1
|
Tang YB, Wang LS, Wu YH, Zhang LX, Hu LY, Wu Q, Zhou ML, Liang ZX. Effect of exercise during pregnancy on offspring development through ameliorating high glucose and hypoxia in gestational diabetes mellitus. World J Diabetes 2024; 15:2203-2219. [DOI: 10.4239/wjd.v15.i11.2203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/16/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) women require prenatal care to minimize short- and long-term complications. The mechanism by which exercise during pregnancy affects organ development and whether glucose transporter (GLUT) 1 plays a role in GDM offspring organ development remains unknown.
AIM To determine the effect of exercise during pregnancy on the cardiac, hepatic and renal development of GDM mother’s offspring.
METHODS Placenta samples were collected from humans and mice. GDM mouse models were created using streptozotocin along with a GDM with exercise group. The hearts, livers and kidneys of 3- and 8-week-old offspring were collected for body composition analysis and staining. The effects of high glucose levels and hypoxia were investigated using HTR8/SVneo. Transwell and wound-healing assays were performed to assess cell migration. Immunofluorescence accompanied with TUNEL and Ki67 staining was used to explore apoptosis and proliferation.
RESULTS Exercise during pregnancy downregulated the GLUT1 and hypoxia inducible factor-1α expression in placenta from individuals with GDM. Cobalt chloride-induced hypoxia and high glucose levels also significantly decreased migration and apoptosis of HTR8/SVneo cells. In addition, exercise reduced inflammatory cell infiltration in the liver and decreased the tubular vacuolar area in the kidneys of offspring.
CONCLUSION GDM affects the growth and development of organs in offspring. Exercise during pregnancy can reverse adverse effects of GDM on the development of the heart, liver, and kidney in offspring.
Collapse
Affiliation(s)
- Yi-Bo Tang
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Le-Sha Wang
- Department of Obstetrics, Shaoxing People’s Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Yi-Hui Wu
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Li-Xia Zhang
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Lu-Yao Hu
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Qi Wu
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Meng-Lin Zhou
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Zhao-Xia Liang
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
2
|
Machado AS, Bragança M, Vieira-Coelho M. Epigenetic effects of cannabis: A systematic scoping review of behavioral and emotional symptoms associated with cannabis use and exocannabinoid exposure. Drug Alcohol Depend 2024; 263:111401. [PMID: 39137613 DOI: 10.1016/j.drugalcdep.2024.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Recent research suggests that epigenetic modifications may mediate the behavioral effects of cannabis, influencing exocannabinnoids' long term effects in cognitive function and its role in the emergence of psychotic symptoms. BASIC PROCEDURES In this systematic scoping review, we assessed the current evidence of epigenetic effects associated with the use of cannabis or exocannabinoid administration and their relationship with behavioral and emotional symptoms. We searched PubMed, Cochrane CENTRAL, and Web of Science, up to January 2022, using the terms "cannabis" and "epigenetics." The search yielded 178 articles, of which 43 underwent full article revision; 37 articles were included in the review. MAIN FINDINGS The gathered evidence included observational cross-sectional studies conducted on human subjects and experimental designs using animal models that conveyed disparity in administration dosage, methods of cannabis use assessment and targeted epigenetic mechanisms. Nine studies performed epigenome-wide analysis with identification of differentially methylated sites; most of these studies found a global hypomethylation, and enrichment in genes related to cellular survival and neurodevelopment. Other studies assessed methylation at specific genes and found that cannabis exposure was associated with reduced methylation at Cg05575921, DNMT1, DRD2, COMT, DLGAP2, Arg1, STAT3, MGMT, and PENK, while hypermethylation was found at DNMT3a/b, NCAM1, and AKT1. CONCLUSIONS The review found evidence of an exocannabinoid-induced epigenetic changes that modulate depressive-anxious, psychotic, and addictive behavioural phenotypes. Further studies will require dosage exposure/administration uniformization and a customized pool of genes to assess their suitability as biomarkers for psychiatric diseases.
Collapse
Affiliation(s)
- Ana Sofia Machado
- Psychiatry Service of São João Local Health Unit, Porto, Portugal; Clinical Neurosciences and Mental Health Department, Medicine Faculty of Porto University (FMUP), Porto, Portugal.
| | - Miguel Bragança
- Psychiatry Service of São João Local Health Unit, Porto, Portugal; Clinical Neurosciences and Mental Health Department, Medicine Faculty of Porto University (FMUP), Porto, Portugal
| | - Maria Vieira-Coelho
- Psychiatry Service of São João Local Health Unit, Porto, Portugal; Biomedicine Department, Medicine Faculty of Porto University (FMUP), Porto, Portugal
| |
Collapse
|
3
|
Li Z, Bi T. Causal effects of gut microbiota, metabolites, immune cells, liposomes, and inflammatory proteins on anorexia nervosa: A mediation joint multi-omics Mendelian randomization analysis. J Affect Disord 2024; 368:343-358. [PMID: 39299582 DOI: 10.1016/j.jad.2024.09.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Anorexia nervosa (AN) is a significant psychological disorder influenced by environmental and genetic elements. Emerging research highlights the pivotal role of the gut microbiome in the development of diverse mental health conditions. This study aims to explore the causal effects and interactions of the gut microbiome, metabolites, immune cells, lipids, and inflammatory proteins on the risk of anorexia nervosa through mediation and multi-omics Mendelian Randomization (MR) analysis. METHODS This study used data from the FinnGen genome-wide association study (GWAS) of AN (N = 402,625), integrated with GWAS data on 473 of gut microbiota (N = 5959), 233 metabolites (N = 136,016), 731 immune cells (N = 3757), 179 lipids (N = 7174), and 91 inflammatory proteins (N = 14,824). This study used the univariate MR (UVMR), mediation MR analysis, and sensitivity analysis to assess the potential causal associations between these biomarkers and AN. RESULTS The inverse variance weighted (IVW) results suggest that 25 gut microbiota have causal effects on AN. Firmicutes E (OR: 0.294, 95 % CI: 0.107-0.806, P = 0.017), RUG147 (OR: 0.386, 95 % CI: 0.151-0.990, P = 0.048), CAG-977 (OR: 0.562, 95 % CI: 0.378-0.837, P = 0.005), Desulfobacterota A (OR: 0.651, 95 % CI: 0.466-0.909, P = 0.012), CAG-269 sp002372935 (OR: 0.673, 95 % CI: 0.483-0.937, P = 0.019), Klebsiella (OR: 0.684, 95 % CI: 0.566-0.827, P = 0.00009), Desulfovibrionia (OR: 0.706, 95 % CI: 0.538-0.926, P = 0.012), Klebsiella pneumoniae (OR: 0.737, 95 % CI: 0.600-0.906, P = 0.004), Desulfovibrionales (OR: 0.786, 95 % CI: 0.631-0.979, P = 0.031), CAG-776 (OR: 0.787, 95 % CI: 0.632-0.980, P = 0.032), Desulfovibrionaceae (OR: 0.788, 95 % CI: 0.635-0.978, P = 0.030). 13 gut microbiota were risk factors for AN, including Parachlamydiales (OR: 3.134,95%CI: 1.185-8.287, P = 0.021), Paenibacillus J (OR: 2.366,95%CI: 1.305-4.29, P = 0.005), Gillisia (OR: 1.947,95%CI: 1.135-3.339, P = 0.016), UBA1191 (OR: 1.856,95%CI: 1.221-2.822, P = 0.004), UBA7703 (OR: 1.843,95%CI: 1.032-3.289, P = 0.039), Faecalicatena sp002161355 (OR: 1.788,95%CI: 1.114-2.870, P = 0.016), Johnsonella ignava (OR: 1.742,95%CI: 1.031-2.944, P = 0.038), Staphylococcus aureus (OR: 1.614, 95%CI: 1.007-2.588, P = 0.047), Comamonas (OR: 1.522,95%CI: 1.004-2.307, P = 0.048), Ruminococcus D (OR: 1.24,95%CI: 1.050-1.464, P = 0.011), CAG-349 (OR: 1.198,95%CI: 1.048-1.370, P = 0.008), Ruminococcus D bicirculans (OR: 1.175,95%CI: 1.001-1.379, P = 0.048), CAG-177 (OR: 1.272,95%CI: 1.077-1.503, P = 0.005). Reverse MR analysis showed that causal effect of AN on 18 gut microbiota, but to a lesser extent. 12 metabolites have causal effects on AN. There are 7 protective factors, including glucose levels (OR: 0.700, 95%CI: 0.550-0.893, P = 0.004), isoleucine levels (OR: 0.769, 95%CI: 0.602-0.983, P = 0.036), phospholipids in large VLDL (OR: 0.856, 95%CI: 0.736-0.996, P = 0.044), total lipids in large VLDL (OR: 0.860, 95%CI: 0.740-0.999, P = 0.049), total lipids in small VLDL (OR: 0.863, 95%CI: 0.751-0.992, P = 0.038), free cholesterol in small VLDL (OR: 0.86, 95%CI: 0.752-0.996, P = 0.044), and free cholesterol in medium VLDL (OR: 0.866, 95%CI: 0.752-0.998, P = 0.047). There are 5 risk factors, including estimated degree of unsaturation (OR: 1.174, 95%CI: 1.009-1.367, P = 0.039), free cholesterol to total lipids ratio in small VLDL (OR: 1.199, 95%CI: 1.017-1.414, P = 0.031), phospholipids to total lipids ratio in small VLDL (OR: 1.216, 95%CI: 1.008-1.467, P = 0.041), total cholesterol levels in small HDL (OR: 1.241, 95%CI: 1.008-1.530, P = 0.042), and phospholipids to total lipids ratio in medium VLDL (OR: 1.280, 95%CI: 1.055-1.553, P = 0.012). Reverse MR analysis showed that AN had a causal effect on 15 metabolites. Mediation analysis reveals that the estimated degree of unsaturation mediates 0.69 % of the effect of Klebsiella pneumoniae on AN. Total lipids in small VLDL mediate 0.358 % of the effect of CAG-177 on AN, with a mediated proportion of 1.490 %. The mediation proportions for Estimated degree of unsaturation and Total lipids in small VLDL are relatively small. 36 immune cells have causal effects on AN. There are 7 protective factors, including Switched memory B cells %B cell (OR: 0.892,95%CI: 0.801-0.994, P = 0.038), CD127-CD8+ T cell absolute count (OR: 0.888,95%CI: 0.789-1.000, P = 0.049), IgD + CD24- B cell (OR: 0.917,95%CI: 0.862-0.975, P = 0.006), HVEM+ T cell (OR: 0.945,95%CI: 0.894-0.999, P = 0.045), CD40 + CD14 + CD16- monocyte (OR: 0.937,95%CI: 0.882-0.996, P = 0.038), CD64 + CD14 + CD16- monocyte (OR: 0.966,95%CI: 0.939-0.993, P = 0.016), CD8+ natural killer T cells (OR: 0.911,95%CI: 0.836-0.992, P = 0.032), HLA-DR+ T cells (OR: 0.921,95%CI: 0.866-0.980, P = 0.010), CD28-CD8+ T cells (OR: 0.886,95%CI: 0.792-0.991, P = 0.034). There are 26 risk factors. Reverse MR analysis showed that AN had a causal effect on 31 immune cells. AN increases the expression levels of five types of immune cells, including CD40 + CD14-CD16+ monocytes (OR: 1.087,95%CI: 1.004-1.177, P = 0.041), PDL-1+ CD14-CD16+ monocytes (OR: 1.082,95%CI: 1.002-1.168, P = 0.046), CD45+ CD33dim HLA-DR+ cells (OR: 1.145,95%CI: 1.019-1.287, P = 0.023), CD45+ basophils (OR: 1.164,95%CI: 1.036-1.307, P = 0.011), CD8+ natural killer T cells (OR: 1.102, 95%CI: 1.015-1.196, P = 0.020), and also decreases the expression levels of 26 immune cells. 6 liposomes showed exhibit protective effects against AN, including phosphatidylcholine (18:0_20:3) levels (OR: 0.852, 95%CI: 0.740-0.981, P = 0.026), phosphatidylcholine (O-18:2_18:1) levels (OR: 0.800, 95%CI: 0.672-0.952, P = 0.012), phosphatidylinositol (18:0_18:1) levels (OR: 0.873, 95%CI: 0.773-0.986, P = 0.029), phosphatidylinositol (18:1_18:2) levels (OR: 0.844, 95%CI: 0.734-0.971, P = 0.018), sphingomyelin (d38:1) levels (OR: 0.903,95%CI: 0.820-0.995, P = 0.039), and triacylglycerol (56:4) levels (OR: 0.786, 95%CI: 0.660-0.936, P = 0.007). There are 3 risk factors, including diacylglycerol (16:1_18:1) levels (OR: 1.208, 95%CI: 1.040-1.404, P = 0.014), phosphatidylcholine (18:1_18:3) levels (OR: 1.237, 95%CI: 1.003-1.526, P = 0.047), and phosphatidylinositol (16:0_20:4) levels (OR: 1.148, 95%CI: 1.003-1.314, P = 0.045). Reverse MR analysis showed that AN had a causal effect on 3 phosphatidylcholine (15:0_18:2) levels (OR: 1.075, 95%CI: 1.001-1.154, P = 0.048), phosphatidylcholine (O-16:2_18:0) levels (OR: 1.078, 95%CI: 1.002-1.159, P = 0.043), and triacylglycerol (51:1) levels (OR: 0.919, 95%CI: 0.850-0.994, P = 0.035). 6 inflammatory proteins have causal effects on AN, with protective factors including Glial cell line-derived neurotrophic factor levels (OR: 0.822,95%CI: 0.692-0.978, P = 0.027) and Interleukin-15 receptor subunit alpha levels (OR: 0.886, 95%CI: 0.789-0.995, P = 0.041) and risk factors including CC motif chemokine 4 levels (OR: 1.126, 95%CI: 1.011-1.254, P = 0.031), Interleukin-12 subunit beta levels (OR: 1.135, 95%CI: 1.033-1.248, P = 0.008), Monocyte chemoattractant protein-1 levels (OR: 1.152, 95%CI: 1.010-1.314, P = 0.035), and Sulfotransferase 1A1 levels (OR: 1.166, 95%CI: 1.006-1.351, P = 0.042). Reverse MR analysis showed that AN had a causal effect on Transforming growth factor-alpha (OR: 1.054,95%CI: 1.010-1.101, P = 0.016). CONCLUSIONS This study used large-scale and novel GWAS data, for the first time reveals through mediation analysis and multi-omics MR analysis the roles of gut microbiota, metabolites, immune cells, lipids, and inflammatory proteins in the pathogenesis of AN. These findings provide new biomarkers and targets for further prevention and treatment strategies.
Collapse
Affiliation(s)
- Zeyang Li
- Department of Life and Physical Education, Dongshin University, 13 Naju-si, 58245, Jeollanam-do, South Korea.
| | - Tianyu Bi
- School of Foreign Languages, Taishan University, Tai'an 271000, China
| |
Collapse
|
4
|
Araújo JR, Marques C, Rodrigues C, Calhau C, Faria A. The metabolic and endocrine impact of diet-derived gut microbiota metabolites on ageing and longevity. Ageing Res Rev 2024; 100:102451. [PMID: 39127442 DOI: 10.1016/j.arr.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Gut dysbiosis has been recently recognized as a hallmark of ageing. At this stage of life, gut microbiota becomes depleted from bacteria involved in the production of short-chain fatty acids (SCFA), indole and its derivative indole-3-propionic acid (IPA), metabolites shown to improve host glycemic control as well as insulin sensitivity and secretion. Moreover, gut microbiota becomes enriched in pathobiont bacteria involved in the production of imidazole propionate, phenols and trimethylamine, metabolites that promote host insulin resistance and atherosclerosis. The magnitude of these changes is much more pronounced in unhealthy than in healthy ageing. On the other hand, a distinct gut microbiota signature is displayed during longevity, the most prominent being an enrichment in both SCFA and IPA bacterial producers. This short Review discusses, in an innovative and integrative way, cutting-edge research on the composition of gut microorganisms and profile of metabolites secreted by them, that are associated with a healthy and unhealthy ageing pattern and with longevity. A detailed description of the positive or detrimental metabolic effects, in the ageing host, of diet-derived gut microbial metabolites is provided. Finally, microbiota-targeted interventions that counteract gut dysbiosis associated with ageing, are briefly outlined.
Collapse
Affiliation(s)
- João R Araújo
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Cláudia Marques
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Catarina Rodrigues
- Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Conceição Calhau
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal; Unidade Universitária Lifestyle Medicine José de Mello Saúde by NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Ana Faria
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal; Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| |
Collapse
|
5
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Bittel AJ, Chen YW. DNA Methylation in the Adaptive Response to Exercise. Sports Med 2024; 54:1419-1458. [PMID: 38561436 DOI: 10.1007/s40279-024-02011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Emerging evidence published over the past decade has highlighted the role of DNA methylation in skeletal muscle function and health, including as an epigenetic transducer of the adaptive response to exercise. In this review, we aim to synthesize the latest findings in this field to highlight: (1) the shifting understanding of the genomic localization of altered DNA methylation in response to acute and chronic aerobic and resistance exercise in skeletal muscle (e.g., promoter, gene bodies, enhancers, intergenic regions, un-annotated regions, and genome-wide methylation); (2) how these global/regional methylation changes relate to transcriptional activity following exercise; and (3) the factors (e.g., individual demographic or genetic features, dietary, training history, exercise parameters, local epigenetic characteristics, circulating hormones) demonstrated to alter both the pattern of DNA methylation after exercise, and the relationship between DNA methylation and gene expression. Finally, we discuss the changes in non-CpG methylation and 5-hydroxymethylation after exercise, as well as the importance of emerging single-cell analyses to future studies-areas of increasing focus in the field of epigenetics. We anticipate that this review will help generate a framework for clinicians and researchers to begin developing and testing exercise interventions designed to generate targeted changes in DNA methylation as part of a personalized exercise regimen.
Collapse
Affiliation(s)
- Adam J Bittel
- Research Center for Genetic Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Science, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St NW, Washington, DC, 20052, USA
| |
Collapse
|
7
|
Atieh O, Azzi NMJ, Lteif GJ, Atieh NA, Germanos NY, Grandjean V, Yarkiner Z, Saliba Z, Khalife MCF, Raad G. Paternal peri-conceptional physical activity and the risk of congenital heart disease in offspring: A case-control study. Andrology 2024. [PMID: 38605599 DOI: 10.1111/andr.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Genetic and environmental factors have been shown to contribute to the development of congenital heart disease (CHD). To date, the focus of scientific articles has primarily centered on genetics and maternal environmental factors, with comparatively less attention given to paternal risk factors. OBJECTIVES This study aims to investigate the potential association between paternal pre-conceptional physical activity levels (PA), along with paternal peri-conceptional smoking and alcohol consumption, and the risk of CHD in offspring. MATERIALS AND METHODS An observational case-control study was conducted in Lebanon, with 279 participants, aiming to investigate potential risk factors for CHD. We included children with confirmed CHD, born between 2012 and 2022. Controls born in the same timeframe were selected randomly from the general population using online questionnaire forms. Mean age of children included was 6 years old (0-10). The pre-conceptional PA was assessed using the Global Physical Activity Questionnaire validated in Arabic. In addition, paternal smoking, alcohol consumption, and maternal risk factors were collected. RESULTS The study included 128 CHD cases (45.9%) and their parents, as well as 151 healthy infants (54.1%) and their parents. There were no statistically significant variations in the alcohol consumption noted between the fathers in the case and control groups (p = 0.18). The paternal involvement in recreational-related PA during the peri-conception period was associated with a reduced risk of the CHD development in offspring by 46.9% (OR = 0.531, 95% CI: 0.301-0.936, p = 0.029). Additionally, increasing paternal total sitting time by 1 h above the average, which was approximately 260 min (4 h), increased the risk of CHD in offspring by 0.4% (p = 0.001). Moreover, paternal smoking exhibited an apparent association with a 56% increased risk of offspring developing CHD, notwithstanding that the confidence intervals included the null (OR = 1.56, 95% CI: 0.86-2.8, p = 0.136). DISCUSSION AND CONCLUSION This observational study is the first to report a potential association between paternal PA, and CHD in offspring. This study aligns with previous reports, advocating for the paternal engagement in PA and the adoption of healthy lifestyle habits, especially during the critical stages of conception. Such practices are strongly recommended to enhance fertility and promote optimal health for offspring. However, due to the subjectivity in reporting PA and lack of molecular proof, additional prospective and molecular studies are required to validate these findings.
Collapse
Affiliation(s)
- Ornina Atieh
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Nohad Maria J Azzi
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Georges J Lteif
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Ninar A Atieh
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Nadim Y Germanos
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Valérie Grandjean
- Inserm, C3M, Team Control of Gene Expression (10), Université Côte d'Azur, Nice, France
| | - Zalihe Yarkiner
- Department of Basic Sciences and Humanities, Faculty of Arts and Sciences, Northern Cyprus via Mersin, Cyprus International University, Mersin, Turkey
| | - Zakhia Saliba
- Department of Pediatric Cardiology, Hotel Dieu de France University Medical Center, Saint Joseph University, Alfred Naccache Boulevard, Achrafieh, Beirut, Lebanon
| | - Marie-Claude Fadous Khalife
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
- Pediatrics Department, Notre Dame des Secours University Hospital Center, Jbeil, Lebanon
| | - Georges Raad
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| |
Collapse
|
8
|
Ferreira SRG, Macotela Y, Velloso LA, Mori MA. Determinants of obesity in Latin America. Nat Metab 2024; 6:409-432. [PMID: 38438626 DOI: 10.1038/s42255-024-00977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024]
Abstract
Obesity rates are increasing almost everywhere in the world, although the pace and timing for this increase differ when populations from developed and developing countries are compared. The sharp and more recent increase in obesity rates in many Latin American countries is an example of that and results from regional characteristics that emerge from interactions between multiple factors. Aware of the complexity of enumerating these factors, we highlight eight main determinants (the physical environment, food exposure, economic and political interest, social inequity, limited access to scientific knowledge, culture, contextual behaviour and genetics) and discuss how they impact obesity rates in Latin American countries. We propose that initiatives aimed at understanding obesity and hampering obesity growth in Latin America should involve multidisciplinary, global approaches that consider these determinants to build more effective public policy and strategies, accounting for regional differences and disease complexity at the individual and systemic levels.
Collapse
Affiliation(s)
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM Campus-Juriquilla, Querétaro, Mexico
| | - Licio A Velloso
- Obesity and Comorbidities Research Center, Faculty of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
9
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Domínguez-Barragán J, Fernández-Sanlés A, Hernáez Á, Llauradó-Pont J, Marrugat J, Robinson O, Tzoulaki I, Elosua R, Lassale C. Blood DNA methylation signature of diet quality and association with cardiometabolic traits. Eur J Prev Cardiol 2024; 31:191-202. [PMID: 37793095 PMCID: PMC10809172 DOI: 10.1093/eurjpc/zwad317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
AIMS Diet quality might influence cardiometabolic health through epigenetic changes, but this has been little investigated in adults. Our aims were to identify cytosine-phosphate-guanine (CpG) dinucleotides associated with diet quality by conducting an epigenome-wide association study (EWAS) based on blood DNA methylation (DNAm) and to assess how diet-related CpGs associate with inherited susceptibility to cardiometabolic traits: body mass index (BMI), systolic blood pressure (SBP), triglycerides, type 2 diabetes (T2D), and coronary heart disease (CHD). METHODS AND RESULTS Meta-EWAS including 5274 participants in four cohorts from Spain, the USA, and the UK. We derived three dietary scores (exposures) to measure adherence to a Mediterranean diet, to a healthy plant-based diet, and to the Dietary Approaches to Stop Hypertension. Blood DNAm (outcome) was assessed with the Infinium arrays Human Methylation 450K BeadChip and MethylationEPIC BeadChip. For each diet score, we performed linear EWAS adjusted for age, sex, blood cells, smoking and technical variables, and BMI in a second set of models. We also conducted Mendelian randomization analyses to assess the potential causal relationship between diet-related CpGs and cardiometabolic traits. We found 18 differentially methylated CpGs associated with dietary scores (P < 1.08 × 10-7; Bonferroni correction), of which 12 were previously associated with cardiometabolic traits. Enrichment analysis revealed overrepresentation of diet-associated genes in pathways involved in inflammation and cardiovascular disease. Mendelian randomization analyses suggested that genetically determined methylation levels corresponding to lower diet quality at cg02079413 (SNORA54), cg02107842 (MAST4), and cg23761815 (SLC29A3) were causally associated with higher BMI and at cg05399785 (WDR8) with greater SBP, and methylation levels associated with higher diet quality at cg00711496 (PRMT1) with lower BMI, T2D risk, and CHD risk and at cg0557921 (AHRR) with lower CHD risk. CONCLUSION Diet quality in adults was related to differential methylation in blood at 18 CpGs, some of which related to cardiometabolic health.
Collapse
Affiliation(s)
- Jorge Domínguez-Barragán
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
| | - Alba Fernández-Sanlés
- MRC Unit for Lifelong Health and Ageing, University College London, London WC1E 7HB, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Álvaro Hernáez
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo 0463, Norway
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
- Consortium for Biomedical Research—Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 08029 Madrid, Spain
| | - Joana Llauradó-Pont
- Barcelona Institute of Global Health (ISGlobal), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Jaume Marrugat
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Robinson
- μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Centre for Systems Biology, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Roberto Elosua
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic—Central University of Catalunya, Ctra. de Roda, 70, 08500 Vic, Spain
| | - Camille Lassale
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 08029 Madrid, Spain
- Barcelona Institute of Global Health (ISGlobal), Dr Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
11
|
Reim PK, Engelbrechtsen L, Gybel-Brask D, Schnurr TM, Kelstrup L, Høgdall EV, Hansen T. The influence of insulin-related genetic variants on fetal growth, fetal blood flow, and placental weight in a prospective pregnancy cohort. Sci Rep 2023; 13:19638. [PMID: 37949941 PMCID: PMC10638310 DOI: 10.1038/s41598-023-46910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
The fetal insulin hypothesis proposes that low birthweight and type 2 diabetes (T2D) in adulthood may be two phenotypes of the same genotype. In this study we aimed to explore this theory further by testing the effects of GWAS-identified genetic variants related to insulin release and sensitivity on fetal growth and blood flow from week 20 of gestation to birth and on placental weight at birth. We calculated genetic risk scores (GRS) of first phase insulin release (FPIR), fasting insulin (FI), combined insulin resistance and dyslipidaemia (IR + DLD) and insulin sensitivity (IS) in a study population of 665 genotyped newborns. Two-dimensional ultrasound measurements with estimation of fetal weight and blood flow were carried out at week 20, 25, and 32 of gestation in all 665 pregnancies. Birthweight and placental weight were registered at birth. Associations between the GRSs and fetal growth, blood flow and placental weight were investigated using linear mixed models. The FPIR GRS was directly associated with fetal growth from week 20 to birth, and both the FI GRS, IR + DLD GRS, and IS GRS were associated with placental weight at birth. Our findings indicate that insulin-related genetic variants might primarily affect fetal growth via the placenta.
Collapse
Affiliation(s)
- Pauline K Reim
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 8th Floor, 2200, Copenhagen, Denmark
| | - Line Engelbrechtsen
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 8th Floor, 2200, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Dorte Gybel-Brask
- Psycotherapeutic Outpatient Clinic, Department of Psychiatry, Ballerup Hospital, Ballerup, Denmark
| | - Theresia M Schnurr
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 8th Floor, 2200, Copenhagen, Denmark
| | - Louise Kelstrup
- Department of Gynaecology and Obstetrics, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Estrid V Høgdall
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Torben Hansen
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 8th Floor, 2200, Copenhagen, Denmark.
| |
Collapse
|
12
|
Maehara H, Kokaji T, Hatano A, Suzuki Y, Matsumoto M, Nakayama KI, Egami R, Tsuchiya T, Ozaki H, Morita K, Shirai M, Li D, Terakawa A, Uematsu S, Hironaka KI, Ohno S, Kubota H, Araki H, Miura F, Ito T, Kuroda S. DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins in liver and skeletal muscle. Sci Rep 2023; 13:19118. [PMID: 37926704 PMCID: PMC10625943 DOI: 10.1038/s41598-023-46393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
Each tissue has a dominant set of functional proteins required to mediate tissue-specific functions. Epigenetic modifications, transcription, and translational efficiency control tissue-dominant protein production. However, the coordination of these regulatory mechanisms to achieve such tissue-specific protein production remains unclear. Here, we analyzed the DNA methylome, transcriptome, and proteome in mouse liver and skeletal muscle. We found that DNA hypomethylation at promoter regions is globally associated with liver-dominant or skeletal muscle-dominant functional protein production within each tissue, as well as with genes encoding proteins involved in ubiquitous functions in both tissues. Thus, genes encoding liver-dominant proteins, such as those involved in glycolysis or gluconeogenesis, the urea cycle, complement and coagulation systems, enzymes of tryptophan metabolism, and cytochrome P450-related metabolism, were hypomethylated in the liver, whereas those encoding-skeletal muscle-dominant proteins, such as those involved in sarcomere organization, were hypomethylated in the skeletal muscle. Thus, DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins.
Collapse
Affiliation(s)
- Hideki Maehara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916‑5 Takayama, Ikoma, Nara, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki, 305‑8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki, 305‑8577, Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki, 305‑8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki, 305‑8577, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masaki Shirai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Ken-Ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan.
| |
Collapse
|
13
|
Gold NM, Okeke MN, He Y. Involvement of Inheritance in Determining Telomere Length beyond Environmental and Lifestyle Factors. Aging Dis 2023:AD.2023.1023. [PMID: 37962459 DOI: 10.14336/ad.2023.1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
All linear chromosomal ends have specific DNA-protein complexes called telomeres. Telomeres serve as a "molecular clock" to estimate the potential length of cell replication. Shortening of telomere length (TL) is associated with cellular senescence, aging, and various age-related diseases in humans. Here we reviewed the structure, function, and regulation of telomeres and the age-related diseases associated with telomere attrition. Among the various determinants of TL, we highlight the connection between TL and heredity to provide a new overview of genetic determinants for TL. Studies across multiple species have shown that maternal and paternal TL influence the TL of their offspring, and this may affect life span and their susceptibility to age-related diseases. Hence, we reviewed the linkage between TL and parental influences and the proposed mechanisms involved. More in-depth studies on the genetic mechanism for TL attrition are needed due to the potential application of this knowledge in human medicine to prevent premature frailty at its earliest stage, as well as promote health and longevity.
Collapse
Affiliation(s)
- Naheemat Modupeola Gold
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- State Key Laboratory of Genetic, Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Michael Ngozi Okeke
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Nanomedical Technology Research, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- State Key Laboratory of Genetic, Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Izquierdo M, Fiatarone Singh M. Promoting resilience in the face of ageing and disease: The central role of exercise and physical activity. Ageing Res Rev 2023; 88:101940. [PMID: 37127094 DOI: 10.1016/j.arr.2023.101940] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Exercise and physical activity offer clinical benefits across a wide range of both physical and neuropsychological diseases and disabilities in older adults, including syndromes for which pharmacological treatment is either absent or hazardous. However, exercise is vastly under-utilised and rarely fully integrated into aged care and geriatric medicine practice. It is still absent from the core training of most geriatricians and other healthcare professionals, and myths about risks of robust exercise abound. Insufficient physical activity and sedentariness are in fact the lethal conditions. Frailty is not a barrier to exercise, but rather one of the most important reasons to prescribe it. Like any other medical treatment, to prescribe exercise as a drug will require a full understanding of its benefits, dose-response characteristics, modality-specific adaptations, potential risks, and interactions with other treatments. Additionally, exercise prescription should be a mandatory component of training for all healthcare professionals in geriatric medicine and gerontology. This personal view asserts the importance of medication management closely integrated with physical exercise prescription, as well as nutritional support as cornerstone of a coherent and holistic approach to treating both fit and frail older adults. This includes identification and management of drug-exercise interactions, in the same way that we seek out and manage drug-drug interactions and drug-nutrient interactions. Our oldest patients deserve the dignity of our urgent resolve to remember the mission of medicine: the assertion and the assurance of the human potential. Exercise medicine is core to this mission.
Collapse
Affiliation(s)
- Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Fiatarone Singh
- Faculty of Medicine and Health, School of Health Sciences and Sydney Medical School, The University of Sydney, New South Wales, Australia; Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
| |
Collapse
|
15
|
Mohanty S, White JK, Brauner A. Epigenetic modifications influence urinary tract infection outcome. Nat Microbiol 2023; 8:764-766. [PMID: 37069403 DOI: 10.1038/s41564-023-01371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - John Kerr White
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Restoring Epigenetic Reprogramming with Diet and Exercise to Improve Health-Related Metabolic Diseases. Biomolecules 2023; 13:biom13020318. [PMID: 36830687 PMCID: PMC9953584 DOI: 10.3390/biom13020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Epigenetic reprogramming predicts the long-term functional health effects of health-related metabolic disease. This epigenetic reprogramming is activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The epigenetic and environmental changes involve a roadmap of epigenetic networking, such as dietary components and exercise on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, which are paramount to establishing youthful cell type and health. Nutrition and exercise are among the most well-known environmental epigenetic factors influencing the proper developmental and functional lifestyle, with potential beneficial or detrimental effects on health status. The diet and exercise strategies applied from conception could represent an innovative epigenetic target for preventing and treating human diseases. Here, we describe the potential role of diet and exercise as therapeutic epigenetic strategies for health and diseases, highlighting putative future perspectives in this field.
Collapse
|
17
|
Hong X, Zhou Y, Zhu Z, Li Y, Li Z, Zhang Y, Hu X, Zhu F, Wang Y, Fang M, Huang Y, Shen T. Environmental endocrine disruptor Bisphenol A induces metabolic derailment and obesity via upregulating IL-17A in adipocytes. ENVIRONMENT INTERNATIONAL 2023; 172:107759. [PMID: 36696794 DOI: 10.1016/j.envint.2023.107759] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a ubiquitous environmental endocrine disruptor, has been extensively demonstrated to be associated with metabolic disorders, including obesity and type 2 diabetes mellitus. However, the underlying mechanism underpinning the environmental etiology of chronic metabolic disorders has not been sufficiently elucidated. OBJECTIVES This study is designed to explore the toxicological pathogenesis of chronic inflammation in BPA exposure during obesity. METHODS We investigated the role of IL-17A in the association of BPA exposure and obesity from human cross-sectional study to animal models, including genetically modified IL-17A-/- mice. RESULTS Here, our work started from case-control observation that BPA exposure was significantly associated with risk of obesity (odds ratio = 4.72, 95%CI: 3.18 - 11.18, P < 0.01), metabolic disorder and levels of interleukin-17A (IL-17A) in human adipose (estimated changes β = 0.46, 95%CI: 0.15 - 1.01, P < 0.01) with bariatric surgery. Animal model fed with high-fat diet (HFD) confirmed that BPA exposure aggravated body weight gain and insulin resistance, concurrent with much heightened inflammatory responses in the adipose tissue including increase in IL-17A and macrophage polarization towards M1 stage. Genetically modified IL-17A ablated mice (IL-17A-/-) showed reversed adipose tissue inflammation response, improved macrophage polarization homeostasis, along with insulin sensitivity in both HFD group alone or much more significantly the HFD + BPA group. Moreover, mediation analysis in human epidemiological investigation demonstrated that plasma IL-17A attributed up to 30.01% mediating role in the associations between BPA exposure and obesity risk. DISCUSSION This research paradigm from human to animal provides strong evidence for the elucidation of IL-17A moderating inflammation and insulin resistance in obesity. Such findings reiterate the obesogenic role of environmental endocrine disruptor BPA in metabolic disorders and unveils the potential toxicological mechanisms underpinning such effect.
Collapse
Affiliation(s)
- Xu Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yi Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Zhiyuan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yuting Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Zuo Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yuheng Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xinxin Hu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Fuhai Zhu
- Health Management Center, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yong Wang
- Department of General Surgery, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| |
Collapse
|
18
|
Beigrezaei S, Jambarsang S, Khayyatzadeh SS, Mirzaei M, Mehrparvar AH, Salehi-Abargouei A. The association between dietary patterns derived by three statistical methods and type 2 diabetes risk: YaHS-TAMYZ and Shahedieh cohort studies. Sci Rep 2023; 13:410. [PMID: 36624118 PMCID: PMC9829735 DOI: 10.1038/s41598-023-27645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Findings were inconsistent regarding the superiority of using recently introduced hybrid methods to derive DPs compared to widely used statistical methods like principal component analysis (PCA) in assessing dietary patterns and their association with type 2 diabetes mellitus (T2DM). We aimed to investigate the association between DPs extracted using principal component analysis (PCA), partial least-squares (PLS), and reduced-rank regressions (RRR) in identifying DPs associated with T2DM risk. The study was conducted in the context of two cohort studies accomplished in central Iran. Dietary intake data were collected by food frequency questionnaires (FFQs). DPs were derived by using PCA, PLS, and RRR methods considering. The association between DPs with the risk of T2DM was assessed using log-binomial logistic regression test. A total of 8667 participants aged 20-70 years were included in this study. In the multivariate-adjusted models, RRR-DP3 characterized by high intake of fruits, tomatoes, vegetable oils, and refined grains and low intake of processed meats, organ meats, margarine, and hydrogenated fats was significantly associated with a reduced T2DM risk (Q5 vs Q1: RR 0.540, 95% CI 0.33-0.87, P-trend = 0.020). No significant highest-lowest or trend association was observed between DPs derived using PCA or PLS and T2DM. The findings indicate that RRR method was more promising in identifying DPs that are related to T2DM risk compared to PCA and PLS methods.
Collapse
Affiliation(s)
- Sara Beigrezaei
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ,grid.412505.70000 0004 0612 5912Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Jambarsang
- grid.412505.70000 0004 0612 5912Departments of Biostatistics and Epidemiology, School of Public Health, Center for Healthcare Data Modeling, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- grid.412505.70000 0004 0612 5912Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ,grid.412505.70000 0004 0612 5912Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Mirzaei
- grid.412505.70000 0004 0612 5912Yazd Cardiovascular Research Center, Non-Communicable Disease Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amir Houshang Mehrparvar
- grid.412505.70000 0004 0612 5912Industrial Diseases Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Yazd Cardiovascular Research Center, Non-Communicable Disease Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
19
|
Bai W, Zhang Y, Ma J, Du M, Xu H, Wang J, Zhang L, Li W, Hou Y, Liu X, Zhang X, Peng Y, Li J, Zhan X, Jiang W, Liu S, Liu X, Li Q, Miao Y, Sui M, Yang Y, Zhang S, Xu Z, Zuo B. FHL3 promotes the formation of fast glycolytic muscle fibers by interacting with YY1 and muscle glycolytic metabolism. Cell Mol Life Sci 2023; 80:27. [PMID: 36602641 PMCID: PMC11073127 DOI: 10.1007/s00018-022-04680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
The proportions of the various muscle fiber types are important in the regulation of skeletal muscle metabolism, as well as animal meat production. Four-and-a-half LIM domain protein 3 (FHL3) is highly expressed in fast glycolytic muscle fibers and differentially regulates the expression of myosin heavy chain (MyHC) isoforms at the cellular level. Whether FHL3 regulates the transformation of muscle fiber types in vivo and the regulatory mechanism is unclear. In this study, muscle-specific FHL3 transgenic mice were generated by random integration, and lentivirus-mediated gene knockdown or overexpression in muscles of mice or pigs was conducted. Functional analysis showed that overexpression of FHL3 in muscles significantly increased the proportion of fast-twitch myofibers and muscle mass but decreased muscle succinate dehydrogenase (SDH) activity and whole-body oxygen consumption. Lentivirus-mediated FHL3 knockdown in muscles significantly decreased muscle mass and the proportion of fast-twitch myofibers. Mechanistically, FHL3 directly interacted with the Yin yang 1 (YY1) DNA-binding domain, repressed the binding of YY1 to the fast glycolytic MyHC2b gene regulatory region, and thereby promoted MyHC2b expression. FHL3 also competed with EZH2 to bind the repression domain of YY1 and reduced H3K27me3 enrichment in the MyHC2b regulatory region. Moreover, FHL3 overexpression reduced glucose tolerance by affecting muscle glycolytic metabolism, and its mRNA expression in muscle was positively associated with hemoglobin A1c (HbA1c) in patients with type 2 diabetes. Therefore, FHL3 is a novel potential target gene for the treatment of muscle metabolism-related diseases and improvement of animal meat production.
Collapse
Affiliation(s)
- Wei Bai
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yunxia Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jun Ma
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Mengmeng Du
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jian Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Lu Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yunqing Hou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xinyue Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianan Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shengsi Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qinying Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yang Miao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Mengru Sui
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yuhan Yang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Shenghao Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
20
|
Transcriptomic Differences Between Monozygotic Adolescent Twins Discordant For Metabolic Syndrome Following Weight Loss: A Case Study. Twin Res Hum Genet 2022; 25:196-201. [DOI: 10.1017/thg.2022.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
This case reports peripheral blood mononuclear cell (PBMC) transcriptomic changes in a pair of male monozygotic pediatric twins with metabolic syndrome (MetS) undertaking assisted weight loss. These 14-year-old boys presented with similar baseline biochemistry and body composition. After a 16-week weight-loss intervention, percent body weight loss was similar (Twin A 12%, and Twin B 13%). MetS resolved in Twin A but Twin B maintained elevated triglycerides after weight loss. Analysis of the PBMC transcriptome before and after weight loss revealed very different changes in gene expression including differences in the direction of expression of genes related to immune cell activation. 48.7% of genes that were downregulated in Twin A were upregulated in Twin B. This case highlights a novel approach to report the influence of chronic low-grade inflammation and metabolic dysfunction on the PBMC transcriptome. It explores whether expression of genes related to immune functions may underlie the differences in response to weight loss or whether transcriptomic alterations in immune cells may precede more traditional biomarkers of chronic pro-inflammation. These monozygotic twins present an example of divergence of phenotypic outcomes despite identical genetic background and similar treatment response.
Collapse
|
21
|
KIANI AYSHAKARIM, MEDORI MARIACHIARA, BONETTI GABRIELE, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, STUPPIA LIBORIO, CONNELLY STEPHENTHADDEUS, HERBST KARENL, BERTELLI MATTEO. Modern vision of the Mediterranean diet. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E36-E43. [PMID: 36479477 PMCID: PMC9710405 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Mediterranean diet is the most well-known and researched dietary pattern worldwide. It is characterized by the consumption of a wide variety of foods, such as extra-virgin olive oil (EVOO), legumes, cereals, nuts, fruits, vegetables, dairy products, fish, and wine. Many of these foods provide several phytonutrients, among which polyphenols and vitamins play an important role. Data from several studies have strongly established that nutrition is a key factor in promoting a healthy lifestyle and preventing many chronic diseases. In particular, a large number of studies have established the protective effects of the Mediterranean diet against several chronic diseases, among which are diabetes, cardiovascular diseases, cancer, aging disorders, and against overall mortality. Animal and human translational studies have revealed the biological mechanisms regulating the beneficial effects of the traditional Mediterranean diet. Indeed, several studies demonstrated that this nutritional pattern has lipid-lowering, anticancer, antimicrobial, and anti-oxidative effects. Moreover, the Mediterranean diet is considered environmentally sustainable. In this review, we describe the composition of the Mediterranean diet, assess its beneficial effects, and analyze their epigenomic, genomic, metagenomic, and transcriptomic aspects. In the future it will be important to continue exploring the molecular mechanisms through which the Mediterranean diet exerts its protective effects and to standardize its components and serving sizes to understand more precisely its effects on human health.
Collapse
Affiliation(s)
| | - MARIA CHIARA MEDORI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Maria Chiara Medori, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - LIBORIO STUPPIA
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - STEPHEN THADDEUS CONNELLY
- San Francisco Veterans Affairs Health Care System, Department of Oral & Maxillofacial Surgery, University of California, San Francisco, CA, USA
| | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
22
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
23
|
Liu M, Liu P, Chang Y, Xu B, Wang N, Qin L, Zheng J, Liu Y, Wu L, Yan H. Genome-wide DNA methylation profiles and small noncoding RNA signatures in sperm with a high DNA fragmentation index. J Assist Reprod Genet 2022; 39:2255-2274. [PMID: 36190595 PMCID: PMC9596664 DOI: 10.1007/s10815-022-02618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A growing number of studies have reported that sperm DNA fragmentation (SDF) is associated with male infertility. However, no studies have compared genome-wide DNA methylation profiles and sncRNA signatures between sperm with high and low sperm DNA fragmentation indices (DFIs). METHODS Whole-genome bisulfite sequencing (WGBS) was performed on sperm samples from a weak group (DFI ≥ 30%, n = 6) and normal group (DFI ≤ 15%, n = 7). Small noncoding RNA (sncRNA) deep sequencing was conducted for sperm samples from the weak (DFI ≥ 30%, n = 13) and normal (DFI ≤ 15%, n = 17) groups. RESULTS A total of 4939 differentially methylated regions (DMRs) were identified in the weak group sperm samples relative to normal group sperm samples, with 2072 (41.95%) of them located in promoter regions. The percentages of hypermethylated DMRs were higher than those of hypomethylated DMRs in all seven examined gene annotation groups. Hypermethylated DMRs were significantly enriched in terms associated with neurons and microtubules. Compared with the normal group, the global DNA methylation level of the weak group sperm showed a downward trend, with lower correlation for methylation in the weak group sperm; therefore, the chromosomes of high-DFI sperm may be loose. On average, 40.5% of sncRNAs were annotated as rsRNAs, 19.3% as tsRNAs, 10.4% as yRNAs, and 7.1% as miRNAs. A total of 27 miRNAs, 151 tsRNAs, and 70 rsRNAs were differentially expressed between the two groups of sperm samples. Finally, 7 sncRNAs were identified as candidate sperm quality biomarkers, and the target genes of the differentially expressed miRNAs are involved in nervous system development. CONCLUSION Our findings suggest that genome-wide DNA methylation profiles and sncRNA signatures are significantly altered in high-DFI sperm. Our study provides potential biomarkers for sperm quality.
Collapse
Affiliation(s)
- Minghua Liu
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peiru Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Nengzhuang Wang
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lina Qin
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jufen Zheng
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Hongli Yan
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
24
|
Qing H, Hu J, Fu H, Zhao Z, Nong W, Wang J, Yang F, Zhao S. Activation of thermogenesis pathways in testis of diet-induced obesity mice. Reprod Biol 2022; 22:100652. [DOI: 10.1016/j.repbio.2022.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
|
25
|
Abstract
Amyloids are organized suprastructural polypeptide arrangements. The prevalence of amyloid-related processes of pathophysiological relevance has been linked to aging-related degenerative diseases. Besides the role of genetic polymorphisms on the relative risk of amyloid diseases, the contributions of nongenetic ontogenic cluster of factors remain elusive. In recent decades, mounting evidences have been suggesting the role of essential micronutrients, in particular transition metals, in the regulation of amyloidogenic processes, both directly (such as binding to amyloid proteins) or indirectly (such as regulating regulatory partners, processing enzymes, and membrane transporters). The features of transition metals as regulatory cofactors of amyloid proteins and the consequences of metal dyshomeostasis in triggering amyloidogenic processes, as well as the evidences showing amelioration of symptoms by dietary supplementation, suggest an exaptative role of metals in regulating amyloid pathways. The self- and cross-talk replicative nature of these amyloid processes along with their systemic distribution support the concept of their metastatic nature. The role of amyloidosis as nutrient sensors would act as intra- and transgenerational epigenetic metabolic programming factors determining health span and life span, viability, which could participate as an evolutive selective pressure.
Collapse
Affiliation(s)
- Luís Maurício T R Lima
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory for Macromolecules (LAMAC-DIMAV), National Institute of Metrology, Quality and Technology - INMETRO, Duque de Caxias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Wan QL, Meng X, Wang C, Dai W, Luo Z, Yin Z, Ju Z, Fu X, Yang J, Ye Q, Zhang ZH, Zhou Q. Histone H3K4me3 modification is a transgenerational epigenetic signal for lipid metabolism in Caenorhabditis elegans. Nat Commun 2022; 13:768. [PMID: 35140229 PMCID: PMC8828817 DOI: 10.1038/s41467-022-28469-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2022] [Indexed: 11/09/2022] Open
Abstract
As a major risk factor to human health, obesity presents a massive burden to people and society. Interestingly, the obese status of parents can cause progeny's lipid accumulation through epigenetic inheritance in multiple species. To date, many questions remain as to how lipid accumulation leads to signals that are transmitted across generations. In this study, we establish a nematode model of C. elegans raised on a high-fat diet (HFD) that leads to measurable lipid accumulation, which can transmit the lipid accumulation signal to their multigenerational progeny. Using this model, we find that transcription factors DAF-16/FOXO and SBP-1/SREBP, nuclear receptors NHR-49 and NHR-80, and delta-9 desaturases (fat-5, fat-6, and fat-7) are required for transgenerational lipid accumulation. Additionally, histone H3K4 trimethylation (H3K4me3) marks lipid metabolism genes and increases their transcription response to multigenerational obesogenic effects. In summary, this study establishes an interaction between a network of lipid metabolic genes and chromatin modifications, which work together to achieve transgenerational epigenetic inheritance of obesogenic effects.
Collapse
Affiliation(s)
- Qin-Li Wan
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.,Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao Meng
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chongyang Wang
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Wenyu Dai
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenhuan Luo
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhinan Yin
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regeneration Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaodie Fu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Yang
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qunshan Ye
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhan-Hui Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China. .,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
27
|
Abstract
The increasing prevalence of metabolic diseases has become a severe public health problem. Gut microbiota play important roles in maintaining human health by modulating the host's metabolism. Recent evidences demonstrate that Akkermansia muciniphila is effective in improving metabolic disorders and is thus considered as a promising "next-generation beneficial microbe". In addition to the live A. muciniphila, similar or even stronger beneficial effects have been observed in pasteurized A. muciniphila and its components, including the outer membrane protein Amuc_1100, A. muciniphila-derived extracellular vesicles (AmEVs), and secreted protein P9. Hence, this paper presents a systemic review of recent progress in the effects and mechanisms of A. muciniphila and its components in the treatment of metabolic diseases, including obesity, type 2 diabetes mellitus, cardiovascular disease, and nonalcoholic fatty liver disease, as well as perspectives on its future study.
Collapse
Affiliation(s)
- Juan Yan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Sheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Lili Sheng
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China,CONTACT Houkai Li Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
28
|
Fernandes MS, Sabino-Arias IT, Dionizio A, Fabricio MF, Trevizol JS, Martini T, Azevedo LB, Valentine RA, Maguire A, Zohoori FV, L. Amaral S, Buzalaf MAR. Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice. Metabolites 2022; 12:metabo12020117. [PMID: 35208192 PMCID: PMC8878675 DOI: 10.3390/metabo12020117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
We compared the parameters related to glucose homeostasis, and liver and muscle proteomes in fluorosis-susceptible (A/J; S) and fluorosis-resistant (129P3/J; R) mice in response to fluoride (F) exposure and exercise. Ninety male mice (45 R-mice and 45 S-mice) were randomized into three groups: (SI; RI) No-F, No-Exercise, (SII; RII) 50 ppm F, No-Exercise, (SIII; RIII) 50 ppm F, Exercise. Overall, mean F concentrations in the plasma and femur were significantly higher in R-mice compared with S-mice. In R-mice, exercise resulted in an increase in F accumulation in the femur. In S-mice, the mean plasma glucose level was significantly higher in Group II compared with Groups I and III. There was an increase in liver proteins involved in energy flux and antioxidant enzymes in non-exercise groups (I, II) of S-mice in comparison with the corresponding groups of R-mice. The results also showed a decrease in muscle protein expression in Group I S-mice compared with their R-mice counterparts. In conclusion, the findings suggest an increased state of oxidative stress in fluorosis-susceptible mice that might be exacerbated by the treatment with F. In addition, fluorosis-susceptible mice have plasma glucose levels higher than fluorosis-resistant mice on exposure to F, and this is not affected by exercise.
Collapse
Affiliation(s)
- Mileni S. Fernandes
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Isabela T. Sabino-Arias
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Aline Dionizio
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Mayara F. Fabricio
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Juliana S. Trevizol
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Tatiana Martini
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Liane B. Azevedo
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Ruth A. Valentine
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Anne Maguire
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Fatemeh V. Zohoori
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- Correspondence: (F.V.Z.); (M.A.R.B.)
| | - Sandra L. Amaral
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Marília A. R. Buzalaf
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
- Correspondence: (F.V.Z.); (M.A.R.B.)
| |
Collapse
|
29
|
Jéru I, Fève B, Jockers R. Editorial: Endocrine and metabolic diseases - genetic impact and therapies. Front Endocrinol (Lausanne) 2022; 13:1063167. [PMID: 36339407 PMCID: PMC9627485 DOI: 10.3389/fendo.2022.1063167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Isabelle Jéru
- Sorbonne Université-Inserm Unité Mixte de Recherche en Santé (UMRS)_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Centre Hospitalier Universitaire (CHU) Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique Médicale, Département Médico-Universitaire (DMU) BioGeM, Paris, France
- *Correspondence: Isabelle Jéru,
| | - Bruno Fève
- Sorbonne Université-Inserm Unité Mixte de Recherche en Santé (UMRS)_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Centre Hospitalier Universitaire (CHU) Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d’Endocrinologie, Diabétologie et Reproduction, Paris, France
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, Inserm, Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
30
|
Strilbytska OM, Stefanyshyn NP, Semaniuk UV, Lushchak OV. Yeast concentration in the diet defines Drosophila metabolism of both parental and offspring generations. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.06.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
32
|
Wang Z, Peng H, Gao W, Cao W, Lv J, Yu C, Huang T, Sun D, Wang B, Liao C, Pang Y, Pang Z, Cong L, Wang H, Wu X, Liu Y, Li L. Blood DNA methylation markers associated with type 2 diabetes, fasting glucose, and HbA1c levels: An epigenome-wide association study in 316 adult twin pairs. Genomics 2021; 113:4206-4213. [PMID: 34774679 DOI: 10.1016/j.ygeno.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/26/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
DNA methylation plays an important role in the development and etiology of type 2 diabetes; however, few epigenomic studies have been conducted on twins. Herein, a two-stage study was performed to explore the associations between DNA methylation and type 2 diabetes, fasting plasma glucose, and HbA1c. DNA methylation in 316 twin pairs from the Chinese National Twin Registry (CNTR) was measured using Illumina Infinium BeadChips. In the discovery sample, the results revealed that 63 CpG sites and 6 CpG sites were significantly associated with fasting plasma glucose and HbA1c, respectively. In the replication sample, cg19690313 in TXNIP was associated with both fasting plasma glucose (P = 1.23 × 10-17, FDR < 0.001) and HbA1c (P = 2.29 × 10-18, FDR < 0.001). Furthermore, cg04816311, cg08309687, and cg09249494 may provide new insight in the metabolic mechanism of HbA1c. Our study provides solid evidence that cg19690313 on TXNIP correlates with HbA1c and fasting plasma glucose levels.
Collapse
Affiliation(s)
- Zhaonian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Biqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zengchang Pang
- Qingdao Center for Diseases Control and Prevention, Qingdao, China
| | - Liming Cong
- Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
33
|
Shields RK, Dudley-Javoroski S. Epigenetics and the International Classification of Functioning, Disability and Health Model: Bridging Nature, Nurture, and Patient-Centered Population Health. Phys Ther 2021; 102:6413906. [PMID: 34718813 PMCID: PMC9432474 DOI: 10.1093/ptj/pzab247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022]
Abstract
Epigenetic processes enable environmental inputs such as diet, exercise, and health behaviors to reversibly tag DNA with chemical "marks" that increase or decrease the expression of an individual's genetic template. Over time, epigenetic adaptations enable the effects of healthy or unhealthy stresses to become stably expressed in the tissue of an organism, with important consequences for health and disease. New research indicates that seemingly non-biological factors such as social stress, poverty, and childhood hardship initiate epigenetic adaptations in gene pathways that govern inflammation and immunity, two of the greatest contributors to chronic diseases such as diabetes and obesity. Epigenetic processes therefore provide a biological bridge between the genome-an individual's genetic inheritance-and the Social Determinants of Health-the conditions in which they are born, grow, live, work, and age. This Perspective paper argues that physical therapy clinicians, researchers, and educators can use the theoretical framework provided by the International Classification of Functioning, Disability, and Health (ICF model) to harmonize new discoveries from both public health research and medically focused genomic research. The ICF model likewise captures the essential role played by physical activity and exercise, which initiate powerful and widespread epigenetic adaptations that promote health and functioning. In this proposed framework, epigenetic processes transduce the effects of the social determinants of health and behaviors such as exercise into stable biological adaptations that affect an individual's daily activities and their participation in social roles. By harmonizing "nature" and "nurture," physical therapists can approach patient care with a more integrated perspective, capitalizing on novel discoveries in precision medicine, rehabilitation science, and in population-level research. As the experts in physical activity and exercise, physical therapists are ideally positioned to drive progress in the new era of patient-centered population health care.
Collapse
Affiliation(s)
| | - Shauna Dudley-Javoroski
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
34
|
Xu B, Liu C, Zhang H, Zhang R, Tang M, Huang Y, Jin L, Xu L, Hu C, Jia W. Skeletal muscle-targeted delivery of Fgf6 protects mice from diet-induced obesity and insulin resistance. JCI Insight 2021; 6:e149969. [PMID: 34491915 PMCID: PMC8525645 DOI: 10.1172/jci.insight.149969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity, a major health care issue, is characterized by metabolic abnormalities in multiple tissues, including the skeletal muscle. Although dysregulation of skeletal muscle metabolism can strongly influence the homeostasis of systemic energy, the underlying mechanism remains unclear. We found promoter hypermethylation and decreased gene expression of fibroblast growth factor 6 (FGF6) in the skeletal muscle of individuals with obesity using high-throughput sequencing. Reduced binding of the cyclic AMP responsive element binding protein-1 (CREB1) to the hypermethylated cyclic AMP response element, which is a regulatory element upstream of the transcription initiation site, partially contributed to the downregulation of FGF6 in patients with obesity. Overexpression of Fgf6 in mouse skeletal muscle stimulated protein synthesis, activating the mammalian target of rapamycin pathway, and prevented the increase in weight and the development of insulin resistance in high-fat diet–fed mice. Thus, our findings highlight the role played by Fgf6 in regulating skeletal muscle hypertrophy and whole-body metabolism, indicating its potential in strategies aimed at preventing and treating metabolic diseases.
Collapse
Affiliation(s)
- Bo Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Caizhi Liu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mengyang Tang
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Yan Huang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Jin
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
35
|
Beleza J, Stevanović-Silva J, Coxito P, Costa RC, Ascensão A, Torrella JR, Magalhães J. Building-up fit muscles for the future: Transgenerational programming of skeletal muscle through physical exercise. Eur J Clin Invest 2021; 51:e13515. [PMID: 33580562 DOI: 10.1111/eci.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
'Special issue - In Utero and Early Life Programming of Aging and Disease'. Skeletal muscle (SM) adaptations to physical exercise (PE) have been extensively studied due, not only to the relevance of its in situ plasticity, but also to the SM endocrine-like effects in noncontractile tissues, such as brain, liver or adipocytes. Regular PE has been considered a pleiotropic nonpharmacological strategy to prevent and counteract the deleterious consequences of several metabolic, cardiovascular, oncological and neurodegenerative disorders. Additionally, PE performed by parents seems to have a direct impact in the offspring through the transgenerational programming of different tissues, such as SM. In fact, SM offspring programming mechanisms seems to be orchestrated, at least in part, by epigenetic machinery conditioning transcriptional or post-transcriptional processes. Ultimately, PE performed in the early in life is also a critical window of opportunity to positively modulate the juvenile and adult phenotype. Parental PE has a positive impact in several health-related offspring outcomes, such as SM metabolism, differentiation, morphology and ultimately in offspring exercise volition and endurance. Also, early-life PE counteracts conceptional-related adverse effects and induces long-lasting healthy benefits throughout adulthood. Additionally, epigenetics mechanisms seem to play a key role in the PE-induced SM adaptations. Despite the undoubtedly positive role of parental and early-life PE on SM phenotype, a strong research effort is still needed to better understand the mechanisms that positively regulate PE-induced SM programming.
Collapse
Affiliation(s)
- Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Rui Carlos Costa
- Department of Communication and Art, Research Institute for Design, Media and Culture (ID+), Aveiro University, Aveiro, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Joan Ramon Torrella
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Burnos A, Skrobowski A. Temperamental and Personality Traits as Factors Related to Changes in Health Behaviors and Quality of Life in Patients With Metabolic Syndrome in Poland. Front Psychol 2021; 12:709935. [PMID: 34566787 PMCID: PMC8462662 DOI: 10.3389/fpsyg.2021.709935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 11/14/2022] Open
Abstract
Lifestyle changes in diet and physical activity are necessary for managing metabolic syndrome. The aim of this longitudinal study was to examine temperamental and personality traits as moderators of lifestyle changes prompted by motivational intervention. The sample consisted of 50 patients aged 22–65years (M=45.26; SD=9.79) who fulfilled the diagnostic criteria for metabolic syndrome and were undergoing treatment at the Military Institute of Medicine in Warsaw. There were two measurements: an initial measurement and a second 15months after motivational counseling. Each patient completed the questionnaires: Formal Characteristics of Behavior – Temperament Inventory, NEO Five Factor Inventory, Inventory of Health Behavior, and Short Form Survey SF-36. Body Mass Index (BMI), Fat Mass, Fat-free Mass, Intracellular Water, and Basal Metabolic Rate (BMR) were also measured. Data were analyzed using dependent samples t-tests to detect the changes in consecutive measurements, the hierarchical regression analysis was used to investigate temperamental and personality traits as predictors of change, the cluster analysis was used to extract the subgroups of patients with distinct profiles of temperamental and personality traits, and the analysis of variance was used to analyze extracted profiles as potential moderators of change. Three subgroups were extracted using k-means clustering: patients with higher Neuroticism, Perseveration, and Emotional Reactivity; patients higher Extraversion, Briskness, Sensory Sensitivity, Endurance, Activity, and Conscientiousness; and patients with lower Perseveration. All patients improved significantly in terms of physical quality of life (QoL), health behaviors, BMI, BMR, and Fat-free Mass (p<0.05). Regression analysis found that higher Sensory Sensitivity, lower Perseveration, and higher Agreeableness fostered positive change (p<0.05). Patients with higher Neuroticism, Perseveration, and Emotional Reactivity also improved in terms of their Emotional Quality of Life and Health Practices, reaching parity with other patients, which was verified on the basis of statistically significant interaction (p<0.05). The temperamental and personality trait profiles moderated the changes in health practices and emotional QoL. Motivational counseling was effective for patients diagnosed with metabolic syndrome in general, but patients with higher Neuroticism, Perseveration, and Emotional Reactivity benefited even more, as they were in poorer psychological condition before the motivational intervention.
Collapse
|
37
|
Influence of DAT1 Promotor Methylation on Sports Performance. Genes (Basel) 2021; 12:genes12091425. [PMID: 34573407 PMCID: PMC8464919 DOI: 10.3390/genes12091425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
In the mammalian genome, DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine. DNA methylation regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factors (TFs) to DNA. As there are still many questions concerning the role of methylation in creating personality, we concentrated on searching for such associations. The research group was 100 sports male subjects (mean age = 22.88, SD = 6.35), whereas the control group included 239 healthy male volunteers matched for age (mean age = 21.69, SD = 3.39), both of European origin. The methods used in our research were as follows: DNA isolation, methylation-specific PCR, sequencing chromatophores, all conducted according to the manufacturer’s procedure. To evaluate personality traits, the NEO Five-Factor Personality Inventory (NEO-FFI) and STAI Inventory were used. We observed the existence of a statistically significant correlation for all the aspects of personality covered and CpG islands’ methylation. Nonetheless, we think that the tested group and the number of tested promotor islands in the DAT1 gene are still too small to make explicit conclusions, so it needs further profound analysis.
Collapse
|
38
|
Epigenetic modifications of the renin-angiotensin system in cardiometabolic diseases. Clin Sci (Lond) 2021; 135:127-142. [PMID: 33416084 DOI: 10.1042/cs20201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases (CMDs) are among the most prevalent and the highest mortality diseases. Single disease etiology such as gene mutation, polymorphisms, or environmental exposure has failed to explain the origin of CMD. This can be evident in the discrepancies in disease susceptibility among individuals exposed to the same environmental insult or who acquire the same genetic variation. Epigenetics is the intertwining of genetic and environmental factors that results in diversity in the disease course, severity, and prognosis among individuals. Environmental exposures modify the epigenome and thus provide a link for translating environmental impact on changes in gene expression and precipitation to pathological conditions. Renin-angiotensin system (RAS) is comprising genes responsible for the regulation of cardiovascular, metabolic, and glycemic functions. Epigenetic modifications of RAS genes can lead to overactivity of the system, increased sympathetic activity and autonomic dysfunction ultimately contributing to the development of CMD. In this review, we describe the three common epigenetic modulations targeting RAS components and their impact on the susceptibility to cardiometabolic dysfunction. Additionally, we highlight the therapeutic efforts of targeting these epigenetic imprints to the RAS and its effects.
Collapse
|
39
|
Davison GW, Irwin RE, Walsh CP. The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radic Biol Med 2021; 170:194-206. [PMID: 33429021 DOI: 10.1016/j.freeradbiomed.2020.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) continues to rise globally. Yet the aetiology and pathophysiology of this noncommunicable, polygenic disease, is poorly understood. Lifestyle factors, such as poor dietary intake, lack of exercise, and abnormal glycaemia, are purported to play a role in disease onset and progression, and these environmental factors may disrupt specific epigenetic mechanisms, leading to a reprogramming of gene transcription. The hyperglycaemic cell per se, alters epigenetics through chemical modifications to DNA and histones via metabolic intermediates such as succinate, α-ketoglutarate and O-GlcNAc. To illustrate, α-ketoglutarate is considered a salient co-factor in the activation of the ten-eleven translocation (TET) dioxygenases, which drives DNA demethylation. On the contrary, succinate and other mitochondrial tricarboxylic acid cycle intermediates, inhibit TET activity predisposing to a state of hypermethylation. Hyperglycaemia depletes intracellular ascorbic acid, and damages DNA by enhancing the production of reactive oxygen species (ROS); this compromised cell milieu exacerbates the oxidation of 5-methylcytosine alongside a destabilisation of TET. These metabolic connections may regulate DNA methylation, affecting gene transcription and pancreatic islet β-cell function in T2DM. This complex interrelationship between metabolism and epigenetic alterations may provide a conceptual foundation for understanding how pathologic stimuli modify and control the intricacies of T2DM. As such, this narrative review will comprehensively evaluate and detail the interplay between metabolism and epigenetic modifications in T2DM.
Collapse
Affiliation(s)
- Gareth W Davison
- Ulster University, Sport and Exercise Sciences Research Institute, Newtownabbey, Northern Ireland, UK.
| | - Rachelle E Irwin
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| |
Collapse
|
40
|
Epigenetic Changes Induced by Maternal Factors during Fetal Life: Implication for Type 1 Diabetes. Genes (Basel) 2021; 12:genes12060887. [PMID: 34201206 PMCID: PMC8227197 DOI: 10.3390/genes12060887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Organ-specific autoimmune diseases, such as type 1 diabetes, are believed to result from T-cell-mediated damage of the target tissue. The immune-mediated tissue injury, in turn, is known to depend on complex interactions between genetic and environmental factors. Nevertheless, the mechanisms whereby environmental factors contribute to the pathogenesis of autoimmune diseases remain elusive and represent a major untapped target to develop novel strategies for disease prevention. Given the impact of the early environment on the developing immune system, epigenetic changes induced by maternal factors during fetal life have been linked to a likelihood of developing an autoimmune disease later in life. In humans, DNA methylation is the epigenetic mechanism most extensively investigated. This review provides an overview of the critical role of DNA methylation changes induced by prenatal maternal conditions contributing to the increased risk of immune-mediated diseases on the offspring, with a particular focus on T1D. A deeper understanding of epigenetic alterations induced by environmental stressors during fetal life may be pivotal for developing targeted prevention strategies of type 1 diabetes by modifying the maternal environment.
Collapse
|
41
|
High Methionine Diet-Induced Alzheimer's Disease like Symptoms Are Accompanied by 5-Methylcytosine Elevated Levels in the Brain. Behav Neurol 2021; 2021:6683318. [PMID: 33880134 PMCID: PMC8046555 DOI: 10.1155/2021/6683318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
Background Excessive or insufficient intake of methionine (Met) causes neuronal dysfunction, neurodegeneration, cerebrovascular dysfunction, vascular leakage, and short-term memory loss, which result in the occurrence of Alzheimer's disease- (AD-) like symptoms. Objective To determine the relationship between high methionine diets (HMD) induced AD-like symptoms and 5-methylcytosine (5-mC) level. Methods C57BL/6J mice were randomly divided into two groups: the control group (Maintain diets) and the model group (2% HMD). Mice were fed with 2% HMD for 9 weeks. Animals were weighed and food intake was recorded weekly. Open field test, nesting ability test, Y maze test, new object recognition test, and Morris water maze test were used to detect the motor, learning, and memory ability. Hematoxylin-eosin (HE) staining was used to observe the damage of cells in hippocampus and cortex. Immunofluorescence (IF) staining was used to detect the expression and distribution of amyloid-β 1-40 (Aβ1-40), amyloid-β 1-42 (Aβ1-42), and 5-methylcytosine (5-mC) in hippocampus and cortex. Western blotting (WB) was used to determine the expression of Aβ and DNA methyltransferases- (DNMTs-) related proteins in the cortex. Enzyme-linked immunosorbent assay (ELISA) was performed to detect homocysteine (Hcy) level (ELISA). Results Feeding of HMD decreased the body weight and food intake of mice. Behavioral testing revealed that HMD caused learning, memory, and motor ability impairment in the mice. HE staining results showed that HMD feeding caused damage of hippocampal and cortical neurons, along with disordered cell arrangement, and loss of neurons. Furthermore, HMD increased the contents of Aβ1-40, Aβ1-42, and 5-mC in the hippocampus and cortex. WB results showed that HMD increased the expression of Aβ production-related proteins, such as amyloid precursor protein (APP) and beta-secretase 1 (BACE1), and decreased the expression of Aβ metabolism-related protein in the cortex, including insulin-degrading enzyme (IDE) and neprilysin (NEP). Additionally, the decreased expression of DNA methyltransferase1 (DNMT1) was observed in HMD-treated mice, but there was no significant change of DNMT3a level. ELISA results showed that HMD increased the levels of Hcy in serum. Conclusion Our result suggested that the HMD can cause neurotoxicity, leading to AD-like symptoms in mice, which may be related to 5-mC elevated.
Collapse
|
42
|
Sousa Neto I, Fontes W, Prestes J, Marqueti R. Impact of paternal exercise on physiological systems in the offspring. Acta Physiol (Oxf) 2021; 231:e13620. [PMID: 33606364 DOI: 10.1111/apha.13620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
A significant number of studies have demonstrated that paternal exercise modulates future generations via effects on the sperm epigenome. However, comprehensive information regarding the effects of exercise performed by the father on different tissues and their clinical relevance has not yet been explored in detail. This narrative review is focused on the effects of paternal exercise training on various physiological systems of offspring. A detailed mechanistic understanding of these effects could provide crucial clues for the exercise physiology field and aid the development of therapeutic approaches to mitigate disorders in future generations. Non-coding RNA and DNA methylation are major routes for transmitting epigenetic information from parents to offspring. Resistance and treadmill exercise are the most frequently used modalities of planned and structured exercise in controlled experiments. Paternal exercise orchestrated protective effects over changes in fetus development and placenta inflammatory status. Moreover paternal exercise promoted modifications in the ncRNA profiles, gene and protein expression in the hippocampus, left ventricle, skeletal muscle, tendon, liver and pancreas in the offspring, while the transgenerational effects are unknown. Paternal exercise demonstrates clinical benefits to the offspring and provides a warning on the harmful effects of a paternal unhealthy lifestyle. Exercise in fathers is presented as one of the most logical and cost-effective ways of restoring health in the offspring and, consequently, modifying the phenotype. It is important to consider that paternal programming might have unique significance in the developmental origins of offspring diseases.
Collapse
Affiliation(s)
- Ivo Sousa Neto
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry Department of Cell Biology Institute of Biology Universidade de Brasília Brasília Distrito Federal Brazil
| | - Jonato Prestes
- Graduate Program on Physical Education Universidade Católica de Brasília Brasília Distrito Federal Brazil
| | - Rita Marqueti
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| |
Collapse
|
43
|
Roland CB, Knudsen SDP, Alomairah SA, Andersen AD, Bendix J, Clausen TD, Molsted S, Jensen AK, Teilmann G, Jespersen AP, Larsen JE, Hall GV, Andersen E, Barrès R, Mortensen OH, Maindal HT, Tarnow L, Løkkegaard ECL, Stallknecht B. Structured supervised exercise training or motivational counselling during pregnancy on physical activity level and health of mother and offspring: FitMum study protocol. BMJ Open 2021; 11:e043671. [PMID: 33741668 PMCID: PMC7986889 DOI: 10.1136/bmjopen-2020-043671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/30/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION A physically active lifestyle during pregnancy improves maternal and offspring health but can be difficult to follow. In Denmark, less than 40% of pregnant women meet physical activity (PA) recommendations. The FitMum study aims to explore strategies to increase PA during pregnancy among women with low PA and assess the health effects of PA. This paper presents the FitMum protocol, which evaluates the effects of structured supervised exercise training or motivational counselling supported by health technology during pregnancy on PA level and health of mother and offspring. METHODS AND ANALYSIS A single-site three-arm randomised controlled trial that aims to recruit 220 healthy, pregnant women with gestational age (GA) no later than week 15 and whose PA level does not exceed one hour/week. Participants are randomised to one of three groups: structured supervised exercise training consisting of three weekly exercise sessions, motivational counselling supported by health technology or a control group receiving standard care. The interventions take place from randomisation until delivery. The primary outcome is min/week of moderate-to-vigorous intensity PA (MVPA) as determined by a commercial activity tracker, collected from randomisation until GA of 28 weeks and 0-6 days, and the secondary outcome is gestational weight gain (GWG). Additional outcomes are complementary measures of PA; clinical and psychological health parameters in participant, partner and offspring; analyses of blood, placenta and breastmilk samples; process evaluation of interventions; and personal understandings of PA. ETHICS AND DISSEMINATION The study is approved by the Danish National Committee on Health Research Ethics (# H-18011067) and the Danish Data Protection Agency (# P-2019-512). Findings will be disseminated via peer-reviewed publications, at conferences, and to health professionals via science theatre performances. TRIAL REGISTRATION NUMBER NCT03679130. PROTOCOL VERSION This paper was written per the study protocol version 8 dated 28 August 2019.
Collapse
Affiliation(s)
- Caroline Borup Roland
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Signe de Place Knudsen
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Saud Abdulaziz Alomairah
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Public Health, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Anne Dsane Andersen
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Jane Bendix
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Tine D Clausen
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
- Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Stig Molsted
- Department of Clinical Research, Nordsjaellands Hospital, Hillerod, Denmark
| | - Andreas Kryger Jensen
- Department of Clinical Research, Nordsjaellands Hospital, Hillerod, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Grete Teilmann
- Department of Paediatrics, Nordsjaellands Hospital, Hillerod, Denmark
| | - Astrid Pernille Jespersen
- The Saxo Institute, University of Copenhagen, Centre for Health Research in the Humanities, Copenhagen, Denmark
| | - Jakob Eg Larsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Emil Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hartvig Mortensen
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Helle Terkildsen Maindal
- Department of Public Health, Aarhus Universitet, Aarhus, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Lise Tarnow
- Steno Diabetes Center Copenhagen, Holbaek, Denmark
| | - Ellen Christine Leth Løkkegaard
- Department of Gynaecology and Obstetrics, Nordsjaellands Hospital, Hillerod, Denmark
- Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
44
|
Pillon NJ, Loos RJF, Marshall SM, Zierath JR. Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care. Cell 2021; 184:1530-1544. [PMID: 33675692 PMCID: PMC9191863 DOI: 10.1016/j.cell.2021.02.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
The prevalence of type 2 diabetes and obesity has risen dramatically for decades and is expected to rise further, secondary to the growing aging, sedentary population. The strain on global health care is projected to be colossal. This review explores the latest work and emerging ideas related to genetic and environmental factors influencing metabolism. Translational research and clinical applications, including the impact of the COVID-19 pandemic, are highlighted. Looking forward, strategies to personalize all aspects of prevention, management and care are necessary to improve health outcomes and reduce the impact of these metabolic diseases.
Collapse
Affiliation(s)
- Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sally M Marshall
- Diabetes Research Group, Translational and Clinical Research Institute, Faculty of Clinical Medical Sciences, Newcastle University, 4(th) Floor William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
45
|
Yue H, Liu W, Zhang W, Jia M, Huang F, Du F, Xu T. Dietary low ratio of n-6/n-3 polyunsaturated fatty acids improve type 2 diabetes mellitus via activating brown adipose tissue in male mice. J Food Sci 2021; 86:1058-1065. [PMID: 33590526 DOI: 10.1111/1750-3841.15645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
The ratio n-6/n-3 polyunsaturated fatty acids (PUFA) has been caused widespread discussion. However, the best ratio and mechanism of n-6/n-3 PUFA in type 2 diabetes mellitus (T2DM) are largely unknown. This study investigated the effects of different ratio of n-6/n-3 PUFA diets on brown adipose tissue (BAT) and T2DM in mice. Results showed that compared with high ratio of n-6/n-3 PUFA (50:1) diet, lower ratio of n-6/n-3 PUFA (1:1 and 5:1) diets significantly increased BAT mass by 67.55% and 60.49%, decreased the fasting blood glucose (24.87% and 20.64%), total cholesterol (32.9% and 23.84%), triglyceride (33.51% and 29.62%), low-density lipoprotein cholesterol (19.23% and 17.38%), and increased glucose tolerance by 21.99% and 15.52%. Further, qRT-PCR analyses indicated that lower ratio of n-6/n-3 PUFA diets activated BAT, increased the expression of Ucp1, β-3AR, PPAR-γ, cAMP, GLU1, HSL, LPL, and PGC-1α, further improved lipid and glucose metabolism in T2DM mice. In conclusion, this study substantiated that the lower ratio of n-6/n-3 PUFA (1:1 and 5:1) improve symptoms associated with T2DM via activating BAT. PRACTICAL APPLICATION: Dietary ratio of n-6/n-3 polyunsaturated fatty acids is essential for the improvement of chronic diseases. Our current study showed that 1:1 or 5:1 ratio of n-6/n-3 polyunsaturated fatty acids had better efficiency for type 2 diabetes mellitus via activating brown adipose tissue when compared with 1:50. This finding provided useful guidance for the daily diet of patients with diabetes.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Wenlong Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Min Jia
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Fenghong Huang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Fangling Du
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Jinan, China
| |
Collapse
|
46
|
Takeshima H, Niwa T, Yamashita S, Takamura-Enya T, Iida N, Wakabayashi M, Nanjo S, Abe M, Sugiyama T, Kim YJ, Ushijima T. TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest 2021; 130:5370-5379. [PMID: 32663196 DOI: 10.1172/jci124070] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/07/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic inflammation is deeply involved in various human disorders, such as cancer, neurodegenerative disorders, and metabolic disorders. Induction of epigenetic alterations, especially aberrant DNA methylation, is one of the major mechanisms, but how it is induced is still unclear. Here, we found that expression of TET genes, methylation erasers, was downregulated in inflamed mouse and human tissues, and that this was caused by upregulation of TET-targeting miRNAs such as MIR20A, MIR26B, and MIR29C, likely due to activation of NF-κB signaling downstream of IL-1β and TNF-α. However, TET knockdown induced only mild aberrant methylation. Nitric oxide (NO), produced by NOS2, enhanced enzymatic activity of DNA methyltransferases (DNMTs), methylation writers, and NO exposure induced minimal aberrant methylation. In contrast, a combination of TET knockdown and NO exposure synergistically induced aberrant methylation, involving genomic regions not methylated by either alone. The results showed that a vicious combination of TET repression, due to NF-κB activation, and DNMT activation, due to NO production, is responsible for aberrant methylation induction in human tissues.
Collapse
Affiliation(s)
- Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tohru Niwa
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeji Takamura-Enya
- Department of Applied Chemistry, Kanagawa Institute of Technology, Kanagawa, Japan
| | - Naoko Iida
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mika Wakabayashi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Sohachi Nanjo
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Masanobu Abe
- Department of Oral and Maxillofacial Surgery, University of Tokyo Hospital, Tokyo, Japan.,Division for Health Service Promotion, University of Tokyo, Tokyo, Japan
| | - Toshiro Sugiyama
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
47
|
Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, Aubertin-Leheudre M, Bernabei R, Cadore EL, Cesari M, Chen LK, de Souto Barreto P, Duque G, Ferrucci L, Fielding RA, García-Hermoso A, Gutiérrez-Robledo LM, Harridge SDR, Kirk B, Kritchevsky S, Landi F, Lazarus N, Martin FC, Marzetti E, Pahor M, Ramírez-Vélez R, Rodriguez-Mañas L, Rolland Y, Ruiz JG, Theou O, Villareal DT, Waters DL, Won Won C, Woo J, Vellas B, Fiatarone Singh M. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J Nutr Health Aging 2021; 25:824-853. [PMID: 34409961 DOI: 10.1007/s12603-021-1665-8] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human ageing process is universal, ubiquitous and inevitable. Every physiological function is being continuously diminished. There is a range between two distinct phenotypes of ageing, shaped by patterns of living - experiences and behaviours, and in particular by the presence or absence of physical activity (PA) and structured exercise (i.e., a sedentary lifestyle). Ageing and a sedentary lifestyle are associated with declines in muscle function and cardiorespiratory fitness, resulting in an impaired capacity to perform daily activities and maintain independent functioning. However, in the presence of adequate exercise/PA these changes in muscular and aerobic capacity with age are substantially attenuated. Additionally, both structured exercise and overall PA play important roles as preventive strategies for many chronic diseases, including cardiovascular disease, stroke, diabetes, osteoporosis, and obesity; improvement of mobility, mental health, and quality of life; and reduction in mortality, among other benefits. Notably, exercise intervention programmes improve the hallmarks of frailty (low body mass, strength, mobility, PA level, energy) and cognition, thus optimising functional capacity during ageing. In these pathological conditions exercise is used as a therapeutic agent and follows the precepts of identifying the cause of a disease and then using an agent in an evidence-based dose to eliminate or moderate the disease. Prescription of PA/structured exercise should therefore be based on the intended outcome (e.g., primary prevention, improvement in fitness or functional status or disease treatment), and individualised, adjusted and controlled like any other medical treatment. In addition, in line with other therapeutic agents, exercise shows a dose-response effect and can be individualised using different modalities, volumes and/or intensities as appropriate to the health state or medical condition. Importantly, exercise therapy is often directed at several physiological systems simultaneously, rather than targeted to a single outcome as is generally the case with pharmacological approaches to disease management. There are diseases for which exercise is an alternative to pharmacological treatment (such as depression), thus contributing to the goal of deprescribing of potentially inappropriate medications (PIMS). There are other conditions where no effective drug therapy is currently available (such as sarcopenia or dementia), where it may serve a primary role in prevention and treatment. Therefore, this consensus statement provides an evidence-based rationale for using exercise and PA for health promotion and disease prevention and treatment in older adults. Exercise prescription is discussed in terms of the specific modalities and doses that have been studied in randomised controlled trials for their effectiveness in attenuating physiological changes of ageing, disease prevention, and/or improvement of older adults with chronic disease and disability. Recommendations are proposed to bridge gaps in the current literature and to optimise the use of exercise/PA both as a preventative medicine and as a therapeutic agent.
Collapse
Affiliation(s)
- M Izquierdo
- Mikel Izquierdo, PhD, Department of Health Sciences, Public University of Navarra, Av. De Barañain s/n 31008 Pamplona (Navarra) Spain, Tel + 34 948 417876
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Krøner FH, Knudsen SDP, Roland CB, Alomairah SA, Molsted S. Validity and reliability of the Danish version of the pregnancy physical activity questionnaire to assess levels of physical activity during pregnancy. J Matern Fetal Neonatal Med 2020; 35:4566-4572. [PMID: 33292038 DOI: 10.1080/14767058.2020.1856807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Physical inactivity during pregnancy is associated with complications on the mother and child. Thus, assessments of physical activity in pregnant women is relevant. The American validated questionnaire, Pregnancy Physical Activity Questionnaire (PPAQ), measures physical activity during pregnancy, and a translated Danish version of the questionnaire is needed. OBJECTIVES To translate the original version of PPAQ into Danish (PPAQ-DK) and to determine face and content validity, and reliability of PPAQ-DK in pregnant Danish women. MATERIALS AND METHODS PPAQ was translated into Danish through a systematic process. Subsequently, face and content validity was examined on pregnant women. PPAQ-DK was revised, and the test-retest reliability of PPAQ-DK was investigated in another sample of pregnant women, where the respondents completed the questionnaire twice with one week apart, using an Intraclass Correlation Coefficient (ICC). Internal consistency reliability was determined using Cronbach´s α. RESULTS The face validity of the original PPAQ was achieved by interviews of 10 pregnant women (age (mean ± SD): 31.0 ± 3.0 years; 50% in second and 50% in third trimester) and minor changes in the revised version of PPAQ-DK were performed. The content validity was accepted by an expert panel. In 66 pregnant women (aged 30.2 ± 4.8 years; 16.7, 63.6, and 19.7% in first, second and third trimester, respectively), the ICC in the test-retest reliability was 0.79 (0.68-0.87) of the overall PPAQ score. The Cronbach's α in the internal consistency reliability analysis was 0.7 in the overall PPAQ score. CONCLUSIONS The PPAQ-DK is within acceptable reliability and is a valid and reliable tool to measure overall physical activity level of pregnant Danish women.
Collapse
Affiliation(s)
| | - Signe de Place Knudsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Gynecology and Obstetrics, Nordsjaellands Hospital, Hillerød, Denmark
| | - Caroline Borup Roland
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Gynecology and Obstetrics, Nordsjaellands Hospital, Hillerød, Denmark
| | - Saud Abdulaziz Alomairah
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Gynecology and Obstetrics, Nordsjaellands Hospital, Hillerød, Denmark.,Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Stig Molsted
- Department of Clinical Research, Nordsjaellands Hospital, Hillerød, Denmark
| |
Collapse
|
49
|
Lu X, Hu S, Liao Y, Zheng J, Zeng T, Zhong X, Liu G, Gou L, Chen L. Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth. Am J Physiol Endocrinol Metab 2020; 319:E1031-E1043. [PMID: 32954823 DOI: 10.1152/ajpendo.00090.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of Vegfb in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the Vegfb promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.
Collapse
Affiliation(s)
- Xiaodan Lu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shengqing Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyu Zhong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Geng Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Luoning Gou
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
50
|
Coman V, Vodnar DC. Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Exp Gerontol 2020; 141:111095. [PMID: 32979504 PMCID: PMC7510636 DOI: 10.1016/j.exger.2020.111095] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Our gut microbiota is a complex and dynamic ecosystem with a paramount role in shaping our metabolic and immunological functions. Recent research suggests that aging may negatively affect the composition, diversity, and function of our microbiota mainly due to alterations in diet and immunologic reactivity (i.e. immunosenescence), and increased incidence of certain diseases and, therefore, increased exposure to certain medication (e.g. antibiotics, proton pump inhibitors). In turn, this aging-related gut dysbiosis may contribute to the initiation and/or progress of other metabolic diseases, and consequently, to a decrease in healthy longevity. On the positive side, promising therapeutic interventions, such as diet supplementation with prebiotics, probiotics and synbiotics, or fecal microbiota transplantation, aimed to counteract these aging-related deleterious consequences, could improve our health, and extend our healthy lifespan. In this context, the current review aims to assess the latest progress in identifying the key elements affecting the gut microbiota of the older adults and their mechanism of action, and the effectiveness of the therapeutic interventions aimed at restoring the diversity and healthy functions of the gut microbiota in older individuals.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|