1
|
Niland S, Eble JA. Decoding the MMP14 Integrin Link: Key Player in the Secretome Landscape. Matrix Biol 2025:S0945-053X(25)00010-1. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Stewart MR, Quentel A, Manalo E, Montoya Mira J, Ranganathan S, Branchaud BP, Fischer JM, Tu E, Civitci F, Chiu YJ, Yildirim A. Profiling protease cleavage patterns in plasma for pancreatic cancer detection. Sci Rep 2024; 14:31809. [PMID: 39738320 DOI: 10.1038/s41598-024-83077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Proteases are promising biomarkers for cancer early detection. Their enzymatic activity against peptide substrates allows for their straightforward detection using low-cost tests. However, the complexity of the human proteome makes it challenging to develop sensitive and selective tests against a specific protease biomarker. Here, we report a different approach by utilizing the total protease activity in plasma samples to detect pancreatic cancer. Instead of targeting a specific protease using a specific peptide substrate, we utilized an array of 360 FRET substrates to screen for cleavage patterns in plasma samples collected from screen negatives and pancreatitis or pancreatic ductal adenocarcinoma cancer (PDAC) patients. In this proof of concept study, we first screened all 360 substrates using a small cohort (n = 13) to identify the top 5 substrates that best separate different conditions. Then, we performed a validation study using a larger cohort (n = 86) and the selected substrates. There was a statistically significant increase in the total protease activity in PDAC samples compared to screen negative and pancreatitis samples. The selected substrates detected PDAC with an area under the curve (AUC) of 0.8. This work represents a novel strategy for identifying peptide substrates for the detection of PDAC and other cancers.
Collapse
Affiliation(s)
- Morgan R Stewart
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Arnaud Quentel
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Elise Manalo
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Jose Montoya Mira
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Srivathsan Ranganathan
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Bruce P Branchaud
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Jared M Fischer
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Eugene Tu
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Fehmi Civitci
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Yu-Jui Chiu
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Adem Yildirim
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA.
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97201, USA.
| |
Collapse
|
3
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
4
|
Du F, Li J, Zhong X, Zhang Z, Zhao Y. Endothelial-to-mesenchymal transition in the tumor microenvironment: Roles of transforming growth factor-β and matrix metalloproteins. Heliyon 2024; 10:e40118. [PMID: 39568849 PMCID: PMC11577214 DOI: 10.1016/j.heliyon.2024.e40118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Cancer is a leading cause of global morbidity and mortality. Tumor cells grow in a complex microenvironment, comprising immune cells, stromal cells, and vascular cells, collaborating to support tumor growth and facilitate metastasis. Transforming growth factor-beta (TGF-β) is a multipotent factor that can not only affect fibrosis promotion but also assume distinct roles in the early and late stages of the tumor. Matrix metalloproteinases (MMPs) primarily function to degrade the extracellular matrix, a pivotal cellular player in tumor progression. Moreover, endothelial-to-mesenchymal transition (EndMT), similar to epithelial-to-mesenchymal transition, is associated with cancer progression by promoting angiogenesis, disrupting the endothelial barrier, and leading to cancer-associated fibroblasts. Recent studies have underscored the pivotal roles of TGF-β and MMPs in EndMT. This review delves into the contributions of TGF-β and MMPs, as well as their regulatory mechanisms, within the tumor microenvironment. This collective understanding offers fresh insights into the potential for combined targeted therapies in the fight against cancer.
Collapse
Affiliation(s)
- Fei Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacy, Meishan TianFu New Area People's Hospital, Meishan, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Fraissinet F, Girot H, Gillibert A, Melin A, Fettig J, Brunel V. Stability of adrenocorticotropic hormone in whole blood samples: effects of storage conditions. Biochem Med (Zagreb) 2024; 34:030702. [PMID: 39171091 PMCID: PMC11334200 DOI: 10.11613/bm.2024.030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/24/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Adrenocorticotropic hormone (ACTH) is a peptide secreted by pituitary gland that plays an important role in regulating cortisol secretion. Its determination is difficult because of instability in whole blood. Several factors that influence ACTH stability in blood before analysis have been identified: temperature, hemolysis, time to centrifugation and presence of protease inhibitors. Published results on ACTH whole blood stability seem contradictory. Materials and methods We performed a stability study in 10 healthy volunteers. Three different conditions were tested: ethylenediaminetetraacetic acid (EDTA) at 4 °C, EDTA + aprotinin at 4 °C, EDTA + aprotinin at room temperature. Stability was evaluated for 8 hours. Adrenocorticotropic hormone measurements and hemolysis index were performed respectively on Cobas e602 and c701 (Roche Diagnostics, Mannheim, Germany). We compared percentage deviations with total change limit using a threshold of 7.5%. Results We showed that ACTH is stable 8 hours with EDTA at 4 °C, 4 hours with EDTA + aprotinin at 4 °C and 2 hours with EDTA + aprotinin at 22 °C. Conclusions Aprotinin does not appear to give ACTH greater stability but can be used without exceeding 4 hours at 4 °C. Refrigerated pouch transport also seems to be more appropriate for ACTH in whole blood.
Collapse
Affiliation(s)
- François Fraissinet
- General Biochemistry Department, Institute for Clinical Biology, Rouen University Hospital, Rouen, France
- UNIROUEN, Normandie University, INSERM, U1239, NorDiC, Rouen, France
| | - Hélène Girot
- General Biochemistry Department, Institute for Clinical Biology, Rouen University Hospital, Rouen, France
| | - André Gillibert
- Biostatistics Department, Rouen University Hospital, Rouen, France
| | - Anaïs Melin
- General Biochemistry Department, Institute for Clinical Biology, Rouen University Hospital, Rouen, France
| | - Julie Fettig
- General Biochemistry Department, Institute for Clinical Biology, Rouen University Hospital, Rouen, France
| | - Valéry Brunel
- General Biochemistry Department, Institute for Clinical Biology, Rouen University Hospital, Rouen, France
| |
Collapse
|
6
|
Al-Essa MK, Al-Qudah T, Al Hadidi AKA, Alshubbak NH. Proteolysis Assays With Conserved or Aminofluorescein-Labeled Red Blood Cells. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7919329. [PMID: 39371248 PMCID: PMC11452246 DOI: 10.1155/2024/7919329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
Backgrounds: Various physiological functions and reaction cascades, as well as disease progression in the living systems, are controlled by the activity of specific proteolytic enzymes. We conducted the study to evaluate protease activity by assessing peptide fragments from either conserved or labeled red blood cells (RBCs) with aminofluorescein (AF) in the reaction media. Methods: RBCs were incubated in media containing trypsin. Subsequently, the concentration of peptide fragments in the reaction media, resulted by the digestion with trypsin from conserved cells, was estimated by 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) as an amine-reactive fluorogenic reagent. In a second approach, we conjugated AF to the conserved RBCs and then exposed AF-labeled RBCs to trypsin. This was followed by directly measuring the fluorescence intensity (FI) in the reaction media to estimate the concentration of AF-labeled peptide fragments resulting from the enzyme's activity. Results: Show a concentration- and time-dependent increase in FIs, reflecting the activity of trypsin as a proteolytic enzyme. The FIs increased significantly by 4 to 5 folds in samples treated with different enzyme concentrations, and by over 11 folds after 2 h incubation in media containing a 50 μL trypsin, as evidenced by CBQCA assays. Conclusion: These fast and affordable approaches could be applied with high reliability for the general estimation of protease activity in samples and customized for diagnostic purposes and prognostic evaluation in various diseases.
Collapse
Affiliation(s)
- Mohamed K. Al-Essa
- Department of Physiology and BiochemistryFaculty of MedicineThe University of Jordan, Amman, Jordan
| | - Tamara Al-Qudah
- Department of Physiology and BiochemistryFaculty of MedicineThe University of Jordan, Amman, Jordan
| | | | | |
Collapse
|
7
|
Noireterre A, Soudet J, Bagdiul I, Stutz F. The cullin Rtt101 promotes ubiquitin-dependent DNA-protein crosslink repair across the cell cycle. Nucleic Acids Res 2024; 52:9654-9670. [PMID: 39077933 PMCID: PMC11381328 DOI: 10.1093/nar/gkae658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
DNA-protein crosslinks (DPCs) challenge faithful DNA replication and smooth passage of genomic information. Our study unveils the cullin E3 ubiquitin ligase Rtt101 as a DPC repair factor. Genetic analyses demonstrate that Rtt101 is essential for resistance to a wide range of DPC types including topoisomerase 1 crosslinks, in the same pathway as the ubiquitin-dependent aspartic protease Ddi1. Using an in vivo inducible Top1-mimicking DPC system, we reveal the significant impact of Rtt101 ubiquitination on DPC removal across different cell cycle phases. High-throughput methods coupled with next-generation sequencing specifically highlight the association of Rtt101 with replisomes as well as colocalization with DPCs. Our findings establish Rtt101 as a main contributor to DPC repair throughout the yeast cell cycle.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
8
|
Bedja-Iacona L, Richard E, Marouillat S, Brulard C, Alouane T, Beltran S, Andres CR, Blasco H, Corcia P, Veyrat-Durebex C, Vourc’h P. Post-Translational Variants of Major Proteins in Amyotrophic Lateral Sclerosis Provide New Insights into the Pathophysiology of the Disease. Int J Mol Sci 2024; 25:8664. [PMID: 39201350 PMCID: PMC11354932 DOI: 10.3390/ijms25168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Post-translational modifications (PTMs) affecting proteins during or after their synthesis play a crucial role in their localization and function. The modification of these PTMs under pathophysiological conditions, i.e., their appearance, disappearance, or variation in quantity caused by a pathological environment or a mutation, corresponds to post-translational variants (PTVs). These PTVs can be directly or indirectly involved in the pathophysiology of diseases. Here, we present the PTMs and PTVs of four major amyotrophic lateral sclerosis (ALS) proteins, SOD1, TDP-43, FUS, and TBK1. These modifications involve acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, and enzymatic cleavage. We list the PTM positions known to be mutated in ALS patients and discuss the roles of PTVs in the pathophysiological processes of ALS. In-depth knowledge of the PTMs and PTVs of ALS proteins is needed to better understand their role in the disease. We believe it is also crucial for developing new therapies that may be more effective in ALS.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Elodie Richard
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Sylviane Marouillat
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | | | | | - Stéphane Beltran
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
9
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
10
|
Lyons PJ. Inactive metallopeptidase homologs: the secret lives of pseudopeptidases. Front Mol Biosci 2024; 11:1436917. [PMID: 39050735 PMCID: PMC11266112 DOI: 10.3389/fmolb.2024.1436917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inactive enzyme homologs, or pseudoenzymes, are proteins, found within most enzyme families, that are incapable of performing catalysis. Rather than catalysis, they are involved in protein-protein interactions, sometimes regulating the activity of their active enzyme cousins, or scaffolding protein complexes. Pseudoenzymes found within metallopeptidase families likewise perform these functions. Pseudoenzymes within the M14 carboxypeptidase family interact with collagens within the extracellular space, while pseudopeptidase members of the M12 "a disintegrin and metalloprotease" (ADAM) family either discard their pseudopeptidase domains as unnecessary for their roles in sperm maturation or utilize surface loops to enable assembly of key complexes at neuronal synapses. Other metallopeptidase families contain pseudopeptidases involved in protein synthesis at the ribosome and protein import into organelles, sometimes using their pseudo-active sites for these interactions. Although the functions of these pseudopeptidases have been challenging to study, ongoing work is teasing out the secret lives of these proteins.
Collapse
Affiliation(s)
- Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, United States
| |
Collapse
|
11
|
Baglivo I, Quaranta VN, Dragonieri S, Colantuono S, Menzella F, Selvaggio D, Carpagnano GE, Caruso C. The New Paradigm: The Role of Proteins and Triggers in the Evolution of Allergic Asthma. Int J Mol Sci 2024; 25:5747. [PMID: 38891935 PMCID: PMC11171572 DOI: 10.3390/ijms25115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Epithelial barrier damage plays a central role in the development and maintenance of allergic inflammation. Rises in the epithelial barrier permeability of airways alter tissue homeostasis and allow the penetration of allergens and other external agents. Different factors contribute to barrier impairment, such as eosinophilic infiltration and allergen protease action-eosinophilic cationic proteins' effects and allergens' proteolytic activity both contribute significantly to epithelial damage. In the airways, allergen proteases degrade the epithelial junctional proteins, allowing allergen penetration and its uptake by dendritic cells. This increase in allergen-immune system interaction induces the release of alarmins and the activation of type 2 inflammatory pathways, causing or worsening the main symptoms at the skin, bowel, and respiratory levels. We aim to highlight the molecular mechanisms underlying allergenic protease-induced epithelial barrier damage and the role of immune response in allergic asthma onset, maintenance, and progression. Moreover, we will explore potential clinical and radiological biomarkers of airway remodeling in allergic asthma patients.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Centro Malattie Apparato Digerente (CEMAD) Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Vitaliano Nicola Quaranta
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Silvano Dragonieri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Stefania Colantuono
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - David Selvaggio
- UOS di Malattie dell’Apparato Respiratorio Ospedale Cristo Re, 00167 Roma, Italy
| | - Giovanna Elisiana Carpagnano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Cristiano Caruso
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
12
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
13
|
Farooq K, Anwar Z, Khalid W, Hasan S, Afzal F, Zafar M, Ali U, Alghamdi O, AL-Farga A, Al-maaqar SM. Optimization and Detergent Compatibility of Protease Produced from Aspergillus oryzae by Utilizing Agro Wastes. ACS OMEGA 2024; 9:17446-17457. [PMID: 38645327 PMCID: PMC11025069 DOI: 10.1021/acsomega.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
The biotechnological process called solid-state fermentation (SSF) was applied for hyper production of protease by using a fungal strain called Aspergillus oryzae. From screening of 9 different local substrates (peanut shell, wheat bran, guava leaves, sugar cane bagasse, rice polish, wheat straw, corn straw, reed grass, and rice straw), peanut shells serve as the best substrates for protease production under optimized cultured conditions. The varying physiochemical parameters such as pH (2-9.5), temperature (30-52 °C), incubation time (1-10 days), inoculum size (1-8 mL), moisture level (20-125%), and substrate concentration (1-7 g) were optimized by response surface methodology (RSM). The highest activity of protease was recorded to be 1101.778 U/mL at 660 nm using peanut shell was optimum at pH 8, temperature 52 °C, incubation time 8 days, inoculum size 2 mL, moisture level 20%, and substrate concentration 2 g. The crude form of enzymes produced were further purified through ammonium sulfate precipitation, dialysis, and gel filtration chromatography. Then, purified enzymes were characterized at different pH, temperature, and incubation time. For characterization of purified protease, pH, temperature, and incubation time were 8, 52 °C, and 8 days for peanut shell and was done by one factor at a time method. Hence, isolated enzymes were alkaline in nature, i.e., alkaline proteases. Then, protease produced from peanut shells was applied to locally available detergents to increase their catalytic activity for strain removal. At last, the final results were interpreted in the form of 3D surface and contour plots using Microsoft Excel 2013 and Minitab 17 software. In conclusion, the utilization of A. oryzae and peanut shell as the substrate in the biotechnological process of SSF demonstrated successful hyper production of alkaline protease. The optimized conditions resulted in high enzyme activity and showcased the potential application of the isolated enzymes in improving the catalytic activity of locally available detergents.
Collapse
Affiliation(s)
- Komal Farooq
- Department
of Biochemistry and Biotechnology, University
of Gujrat, Gujrat 54000, Pakistan
| | - Zahid Anwar
- Department
of Biochemistry and Biotechnology, University
of Gujrat, Gujrat 54000, Pakistan
| | - Waseem Khalid
- University
Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
- Department
of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
| | - Shoaib Hasan
- Institute
of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore 54000, Pakistan
| | - Fareed Afzal
- Department
of Food Science, Government College University
Faisalabad, Faisalabad 38040, Pakistan
| | - Muddassar Zafar
- Department
of Biochemistry and Biotechnology, University
of Gujrat, Gujrat 54000, Pakistan
| | - Usman Ali
- Department
of Biochemistry and Biotechnology, University
of Gujrat, Gujrat 54000, Pakistan
| | - Othman Alghamdi
- Department
of Biochemistry, College of Science, University
of Jeddah, Jeddah 21589, Saudia
Arabia
| | - Ammar AL-Farga
- Department
of Biochemistry, College of Science, University
of Jeddah, Jeddah 21589, Saudia
Arabia
| | - Saleh M. Al-maaqar
- Department
of Biology, Faculty of Education, Albaydha
University, Al-Baydha 00967, Yemen
| |
Collapse
|
14
|
Deng Z, Feng Q, Zhao D, Huang Z. A degradome-related signature for predicting the prognosis and immunotherapy benefit in stomach adenocarcinoma based on machine learning procedure. Medicine (Baltimore) 2024; 103:e37728. [PMID: 38608069 PMCID: PMC11018154 DOI: 10.1097/md.0000000000037728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024] Open
Abstract
Stomach adenocarcinoma (STAD) is one of the subtype of gastric cancer with high invasiveness, extreme heterogeneity, high morbidity, and high mortality. The degradome is the most abundant class of cellular enzymes that play an essential role in regulating cellular activity and carcinogenesis. An integrative machine learning procedure including 10 methods was performed to develop a prognostic degradome-based prognostic signature (DPS) in TCGA, GSE15459, GSE26253, and GSE62254 datasets. Investigations of the DPS concerning immune infiltration, immunotherapy benefits, and drug priority were orchestrated. The DPS developed by Enet [alpha = 0.3] method was regarded as the optimal prognostic model. The DPS had a stable and powerful performance in predicting the clinical outcome of STAD and served as an independent risk factor in training and testing cohorts. The C-index of DPS was higher than that of age, sex, and clinical stage. STAD patients with low DPS scores had a higher abundance of B cells, CD8+ T cells, higher cytolytic scores, and T cell co-stimulation scores. Moreover, low DPS score indicated a lower tumor immune dysfunction and exclusion score, lower T cell dysfunction and exclusion score, higher PD1&CTLA4 immunophenoscore, and higher tumor mutation burden score in STAD, demonstrating a better immunotherapy response. STAD patients with a high DPS score had a lower IC50 value of common chemotherapy and targeted therapy regimens (Cisplatin, Docetaxel, Gefitinib, etc). Our study developed an optimal DPS for STAD. The DPS could predict the prognosis, risk stratification and guide treatment for STAD patients.
Collapse
Affiliation(s)
- Ziqing Deng
- Department of General Surgery, Nanchang People’s Hospital, Nanchang, China
| | - Qian Feng
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Zhao
- Department of Critical Care Medicine, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Rottenburger C, Hentschel M, Fürstner M, McDougall L, Kottoros D, Kaul F, Mansi R, Fani M, Vija AH, Schibli R, Geistlich S, Behe M, Christ ER, Wild D. In-vivo inhibition of neutral endopeptidase 1 results in higher absorbed tumor doses of [ 177Lu]Lu-PP-F11N in humans: the lumed phase 0b study. EJNMMI Res 2024; 14:37. [PMID: 38581480 PMCID: PMC10998826 DOI: 10.1186/s13550-024-01101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND A new generation of radiolabeled minigastrin analogs delivers low radiation doses to kidneys and are considered relatively stable due to less enzymatic degradation. Nevertheless, relatively low tumor radiation doses in patients indicate limited stability in humans. We aimed at evaluating the effect of sacubitril, an inhibitor of the neutral endopeptidase 1, on the stability and absorbed doses to tumors and organs by the cholecystokinin-2 receptor agonist [177Lu]Lu-PP-F11N in patients. In this prospective phase 0 study eight consecutive patients with advanced medullary thyroid carcinoma and a current somatostatin receptor subtype 2 PET/CT scan were included. Patients received two short infusions of ~ 1 GBq [177Lu]Lu-PP-F11N in an interval of ~ 4 weeks with and without Entresto® pretreatment in an open-label, randomized cross-over order. Entresto® was given at a single oral dose, containing 48.6 mg sacubitril. Adverse events were graded and quantitative SPECT/CT and blood sampling were performed. Absorbed doses to tumors and relevant organs were calculated. RESULTS Pretreatment with Entresto® showed no additional toxicity and increased the stability of [177Lu]Lu-PP-FF11N in blood significantly (p < 0.001). Median tumor-absorbed doses were 2.6-fold higher after Entresto® pretreatment (0.74 vs. 0.28 Gy/GBq, P = 0.03). At the same time, an increase of absorbed doses to stomach, kidneys and bone marrow was observed, resulting in a tumor-to-organ absorbed dose ratio not significantly different with and without Entresto®. CONCLUSIONS Premedication with Entresto® results in a relevant stabilization of [177Lu]Lu-PP-FF11N and consecutively increases radiation doses in tumors and organs. Trial registration clinicaltrails.gov, NCT03647657. Registered 20 August 2018.
Collapse
Affiliation(s)
- Christof Rottenburger
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Hentschel
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Markus Fürstner
- Division of Medical Radiation Physics, Department of Radiation Oncology, Bern University Hospital, Bern, Switzerland
| | - Lisa McDougall
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Danijela Kottoros
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Felix Kaul
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - A Hans Vija
- Molecular Imaging, Siemens Medical Solutions USA, Inc., Hoffman Estates, IL, USA
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Susanne Geistlich
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Emanuel R Christ
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Bridge HN, Leiter W, Frazier CL, Weeks AM. An N terminomics toolbox combining 2-pyridinecarboxaldehyde probes and click chemistry for profiling protease specificity. Cell Chem Biol 2024; 31:534-549.e8. [PMID: 37816350 PMCID: PMC10960722 DOI: 10.1016/j.chembiol.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Proteomic profiling of protease-generated N termini provides key insights into protease function and specificity. However, current technologies have sequence limitations or require specialized synthetic reagents for N-terminal peptide isolation. Here, we introduce an N terminomics toolbox that combines selective N-terminal biotinylation using 2-pyridinecarboxaldehyde (2PCA) reagents with chemically cleavable linkers to enable efficient enrichment of protein N termini. By incorporating a commercially available alkyne-modified 2PCA in combination with Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), our strategy eliminates the need for chemical synthesis of N-terminal probes. Using these reagents, we developed PICS2 (Proteomic Identification of Cleavage Sites with 2PCA) to profile the specificity of subtilisin/kexin-type proprotein convertases (PCSKs). We also implemented CHOPPER (chemical enrichment of protease substrates with purchasable, elutable reagents) for global sequencing of apoptotic proteolytic cleavage sites. Based on their broad applicability and ease of implementation, PICS2 and CHOPPER are useful tools that will advance our understanding of protease biology.
Collapse
Affiliation(s)
- Haley N Bridge
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - William Leiter
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Clara L Frazier
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Amy M Weeks
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
17
|
Mude L, Jupudi S, Swaroop AK, Tallapaneni V, Karri VVSR. Molecular insights in repurposing selective COX-2 inhibitor celecoxib against matrix metalloproteinases in potentiating delayed wound healing: a molecular docking and MMPB/SA based analysis of molecular dynamic simulations. J Biomol Struct Dyn 2024; 42:2437-2448. [PMID: 37160705 DOI: 10.1080/07391102.2023.2209666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a role in healing, including reducing inflammation, promoting fibroblast and keratinocyte migration, and modifying scar tissue. Due to their pleiotropic functions in the wound-healing process in diabetic wounds, MMPs constitute a significant cause of delayed wound closure. COX-2 inhibitors are proven to inhibit inflammation. The present study aims to repurpose celecoxib against MMP-2, MMP-8 and MMP-9 through in silico approaches, such as molecular docking, molecular dynamics, and MMPB/SA analysis. We considered five selective COX-2 inhibitors (celecoxib, etoricoxib, lumiracoxib, rofecoxib and valdecoxib) for our study against MMPs. Based on molecular docking study and hydrogen bonding pattern, celecoxib in complex with three MMPs was further analyzed using 1 µs (1000 ns) molecular dynamics simulation and MMPB/SA techniques. These studies identified that celecoxib exhibited significant binding affinity -8.8, -7.9 and -8.3 kcal/mol, respectively, against MMP-2, MMP-8 and MMP-9. Celecoxib formed hydrogen bonding and hydrophobic (π-π) interactions with crucial substrate pocket amino acids, which may be accountable for their inhibitory nature. The MMPB/SA studies showed that electrostatic and van der Waal energy terms favoured the total free binding energy component, while polar solvation terms were highly disfavored. The in silico analysis of the secondary structures showed that the celecoxib binding conformation maintains relatively stable along the simulation trajectories. These findings provide some key clues regarding the accommodation of celecoxib in the substrate binding S1' pocket and also provide structural insights and challenges in repurposing drugs as new MMP inhibitors with anti-inflammatory and anti-inflammatory wound-healing properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lavanya Mude
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Vyshnavi Tallapaneni
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Veera Venkata Satyanarayana Reddy Karri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
- Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
18
|
Chan ED, King PT, Bai X, Schoffstall AM, Sandhaus RA, Buckle AM. The Inhibition of Serine Proteases by Serpins Is Augmented by Negatively Charged Heparin: A Concise Review of Some Clinically Relevant Interactions. Int J Mol Sci 2024; 25:1804. [PMID: 38339082 PMCID: PMC10855260 DOI: 10.3390/ijms25031804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Serine proteases are members of a large family of hydrolytic enzymes in which a particular serine residue in the active site performs an essential role as a nucleophile, which is required for their proteolytic cleavage function. The array of functions performed by serine proteases is vast and includes, among others, the following: (i) the ability to fight infections; (ii) the activation of blood coagulation or blood clot lysis systems; (iii) the activation of digestive enzymes; and (iv) reproduction. Serine protease activity is highly regulated by multiple families of protease inhibitors, known collectively as the SERine Protease INhibitor (SERPIN). The serpins use a conformational change mechanism to inhibit proteases in an irreversible way. The unusual conformational change required for serpin function provides an elegant opportunity for allosteric regulation by the binding of cofactors, of which the most well-studied is heparin. The goal of this review is to discuss some of the clinically relevant serine protease-serpin interactions that may be enhanced by heparin or other negatively charged polysaccharides. The paired serine protease-serpin in the framework of heparin that we review includes the following: thrombin-antithrombin III, plasmin-anti-plasmin, C1 esterase/kallikrein-C1 esterase inhibitor, and furin/TMPRSS2 (serine protease Transmembrane Protease 2)-alpha-1-antitrypsin, with the latter in the context of COVID-19 and prostate cancer.
Collapse
Affiliation(s)
- Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul T. King
- Medicine Monash Health, Monash University, Clayton, VIC 3800, Australia
| | - Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Allen M. Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | | | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Replay, San Diego, CA 92121, USA
| |
Collapse
|
19
|
Rai P, Hoba SN, Buchmann C, Subirana-Slotos RJ, Kersten C, Schirmeister T, Endres K, Bufe B, Tarasov A. Protease detection in the biosensor era: A review. Biosens Bioelectron 2024; 244:115788. [PMID: 37952320 DOI: 10.1016/j.bios.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Proteases have been proposed as potential biomarkers for several pathological conditions including cancers, multiple sclerosis and cardiovascular diseases, due to their ability to break down the components of extracellular matrix and basement membrane. The development of protease biosensors opened up the possibility to investigate the proteolytic activity of dysregulated proteases with higher efficiency over the traditional detection assays due to their quick detection capability, high sensitivity and selectivity, simple instrumentation and cost-effective fabrication processes. In contrast to the recently published review papers that primarily focused on one specific class of proteases or one specific detection method, this review article presents different optical and electrochemical detection methods that can be used to design biosensors for all major protease families. The benefits and drawbacks of various transducer techniques integrated into protease biosensing platforms are analyzed and compared. The main focus is on activity-based biosensors that use peptides as biorecognition elements. The effects of nanomaterials on biosensor performance are also discussed. This review should help readers to select the biosensor that best fits their needs, and contribute to the further development of this research field. Protease biosensors may allow better comprehension of protease overexperession and potentially enable novel devices for point-of-care testing.
Collapse
Affiliation(s)
- Pratika Rai
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Celine Buchmann
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Robert J Subirana-Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Bernd Bufe
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Alexey Tarasov
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany.
| |
Collapse
|
20
|
Costa D, Scalise E, Ielapi N, Bracale UM, Andreucci M, Serra R. Metalloproteinases as Biomarkers and Sociomarkers in Human Health and Disease. Biomolecules 2024; 14:96. [PMID: 38254696 PMCID: PMC10813678 DOI: 10.3390/biom14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Metalloproteinases (MPs) are zinc-dependent enzymes with proteolytic activity and a variety of functions in the pathophysiology of human diseases. The main objectives of this review are to analyze a specific family of MPs, the matrix metalloproteinases (MMPs), in the most common chronic and complex diseases that affect patients' social lives and to better understand the nature of the associations between MMPs and the psychosocial environment. In accordance with the PRISMA extension for a scoping review, an examination was carried out. A collection of 24 studies was analyzed, focusing on the molecular mechanisms of MMP and their connection to the manifestation of social aspects in human disease. The complexity of the relationship between MMP and social problems is presented via an interdisciplinary approach based on complexity paradigm as a new approach for conceptualizing knowledge in health research. Finally, two implications emerge from the study: first, the psychosocial states of individuals have a profound impact on their overall health and disease conditions, which implies the importance of adopting a holistic perspective on human well-being, encompassing both physical and psychosocial aspects. Second, the use of MPs as biomarkers may provide physicians with valuable tools for a better understanding of disease when used in conjunction with "sociomarkers" to develop mathematical predictive models.
Collapse
Affiliation(s)
- Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Enrica Scalise
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Rome, Italy;
| | | | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
21
|
Gomez-Cardona E, Eskandari-Sedighi G, Fahlman R, Westaway D, Julien O. Application of N-Terminal Labeling Methods Provide Novel Insights into Endoproteolysis of the Prion Protein in Vivo. ACS Chem Neurosci 2024; 15:134-146. [PMID: 38095594 PMCID: PMC10768724 DOI: 10.1021/acschemneuro.3c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
Alternative α- and β-cleavage events in the cellular prion protein (PrPC) central region generate fragments with distinct biochemical features that affect prion disease pathogenesis, but the assignment of precise cleavage positions has proven challenging. Exploiting mouse transgenic models expressing wild-type (WT) PrPC and an octarepeat region mutant allele (S3) with increased β-fragmentation, cleavage sites were defined using LC-MS/MS in conjunction with N-terminal enzymatic labeling and chemical in-gel acetylation. Our studies profile the net proteolytic repertoire of the adult brain, as deduced from defining hundreds of proteolytic events in other proteins, and position individual cleavage events in PrPC α- and β-target areas imputed from earlier, lower resolution methods; these latter analyses established site heterogeneity, with six cleavage sites positioned in the β-cleavage region of WT PrPC and nine positions for S3 PrPC. Regarding α-cleavage, aside from reported N-termini at His110 and Val111, we identified a total of five shorter fragments in the brain of both mice lines. We infer that aminopeptidase activity in the brain could contribute to the ragged N-termini observed around PrPC's α- and β-cleavage sites, with this work providing a point of departure for further in vivo studies of brain proteases.
Collapse
Affiliation(s)
- Erik Gomez-Cardona
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ghazaleh Eskandari-Sedighi
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Center
for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - David Westaway
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Center
for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
- Department
of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
22
|
Saha A, Pushpa, Moitra S, Basak D, Brahma S, Mondal D, Molla SH, Samadder A, Nandi S. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis. Curr Med Chem 2024; 31:2135-2169. [PMID: 37340748 DOI: 10.2174/0929867330666230619160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs. INTRODUCTION This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition. METHODS A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic. RESULTS Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies. CONCLUSION Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
Collapse
Affiliation(s)
- Aloke Saha
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Pushpa
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Susmita Moitra
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Deblina Basak
- Endocrinology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sayandeep Brahma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Dipu Mondal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
23
|
Afshar K, Sanaei MJ, Ravari MS, Pourbagheri-Sigaroodi A, Bashash D. An overview of extracellular matrix and its remodeling in the development of cancer and metastasis with a glance at therapeutic approaches. Cell Biochem Funct 2023; 41:930-952. [PMID: 37665068 DOI: 10.1002/cbf.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The extracellular matrix (ECM) is an inevitable part of tissues able to provide structural support for cells depending on the purpose of tissues and organs. The dynamic characteristics of ECM let this system fluently interact with the extrinsic triggers and get stiffed, remodeled, and/or degraded ending in maintaining tissue homeostasis. ECM could serve as the platform for cancer progression. The dysregulation of biochemical and biomechanical ECM features might take participate in some pathological conditions such as aging, tissue destruction, fibrosis, and particularly cancer. Tumors can reprogram how ECM remodels by producing factors able to induce protein synthesis, matrix proteinase expression, degradation of the basement membrane, growth signals and proliferation, angiogenesis, and metastasis. Therefore, targeting the ECM components, their secretion, and their interactions with other cells or tumors could be a promising strategy in cancer therapies. The present study initially introduces the physiological functions of ECM and then discusses how tumor-dependent dysregulation of ECM could facilitate cancer progression and ends with reviewing the novel therapeutic strategies regarding ECM.
Collapse
Affiliation(s)
- Kimiya Afshar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Chen K, Lu S, Song J, Dou X, Wei X, Wang X, Liu X, Feng C. The selective regulation of immune responses by matrix metalloproteinase MMP14 in Ostrinia furnacalis. INSECT SCIENCE 2023; 30:1622-1636. [PMID: 37209089 DOI: 10.1111/1744-7917.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 05/22/2023]
Abstract
Matrix metalloproteinases (MMPs) are crucial for tissue remodeling and immune responses in insects, yet it remains unclear how MMPs affect the various immune processes against pathogenic infections and whether the responses vary among insects. In this study, we used the lepidopteran pest Ostrinia furnacalis larvae to address these questions by examining the changes of immune-related gene expression and antimicrobial activity after the knockdown of MMP14 and bacterial infections. We identified MMP14 in O. furnacalis using the rapid amplification of complementary DNA ends (RACE), and found that it was conserved and belonged to the MMP1 subfamily. Our functional investigations revealed that MMP14 is an infection-responsive gene, and its knockdown reduces phenoloxidase (PO) activity and Cecropin expression, while the expressions of Lysozyme, Attacin, Gloverin, and Moricin are enhanced after MMP14 knockdown. Further PO and lysozyme activity determinations showed consistent results with gene expression of these immune-related genes. Finally, the knockdown of MMP14 decreased larvae survival to bacterial infections. Taken together, our data indicate that MMP14 selectively regulates the immune responses, and is required to defend against bacterial infections in O. furnacalis larvae. Conserved MMPs may serve as a potential target for pest control using a combination of double-stranded RNA and bacterial infection.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shiqi Lu
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiahui Song
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Xiangyi Wei
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyan Wang
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Liu
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
25
|
de Oliveira SG, Kotowski N, Sampaio-Filho HR, Aguiar FHB, Dávila AMR, Jardim R. Metalloproteinases in Restorative Dentistry: An In Silico Study toward an Ideal Animal Model. Biomedicines 2023; 11:3042. [PMID: 38002041 PMCID: PMC10669239 DOI: 10.3390/biomedicines11113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 11/26/2023] Open
Abstract
In dentistry, various animal models are used to evaluate adhesive systems, dental caries and periodontal diseases. Metalloproteinases (MMPs) are enzymes that degrade collagen in the dentin matrix and are categorized in over 20 different classes. Collagenases and gelatinases are intrinsic constituents of the human dentin organic matrix fibrillar network and are the most abundant MMPs in this tissue. Understanding such enzymes' action on dentin is important in the development of approaches that could reduce dentin degradation and provide restorative procedures with extended longevity. This in silico study is based on dentistry's most used animal models and intends to search for the most suitable, evolutionarily close to Homo sapiens. We were able to retrieve 176,077 mammalian MMP sequences from the UniProt database. These sequences were manually curated through a three-step process. After such, the remaining 3178 sequences were aligned in a multifasta file and phylogenetically reconstructed using the maximum likelihood method. Our study inferred that the animal models most evolutionarily related to Homo sapiens were Orcytolagus cuniculus (MMP-1 and MMP-8), Canis lupus (MMP-13), Rattus norvegicus (MMP-2) and Orcytolagus cuniculus (MMP-9). Further research will be needed for the biological validation of our findings.
Collapse
Affiliation(s)
- Simone Gomes de Oliveira
- Piracicaba School of Dentistry, Campinas State University, Piracicaba 13414-903, SP, Brazil
- School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil
| | - Nelson Kotowski
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| | | | | | - Alberto Martín Rivera Dávila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| | - Rodrigo Jardim
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| |
Collapse
|
26
|
Tamargo-Gómez I, Martínez-García GG, Suárez MF, Mayoral P, Bretones G, Astudillo A, Prieto-Lloret J, Sveen C, Fueyo A, Engedal N, López-Otín C, Mariño G. Analysis of ATG4C function in vivo. Autophagy 2023; 19:2912-2933. [PMID: 37459465 PMCID: PMC10549197 DOI: 10.1080/15548627.2023.2234799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023] Open
Abstract
ABBREVIATIONS ATG4 (autophagy related 4 cysteine peptidase); ATG4A (autophagy related 4A cysteine peptidase); ATG4B (autophagy related 4B cysteine peptidase); ATG4C (autophagy related 4C cysteine peptidase); ATG4D (autophagy related 4D cysteine peptidase); Atg8 (autophagy related 8); GABARAP (GABA type A receptor-associated protein); GABARAPL1(GABA type A receptor-associated protein like 1); GABARAPL2 (GABA type A receptor-associated protein like 2); MAP1LC3A/LC3A (microtubule associated protein 1 light chain 3 alpha); MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta); mATG8 (mammalian Atg8); PE (phosphatidylethanolamine); PS (phosphatydylserine); SQSTM1/p62 (sequestosome 1).
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
| | - Gemma G. Martínez-García
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
| | - María F. Suárez
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pablo Mayoral
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Spain
| | - Gabriel Bretones
- Instituto Universitario de Oncología (IUOPA), Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Spain
| | - Aurora Astudillo
- Instituto Universitario de Oncología (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
- Biobanco Del Principado de Asturias (BBPA_ISPA_IUOPA), Registro Nacional de Biobancos PT20/161, Oviedo, Spain
| | - Jesús Prieto-Lloret
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid. Instituto de Biología y Genética Molecular-CSIC, Valladolid, Spain
| | - Christina Sveen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Antonio Fueyo
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
| | - Nikolai Engedal
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Carlos López-Otín
- Instituto Universitario de Oncología (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Spain
| | - Guillermo Mariño
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
27
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
28
|
Marafie SK, Al-Mulla F. An Overview of the Role of Furin in Type 2 Diabetes. Cells 2023; 12:2407. [PMID: 37830621 PMCID: PMC10571965 DOI: 10.3390/cells12192407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Post-translational modifications (PTMs) play important roles in regulating several human diseases, like cancer, neurodegenerative disorders, and metabolic disorders. Investigating PTMs' contribution to protein functions is critical for modern biology and medicine. Proprotein convertases (PCs) are irreversible post-translational modifiers that have been extensively studied and are considered as key targets for novel therapeutics. They cleave proteins at specific sites causing conformational changes affecting their functions. Furin is considered as a PC model in regulating growth factors and is involved in regulating many pro-proteins. The mammalian target of the rapamycin (mTOR) signaling pathway is another key player in regulating cellular processes and its dysregulation is linked to several diseases including type 2 diabetes (T2D). The role of furin in the context of diabetes has been rarely explored and is currently lacking. Moreover, furin variants have altered activity that could have implications on overall health. In this review, we aim to highlight the role of furin in T2D in relation to mTOR signaling. We will also address furin genetic variants and their potential effect on T2D and β-cell functions. Understanding the role of furin in prediabetes and dissecting it from other confounding factors like obesity is crucial for future therapeutic interventions in metabolic disorders.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
29
|
Vats L, Arya P, Kumar R, Giovannuzzi S, Raghav N, Supuran CT, Sharma PK. Keto-bridged dual triazole-linked benzenesulfonamides as potent carbonic anhydrase and cathepsin B inhibitors. Future Med Chem 2023; 15:1843-1863. [PMID: 37877291 DOI: 10.4155/fmc-2023-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Background: Inhibition of human carbonic anhydrase (hCA) isoforms IX and XII with concurrent inhibition of cathepsin B is a promising approach for targeting cancers. Methods/results: 28 keto-bridged dual triazole-containing benzenesulfonamides were synthesized and tested, following the multitarget approach, for their efficacy as inhibitors of cathepsin B and hCA isoforms (I, II, IX, XII). The synthesized compounds showed excellent inhibition of CA isoforms (IX and XII) and cathepsin B. Compound 8i exhibited better and more selective inhibition of the cancer-associated isoform hCA IX as compared with acetazolamide (reference drug) and SLC-0111 (potent lead as carbonic anhydrase inhibitor). Molecular docking studies were also carried out. Conclusion: The present work gives important generalizations for the development of isoform-selective hCA inhibitors endowed with anti-cathepsin properties.
Collapse
Affiliation(s)
- Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, 136128, India
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Rajiv Kumar
- Ch. Mani Ram Godara Government College for Women, Bhodia Khera, Fatehabad, Haryana, 125050, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical & Nutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical & Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| |
Collapse
|
30
|
Wang Y, Zhu Y, Wang Y, Chang Y, Geng F, Ma M, Gu Y, Yu A, Zhu R, Yu P, Sha Z, Qi S, Li J, Zhao W, Pan W, Zhang R, Yu F. Proteolytic activation of angiomotin by DDI2 promotes angiogenesis. EMBO J 2023; 42:e112900. [PMID: 37350545 PMCID: PMC10390880 DOI: 10.15252/embj.2022112900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
The scaffolding protein angiomotin (AMOT) is indispensable for vertebrate embryonic angiogenesis. Here, we report that AMOT undergoes cleavage in the presence of lysophosphatidic acid (LPA), a lipid growth factor also involved in angiogenesis. AMOT cleavage is mediated by aspartic protease DNA damage-inducible 1 homolog 2 (DDI2), and the process is tightly regulated by a signaling axis including neurofibromin 2 (NF2), tankyrase 1/2 (TNKS1/2), and RING finger protein 146 (RNF146), which induce AMOT membrane localization, poly ADP ribosylation, and ubiquitination, respectively. In both zebrafish and mice, the genetic inactivation of AMOT cleavage regulators leads to defective angiogenesis, and the phenotype is rescued by the overexpression of AMOT-CT, a C-terminal AMOT cleavage product. In either physiological or pathological angiogenesis, AMOT-CT is required for vascular expansion, whereas uncleavable AMOT represses this process. Thus, our work uncovers a signaling pathway that regulates angiogenesis by modulating a cleavage-dependent activation of AMOT.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yebin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yue Chang
- School of Life SciencesFudan UniversityShanghaiChina
- TaiKang Medical School (School of Basic Medical Sciences), Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan UniversityWuhanChina
| | - Fang Geng
- School of Life SciencesFudan UniversityShanghaiChina
- TaiKang Medical School (School of Basic Medical Sciences), Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan UniversityWuhanChina
| | - Mingyue Ma
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Aijuan Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Pengcheng Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhao Sha
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jian Li
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wencao Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS)ShanghaiChina
| | - Weijun Pan
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS)ShanghaiChina
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan UniversityWuhanChina
| | - Fa‐Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
31
|
Zabiegala A, Kim Y, Chang KO. Roles of host proteases in the entry of SARS-CoV-2. ANIMAL DISEASES 2023; 3:12. [PMID: 37128508 PMCID: PMC10125864 DOI: 10.1186/s44149-023-00075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023] Open
Abstract
The spike protein (S) of SARS-CoV-2 is responsible for viral attachment and entry, thus a major factor for host susceptibility, tissue tropism, virulence and pathogenicity. The S is divided with S1 and S2 region, and the S1 contains the receptor-binding domain (RBD), while the S2 contains the hydrophobic fusion domain for the entry into the host cell. Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various cleavage sites. In this article, we review host proteases including furin, trypsin, transmembrane protease serine 2 (TMPRSS2) and cathepsins in the activation of SARS-CoV-2 S. Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin. The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2, and the binding triggers further conformational changes and exposure of the S2' site to proteases such as type II transmembrane serine proteases (TTPRs) including TMPRSS2. In the presence of TMPRSS2 on the target cells, SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane. In the absence of TMPRSS2, SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry. Additional host proteases involved in the cleavage of the S were discussed. This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2, and discussed the dual roles of such inhibitors in virus replication.
Collapse
Affiliation(s)
- Alexandria Zabiegala
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| |
Collapse
|
32
|
Raheem SJ, Salih AK, Garcia MD, Sharpe JC, Toosi BM, Price EW. A Systematic Investigation into the Influence of Net Charge on the Biological Distribution of Radiometalated Peptides Using [ 68Ga]Ga-DOTA-TATE Derivatives. Bioconjug Chem 2023; 34:549-561. [PMID: 36800496 DOI: 10.1021/acs.bioconjchem.3c00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Recently, several radiometalated peptides have been approved for clinical imaging and/or therapy (theranostics) of several types of cancer; nonetheless, the primary challenge that most of these peptides confront is significant renal uptake and retention, which is often dose limiting and can cause nephrotoxicity. In response to this, numerous methods have been employed to reduce the uptake of radiometalated peptides in the kidneys, and among these is adding a linker to modulate polarity and/or charge. To better understand the influence of net charge on the biodistribution of radiometalated peptides, we selected the clinically popular construct DOTA-TATE (NETSPOT/LUTATHERA) as a model system. We synthesized derivatives using manual solid-phase peptide synthesis methods including mechanical and ultrasonic agitation to effectively yield the gold standard DOTA-TATE and a series of derivatives with different net charges (+2, +1, 0, -1, -2). Dynamic PET imaging from 0 to 90 min in healthy female mice (CD1) revealed high accumulation and retention of activity in the kidneys for the net-neutral (0) charged [68Ga]Ga-DOTA-TATE and even higher for positively charged derivatives, whereas negatively charged derivatives exhibited low accumulation and fast renal excretion. Ex vivo biodistribution at 2 h post injection demonstrated a significant retention of [68Ga]Ga-DOTA-TATE (∼74 %ID/g) in the kidneys, which increased as the net positive charge per molecule increased to +1 and +2 (∼272 %ID/g and ∼333 %ID/g, respectively), but the -1 and -2 net charged molecules exhibited lower renal uptake (∼15 %ID/g and 16 %ID/g, respectively). Interestingly, the net -2 charged [68Ga]Ga-DOTA-(Glu)2-PEG4-TATE was stable in blood serum but had much higher healthy organ uptake (lungs, liver, spleen) than the net -1 compound, suggesting instability in vivo. Although the [68Ga]Ga-DOTA-PEG4-TATE derivative with a net charge of 0 also showed a decrease in kidney uptake, it also showed instability in blood serum and in vivo. Despite the superior pharmacokinetics of the net -1 charged [68Ga]Ga-DOTA-Glu-PEG4-TATE in healthy mice with respect to kidney uptake and overall profile, dynamic PET images and ex vivo biodistribution in male mice (NSG) bearing AR42J (SSTR2 overexpressing) subcutaneous tumor xenografts showed significantly diminished tumor uptake when compared to the gold standard [68Ga]Ga-DOTA-TATE. Taken together, these findings indicate unambiguously that kidney uptake and retention are significantly influenced by the net charge of peptide-based radiotracers. In addition, it was illustrated that the negatively charged peptides had substantially decreased kidney uptake, but in this instantiation the tumor uptake was also impaired.
Collapse
Affiliation(s)
- Shvan J Raheem
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Akam K Salih
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Moralba Dominguez Garcia
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Jessica C Sharpe
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N-5B4, Saskatoon, Saskatchewan, Canada
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N-5B4, Saskatoon, Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
33
|
Luo Y, Ye Y, Chen Y, Zhang C, Sun Y, Wang C, Ou J. A degradome-based prognostic signature that correlates with immune infiltration and tumor mutation burden in breast cancer. Front Immunol 2023; 14:1140993. [PMID: 36993976 PMCID: PMC10040797 DOI: 10.3389/fimmu.2023.1140993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionFemale breast cancer is the most common malignancy worldwide, with a high disease burden. The degradome is the most abundant class of cellular enzymes that play an essential role in regulating cellular activity. Dysregulation of the degradome may disrupt cellular homeostasis and trigger carcinogenesis. Thus we attempted to understand the prognostic role of degradome in breast cancer by means of establishing a prognostic signature based on degradome-related genes (DRGs) and assessed its clinical utility in multiple dimensions.MethodsA total of 625 DRGs were obtained for analysis. Transcriptome data and clinical information of patients with breast cancer from TCGA-BRCA, METABRIC and GSE96058 were collected. NetworkAnalyst and cBioPortal were also utilized for analysis. LASSO regression analysis was employed to construct the degradome signature. Investigations of the degradome signature concerning clinical association, functional characterization, mutation landscape, immune infiltration, immune checkpoint expression and drug priority were orchestrated. Cell phenotype assays including colony formation, CCK8, transwell and wound healing were conducted in MCF-7 and MDA-MB-435S breast cancer cell lines, respectively.ResultsA 10-gene signature was developed and verified as an independent prognostic predictor combined with other clinicopathological parameters in breast cancer. The prognostic nomogram based on risk score (calculated based on the degradome signature) showed favourable capability in survival prediction and advantage in clinical benefit. High risk scores were associated with a higher degree of clinicopathological events (T4 stage and HER2-positive) and mutation frequency. Regulation of toll-like receptors and several cell cycle promoting activities were upregulated in the high-risk group. PIK3CA and TP53 mutations were dominant in the low- and high-risk groups, respectively. A significantly positive correlation was observed between the risk score and tumor mutation burden. The infiltration levels of immune cells and the expressions of immune checkpoints were significantly influenced by the risk score. Additionally, the degradome signature adequately predicted the survival of patients undergoing endocrinotherapy or radiotherapy. Patients in the low-risk group may achieve complete response after the first round of chemotherapy with cyclophosphamide and docetaxel, whereas patients in the high-risk group may benefit from 5-flfluorouracil. Several regulators of the PI3K/AKT/mTOR signaling pathway and the CDK family/PARP family were identified as potential molecular targets in the low- and high-risk groups, respectively. In vitro experiments further revealed that the knockdown of ABHD12 and USP41 significantly inhibit the proliferation, invasion and migration of breast cancer cells.ConclusionMultidimensional evaluation verified the clinical utility of the degradome signature in predicting prognosis, risk stratification and guiding treatment for patients with breast cancer.
Collapse
Affiliation(s)
- Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Chenguang Zhang
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yutian Sun
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengwei Wang
- Cancer Research Institute of Xinjiang Uygur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| | - Jianghua Ou
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| |
Collapse
|
34
|
Poma N, Vivaldi F, Bonini A, Biagini D, Bottai D, Tavanti A, Di Francesco F. Voltammetric sensing of trypsin activity using gelatin as a substrate. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
35
|
Permethrin as a Potential Furin Inhibitor through a Novel Non-Competitive Allosteric Inhibition. Molecules 2023; 28:molecules28041883. [PMID: 36838867 PMCID: PMC9959265 DOI: 10.3390/molecules28041883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Furin is a potential target protein associated with numerous diseases; especially closely related to tumors and multiple viral infections including SARS-CoV-2. Most of the existing efficient furin inhibitors adopt a substrate analogous structure, and other types of small molecule inhibitors need to be discovered urgently. In this study, a high-throughput screening combining virtual and physical screening of natural product libraries was performed, coupled with experimental validation and preliminary mechanistic assays at the molecular level, cellular level, and molecular simulation. A novel furin inhibitor, permethrin, which is a derivative from pyrethrin I generated by Pyrethrum cinerariifolium Trev. was identified, and this study confirmed that it binds to a novel allosteric pocket of furin through non-competitive inhibition. It exhibits a very favorable protease-selective inhibition and good cellular activity and specificity. In summary, permethrin shows a new parent nucleus with a new mode of inhibition. It could be used as a highly promising lead compound against furin for targeting related tumors and various resistant viral infections, including SARS-CoV-2.
Collapse
|
36
|
Carvalho R, Bonfá IS, de Araújo Isaías Muller J, Pando SC, Toffoli-Kadri MC. Protease inhibitor from Libidibia ferrea seeds attenuates inflammatory and nociceptive responses in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115694. [PMID: 36096346 DOI: 10.1016/j.jep.2022.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Libidibia ferrea (Mart. ex. Tul.) L.P. Queiroz is a Brazilian native tree locally known as jucá and pau-ferro, and it has been used in folk medicine for relieving, asthma, bronchitis, sore throat, rheumatism, enterocolitis and fever. The anti-inflammatory properties of L. ferrea were confirmed for its stem, fruit, leaves, bark and seeds extracts, however little is known about the natural compounds that may be associated with that response. AIM OF THIS STUDY In a normal physiological condition, many enzymes play an important role in catalyzing biological functions. Among them, proteases are of great interest. Although they take part of many biological systems, as the inflammatory process, when deregulated, proteases may cause system malfunctions, such as under- or overproduction of cytokines, or immune cells activation. Thus, protease inhibitors prevent these immune responses by regulating proteases. The objective of this study was to evaluate the anti-inflammatory and anti-nociceptive response of a protease inhibitor purified from L. ferrea seeds (LfTI). MATERIALS AND METHODS In vitro (5, 50 and 250 μg/mL of LfTI) and in vivo (0.6, 3 e 15 mg/kg of LfTI) assays were performed. Male Swiss mice weighing 18-25 g were used for cell harvesting and for the in vivo assays. The anti-inflammatory activity was analyzed in vitro by macrophage cytotoxicity, hydrogen peroxide (H2O2) production, and cell adhesion assays; and in vivo by leukocyte recruitment, nitric oxide (NO) production, vascular permeability, paw edema and mast cell degranulation assays. The anti-nociceptive activity was evaluated through abdominal writhing test induced by acetic acid and formalin sensitization. RESULTS Our results showed that, in vitro, LfTI is not cytotoxic. Also, LfTI (50 μg/mL) inhibited macrophage H2O2 production (48.2%), and adhesion (48.4%). LfTI (0.6, 3 e 15 mg/kg) decreased polymorphonuclear cell recruitment dose-dependently, and it inhibited NO production (53%), vascular permeability (40.7%) and paw edema at 3 mg/kg at different time, but it did not inhibit mast cell degranulation. Besides, LfTI did not inhibit either the number of writhing or the licking time in the formalin test in the second phase (inflammatory). However, LfTI (3 mg/kg) inhibited licking time at the first phase (neurogenic) in the formalin sensitization (46.1%). CONCLUSIONS Our results show that LfTI has anti-inflammatory and antinociceptive (neurogenic pain) effects, and these effects might be associated with the inhibition of inflammatory proteases and/or protease-activated receptors activation hindering.
Collapse
Affiliation(s)
- Raquel Carvalho
- Graduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil; Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil.
| | - Iluska Senna Bonfá
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil.
| | - Jéssica de Araújo Isaías Muller
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil; Multicenter Graduate Program in Biochemistry and Molecular Biology, Institute of Biosciences, UFMS, Campo Grande, MS, Brazil.
| | | | - Mônica Cristina Toffoli-Kadri
- Graduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil; Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil; Multicenter Graduate Program in Biochemistry and Molecular Biology, Institute of Biosciences, UFMS, Campo Grande, MS, Brazil.
| |
Collapse
|
37
|
Kalogeropoulos K, Bundgaard L, Auf dem Keller U. Sensitive and High-Throughput Exploration of Protein N-Termini by TMT-TAILS N-Terminomics. Methods Mol Biol 2023; 2718:111-135. [PMID: 37665457 DOI: 10.1007/978-1-0716-3457-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Terminal amine isotopic labeling of substrates (TAILS) is a sensitive and robust quantitative mass spectrometry (MS)-based proteomics method used for the characterization of physiological or proteolytically processed protein N-termini, as well as other N-terminal posttranslational modifications (PTMs). TAILS is a well-established, high-throughput, negative enrichment workflow that enables system-wide exploration of N-terminomes independent of sample complexity. TAILS makes use of amine reactivity of free N-termini and a highly efficient aldehyde-functionalized polymer to deplete internal peptides generated after proteolytic digestion during sample preparation. Thereby, it enriches for natural N-termini, allowing for unbiased and complete investigation of differential proteolysis, protease substrate discovery, and analysis of N-terminal PTMs. In this chapter, we provide a state-of-the-art protocol, with detailed steps in all parts of the TAILS sample preparation, MS analysis, and post-processing of acquired data.
Collapse
Affiliation(s)
| | - Louise Bundgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
38
|
Xiong W, Ge H, Shen C, Li C, Zhang X, Tang L, Shen Y, Lu S, Zhang H, Wang Z. PRSS37 deficiency leads to impaired energy metabolism in testis and sperm revealed by DIA-based quantitative proteomic analysis. Reprod Sci 2023; 30:145-168. [PMID: 35471551 DOI: 10.1007/s43032-022-00918-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 01/11/2023]
Abstract
Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via β-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaohong Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
39
|
Hosseinzadeh S, Hasanpur K. Gene expression networks and functionally enriched pathways involved in the response of domestic chicken to acute heat stress. Front Genet 2023; 14:1102136. [PMID: 37205120 PMCID: PMC10185895 DOI: 10.3389/fgene.2023.1102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Heat stress in poultry houses, especially in warm areas, is one of the main environmental factors that restrict the growth of broilers or laying performance of layers, suppresses the immune system, and deteriorates egg quality and feed conversion ratio. The molecular mechanisms underlying the response of chicken to acute heat stress (AHS) have not been comprehensively elucidated. Therefore, the main object of the current work was to investigate the liver gene expression profile of chickens under AHS in comparison with their corresponding control groups, using four RNA-seq datasets. The meta-analysis, GO and KEGG pathway enrichment, WGCNA, machine-learning, and eGWAS analyses were performed. The results revealed 77 meta-genes that were mainly related to protein biosynthesis, protein folding, and protein transport between cellular organelles. In other words, under AHS, the expression of genes involving in the structure of rough reticulum membrane and in the process of protein folding was adversely influenced. In addition, genes related to biological processes such as "response to unfolded proteins," "response to reticulum stress" and "ERAD pathway" were differentially regulated. We introduce here a couple of genes such as HSPA5, SSR1, SDF2L1, and SEC23B, as the most significantly differentiated under AHS, which could be used as bio-signatures of AHS. Besides the mentioned genes, the main findings of the current work may shed light to the identification of the effects of AHS on gene expression profiling of domestic chicken as well as the adaptive response of chicken to environmental stresses.
Collapse
|
40
|
Precursor genes of Bowman-Birk-type serine proteinase inhibitors comprise multiple inhibitory domains to promote diversity. Biochim Biophys Acta Gen Subj 2023; 1867:130248. [PMID: 36191739 DOI: 10.1016/j.bbagen.2022.130248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Proteinase inhibitors are important for the regulation of the activity of enzymes essential for the survival and maintenance of all organisms, and they may hold medicinal and agricultural value. Hyacinthus orientalis L. serine protease inhibitors (HOSPIs), belonging to the Bowman-Birk type inhibitor (BBI) family, have strong inhibitory activities against mammalian serine proteinases. This study explored the relationship between gene structure and multiple isoinhibitor production of these diversified BBIs by analyzing sequences of HOSPI precursor genes. METHODS Genomic DNA of H. orientalis roots was obtained and fragmented using 13 specific restriction enzymes, which were amplified by inverse and nested polymerase chain reactions, cloned into the pBluescript II SK (+) vector, and directly sequenced using specific primers. HOSPI gene and protein expression were assessed by quantitative real-time PCR and western blot, respectively. Proteinase inhibitory activity of hyacinth bulb extracts was evaluated by fluorescein isothiocyanate-labeled casein. RESULTS Four distinct HOSPI precursor genes were identified, encoding 2-4 different HOSPI domains that were surrounded by additional sequences (named head, linker, and tail sequences) and some introns. Moreover, 3' splicing of the linker sequence may occur through introns inserted between linker sequences. HOSPI gene and protein expression was higher during the stem elongation and the flowering periods. CONCLUSIONS These results indicate that gene duplication of the HOSPI precursor as a single set, including tandem repeated HOSPI domains, leads to diversity and effective production of mature HOSPIs by posttranslational processing. GENERAL SIGNIFICANCE These findings shed light on the diversity of proteinase inhibitors.
Collapse
|
41
|
Yang L, Zhang J, Wang M, Wang Y, Qi W, He Z. Probing the effect of microenvironment on the enzyme-like behavior of catalytic peptide assemblies. J Colloid Interface Sci 2023; 629:683-693. [PMID: 36183647 DOI: 10.1016/j.jcis.2022.09.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
As bridging species between short peptides and macromolecular proteins, peptide assemblies not only provide a supramolecular approach for the fabrication of controllable molecular machines with enzyme-like functions, but also a simplified model for understanding the catalytic mechanism of natural enzymes. In this study, we focused on probing the effect of microenvironment on the catalytic behavior of peptide assemblies. Upon simply replacing the X residue in Fmoc-FFXAH-CONH2, we realized the modulation of the microenvironment of the amyloid assemblies, which thus appeared esterase-like function with different catalytic abilities. The chemistry, structure and activity were analyzed to explore the principles that how the hydrophobic, charged, polar and chiral microenvironment deciding the catalytic behavior of the esterase mimic. In addition, we also presented the potential of the catalytic assemblies in the encapsulation, delivery and enzymatic metabolization of a mutual prodrug. This work sheds new insights for understanding the structure-function relationship of catalytic peptide assemblies and natural enzymes, and also provides a new avenue for the designing of artificial enzymes with better functions.
Collapse
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; School of Life Sciences. Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Yutong Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
42
|
Lee HJ, Gari MK, Inman DR, Rosenkrans ZT, Burkel BM, Olson AP, Engle JW, Hernandez R, Ponik SM, Kwon GS. Multimodal imaging demonstrates enhanced tumor exposure of PEGylated FUD peptide in breast cancer. J Control Release 2022; 350:284-297. [PMID: 35995299 PMCID: PMC9841600 DOI: 10.1016/j.jconrel.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/23/2023]
Abstract
In breast cancer, the extracellular matrix (ECM) undergoes remodeling and changes the tumor microenvironment to support tumor progression and metastasis. Fibronectin (FN) assembly is an important step in the regulation of the tumor microenvironment since the FN matrix precedes the deposition of various other ECM proteins, controls immune cell infiltration, and serves as a reservoir for cytokines and growth factors. Therefore, FN is an attractive target for breast cancer therapy and imaging. Functional Upstream Domain (FUD) is a 6-kDa peptide targeting the N-terminal 70-kDa domain of FN, which is critical for fibrillogenesis. FUD has previously been shown to function as an anti-fibrotic peptide both in vitro and in vivo. In this work, we conjugated the FUD peptide with 20-kDa of PEG (PEG-FUD) and demonstrated its improved tumor exposure compared to non-PEGylated FUD in a murine breast cancer model via multiple imaging modalities. Importantly, PEG-FUD peptide retained a nanomolar binding affinity for FN and maintained in vitro plasma stability for up to 48 h. Cy5-labeled PEG-FUD bound to exogenous or endogenous FN assembled by fibroblasts. The in vivo fluorescence imaging with Cy5-labeled FUD and FUD conjugates demonstrated that PEGylation of the FUD peptide enhanced blood exposure after subcutaneous (SC) injection and significantly increased accumulation of FUD peptide in 4T1 mammary tumors. Intravital microscopy confirmed that Cy5-labeled PEG-FUD deposited mostly in the extravascular region of the tumor microenvironment after SC administration. Lastly, positron emission tomography/computed tomography imaging showed that 64Cu-labeled PEG-FUD preferentially accumulated in the 4T1 tumors with improved tumor uptake compared to 64Cu-labeled FUD (48 h: 1.35 ± 0.05 vs. 0.59 ± 0.03 %IA/g, P < 0.001) when injected intravenously (IV). The results indicate that PEG-FUD targets 4T1 breast cancer with enhanced tumor retention compared to non-PEGylated FUD, and biodistribution profiles of PEG-FUD after SC and IV injection may guide the optimization of PEG-FUD as a therapeutic and/or imaging agent for use in vivo.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, Wisconsin, 53705, USA
| | - Metti K. Gari
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, Wisconsin, 53705, USA
| | - David R. Inman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, Wisconsin, 53705, USA
| | - Zachary T. Rosenkrans
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Brian M. Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, Wisconsin, 53705, USA
| | - Aeli P. Olson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Jonathan W. Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Reinier Hernandez
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA,Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA,Carbone Cancer Center, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, Wisconsin, 53705, USA,Carbone Cancer Center, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Glen S. Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, Wisconsin, 53705, USA,Carbone Cancer Center, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| |
Collapse
|
43
|
Konkel R, Grabski M, Cegłowska M, Wieczerzak E, Węgrzyn G, Mazur-Marzec H. Anabaenopeptins from Nostoc edaphicum CCNP1411. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12346. [PMID: 36231642 PMCID: PMC9564503 DOI: 10.3390/ijerph191912346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria of the Nostoc genus belong to the most prolific sources of bioactive metabolites. In our previous study on Nostoc edaphicum strain CCNP1411, the occurrence of cyanopeptolins and nostocyclopeptides was documented. In the current work, the production of anabaenopeptins (APs) by the strain was studied using genetic and chemical methods. Compatibility between the analysis of the apt gene cluster and the structure of the identified APs was found. Three of the APs, including two new variants, were isolated as pure compounds and tested against four serine proteases and carboxypeptidase A (CPA). The in vitro enzymatic assays showed a typical activity of this class of cyanopeptides, i.e., the most pronounced effects were observed in the case of CPA. The activity of the detected compounds against important metabolic enzymes confirms the pharmaceutical potential of anabaenopeptins.
Collapse
Affiliation(s)
- Robert Konkel
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| |
Collapse
|
44
|
Li Z, Klein JA, Rampam S, Kurzion R, Campbell NB, Patel Y, Haydar TF, Zeldich E. Asynchronous excitatory neuron development in an isogenic cortical spheroid model of Down syndrome. Front Neurosci 2022; 16:932384. [PMID: 36161168 PMCID: PMC9504873 DOI: 10.3389/fnins.2022.932384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
The intellectual disability (ID) in Down syndrome (DS) is thought to result from a variety of developmental deficits such as alterations in neural progenitor division, neurogenesis, gliogenesis, cortical architecture, and reduced cortical volume. However, the molecular processes underlying these neurodevelopmental changes are still elusive, preventing an understanding of the mechanistic basis of ID in DS. In this study, we used a pair of isogenic (trisomic and euploid) induced pluripotent stem cell (iPSC) lines to generate cortical spheroids (CS) that model the impact of trisomy 21 on brain development. Cortical spheroids contain neurons, astrocytes, and oligodendrocytes and they are widely used to approximate early neurodevelopment. Using single cell RNA sequencing (scRNA-seq), we uncovered cell type-specific transcriptomic changes in the trisomic CS. In particular, we found that excitatory neuron populations were most affected and that a specific population of cells with a transcriptomic profile resembling layer IV cortical neurons displayed the most profound divergence in developmental trajectory between trisomic and euploid genotypes. We also identified candidate genes potentially driving the developmental asynchrony between trisomic and euploid excitatory neurons. Direct comparison between the current isogenic CS scRNA-seq data and previously published datasets revealed several recurring differentially expressed genes between DS and control samples. Altogether, our study highlights the power and importance of cell type-specific analyses within a defined genetic background, coupled with broader examination of mixed samples, to comprehensively evaluate cellular phenotypes in the context of DS.
Collapse
Affiliation(s)
- Zhen Li
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Jenny A. Klein
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Sanjeev Rampam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ronni Kurzion
- Department of Chemistry, Boston University, Boston, MA, United States
| | | | - Yesha Patel
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Tarik F. Haydar
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
| |
Collapse
|
45
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
46
|
Kaupbayeva B, Murata H, Rule GS, Matyjaszewski K, Russell AJ. Rational Control of Protein-Protein Interactions with Protein-ATRP-Generated Protease-Sensitive Polymer Cages. Biomacromolecules 2022; 23:3831-3846. [PMID: 35984406 DOI: 10.1021/acs.biomac.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-protease interactions lie at the heart of the biological cascades that provide rapid molecular responses to living systems. Blood clotting cascades, apoptosis signaling networks, bacterial infection, and virus trafficking have all evolved to be activated and sustained by protease-protease interactions. Biomimetic strategies designed to target drugs to specific locations have generated proprotein drugs that can be activated by proteolytic cleavage to release native protein. We have previously demonstrated that the modification of enzymes with a custom-designed comb-shaped polymer nanoarmor can shield the enzyme surface and eliminate almost all protein-protein interactions. We now describe the synthesis and characterization of protease-sensitive comb-shaped nanoarmor cages using poly(ethylene glycol) [Sundy, J. S. Arthritis Rheum. 2008, 58(9), 2882-2891]methacrylate macromonomers where the PEG tines of the comb are connected to the backbone of the growing polymer chain by peptide linkers. Protease-induced cleavage of the tines of the comb releases a polymer-modified protein that can once again participate in protein-protein interactions. Atom transfer radical polymerization (ATRP) was used to copolymerize the macromonomer and carboxybetaine methacrylate from initiator-labeled chymotrypsin and trypsin enzymes, yielding proprotease conjugates that retained activity toward small peptide substrates but prevented activity against proteins. Native proteases triggered the release of the PEG side chains from the polymer backbone within 20 min, thereby increasing the activity of the conjugate toward larger protein substrates by 100%. Biomimetic cascade initiation of nanoarmored protease-sensitive protein-polymer conjugates may open the door to a new class of responsive targeted therapies.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,National Laboratory Astana, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J Russell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Amgen, 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
47
|
Tasdemiroglu Y, Gourdie RG, He JQ. In vivo degradation forms, anti-degradation strategies, and clinical applications of therapeutic peptides in non-infectious chronic diseases. Eur J Pharmacol 2022; 932:175192. [PMID: 35981605 DOI: 10.1016/j.ejphar.2022.175192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Current medicinal treatments for diseases comprise largely of two categories: small molecular (chemical) (e.g., aspirin) and larger molecular (peptides/proteins, e.g., insulin) drugs. Whilst both types of therapeutics can effectively treat different diseases, ranging from well-understood (in view of pathogenesis and treatment) examples (e.g., flu), to less-understood chronic diseases (e.g., diabetes), classical small molecule drugs often possess significant side-effects (a major cause of drug withdrawal from market) due to their low- or non-specific targeting. By contrast, therapeutic peptides, which comprise short sequences from naturally occurring peptides/proteins, commonly demonstrate high target specificity, well-characterized modes-of-action, and low or non-toxicity in vivo. Unfortunately, due to their small size, linear permutation, and lack of tertiary structure, peptidic drugs are easily subject to rapid degradation or loss in vivo through chemical and physical routines, thus resulting in a short half-life and reduced therapeutic efficacy, a major drawback that can reduce therapeutic efficiency. However, recent studies demonstrate that the short half-life of peptidic drugs can be significantly extended by various means, including use of enantiomeric or non-natural amino acids (AAs) (e.g., L-AAs replacement with D-AAs), chemical conjugation [e.g., with polyethylene glycol], and encapsulation (e.g., in exosomes). In this context, we provide an overview of the major in vivo degradation forms of small therapeutic peptides in the plasma and anti-degradation strategies. We also update on the progress of small peptide therapeutics that are either currently in clinical trials or are being successfully used in clinical therapies for patients with non-infectious diseases, such as diabetes, multiple sclerosis, and cancer.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert G Gourdie
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
48
|
Soleimany AP, Martin-Alonso C, Anahtar M, Wang CS, Bhatia SN. Protease Activity Analysis: A Toolkit for Analyzing Enzyme Activity Data. ACS OMEGA 2022; 7:24292-24301. [PMID: 35874224 PMCID: PMC9301967 DOI: 10.1021/acsomega.2c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analyzing the activity of proteases and their substrates is critical to defining the biological functions of these enzymes and to designing new diagnostics and therapeutics that target protease dysregulation in disease. While a wide range of databases and algorithms have been created to better predict protease cleavage sites, there is a dearth of computational tools to automate analysis of in vitro and in vivo protease assays. This necessitates individual researchers to develop their own analytical pipelines, resulting in a lack of standardization across the field. To facilitate protease research, here we present Protease Activity Analysis (PAA), a toolkit for the preprocessing, visualization, machine learning analysis, and querying of protease activity data sets. PAA leverages a Python-based object-oriented implementation that provides a modular framework for streamlined analysis across three major components. First, PAA provides a facile framework to query data sets of synthetic peptide substrates and their cleavage susceptibilities across a diverse set of proteases. To complement the database functionality, PAA also includes tools for the automated analysis and visualization of user-input enzyme-substrate activity measurements generated through in vitro screens against synthetic peptide substrates. Finally, PAA supports a set of modular machine learning functions to analyze in vivo protease activity signatures that are generated by activity-based sensors. Overall, PAA offers the protease community a breadth of computational tools to streamline research, taking a step toward standardizing data analysis across the field and in chemical biology and biochemistry at large.
Collapse
Affiliation(s)
- Ava P. Soleimany
- Harvard-MIT
Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
- Program
in Biophysics, Harvard University, Boston, Massachusetts 02115, United States
- Microsoft
Research New England, Cambridge, Massachusetts 02142, United States
| | - Carmen Martin-Alonso
- Harvard-MIT
Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
| | - Melodi Anahtar
- Harvard-MIT
Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
| | - Cathy S. Wang
- Department
of Biological Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Sangeeta N. Bhatia
- Harvard-MIT
Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139, United States
- Howard Hughes
Medical Institute, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
49
|
Han Y, Kamau PM, Lai R, Luo L. Bioactive Peptides and Proteins from Centipede Venoms. Molecules 2022; 27:molecules27144423. [PMID: 35889297 PMCID: PMC9325314 DOI: 10.3390/molecules27144423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.
Collapse
Affiliation(s)
- Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (R.L.); (L.L.)
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- Correspondence: (R.L.); (L.L.)
| |
Collapse
|
50
|
Li S, Pritchard DM, Yu LG. Regulation and Function of Matrix Metalloproteinase-13 in Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:3263. [PMID: 35805035 PMCID: PMC9265061 DOI: 10.3390/cancers14133263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinase-13 (MMP-13) is a member of the Matrix metalloproteinases (MMPs) family of endopeptidases. MMP-13 is produced in low amounts and is well-regulated during normal physiological conditions. Its expression and secretion are, however, increased in various cancers, where it plays multiple roles in tumour progression and metastasis. As an interstitial collagenase, MMP-13 can proteolytically cleave not only collagens I, II and III, but also a range of extracellular matrix proteins (ECMs). Its action causes ECM remodelling and often leads to the release of various sequestered growth and angiogenetic factors that promote tumour cell growth, invasion and angiogenesis. This review summarizes our current understanding of the regulation of MMP-13 expression and secretion and discusses the actions of MMP-13 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Shun Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - David Mark Pritchard
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - Lu-Gang Yu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|