < 0.001). CONCLUSION This is the first study that validates and reports the Turkish version of PFS and the results of our study show that PFS-Tr is a valid and reliable tool for determining the tendency for the hedonic hunger in Turkish adult population. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
Affiliation(s)
- Izzet Ulker
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, Ankara, Turkey.
| | - Feride Ayyildiz
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, Ankara, Turkey
| | - Hilal Yildiran
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, Ankara, Turkey
| |
Collapse
|
29
|
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol 2021; 33:e12952. [PMID: 33656205 DOI: 10.1111/jne.12952] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Food intake and energy expenditure are regulated by peripheral signals providing feedback on nutrient status and adiposity to the central nervous system. One of these signals is the pancreatic hormone, insulin. Unlike peripheral administration of insulin, which often causes weight gain, central administration of insulin leads to a reduction in food intake and body weight when administered long-term. This is a result of feedback processes in regions of the brain that regulate food intake. Within the hypothalamus, the arcuate nucleus (ARC) contains subpopulations of neurones that produce orexinergic neuropeptides agouti-related peptide (AgRP)/neuropeptide Y (NPY) and anorexigenic neuropeptides, pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular infusion of insulin down-regulates the expression of AgRP/NPY at the same time as up-regulating expression of POMC/CART. Recent evidence suggests that insulin activity within the amygdala may play an important role in regulating energy balance. Insulin infusion into the central nucleus of the amygdala (CeA) can decrease food intake, possibly by modulating activity of NPY and other neurone subpopulations. Insulin signalling within the CeA can also influence stress-induced obesity. Overall, it is evident that the CeA is a critical target for insulin signalling and the regulation of energy balance.
Collapse
Affiliation(s)
| | - Denovan P Begg
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Rosager EV, Møller C, Sjögren M. Treatment studies with cannabinoids in anorexia nervosa: a systematic review. Eat Weight Disord 2021; 26:407-415. [PMID: 32240516 DOI: 10.1007/s40519-020-00891-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/14/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Anorexia nervosa (AN) is a psychiatric disorder with a high mortality and unknown etiology, and effective treatment is lacking. For decades, cannabis has been known to cause physical effects on the human body, including increasing appetite, which may be beneficial in the treatment of AN. OBJECTIVE To systematically review the literature for evidence of an effect of cannabinoids on (1) weight gain, and (2) other outcomes, in AN. METHOD A systematic review was done using three databases Embase, PubMed and Psychinfo. The review was registered in PROSPERO with ID number CRD42019141293 and was done according to PRISMA guidelines. RESULTS There were 1288 studies identified and after thorough review and exclusion of copies, 4 studies met the inclusion criteria. Three studies used the same AN population and utilized data from one original study, leaving only two original studies. Both of these were Randomized Controlled Trials that explored the effects of delta-9-tetrahydrocannabinol (Δ9-THC) or dronabinol in AN, whereof one study was properly designed and powered and showed a weight increase of an added 1 kg over 4 weeks over placebo. DISCUSSION AND CONCLUSION There are few studies and the level of evidence is low. The only properly designed, low bias and highly powered study found a weight increasing effect of dronabinol in AN, while the other, using Δ9-THC at a high dose, found no effect and where the dose may have counteracted the weight gaining effects due to adverse events. More research on cannabinoids in anorexia nervosa is warranted, especially its effects on psychopathology. LEVEL OF EVIDENCE Level I, systematic review.
Collapse
Affiliation(s)
- Emilie Vangsgaard Rosager
- Mental Health Center Ballerup, Copenhagen University, Institute for Clinical Medicine, Maglevaenget 32, 2750, Ballerup, Denmark
| | - Christian Møller
- Mental Health Center Ballerup, Copenhagen University, Institute for Clinical Medicine, Maglevaenget 32, 2750, Ballerup, Denmark
| | - Magnus Sjögren
- Mental Health Center Ballerup, Copenhagen University, Institute for Clinical Medicine, Maglevaenget 32, 2750, Ballerup, Denmark.
| |
Collapse
|
31
|
Sigala DM, Stanhope KL. An Exploration of the Role of Sugar-Sweetened Beverage in Promoting Obesity and Health Disparities. Curr Obes Rep 2021; 10:39-52. [PMID: 33411311 PMCID: PMC7788552 DOI: 10.1007/s13679-020-00421-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The mechanistic role of sugar-sweetened beverage (SSB) in the etiology of obesity is undetermined. We address whether, compared to other foods, does consumption of SSB (1) automatically lead to failure to compensate for the energy it contains? (2) fail to elicit homeostatic hormone responses? (3) promote hedonic eating through activation of the brain's reward pathways? We followed the evidence to address: (4) Would restriction of targeted marketing of SSB and other unhealthy foods to vulnerable populations decrease their prevalence of obesity? RECENT FINDINGS The data are lacking to demonstrate that SSB consumption promotes body weight gain compared with isocaloric consumption of other beverages or foods and that this is linked to its failure to elicit adequate homeostatic hormone responses. However, more recent data have linked body weight gain to reward activation in the brain to palatable food cues and suggest that sweet tastes and SSB consumption heightens the reward response to food cues. Studies investigating the specificity of these responses have not been conducted. Nevertheless, the current data provide a biological basis to the body of evidence demonstrating that the targeted marketing (real life palatable food cues) of SSB and other unhealthy foods to vulnerable populations, including children and people of color and low socioeconomic status, is increasing their risk for obesity. While the mechanisms for the association between SSB consumption and body weight gain cannot be identified, current scientific evidence strongly suggests that proactive environmental measures to reduce exposure to palatable food cues in the form of targeting marketing will decrease the risk of obesity in vulnerable populations.
Collapse
Affiliation(s)
- Desiree M. Sigala
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California (UC), Davis, 2211 VM3B, Davis, CA 95616 USA
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California (UC), Davis, 2211 VM3B, Davis, CA 95616 USA
- Basic Sciences, Touro University of California, Vallejo, CA USA
| |
Collapse
|
32
|
Gastrin, via activation of PPARα, protects the kidney against hypertensive injury. Clin Sci (Lond) 2021; 135:409-427. [PMID: 33458737 DOI: 10.1042/cs20201340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Hypertensive nephropathy (HN) is a common cause of end-stage renal disease with renal fibrosis; chronic kidney disease is associated with elevated serum gastrin. However, the relationship between gastrin and renal fibrosis in HN is still unknown. We, now, report that mice with angiotensin II (Ang II)-induced HN had increased renal cholecystokinin receptor B (CCKBR) expression. Knockout of CCKBR in mice aggravated, while long-term subcutaneous infusion of gastrin ameliorated the renal injury and interstitial fibrosis in HN and unilateral ureteral obstruction (UUO). The protective effects of gastrin on renal fibrosis can be independent of its regulation of blood pressure, because in UUO, gastrin decreased renal fibrosis without affecting blood pressure. Gastrin treatment decreased Ang II-induced renal tubule cell apoptosis, reversed Ang II-mediated inhibition of macrophage efferocytosis, and reduced renal inflammation. A screening of the regulatory factors of efferocytosis showed involvement of peroxisome proliferator-activated receptor α (PPAR-α). Knockdown of PPAR-α by shRNA blocked the anti-fibrotic effect of gastrin in vitro in mouse renal proximal tubule cells and macrophages. Immunofluorescence microscopy, Western blotting, luciferase reporter, and Cut&tag-qPCR analyses showed that CCKBR may be a transcription factor of PPAR-α, because gastrin treatment induced CCKBR translocation from cytosol to nucleus, binding to the PPAR-α promoter region, and increasing PPAR-α gene transcription. In conclusion, gastrin protects against HN by normalizing blood pressure, decreasing renal tubule cell apoptosis, and increasing macrophage efferocytosis. Gastrin-mediated CCKBR nuclear translocation may make it act as a transcription factor of PPAR-α, which is a novel signaling pathway. Gastrin may be a new potential drug for HN therapy.
Collapse
|
33
|
Effects of energy balance on appetite and physiological mediators of appetite during strenuous physical activity: secondary analysis of a randomised crossover trial. Br J Nutr 2021; 126:1571-1584. [DOI: 10.1017/s0007114521000131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Energy deficit is common during prolonged periods of strenuous physical activity and limited sleep, but the extent to which appetite suppression contributes is unclear. The aim of this randomised crossover study was to determine the effects of energy balance on appetite and physiological mediators of appetite during a 72-h period of high physical activity energy expenditure (about 9·6 MJ/d (2300 kcal/d)) and limited sleep designed to simulate military operations (SUSOPS). Ten men consumed an energy-balanced diet while sedentary for 1 d (REST) followed by energy-balanced (BAL) and energy-deficient (DEF) controlled diets during SUSOPS. Appetite ratings, gastric emptying time (GET) and appetite-mediating hormone concentrations were measured. Energy balance was positive during BAL (18 (sd 20) %) and negative during DEF (–43 (sd 9) %). Relative to REST, hunger, desire to eat and prospective consumption ratings were all higher during DEF (26 (sd 40) %, 56 (sd 71) %, 28 (sd 34) %, respectively) and lower during BAL (–55 (sd 25) %, −52 (sd 27) %, −54 (sd 21) %, respectively; Pcondition < 0·05). Fullness ratings did not differ from REST during DEF, but were 65 (sd 61) % higher during BAL (Pcondition < 0·05). Regression analyses predicted hunger and prospective consumption would be reduced and fullness increased if energy balance was maintained during SUSOPS, and energy deficits of ≥25 % would be required to elicit increases in appetite. Between-condition differences in GET and appetite-mediating hormones identified slowed gastric emptying, increased anorexigenic hormone concentrations and decreased fasting acylated ghrelin concentrations as potential mechanisms of appetite suppression. Findings suggest that physiological responses that suppress appetite may deter energy balance from being achieved during prolonged periods of strenuous activity and limited sleep.
Collapse
|
34
|
LNK deficiency decreases obesity-induced insulin resistance by regulating GLUT4 through the PI3K-Akt-AS160 pathway in adipose tissue. Aging (Albany NY) 2020; 12:17150-17166. [PMID: 32911464 PMCID: PMC7521507 DOI: 10.18632/aging.103658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
In recent years, LNK, an adapter protein, has been found to be associated with metabolic diseases, including hypertension and diabetes. We found that the expression of LNK in human adipose tissue was positively correlated with serum glucose and insulin in obese people. We examined the role of LNK in insulin resistance and systemic energy metabolism using LNK-deficient mice (LNK-/-). With consumption of a high-fat diet, wild type (WT) mice accumulated more intrahepatic triglyceride, higher serum triglyceride (TG), free fatty acid (FFA) and high sensitivity C-reactive protein (hsCRP) compared with LNK-/- mice. However, there was no significant difference between LNK-/- and WT mice under normal chow diet. Meanwhile, glucose transporter 4 (GLUT4) expression in adipose tissue and insulin-stimulated glucose uptake in adipocytes were increased in LNK-/- mice. LNK-/- adipose tissue showed activated reactivity for IRS1/PI3K/Akt/AS160 signaling, and administration of a PI3K inhibitor impaired glucose uptake. In conclusion, LNK plays a pivotal role in adipose glucose transport by regulating insulin-mediated IRS1/PI3K/Akt/AS160 signaling.
Collapse
|
35
|
Thackray AE, Willis SA, Clayton DJ, Broom DR, Finlayson G, Goltz FR, Sargeant JA, Woods RM, Stensel DJ, King JA. Influence of Short-Term Hyperenergetic, High-Fat Feeding on Appetite, Appetite-Related Hormones, and Food Reward in Healthy Men. Nutrients 2020; 12:nu12092635. [PMID: 32872401 PMCID: PMC7551053 DOI: 10.3390/nu12092635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Short-term overfeeding may provoke compensatory appetite responses to correct the energy surplus. However, the initial time-course of appetite, appetite-related hormone, and reward-related responses to hyperenergetic, high-fat diets (HE-HFD) are poorly characterised. Twelve young healthy men consumed a HE-HFD (+50% energy, 65% fat) or control diet (36% fat) for seven days in a randomised crossover design. Mean appetite perceptions were determined during an oral glucose tolerance test (OGTT) before and after each diet. Fasted appetite perceptions, appetite-related hormones, and reward parameters were measured pre-diet and after 1-, 3- and 7-days of each diet. The HE-HFD induced a pre-to-post diet suppression in mean appetite during the OGTT (all ratings p ≤ 0.058, effect size (d) ≥ 0.31), and reduced the preference for high-fat vs. low-fat foods (main effect diet p = 0.036, d = 0.32). Fasted leptin was higher in the HE-HFD than control diet (main effect diet p < 0.001, d = 0.30), whilst a diet-by-time interaction (p = 0.036) revealed fasted acylated ghrelin was reduced after 1-, 3- and 7-days of the HE-HFD (all p ≤ 0.040, d ≥ 0.50 vs. pre-diet). Appetite perceptions and total peptide YY in the fasted state exhibited similar temporal patterns between the diets (diet-by-time interaction p ≥ 0.077). Seven days of high-fat overfeeding provokes modest compensatory changes in subjective, hormonal, and reward-related appetite parameters.
Collapse
Affiliation(s)
- Alice E. Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
| | - Scott A. Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
| | - David J. Clayton
- School of Science and Technology, Nottingham Trent University, Nottingham NG1 8NS, UK;
| | - David R. Broom
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 2DS, UK;
| | - Graham Finlayson
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK;
| | - Fernanda R. Goltz
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
| | - Jack A. Sargeant
- Diabetes Research Centre, University of Leicester, Leicester LE5 4PW, UK;
| | | | - David J. Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
- Correspondence: ; Tel.: +44-(0)-1509-228457
| |
Collapse
|
36
|
Faniyi AA, Wijanarko KJ, Tollitt J, Worthington JJ. Helminth Sensing at the Intestinal Epithelial Barrier-A Taste of Things to Come. Front Immunol 2020; 11:1489. [PMID: 32849506 PMCID: PMC7409516 DOI: 10.3389/fimmu.2020.01489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Human intestinal helminth infection affects more than 1 billion people often in the world's most deprived communities. These parasites are one of the most prevalent neglected tropical diseases worldwide bringing huge morbidities to the host population. Effective treatments and vaccines for helminths are currently limited, and therefore, it is essential to understand the molecular sensors that the intestinal epithelium utilizes in detecting helminths and how the responding factors produced act as modulators of immunity. Defining the cellular and molecular mechanisms that enable helminth detection and expulsion will be critical in identifying potential therapeutic targets to alleviate disease. However, despite decades of research, we have only recently been able to identify the tuft cell as a key helminth sensor at the epithelial barrier. In this review, we will highlight the key intestinal epithelial chemosensory roles associated with the detection of intestinal helminths, summarizing the recent advances in tuft cell initiation of protective type 2 immunity. We will discuss other potential sensory roles of epithelial subsets and introduce enteroendocrine cells as potential key sensors of the microbial alterations that a helminth infection produces, which, given their direct communication to the nervous system via the recently described neuropod, have the potential to transfer the epithelial immune interface systemically.
Collapse
Affiliation(s)
- Aduragbemi A Faniyi
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kevin J Wijanarko
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - James Tollitt
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - John J Worthington
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
37
|
Skowron K, Kurnik-Łucka M, Dadański E, Bętkowska-Korpała B, Gil K. Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa. Nutrients 2020; 12:E2604. [PMID: 32867089 PMCID: PMC7551451 DOI: 10.3390/nu12092604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN) represents a disorder with the highest mortality rate among all psychiatric diseases, yet our understanding of its pathophysiological components continues to be fragmentary. This article reviews the current concepts regarding AN pathomechanisms that focus on the main biological aspects involving central and peripheral neurohormonal pathways, endocrine function, as well as the microbiome-gut-brain axis. It emerged from the unique complexity of constantly accumulating new discoveries, which hamper the ability to look at the disease in a more comprehensive way. The emphasis is placed on the mechanisms underlying the main symptoms and potential new directions that require further investigation in clinical settings.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Emil Dadański
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Barbara Bętkowska-Korpała
- Department of Psychiatry, Jagiellonian University Medical College, Institute of Medical Psychology, Jakubowskiego St 2, 30-688 Krakow, Poland;
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| |
Collapse
|
38
|
Kalsbeek MJ, Wolff SE, Korpel NL, la Fleur SE, Romijn JA, Fliers E, Kalsbeek A, Swaab DF, Huitinga I, Hol EM, Yi CX. The impact of antidiabetic treatment on human hypothalamic infundibular neurons and microglia. JCI Insight 2020; 5:133868. [PMID: 32814716 PMCID: PMC7455135 DOI: 10.1172/jci.insight.133868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Animal studies indicate that hypothalamic dysfunction plays a major role in type 2 diabetes mellitus (T2DM) development, and that insulin resistance and inflammation are important mechanisms involved in this disorder. However, it remains unclear how T2DM and antidiabetic treatments affect the human hypothalamus. Here, we characterized the proopiomelanocortin (POMC) immunoreactive (-ir) neurons, the neuropeptide-Y-ir (NPY-ir) neurons, the ionized calcium-binding adapter molecule 1-ir (iba1-ir) microglia, and the transmembrane protein 119-ir (TMEM119-ir) microglia in the infundibular nucleus (IFN) of human postmortem hypothalamus of 32 T2DM subjects with different antidiabetic treatments and 17 matched nondiabetic control subjects. Compared with matched control subjects, T2DM subjects showed a decrease in the number of POMC-ir neurons, but no changes in NPY-ir neurons or microglia. Interestingly, T2DM subjects treated with the antidiabetic drug metformin had fewer NPY-ir neurons and microglia than T2DM subjects not treated with metformin. We found that the number of microglia correlated with the number of NPY-ir neurons, but only in T2DM subjects. These results indicate that different changes in POMC and NPY neurons and microglial cells in the IFN accompany T2DM. In addition, T2DM treatment modality is associated with highly selective changes in hypothalamic neurons and microglial cells.
Collapse
Affiliation(s)
- Martin Jt Kalsbeek
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Samantha Ec Wolff
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Nikita L Korpel
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johannes A Romijn
- Department of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Andries Kalsbeek
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Inge Huitinga
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Chun-Xia Yi
- Laboratory of Endocrinology, and.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
39
|
Al-Zubaidi A, Iglesias S, Stephan KE, Buades-Rotger M, Heldmann M, Nolde JM, Kirchner H, Mertins A, Jauch-Chara K, Münte TF. Effects of hunger, satiety and oral glucose on effective connectivity between hypothalamus and insular cortex. Neuroimage 2020; 217:116931. [DOI: 10.1016/j.neuroimage.2020.116931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/12/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
|
40
|
Intracellular interplay between cholecystokinin and leptin signalling for satiety control in rats. Sci Rep 2020; 10:12000. [PMID: 32686770 PMCID: PMC7371863 DOI: 10.1038/s41598-020-69035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
Cholecystokinin (CCK) and leptin are satiety-controlling peptides, yet their interactive roles remain unclear. Here, we addressed this issue using in vitro and in vivo models. In rat C6 glioma cells, leptin pre-treatment enhanced Ca2+ mobilization by a CCK agonist (CCK-8s). This leptin action was reduced by Janus kinase inhibitor (AG490) or PI3-kinase inhibitor (LY294002). Meanwhile, leptin stimulation alone failed to mobilize Ca2+ even in cells overexpressing leptin receptors (C6-ObRb). Leptin increased nuclear immunoreactivity against phosphorylated STAT3 (pSTAT3) whereas CCK-8s reduced leptin-induced nuclear pSTAT3 accumulation in these cells. In the rat ventromedial hypothalamus (VMH), leptin-induced action potential firing was enhanced, whereas nuclear pSTAT3 was reduced by co-stimulation with CCK-8s. To further analyse in vivo signalling interplay, a CCK-1 antagonist (lorglumide) was intraperitoneally injected in rats following 1-h restricted feeding. Food access was increased 3-h after lorglumide injection. At this timepoint, nuclear pSTAT3 was increased whereas c-Fos was decreased in the VMH. Taken together, these results suggest that leptin and CCK receptors may both contribute to short-term satiety, and leptin could positively modulate CCK signalling. Notably, nuclear pSTAT3 levels in this experimental paradigm were negatively correlated with satiety levels, contrary to the generally described transcriptional regulation for long-term satiety via leptin receptors.
Collapse
|
41
|
Abstract
The enteroendocrine system is located in the gastrointestinal (GI) tract, and makes up the largest endocrine system in the human body. Despite that, its roles and functions remain incompletely understood. Gut regulatory peptides are the main products of enteroendocrine cells, and play an integral role in the digestion and absorption of nutrients through their effect on intestinal secretions and gut motility. Several peptides, such as cholecystokinin, polypeptide YY and glucagon-like peptide-1, have traditionally been reported to suppress appetite following food intake, so-called satiety hormones. In this review, we propose that, in the healthy individual, this system to regulate appetite does not play a dominant role in normal food intake regulation, and that there is insufficient evidence to wholly link postprandial endogenous gut peptides with appetite-related behaviours. Instead, or additionally, top-down, hedonic drive and neurocognitive factors may have more of an impact on food intake. In GI disease however, supraphysiological levels of these hormones may have more of an impact on appetite regulation as well as contributing to other unpleasant abdominal symptoms, potentially as part of an innate response to injury. Further work is required to better understand the mechanisms involved in appetite control and unlock the therapeutic potential offered by the enteroendocrine system in GI disease and obesity.
Collapse
|
42
|
Khewater T, Yercovich N, Grymonprez E, Debergh I, Dillemans B. Conversion of both Versions of Vertical Banded Gastroplasty to Laparoscopic Roux-en-Y Gastric Bypass: Analysis of Short-term Outcomes. Obes Surg 2020; 29:1797-1804. [PMID: 30756295 DOI: 10.1007/s11695-019-03768-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Conversional bariatric surgery has relatively high rates of complications. We aimed to analyze our single-center experience with patients requiring conversional laparoscopic Roux-en-Y gastric bypass (LRYGB) following a failed primary open or laparoscopic vertical banded gastroplasty (OVBG or LVBG, respectively). METHODS The records of patients who underwent LRYGB as a conversional procedure after VBG between November 2004 and December 2017 were reviewed. Characteristics, body mass index (BMI), operation time, intraoperative problems, length of hospitalization, and early (< 30 days) morbidity and mortality were analyzed. Data were expressed as mean ± standard deviation or frequency. RESULTS A total of 329 patients (81.76% females) who underwent conversional RYGB were included. For the LVBG group (224 patients) and OVBG group (105 patients), respectively, BMI was 34.15 ± 6.38 and 37.79 ± 6.31 kg/m2 (p < 0.05), the operation time was 96.00 ± 31.40 and 123.15 ± 40.26 min (p < 0.05), hospitalization duration was 2.96 ± 1.13 and 3.20 ± 1.20 days (p = 0.08), the early complication rate was 7.14 and 11.43% (p = 0.19), and the reoperation rate was 2.23 and 2.86% (p = 0.73). There were no major intraoperative problems. Three patients with OVBG were converted to open RYGB (2.86%). There was no mortality. CONCLUSION The conversion of OVBG and LVBG to laparoscopic RYGB is technically feasible and provides comparably low early morbidity rates and length of hospitalization. However, compared to LVBG, conversional laparoscopic RYGB following OVBG is technically more challenging and time-consuming, with a slightly higher risk of conversion to open surgery. We support the use of such conversional bariatric surgery in specialized, high-volume bariatric centers.
Collapse
Affiliation(s)
- Talal Khewater
- Department of Surgery, AZ Sint-Jan Brugge-Oostende AV, Campus Sint-Jan, Ruddershove 10, 8000, Bruges, Belgium.
| | - Nathalie Yercovich
- Department of Surgery, AZ Sint-Jan Brugge-Oostende AV, Campus Sint-Jan, Ruddershove 10, 8000, Bruges, Belgium
| | - Edouard Grymonprez
- Student at Faculty of Medicine, KU Leuven University, Herestraat 49, 3000, Leuven, Belgium
| | - Isabelle Debergh
- Department of Surgery, AZ Sint-Jan Brugge-Oostende AV, Campus Sint-Jan, Ruddershove 10, 8000, Bruges, Belgium
| | - Bruno Dillemans
- Department of Surgery, AZ Sint-Jan Brugge-Oostende AV, Campus Sint-Jan, Ruddershove 10, 8000, Bruges, Belgium
| |
Collapse
|
43
|
Tutunchi H, Saghafi-Asl M, Ostadrahimi A. A systematic review of the effects of oleoylethanolamide, a high-affinity endogenous ligand of PPAR-α, on the management and prevention of obesity. Clin Exp Pharmacol Physiol 2020; 47:543-552. [PMID: 31868943 DOI: 10.1111/1440-1681.13238] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/23/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Along with an increase in overweight and obesity among all age groups, the development of efficacious and safe anti-obesity strategies for patients, as well as health systems, is critical. Oleoylethanolamide (OEA), a high-affinity endogenous ligand of nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-α), plays important physiological and metabolic actions. OEA is derived from oleic acid, a monounsaturated fatty acid, which has beneficial effects on body composition and regional fat distribution. The role of OEA in the modulation of food consumption and weight management makes it an attractive molecule requiring further exploration in obesogenic environments. This systematic review was conducted to assess the effects of OEA on the obesity management, with emphasizing on its physiological roles and possible mechanisms of action in energy homeostasis. We searched PubMed/Medline, Google Scholar, ScienceDirect, Scopus, ProQuest, and EMBASE up until September 2019. Out of 712 records screened, 30 articles met the study criteria. The evidence reviewed here indicates that OEA, an endocannabinoid-like compound, leads to satiation or meal termination through PPAR-α activation and fatty acid translocase (FAT)/CD36. Additionally, the lipid-amide OEA stimulates fatty acid uptake, lipolysis, and beta-oxidation, and also promotes food intake control. OEA also exerts satiety-inducing effects by activating the hedonic dopamine pathways and increasing homeostatic oxytocin and brain histamine. In conclusion, OEA may be a key component of the physiological system involved in the regulation of dietary fat consumption and energy homeostasis; therefore, it is suggested as a possible therapeutic agent for the management of obesity.
Collapse
Affiliation(s)
- Helda Tutunchi
- Student Research Committee, Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Timing of high-intensity intermittent exercise affects ad libitum energy intake in overweight inactive men. Appetite 2019; 143:104443. [DOI: 10.1016/j.appet.2019.104443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 02/04/2023]
|
46
|
Duriez P, Ramoz N, Gorwood P, Viltart O, Tolle V. A Metabolic Perspective on Reward Abnormalities in Anorexia Nervosa. Trends Endocrinol Metab 2019; 30:915-928. [PMID: 31648936 DOI: 10.1016/j.tem.2019.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022]
Abstract
Anorexia nervosa (AN) is the psychiatric disorder with the highest mortality rate; however, the mechanisms responsible for its pathogenesis remain largely unknown. Large-scale genome-wide association studies (GWAS) have identified genetic loci associated with metabolic features in AN. Metabolic alterations that occur in AN have been mostly considered as consequences of the chronic undernutrition state but until recently have not been linked to the etiology of the disorder. We review the molecular basis of AN based on human genetics, with an emphasis on the molecular components controlling energy homeostasis, highlight the main metabolic and endocrine alterations occurring in AN, and decipher the possible connection between metabolic factors and abnormalities of reward processes that are central in AN.
Collapse
Affiliation(s)
- Philibert Duriez
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France; Clinique des Maladies Mentales et de l'Encéphale, Groupement Hospitalier Universitaire (GHU) Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Nicolas Ramoz
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France
| | - Philip Gorwood
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France; Clinique des Maladies Mentales et de l'Encéphale, Groupement Hospitalier Universitaire (GHU) Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Odile Viltart
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France; University of Lille, Lille, France
| | - Virginie Tolle
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France.
| |
Collapse
|
47
|
SUGAWARA T, SAWADA D, KAJI I, KARAKI SI, KUWAHARA A. The effects of viable and non-viable Lactobacillus gasseri CP2305 cells on colonic ion transport and corticotropin releasing factor-induced diarrhea. Biomed Res 2019; 40:225-233. [DOI: 10.2220/biomedres.40.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tomonori SUGAWARA
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University
| | - Daisuke SAWADA
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University
| | - Izumi KAJI
- Section of Surgical Sciences, School of Medicine, Vanderbilt University
| | | | - Atsukazu KUWAHARA
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University
| |
Collapse
|
48
|
Abstract
BACKGROUND Weight loss is traditionally viewed as straightforward counting of calories in and calories out, with little regard to the role of the adipocytes tasked with storing said calories. However, the body executes a complex compensatory response to any intervention that depletes its energy stores. Here, the authors discuss the methods used to attain weight loss, the body's response to this weight loss, and the difficulties in maintaining weight loss. Furthermore, the authors provide an overview of the literature on the physiological effects of liposuction. OBJECTIVE To describe the role of adipose tissue in energy homeostasis, methods of weight loss, weight regain, and the effect of liposuction on endocrine signaling. METHODS The authors conducted a narrative review of representative studies. CONCLUSION A variety of strategies for weight loss exist, and optimizing one's weight status may in turn optimize the aesthetic outcomes of liposuction. This is most apparent in the preferential reaccumulation of fat in certain areas after liposuction and the ability to avoid this with a negative energy balance.
Collapse
Affiliation(s)
- William Davis
- Cooper Medical School of Rowan University, Marlton, New Jersey
| | - Naomi Lawrence
- Cooper Medical School of Rowan University, Marlton, New Jersey.,Section of Procedural Dermatology, Cooper University Hospital, Marlton, New Jersey
| |
Collapse
|
49
|
Freitas MC, Panissa VLG, Lenquiste SA, Serra FDM, Figueiredo C, Lira FS, Rossi FE. Hunger is suppressed after resistance exercise with moderate-load compared to high-load resistance exercise: the potential influence of metabolic and autonomic parameters. Appl Physiol Nutr Metab 2019; 45:180-186. [PMID: 31505127 DOI: 10.1139/apnm-2019-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of present study was to compare the effects of moderate-load versus high-load resistance exercise (RE) on hunger response, blood lactate, glucose, and autonomic modulation in trained men, and to examine the correlations between these parameters. For this, 11 recreationally resistance-trained males performed 2 randomized trials: moderate-load (6 sets at 70% 1-repetition maximum (1RM) and a 90-s rest interval between sets) and high-load (6 sets at 90% 1RM and a 180-s rest interval between sets) leg-press exercise until movement failure. The subjective rating of hunger was obtained through a visual analog scale. Glucose and lactate concentration were evaluated at rest, immediately after exercise, and 30 min after exercise. Heart rate variability was recorded at baseline and during recovery (until 30 min after exercise) to assess autonomic modulation. The moderate-load condition induced lower subjective hunger ratings than the strength condition immediately after exercise (19.7 ± 16.6 vs 47.3 ± 27.7 mm), 30 min after exercise (33.6 ± 22.9 vs 58.5 ± 29.9 mm), and 60 min after exercise (43.8 ± 26.6 vs 67.8 ± 27.9 mm) (p < 0.05) and lower area under the curve hunger in relation to the high-load condition (p < 0.006). Moderate-load RE presented greater lactate concentration and induced slower heart rate variability recovery in relation to high-load RE (p < 0.05), but no difference was found in glucose, as well as no correlations between any of the variables investigated. In conclusion, moderate-load RE induced lower subjective hunger ratings, slower recovery of the parasympathetic nervous system, and higher lactate concentration in relation to high-load RE, but the metabolic variables were not correlated with hunger suppression.
Collapse
Affiliation(s)
- Marcelo Conrado Freitas
- Skeletal Muscle Assessment Laboratory (LABSIM), Department of Physical Education, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP 19060-900, Brazil.,Post-Graduate Program in Movement Sciences, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP 19060-900, Brazil.,Department of Nutrition, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, SP 19050-920, Brazil
| | | | - Sabrina Alves Lenquiste
- Department of Nutrition, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, SP 19050-920, Brazil
| | - Fernanda de Maria Serra
- Post-Graduate Program in Animal Science, Department of Biomedicine, University of Western São Paulo (UNOESTE), Presidente Prudente, SP 19050-920, Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP 19060-900, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP 19060-900, Brazil
| | - Fabricio Eduardo Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Federal University of Piauí (UFPI), Teresina, PI 64049-550, Brazil.,Associate Graduate Program in Health Science, Federal University of Piauí (UFPI), Teresina, PI 64049-550, Brazil
| |
Collapse
|
50
|
Dorling JL, Church TS, Myers CA, Höchsmann C, White UA, Hsia DS, Martin CK, Apolzan JW. Racial Variations in Appetite-Related Hormones, Appetite, and Laboratory-Based Energy Intake from the E-MECHANIC Randomized Clinical Trial. Nutrients 2019; 11:nu11092018. [PMID: 31466276 PMCID: PMC6770918 DOI: 10.3390/nu11092018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 01/02/2023] Open
Abstract
African Americans (AAs) have a higher obesity risk than Whites; however, it is unclear if appetite-related hormones and food intake are implicated. We examined differences in appetite-related hormones, appetite, and food intake between AAs (n = 53) and Whites (n = 111) with overweight or obesity. Participants were randomized into a control group or into supervised, controlled exercise groups at 8 kcal/kg of body weight/week (KKW) or 20 KKW. Participants consumed lunch and dinner at baseline and follow-up, with appetite and hormones measured before and after meals (except leptin). At baseline, AAs had lower peptide YY (PYY; p < 0.01) and a blunted elevation in PYY after lunch (p = 0.01), as well as lower ghrelin (p = 0.02) and higher leptin (p < 0.01) compared to Whites. Despite desire to eat being lower and satisfaction being higher in AAs relative to Whites (p ≤ 0.03), no racial differences in food intake were observed. Compared to Whites, leptin increased in the 8 KKW group in AAs (p = 0.01), yet no other race-by-group interactions were evident. Differences in appetite-related hormones between AAs and Whites exist; however, their influence on racial disparities in appetite, food intake, and obesity within this trial was limited.
Collapse
Affiliation(s)
- James L Dorling
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Timothy S Church
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Candice A Myers
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Christoph Höchsmann
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Ursula A White
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Daniel S Hsia
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Corby K Martin
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - John W Apolzan
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|