1
|
Fan S, Tang K, Chen J, Sun M, Chen Q. Overexpanded CAG repeats in ATN1 cause an Early-Onset Case of Dentatorubral-Pallidoluysian atrophy with novel phenotypes and a literature Review of Chinese patients. Gene 2024; 931:148881. [PMID: 39181274 DOI: 10.1016/j.gene.2024.148881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE Dentatorubral-pallidoluysian atrophy (DRPLA) is an inherited neurodegenerative disease caused by CAG overexpansion (≥48 tandem copies) in ATN1. The aim of this research was to explore the genetic cause of a large Chinese DRPLA pedigree and to review the characteristics of Chinese DRPLA patients. METHODS Suspected variants were screened by high-throughput sequencing. The number of CAG repeats was assessed by polymerase chain reaction using FAM-labeled primers followed by capillary electrophoresis. Literature on previously reported DRPLA cases with overexpanded ATN1 CAG repeats in China was reviewed. RESULTS After contracting a lung infection, the proband suffered early-onset DRPLA symptoms and novel phenotypes, transitioning from insomnia to stupor. The numbers of CAG repeats in the proband, her grandfather, father, mother, brother, and aunt were 8/81, 17/54, 10/57, 8/10, 10/10, and 10/17, respectively. Possible incomplete penetrance was observed in this pedigree. CONCLUSION We described a large Chinese DRPLA pedigree in which the proband carried the largest CAG expansion reported in China. We also reviewed the characteristics of Chinese DRPLA patients and broadened the phenotypic spectrum.
Collapse
Affiliation(s)
- Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kaichen Tang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jinxiao Chen
- Department of Neurology, the Affiliated Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Miao Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Qian Chen
- Department of Neurology, the Affiliated Hospital of Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
2
|
Li L, Scott WS, Khristich AN, Armenia JF, Mirkin SM. Recurrent DNA nicks drive massive expansions of (GAA) n repeats. Proc Natl Acad Sci U S A 2024; 121:e2413298121. [PMID: 39585990 PMCID: PMC11626148 DOI: 10.1073/pnas.2413298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Over 50 hereditary degenerative disorders are caused by expansions of short tandem DNA repeats (STRs). (GAA)n repeat expansions are responsible for Friedreich's ataxia as well as late-onset cerebellar ataxias (LOCAs). Thus, the mechanisms of (GAA)n repeat expansions attract broad scientific attention. To investigate the role of DNA nicks in this process, we utilized a CRISPR-Cas9 nickase system to introduce targeted nicks adjacent to the (GAA)n repeat tract. We found that DNA nicks 5' of the (GAA)100 run led to a dramatic increase in both the rate and scale of its expansion in dividing cells. Strikingly, they also promoted large-scale expansions of carrier- and large normal-size (GAA)n repeats, recreating, in a model system, the expansion events that occur in human pedigrees. DNA nicks 3' of the (GAA)100 repeat led to a smaller but significant increase in the expansion rate as well. Our genetic analysis implies that in dividing cells, conversion of nicks into double-strand breaks (DSBs) during DNA replication followed by DSB or fork repair leads to repeat expansions. Finally, we showed that 5' GAA-strand nicks increase expansion frequency in nondividing yeast cells, albeit to a lesser extent than in dividing cells.
Collapse
Affiliation(s)
- Liangzi Li
- Department of Biology, Tufts University, Medford, MA02155
| | - W. Shem Scott
- Department of Biology, Tufts University, Medford, MA02155
| | | | | | | |
Collapse
|
3
|
Hujoel MLA, Handsaker RE, Kamitaki N, Mukamel RE, Rubinacci S, Palamara PF, McCarroll SA, Loh PR. Insights into the causes and consequences of DNA repeat expansions from 700,000 biobank participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625248. [PMID: 39651202 PMCID: PMC11623664 DOI: 10.1101/2024.11.25.625248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Expansions and contractions of tandem DNA repeats are a source of genetic variation in human populations and in human tissues: some expanded repeats cause inherited disorders, and some are also somatically unstable. We analyzed DNA sequence data, derived from the blood cells of >700,000 participants in UK Biobank and the All of Us Research Program, and developed new computational approaches to recognize, measure and learn from DNA-repeat instability at 15 highly polymorphic CAG-repeat loci. We found that expansion and contraction rates varied widely across these 15 loci, even for alleles of the same length; repeats at different loci also exhibited widely variable relative propensities to mutate in the germline versus the blood. The high somatic instability of TCF4 repeats enabled a genome-wide association analysis that identified seven loci at which inherited variants modulate TCF4 repeat instability in blood cells. Three of the implicated loci contained genes ( MSH3 , FAN1 , and PMS2 ) that also modulate Huntington's disease age-at-onset as well as somatic instability of the HTT repeat in blood; however, the specific genetic variants and their effects (instability-increasing or-decreasing) appeared to be tissue-specific and repeat-specific, suggesting that somatic mutation in different tissues-or of different repeats in the same tissue-proceeds independently and under the control of substantially different genetic variation. Additional modifier loci included DNA damage response genes ATAD5 and GADD45A . Analyzing DNA repeat expansions together with clinical data showed that inherited repeats in the 5' UTR of the glutaminase ( GLS) gene are associated with stage 5 chronic kidney disease (OR=14.0 [5.7-34.3]) and liver diseases (OR=3.0 [1.5-5.9]). These and other results point to the dynamics of DNA repeats in human populations and across the human lifespan.
Collapse
|
4
|
Tesi N, Salazar A, Zhang Y, van der Lee S, Hulsman M, Knoop L, Wijesekera S, Krizova J, Schneider AF, Pennings M, Sleegers K, Kamsteeg EJ, Reinders M, Holstege H. Characterizing tandem repeat complexities across long-read sequencing platforms with TREAT and otter. Genome Res 2024; 34:1942-1953. [PMID: 39406499 DOI: 10.1101/gr.279351.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 11/09/2024]
Abstract
Tandem repeats (TRs) play important roles in genomic variation and disease risk in humans. Long-read sequencing allows for the accurate characterization of TRs; however, the underlying bioinformatics perspectives remain challenging. We present otter and TREAT: otter is a fast targeted local assembler, cross-compatible across different sequencing platforms. It is integrated in TREAT, an end-to-end workflow for TR characterization, visualization, and analysis across multiple genomes. In a comparison with existing tools based on long-read sequencing data from both Oxford Nanopore Technology (ONT, Simplex and Duplex) and Pacific Bioscience (PacBio, Sequel II and Revio), otter and TREAT achieve state-of-the-art genotyping and motif characterization accuracy. Applied to clinically relevant TRs, TREAT/otter significantly identify individuals with pathogenic TR expansions. When applied to a case-control setting, we replicate previously reported associations of TRs with Alzheimer's disease, including those near or within APOC1 (P = 2.63 × 10-9), SPI1 (P = 6.5 × 10-3), and ABCA7 (P = 0.04) genes. Finally, we use TREAT/otter to systematically evaluate potential biases when genotyping TRs using diverse ONT and PacBio long-read sequencing data sets. We show that, in rare cases (0.06%), long-read sequencing from coverage drops in TRs, including the disease-associated TRs in ABCA7 and RFC1 genes. Such coverage drops can lead to TR misgenotyping, hampering the accurate characterization of TR alleles. Taken together, our tools can accurately genotype TRs across different sequencing technologies and with minimal requirements, allowing end-to-end analysis and comparisons of TRs in human genomes, with broad applications in research and clinical fields.
Collapse
Affiliation(s)
- Niccoló Tesi
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands;
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Alex Salazar
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Yaran Zhang
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Sven van der Lee
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Marc Hulsman
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Lydian Knoop
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Sanduni Wijesekera
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Jana Krizova
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Anne-Fleur Schneider
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Maartje Pennings
- Department of Genome Diagnostics, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Antwerp Center for Molecular Neurology, VIB, Antwerp B-2650, Belgium
| | - Erik-Jan Kamsteeg
- Department of Genome Diagnostics, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Marcel Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Henne Holstege
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| |
Collapse
|
5
|
Kumar A, Sharma V, Behl T, Ganesan S, Nathiya D, Gulati M, Khalid M, Elossaily GM, Chigurupati S, Sachdeva M. Insights into medicinal attributes of imidazo[1,2-a]pyridine derivatives as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2400402. [PMID: 39221527 DOI: 10.1002/ardp.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cancer ranks among the most life-threatening diseases worldwide and is continuously affecting all age groups. Consequently, many research studies are being carried out to develop new cancer treatments, but many of them experience resistance and cause severe toxicity to the patients. Therefore, there is a continuous need to design novel anticancer agents that are target-based, have a higher potency, and have minimal toxicity. The imidazo[1,2-a]pyridine (IP) pharmacophore has been found to be a prominent moiety in the field of medicinal chemistry due to its vast biological properties. Also, it holds immense potential for combating cancer with minimal side effects, depending on the substitution patterns of the core structure. IPs exhibit significant capability in regulating various cellular pathways, offering possibilities for targeted anticancer effects. The present review summarizes the anticancer profile of numerous IP derivatives synthesized and developed by various researchers from 2016 till now, as inhibitors of phosphoinositide-3-kinase/mammalian target of rapamycin (PI3K/mTOR), protein kinase B/mammalian target of rapamycin (Akt/mTOR), aldehyde dehydrogenase (ALDH), and tubulin polymerization. This review provides a comprehensive analysis of the anticancer activity afforded by the discussed IP compounds, emphasizing the structure-activity-relationships (SARs). The aim is also to underscore the potential therapeutic future of the IP moiety as a potent partial structure for upcoming cancer drug development and to aid researchers in the field of rational drug design.
Collapse
Affiliation(s)
- Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Pan F, Xu P, Roland C, Sagui C, Weninger K. Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases. Biomolecules 2024; 14:1278. [PMID: 39456210 PMCID: PMC11505666 DOI: 10.3390/biom14101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders-known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)-which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| |
Collapse
|
7
|
Ajay A, Begum T, Arya A, Kumar K, Ahmad S. Global and local genomic features together modulate the spontaneous single nucleotide mutation rate. Comput Biol Chem 2024; 112:108107. [PMID: 38875896 DOI: 10.1016/j.compbiolchem.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
Spontaneous mutations are evolutionary engines as they generate variants for the evolutionary downstream processes that give rise to speciation and adaptation. Single nucleotide mutations (SNM) are the most abundant type of mutations among them. Here, we perform a meta-analysis to quantify the influence of selected global genomic parameters (genome size, genomic GC content, genomic repeat fraction, number of coding genes, gene count, and strand bias in prokaryotes) and local genomic features (local GC content, repeat content, CpG content and the number of SNM at CpG islands) on spontaneous SNM rates across the tree of life (prokaryotes, unicellular eukaryotes, multicellular eukaryotes) using wild-type sequence data in two different taxon classification systems. We find that the spontaneous SNM rates in our data are correlated with many genomic features in prokaryotes and unicellular eukaryotes irrespective of their sample sizes. On the other hand, only the number of coding genes was correlated with the spontaneous SNM rates in multicellular eukaryotes primarily contributed by vertebrates data. Considering local features, we notice that local GC content and CpG content significantly were correlated with the spontaneous SNM rates in the unicellular eukaryotes, while local repeat fraction is an important feature in prokaryotes and certain specific uni- and multi-cellular eukaryotes. Such predictive features of the spontaneous SNM rates often support non-linear models as the best fit compared to the linear model. We also observe that the strand asymmetry in prokaryotes plays an important role in determining the spontaneous SNM rates but the SNM spectrum does not.
Collapse
Affiliation(s)
- Akash Ajay
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tina Begum
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ajay Arya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Krishan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Li Z, Zhao L, Yang T, Tang J, Miao Y, Ren T. Genome-wide simple sequence repeat analysis and specific molecular marker development of rye. BMC Genomics 2024; 25:780. [PMID: 39134932 PMCID: PMC11318315 DOI: 10.1186/s12864-024-10689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Rye (Secale cereale L.) is the most widely used related species in wheat genetic breeding, and the introduction of its chromosome fragments into the wheat genome through distant hybridization is essential for enriching the genetic diversity of wheat. Rapid and accurate detection of rye chromatin in the wheat genome is important for distant hybridization. Simple sequence repeats (SSRs) are widely distributed in the genome, and SSRs of different species often exhibit species-specific characteristics. RESULTS In this study, genome-wide SSRs in rye were identified, and their characteristics were outlined. A total of 997,027 SSRs were selected, with a density of 115.97 SSRs/Mb on average. There was no significant difference in the number of SSRs on each chromosome. The number of SSRs on 2R was the highest (15.29%), and the number of SSRs on 1R was the lowest (13.02%). The number of SSRs on each chromosome is significantly correlated with chromosome length. The types of SSR motifs were abundant, and each type of SSR was distributed on 7 chromosomes of rye. The numbers of mononucleotide simple sequence repeats (MNRs), dinucleotide simple sequence repeats (DNRs), and trinucleotide simple sequence repeats (TNRs) were the greatest, accounting for 46.90%, 18.37%, and 22.64% of the total number, respectively. Among the MNRs, the number of G/C repeats and the number of 10 bp motifs were the greatest, accounting for 26.24% and 31.32% of the MNRs, respectively. Based on the SSR sequences, a total of 657 pairs of primers were designed. The PCR results showed that 119 pairs of these primers were rye-specific and could effectively detect rye chromatin in the wheat genome. Moreover, 86 pairs of the primers could also detect one or more specific rye chromosomes. CONCLUSION These results lay a foundation for both genomic evolution studies of rye and molecular breeding in wheat.
Collapse
Affiliation(s)
- Zhi Li
- State key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Liqi Zhao
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tao Yang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jingsha Tang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yu Miao
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tianheng Ren
- State key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Said I, Barbash DA, Clark AG. The Structure of Simple Satellite Variation in the Human Genome and Its Correlation With Centromere Ancestry. Genome Biol Evol 2024; 16:evae153. [PMID: 39018452 PMCID: PMC11305138 DOI: 10.1093/gbe/evae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Although repetitive DNA forms much of the human genome, its study is challenging due to limitations in assembly and alignment of repetitive short-reads. We have deployed k-Seek, software that detects tandem repeats embedded in single reads, on 2,504 human genomes from the 1,000 Genomes Project to quantify the variation and abundance of simple satellites (repeat units <20 bp). We find that the ancestral monomer of Human Satellite 3 makes up the largest portion of simple satellite content in humans (mean of ∼8 Mb). We discovered ∼50,000 rare tandem repeats that are not detected in the T2T-CHM13v2.0 assembly, including undescribed variants of telomericand pericentromeric repeats. We find broad homogeneity of the most abundant repeats across populations, except for AG-rich repeats which are more abundant in African individuals. We also find cliques of highly similar AG- and AT-rich satellites that are interspersed and form higher-order structures that covary in copy number across individuals, likely through concerted amplification via unequal exchange. Finally, we use pericentromeric polymorphisms to estimate centromeric genetic relatedness between individuals and find a strong predictive relationship between centromeric lineages and pericentromeric simple satellite abundances. In particular, ancestral monomers of Human Satellite 2 and Human Satellite 3 abundances correlate with clusters of centromeric ancestry on chromosome 16 and chromosome 9, with some clusters structured by population. These results provide new descriptions of the population dynamics that underlie the evolution of simple satellites in humans.
Collapse
Affiliation(s)
- Iskander Said
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Kannan A, Gangadharan Leela S, Branzei D, Gangwani L. Role of senataxin in R-loop-mediated neurodegeneration. Brain Commun 2024; 6:fcae239. [PMID: 39070547 PMCID: PMC11277865 DOI: 10.1093/braincomms/fcae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/14/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Senataxin is an RNA:DNA helicase that plays an important role in the resolution of RNA:DNA hybrids (R-loops) formed during transcription. R-loops are involved in the regulation of biological processes such as immunoglobulin class switching, gene expression and DNA repair. Excessive accumulation of R-loops results in DNA damage and loss of genomic integrity. Senataxin is critical for maintaining optimal levels of R-loops to prevent DNA damage and acts as a genome guardian. Within the nucleus, senataxin interacts with various RNA processing factors and DNA damage response and repair proteins. Senataxin interactors include survival motor neuron and zinc finger protein 1, with whom it co-localizes in sub-nuclear bodies. Despite its ubiquitous expression, mutations in senataxin specifically affect neurons and result in distinct neurodegenerative diseases such as amyotrophic lateral sclerosis type 4 and ataxia with oculomotor apraxia type 2, which are attributed to the gain-of-function and the loss-of-function mutations in senataxin, respectively. In addition, low levels of senataxin (loss-of-function) in spinal muscular atrophy result in the accumulation of R-loops causing DNA damage and motor neuron degeneration. Senataxin may play multiple functions in diverse cellular processes; however, its emerging role in R-loop resolution and maintenance of genomic integrity is gaining attention in the field of neurodegenerative diseases. In this review, we highlight the role of senataxin in R-loop resolution and its potential as a therapeutic target to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shyni Gangadharan Leela
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Jia H, Tan S, Cai Y, Guo Y, Shen J, Zhang Y, Ma H, Zhang Q, Chen J, Qiao G, Ruan J, Zhang YE. Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes. Nat Commun 2024; 15:5644. [PMID: 38969648 PMCID: PMC11226609 DOI: 10.1038/s41467-024-49992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Long-read sequencing, exemplified by PacBio, revolutionizes genomics, overcoming challenges like repetitive sequences. However, the high DNA requirement ( > 1 µg) is prohibitive for small organisms. We develop a low-input (100 ng), low-cost, and amplification-free library-generation method for PacBio sequencing (LILAP) using Tn5-based tagmentation and DNA circularization within one tube. We test LILAP with two Drosophila melanogaster individuals, and generate near-complete genomes, surpassing preexisting single-fly genomes. By analyzing variations in these two genomes, we characterize mutational processes: complex transpositions (transposon insertions together with extra duplications and/or deletions) prefer regions characterized by non-B DNA structures, and gene conversion of transposons occurs on both DNA and RNA levels. Concurrently, we generate two complete assemblies for the endosymbiotic bacterium Wolbachia in these flies and similarly detect transposon conversion. Thus, LILAP promises a broad PacBio sequencing adoption for not only mutational studies of flies and their symbionts but also explorations of other small organisms or precious samples.
Collapse
Affiliation(s)
- Hangxing Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yingao Cai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaqiong Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingzhu Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Chen
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Choi DE, Shin JW, Zeng S, Hong EP, Jang JH, Loupe JM, Wheeler VC, Stutzman HE, Kleinstiver B, Lee JM. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease. eLife 2024; 12:RP89782. [PMID: 38869243 PMCID: PMC11175616 DOI: 10.7554/elife.89782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.
Collapse
Affiliation(s)
- Doo Eun Choi
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Sophia Zeng
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
- Medical and Population Genetics Program, The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jae-Hyun Jang
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jacob M Loupe
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Vanessa C Wheeler
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Hannah E Stutzman
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Pathology, Massachusetts General HospitalBostonUnited States
| | - Ben Kleinstiver
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Pathology, Massachusetts General HospitalBostonUnited States
- Department of Pathology, Harvard Medical SchoolBostonUnited States
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
- Medical and Population Genetics Program, The Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
14
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
15
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
16
|
Su C, Chandradoss KR, Malachowski T, Boya R, Ryu HS, Brennand KJ, Phillips-Cremins JE. MASTR-seq: Multiplexed Analysis of Short Tandem Repeats with sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591790. [PMID: 38746155 PMCID: PMC11092654 DOI: 10.1101/2024.04.29.591790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
More than 60 human disorders have been linked to unstable expansion of short tandem repeat (STR) tracts. STR length and the extent of DNA methylation is linked to disease pathology and can be mosaic in a cell type-specific manner in several repeat expansion disorders. Mosaic phenomenon have been difficult to study to date due to technical bias intrinsic to repeat sequences and the need for multi-modal measurements at single-allele resolution. Nanopore long-read sequencing accurately measures STR length and DNA methylation in the same single molecule but is cost prohibitive for studies assessing a target locus across multiple experimental conditions or patient samples. Here, we describe MASTR-seq, M ultiplexed A nalysis of S hort T andem R epeats, for cost-effective, high-throughput, accurate, multi-modal measurements of DNA methylation and STR genotype at single-allele resolution. MASTR-seq couples long-read sequencing, Cas9-mediated target enrichment, and PCR-free multiplexed barcoding to achieve a >ten-fold increase in on-target read mapping for 8-12 pooled samples in a single MinION flow cell. We provide a detailed experimental protocol and computational tools and present evidence that MASTR-seq quantifies tract length and DNA methylation status for CGG and CAG STR loci in normal-length and mutation-length human cell lines. The MASTR-seq protocol takes approximately eight days for experiments and one additional day for data processing and analyses. Key points We provide a protocol for MASTR-seq: M ultiplexed A nalysis of S hort T andem R epeats using Cas9-mediated target enrichment and PCR-free, multiplexed nanopore sequencing. MASTR-seq achieves a >10-fold increase in on-target read proportion for highly repetitive, technically inaccessible regions of the genome relevant for human health and disease.MASTR-seq allows for high-throughput, efficient, accurate, and cost-effective measurement of STR length and DNA methylation in the same single allele for up to 8-12 samples in parallel in one Nanopore MinION flow cell.
Collapse
|
17
|
Lee KH, Kim J, Kim JH. 3D epigenomics and 3D epigenopathies. BMB Rep 2024; 57:216-231. [PMID: 38627948 PMCID: PMC11139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Mammalian genomes are intricately compacted to form sophisticated 3-dimensional structures within the tiny nucleus, so called 3D genome folding. Despite their shapes reminiscent of an entangled yarn, the rapid development of molecular and next-generation sequencing technologies (NGS) has revealed that mammalian genomes are highly organized in a hierarchical order that delicately affects transcription activities. An increasing amount of evidence suggests that 3D genome folding is implicated in diseases, giving us a clue on how to identify novel therapeutic approaches. In this review, we will study what 3D genome folding means in epigenetics, what types of 3D genome structures there are, how they are formed, and how the technologies have developed to explore them. We will also discuss the pathological implications of 3D genome folding. Finally, we will discuss how to leverage 3D genome folding and engineering for future studies. [BMB Reports 2024; 57(5): 216-231].
Collapse
Affiliation(s)
- Kyung-Hwan Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jungyu Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ji Hun Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
18
|
Kim KH, Hong EP, Lee Y, McLean ZL, Elezi E, Lee R, Kwak S, McAllister B, Massey TH, Lobanov S, Holmans P, Orth M, Ciosi M, Monckton DG, Long JD, Lucente D, Wheeler VC, MacDonald ME, Gusella JF, Lee JM. Posttranscriptional regulation of FAN1 by miR-124-3p at rs3512 underlies onset-delaying genetic modification in Huntington's disease. Proc Natl Acad Sci U S A 2024; 121:e2322924121. [PMID: 38607933 PMCID: PMC11032436 DOI: 10.1073/pnas.2322924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 04/14/2024] Open
Abstract
Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Yukyeong Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Zachariah L. McLean
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Emanuela Elezi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | | | | | - Branduff McAllister
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Thomas H. Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Sergey Lobanov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000Bern 60, Switzerland
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Darren G. Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Jeffrey D. Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA52242
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Vanessa C. Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Marcy E. MacDonald
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - James F. Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| |
Collapse
|
19
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Kang J, Wei S, Jia Z, Ma Y, Chen H, Sun C, Xu J, Tao J, Dong Y, Lv W, Tian H, Guo X, Bi S, Zhang C, Jiang Y, Lv H, Zhang M. Effects of genetic variation on the structure of RNA and protein. Proteomics 2024; 24:e2300235. [PMID: 38197532 DOI: 10.1002/pmic.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Changes in the structure of RNA and protein, have an important impact on biological functions and are even important determinants of disease pathogenesis and treatment. Some genetic variations, including copy number variation, single nucleotide variation, and so on, can lead to changes in biological function and increased susceptibility to certain diseases by changing the structure of RNA or protein. With the development of structural biology and sequencing technology, a large amount of RNA and protein structure data and genetic variation data resources has emerged to be used to explain biological processes. Here, we reviewed the effects of genetic variation on the structure of RNAs and proteins, and investigated their impact on several diseases. An online resource (http://www.onethird-lab.com/gems/) to support convenient retrieval of common tools is also built. Finally, the challenges and future development of the effects of genetic variation on RNA and protein were discussed.
Collapse
Affiliation(s)
- Jingxuan Kang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Zhe Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Yingnan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Haiyan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Chen Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Junxian Tao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Yu Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongsheng Tian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xuying Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuo Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| |
Collapse
|
21
|
Sanchez-Flores M, Corral-Juan M, Gasch-Navalón E, Cirillo D, Sanchez I, Matilla-Dueñas A. Novel genotype-phenotype correlations, differential cerebellar allele-specific methylation, and a common origin of the (ATTTC) n insertion in spinocerebellar ataxia type 37. Hum Genet 2024; 143:211-232. [PMID: 38396267 PMCID: PMC11043136 DOI: 10.1007/s00439-024-02644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Spinocerebellar ataxia subtype 37 (SCA37) is a rare disease originally identified in ataxia patients from the Iberian Peninsula with a pure cerebellar syndrome. SCA37 patients carry a pathogenic intronic (ATTTC)n repeat insertion flanked by two polymorphic (ATTTT)n repeats in the Disabled-1 (DAB1) gene leading to cerebellar dysregulation. Herein, we determine the precise configuration of the pathogenic 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n SCA37 alleles by CRISPR-Cas9 and long-read nanopore sequencing, reveal their epigenomic signatures in SCA37 lymphocytes, fibroblasts, and cerebellar samples, and establish new molecular and clinical correlations. The 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n pathogenic allele configurations revealed repeat instability and differential methylation signatures. Disease age of onset negatively correlated with the (ATTTC)n, and positively correlated with the 3'(ATTTT)n. Geographic origin and gender significantly correlated with age of onset. Furthermore, significant predictive regression models were obtained by machine learning for age of onset and disease evolution by considering gender, the (ATTTC)n, the 3'(ATTTT)n, and seven CpG positions differentially methylated in SCA37 cerebellum. A common 964-kb genomic region spanning the (ATTTC)n insertion was identified in all SCA37 patients analysed from Portugal and Spain, evidencing a common origin of the SCA37 mutation in the Iberian Peninsula originating 859 years ago (95% CI 647-1378). In conclusion, we demonstrate an accurate determination of the size and configuration of the regulatory 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n repeat tract, avoiding PCR bias amplification using CRISPR/Cas9-enrichment and nanopore long-read sequencing, resulting relevant for accurate genetic diagnosis of SCA37. Moreover, we determine novel significant genotype-phenotype correlations in SCA37 and identify differential cerebellar allele-specific methylation signatures that may underlie DAB1 pathogenic dysregulation.
Collapse
Affiliation(s)
- Marina Sanchez-Flores
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Marc Corral-Juan
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Esther Gasch-Navalón
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | | | - Ivelisse Sanchez
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Antoni Matilla-Dueñas
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain.
| |
Collapse
|
22
|
Yamada T, Sakurabayashi S, Sugiura N, Haneoka H, Nakatani K. NMR analysis of 15N-labeled naphthyridine carbamate dimer (NCD) to contiguous CGG/CGG units in DNA. Chem Commun (Camb) 2024. [PMID: 38415500 DOI: 10.1039/d4cc00544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The structure of the complex formed by naphthyridine carbamate dimer (NCD) binding to CGG repeat sequences in DNA, associated with fragile X syndrome, has been elucidated using 15N-labeled NCD and 1H-15N HSQC. In a fully saturated state, two NCD molecules consistently bind to each CGG/CGG unit, maintaining a 1 : 2 binding stoichiometry.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Shuhei Sakurabayashi
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Noriaki Sugiura
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Hitoshi Haneoka
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
23
|
Nguyen TD, Magaldino CM, Landfair JT, Amazeen PG, Amazeen EL. From Cognitive Agents to Cognitive Systems: Theoretical, Methodological, and Empirical Developments of van Gelder's (1998) "Dynamical Hypothesis". Top Cogn Sci 2024. [PMID: 38394354 DOI: 10.1111/tops.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Over two decades have passed since the publication of van Gelder's (1998) "dynamical hypothesis." In that paper, van Gelder proposed that cognitive agents were not digital computers-per the representational computational approach-but dynamical systems. The evolution of the dynamical hypothesis was driven by parallel advances in three areas. Theoretically, a deeper understanding of genetics, biology, neuroscience, and cognitive science inspired questions about how systems within each domain dynamically interact and extend their effects across spatiotemporal scales. Methodologically, more sophisticated and domain-general tools allowed researchers to discover, model, and quantify system dynamics, structure, and patterns across multiple scales to generate a more comprehensive system-level understanding of behaviors. Empirically, we can analyze a system's behavior while preserving its natural dynamics, revealing evidence that the reductionist approach leads to an incomplete understanding of the components and the overall system. Researchers have traditionally reduced a complex system into its component processes and assumed that the parts can be recombined to explain the whole. These three advances fundamentally altered our understanding of a "cognitive agent:" How their behaviors are driven by long-range coordination across multiple processes, how the interdependent and nested structure of interacting variables produces behaviors that are greater than the sum of its parts, and how environmental constraints shape adaptive yet stable behavioral patterns.
Collapse
Affiliation(s)
- Tri D Nguyen
- Department of Psychology, Arizona State University
| | | | | | | | | |
Collapse
|
24
|
Rautila OS, Kaivola K, Rautila H, Hokkanen L, Launes J, Strandberg TE, Laaksovirta H, Palmio J, Tienari PJ. The shared ancestry between the C9orf72 hexanucleotide repeat expansion and intermediate-length alleles using haplotype sharing trees and HAPTK. Am J Hum Genet 2024; 111:383-392. [PMID: 38242117 PMCID: PMC10870140 DOI: 10.1016/j.ajhg.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
The C9orf72 hexanucleotide repeat expansion (HRE) is a common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The inheritance is autosomal dominant, but a high proportion of subjects with the mutation are simplex cases. One possible explanation is de novo expansions of unstable intermediate-length alleles (IAs). Using haplotype sharing trees (HSTs) with the haplotype analysis tool kit (HAPTK), we derived majority-based ancestral haplotypes of HRE samples and discovered that IAs containing ≥18-20 repeats share large haplotypes in common with the HRE. Using HSTs of HRE and IA samples, we demonstrate that the longer IA haplotypes are largely indistinguishable from HRE haplotypes and that several ≥18-20 IA haplotypes share over 5 Mb (>600 markers) haplotypes in common with the HRE haplotypes. These analysis tools allow physical understanding of the haplotype blocks shared with the majority-based ancestral haplotype. Our results demonstrate that the haplotypes with longer IAs belong to the same pool of haplotypes as the HRE and suggest that longer IAs represent potential premutation alleles.
Collapse
Affiliation(s)
- Osma S Rautila
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Neurology, Helsinki University Hospital, Helsinki, Finland.
| | - Karri Kaivola
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Harri Rautila
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Laura Hokkanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Jyrki Launes
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Timo E Strandberg
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannu Laaksovirta
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Pentti J Tienari
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
25
|
Lu J, Toro C, Adams DR, Moreno CAM, Lee WP, Leung YY, Harms MB, Vardarajan B, Heinzen EL. LUSTR: a new customizable tool for calling genome-wide germline and somatic short tandem repeat variants. BMC Genomics 2024; 25:115. [PMID: 38279154 PMCID: PMC10811831 DOI: 10.1186/s12864-023-09935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Short tandem repeats (STRs) are widely distributed across the human genome and are associated with numerous neurological disorders. However, the extent that STRs contribute to disease is likely under-estimated because of the challenges calling these variants in short read next generation sequencing data. Several computational tools have been developed for STR variant calling, but none fully address all of the complexities associated with this variant class. RESULTS Here we introduce LUSTR which is designed to address some of the challenges associated with STR variant calling by enabling more flexibility in defining STR loci, allowing for customizable modules to tailor analyses, and expanding the capability to call somatic and multiallelic STR variants. LUSTR is a user-friendly and easily customizable tool for targeted or unbiased genome-wide STR variant screening that can use either predefined or novel genome builds. Using both simulated and real data sets, we demonstrated that LUSTR accurately infers germline and somatic STR expansions in individuals with and without diseases. CONCLUSIONS LUSTR offers a powerful and user-friendly approach that allows for the identification of STR variants and can facilitate more comprehensive studies evaluating the role of pathogenic STR variants across human diseases.
Collapse
Affiliation(s)
- Jinfeng Lu
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- The Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, NY, 10032, USA.
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, 20892, USA
| | - David R Adams
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Wan-Ping Lee
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory MedicinePerelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory MedicinePerelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathew B Harms
- Department of Neurology, Division of Neuromuscular Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Badri Vardarajan
- The Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Hong EP, Ramos EM, Aziz NA, Massey TH, McAllister B, Lobanov S, Jones L, Holmans P, Kwak S, Orth M, Ciosi M, Lomeikaite V, Monckton DG, Long JD, Lucente D, Wheeler VC, Gillis T, MacDonald ME, Sequeiros J, Gusella JF, Lee JM. Modification of Huntington's disease by short tandem repeats. Brain Commun 2024; 6:fcae016. [PMID: 38449714 PMCID: PMC10917446 DOI: 10.1093/braincomms/fcae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
Expansions of glutamine-coding CAG trinucleotide repeats cause a number of neurodegenerative diseases, including Huntington's disease and several of spinocerebellar ataxias. In general, age-at-onset of the polyglutamine diseases is inversely correlated with the size of the respective inherited expanded CAG repeat. Expanded CAG repeats are also somatically unstable in certain tissues, and age-at-onset of Huntington's disease corrected for individual HTT CAG repeat length (i.e. residual age-at-onset), is modified by repeat instability-related DNA maintenance/repair genes as demonstrated by recent genome-wide association studies. Modification of one polyglutamine disease (e.g. Huntington's disease) by the repeat length of another (e.g. ATXN3, CAG expansions in which cause spinocerebellar ataxia 3) has also been hypothesized. Consequently, we determined whether age-at-onset in Huntington's disease is modified by the CAG repeats of other polyglutamine disease genes. We found that the CAG measured repeat sizes of other polyglutamine disease genes that were polymorphic in Huntington's disease participants but did not influence Huntington's disease age-at-onset. Additional analysis focusing specifically on ATXN3 in a larger sample set (n = 1388) confirmed the lack of association between Huntington's disease residual age-at-onset and ATXN3 CAG repeat length. Additionally, neither our Huntington's disease onset modifier genome-wide association studies single nucleotide polymorphism data nor imputed short tandem repeat data supported the involvement of other polyglutamine disease genes in modifying Huntington's disease. By contrast, our genome-wide association studies based on imputed short tandem repeats revealed significant modification signals for other genomic regions. Together, our short tandem repeat genome-wide association studies show that modification of Huntington's disease is associated with short tandem repeats that do not involve other polyglutamine disease-causing genes, refining the landscape of Huntington's disease modification and highlighting the importance of rigorous data analysis, especially in genetic studies testing candidate modifiers.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Eliana Marisa Ramos
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - N Ahmad Aziz
- Population & Clinical Neuroepidemiology, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn D-53113, Germany
| | - Thomas H Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Branduff McAllister
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sergey Lobanov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lesley Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Seung Kwak
- Molecular System Biology, CHDI Foundation, Princeton, NJ 08540, USA
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000 Bern 60, Switzerland
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Vilija Lomeikaite
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine and Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Jorge Sequeiros
- UnIGENe, IBMC—Institute for Molecular and Cell Biology, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 420-135, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto 420-135, Portugal
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
27
|
Shen YI, Cheng KC, Wei YJ, Lee IR. Structural Dynamics Role of AGG Interruptions in Inhibition CGG Repeat Expansion Associated with Fragile X Syndrome. ACS Chem Neurosci 2024; 15:230-235. [PMID: 38133821 DOI: 10.1021/acschemneuro.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Abnormal expansion of trinucleotide CGG repeats is responsible for Fragile X syndrome. AGG interruptions in CGG repeat tracts were found in most healthy individuals, suggesting a crucial role in preventing disease-prone repeat expansion. Previous biophysics studies emphasize a difference in the secondary structure affected by AGG interruptions. However, the mechanism of how AGG interruptions impede repeat expansion remains elusive. We utilized single-molecule fluorescence resonance energy transfer spectroscopy to investigate the structural dynamics of CGG repeats and their AGG-interrupted variants. Tandem CGG repeats fold into a stem-loop hairpin structure with the capability to undergo a conformational rearrangement to modulate the length of the overhang. However, this conformational rearrangement is much more retarded when two AGG interruptions are present. Considering the significance of hairpin slippage in repeat expansion, we present a molecular basis suggesting that the internal loop created by two AGG interruptions acts as a barrier, obstructing the hairpin slippage reconfiguration. This impediment potentially plays a crucial role in curbing abnormal expansion, thereby contributing to the genomic stability.
Collapse
Affiliation(s)
- Yang-I Shen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kai-Chun Cheng
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yu-Jie Wei
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - I-Ren Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
28
|
Chen Q, Yamada T, Miyagawa K, Murata A, Shoji M, Nakatani K. A new small molecule DoNA binding to CAG repeat RNA. Bioorg Med Chem 2024; 98:117580. [PMID: 38194737 DOI: 10.1016/j.bmc.2023.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
We here report a new molecule DoNA binding to a CAG repeat RNA. DoNA is a dimer of the NA molecule that we previously reported. NA binds with high affinity to a CAG repeat DNA but not significantly to a CAG repeat RNA. Binding analyses using SPR and CSI-TOF MS indicated a significant increase in the affinity of DoNA to a single stranded CAG repeat RNA compared to NA. Systematic investigation of the RNA motifs bound by DoNA using hairpin RNA models revealed that DoNA binds to the CAG units at overhang and terminal positions, and notably, it binds to the structurally flexible internal and hairpin loop region.
Collapse
Affiliation(s)
- Qingwen Chen
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeshi Yamada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan; Current address: Nucleotide and Peptide Drug Discovery Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Koichi Miyagawa
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Asako Murata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan; Current address: Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuhiko Nakatani
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| |
Collapse
|
29
|
van Bueren MAE, Janssen A. The impact of chromatin on double-strand break repair: Imaging tools and discoveries. DNA Repair (Amst) 2024; 133:103592. [PMID: 37976899 DOI: 10.1016/j.dnarep.2023.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Eukaryotic nuclei are constantly being exposed to factors that break or chemically modify the DNA. Accurate repair of this DNA damage is crucial to prevent DNA mutations and maintain optimal cell function. To overcome the detrimental effects of DNA damage, a multitude of repair pathways has evolved. These pathways need to function properly within the different chromatin domains present in the nucleus. Each of these domains exhibit distinct molecular- and bio-physical characteristics that can influence the response to DNA damage. In particular, chromatin domains highly enriched for repetitive DNA sequences, such as nucleoli, centromeres and pericentromeric heterochromatin require tailored repair mechanisms to safeguard genome stability. Work from the past decades has led to the development of innovative imaging tools as well as inducible DNA damage techniques to gain new insights into the impact of these repetitive chromatin domains on the DNA repair process. Here we summarize these tools with a particular focus on Double-Strand Break (DSB) repair, and discuss the insights gained into our understanding of the influence of chromatin domains on DSB -dynamics and -repair pathway choice.
Collapse
Affiliation(s)
- Marit A E van Bueren
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
30
|
Krause A, Anderson DG, Ferreira-Correia A, Dawson J, Baine-Savanhu F, Li PP, Margolis RL. Huntington disease-like 2: insight into neurodegeneration from an African disease. Nat Rev Neurol 2024; 20:36-49. [PMID: 38114648 DOI: 10.1038/s41582-023-00906-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
Huntington disease (HD)-like 2 (HDL2) is a rare genetic disease caused by an expanded trinucleotide repeat in the JPH3 gene (encoding junctophilin 3) that shows remarkable clinical similarity to HD. To date, HDL2 has been reported only in patients with definite or probable African ancestry. A single haplotype background is shared by patients with HDL2 from different populations, supporting a common African origin for the expansion mutation. Nevertheless, outside South Africa, reports of patients with HDL2 in Africa are scarce, probably owing to limited clinical services across the continent. Systematic comparisons of HDL2 and HD have revealed closely overlapping motor, cognitive and psychiatric features and similar patterns of cerebral and striatal atrophy. The pathogenesis of HDL2 remains unclear but it is proposed to occur through several mechanisms, including loss of protein function and RNA and/or protein toxicity. This Review summarizes our current knowledge of this African-specific HD phenocopy and highlights key areas of overlap between HDL2 and HD. Given the aforementioned similarities in clinical phenotype and pathology, an improved understanding of HDL2 could provide novel insights into HD and other neurodegenerative and/or trinucleotide repeat expansion disorders.
Collapse
Affiliation(s)
- Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - David G Anderson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- University of Glasgow, Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Aline Ferreira-Correia
- Department of Psychology, School of Human and Community Development, Faculty of Humanities, University of the Witwatersrand, Johannesburg, South Africa
| | - Jessica Dawson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Gall-Duncan T, Luo J, Jurkovic CM, Fischer LA, Fujita K, Deshmukh AL, Harding RJ, Tran S, Mehkary M, Li V, Leib DE, Chen R, Tanaka H, Mason AG, Lévesque D, Khan M, Razzaghi M, Prasolava T, Lanni S, Sato N, Caron MC, Panigrahi GB, Wang P, Lau R, Castel AL, Masson JY, Tippett L, Turner C, Spies M, La Spada AR, Campos EI, Curtis MA, Boisvert FM, Faull RLM, Davidson BL, Nakamori M, Okazawa H, Wold MS, Pearson CE. Antagonistic roles of canonical and Alternative-RPA in disease-associated tandem CAG repeat instability. Cell 2023; 186:4898-4919.e25. [PMID: 37827155 PMCID: PMC11209935 DOI: 10.1016/j.cell.2023.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Luo
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Laura A Fischer
- Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyota Fujita
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amit L Deshmukh
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephanie Tran
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mustafa Mehkary
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vanessa Li
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David E Leib
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Ran Chen
- Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hikari Tanaka
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amanda G Mason
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominique Lévesque
- Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mahreen Khan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mortezaali Razzaghi
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Tanya Prasolava
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stella Lanni
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nozomu Sato
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marie-Christine Caron
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Gagan B Panigrahi
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peixiang Wang
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel Lau
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand; University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maria Spies
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Albert R La Spada
- Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA, USA; Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Eric I Campos
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | | | - Richard L M Faull
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Beverly L Davidson
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Masayuki Nakamori
- Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hitoshi Okazawa
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marc S Wold
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
32
|
Alhawatema M. GenoSSRFinder: a tool for rapid, precise, and targeted simple sequence repeat detection in genomic studies. BRAZ J BIOL 2023; 83:e276380. [PMID: 37878962 DOI: 10.1590/1519-6984.276380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/19/2023] [Indexed: 10/27/2023] Open
Abstract
The GenoSSRFinder is a new tool enables the research of Simple Sequence Repeats (SSRs) in DNA sequences and genomes much simpler and more precise in short time. The analysis is carried out by targeting a certain SSR in genome and gene sequences. This utility is quick, accurate, and does its function quite well. It quickly goes across the sequence, revealing all of the locations at which the selected SSR may be found. This tool will tell researchers where selected SSR begins and where it stops, how long it is, how often it repeats, and how long each repetition is. GenoSSRFinder gets the findings quickly, and they will be simple to comprehend. Therefore, when studying SSRs, researchers will have more time to use to thorough work as a result of this time savings. In addition, it provides a valuable information since it is highly precise. GenoSSRFinder is simple to use and produces high-quality findings. It is also accelerating SSRs gene research, which is a direct result of the new approach we use to analyse SSRs. Three case studies in this study demonstrated the usefulness of this program by immediately studying a particular SSR that was associated with genetic illness, biodiversity and criminal science in living organisms. This demonstration explains that GenoSSRFinder might be utilized in a wide variety of fields, such as the research of genetic illnesses, the biodiversity and genetic studies, or even in criminal investigations.
Collapse
Affiliation(s)
- M Alhawatema
- Tafila Technical University, Faculty of Science, Department of Applied Biological Science, Tafila, Jordan
| |
Collapse
|
33
|
Scelfo A, Fachinetti D. Centromere: A Trojan horse for genome stability. DNA Repair (Amst) 2023; 130:103569. [PMID: 37708591 DOI: 10.1016/j.dnarep.2023.103569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Centromeres play a key role in the maintenance of genome stability to prevent carcinogenesis and diseases. They are specialized chromosome loci essential to ensure faithful transmission of genomic information across cell generations by mediating the interaction with spindle microtubules. Nonetheless, while fulfilling these essential roles, their distinct repetitive composition and susceptibility to mechanical stresses during cell division render them susceptible to breakage events. In this review, we delve into the present understanding of the underlying causes of centromere fragility, from the mechanisms governing its DNA replication and repair, to the pathways acting to counteract potential challenges. We propose that the centromere represents a "Trojan horse" exerting vital functions that, at the same time, potentially threatens whole genome stability.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| | - Daniele Fachinetti
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
34
|
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, Shah N, Suzuki PH, Shrikumar A, Afek A, Greenleaf WJ, Gordân R, Zeitlinger J, Kundaje A, Fordyce PM. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023; 381:eadd1250. [PMID: 37733848 DOI: 10.1126/science.add1250] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.
Collapse
Affiliation(s)
- Connor A Horton
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael G B Hayes
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ariel Afek
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| |
Collapse
|
35
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
36
|
Fakharzadeh A, Qu J, Pan F, Sagui C, Roland C. Structure and Dynamics of DNA and RNA Double Helices Formed by d(CTG), d(GTC), r(CUG), and r(GUC) Trinucleotide Repeats and Associated DNA-RNA Hybrids. J Phys Chem B 2023; 127:7907-7924. [PMID: 37681731 PMCID: PMC10519205 DOI: 10.1021/acs.jpcb.3c03538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Indexed: 09/09/2023]
Abstract
Myotonic dystrophy type 1 is the most frequent form of muscular dystrophy in adults caused by an abnormal expansion of the CTG trinucleotide. Both the expanded DNA and the expanded CUG RNA transcript can fold into hairpins. Co-transcriptional formation of stable RNA·DNA hybrids can also enhance the instability of repeat tracts. We performed molecular dynamics simulations of homoduplexes associated with the disease, d(CTG)n and r(CUG)n, and their corresponding r(CAG)n:d(CTG)n and r(CUG)n:d(CAG)n hybrids that can form under bidirectional transcription and of non-pathological d(GTC)n and d(GUC)n homoduplexes. We characterized their conformations, stability, and dynamics and found that the U·U and T·T mismatches are dynamic, favoring anti-anti conformations inside the helical core, followed by anti-syn and syn-syn conformations. For DNA, the secondary minima in the non-expanding d(GTC)n helices are deeper, wider, and longer-lived than those in d(CTG)n, which constitutes another biophysical factor further differentiating the expanding and non-expanding sequences. The hybrid helices are closer to A-RNA, with the A-T and A-U pairs forming two stable Watson-Crick hydrogen bonds. The neutralizing ion distribution around the non-canonical pairs is also described.
Collapse
Affiliation(s)
- Ashkan Fakharzadeh
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Jing Qu
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Feng Pan
- Department
of Statistics, Florida State University, Tallahassee, Florida 32306, USA
| | - Celeste Sagui
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
37
|
Lutz MW, Chiba-Falek O. Bioinformatics pipeline to guide post-GWAS studies in Alzheimer's: A new catalogue of disease candidate short structural variants. Alzheimers Dement 2023; 19:4094-4109. [PMID: 37253165 PMCID: PMC10524333 DOI: 10.1002/alz.13168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Short structural variants (SSVs), including insertions/deletions (indels), are common in the human genome and impact disease risk. The role of SSVs in late-onset Alzheimer's disease (LOAD) has been understudied. In this study, we developed a bioinformatics pipeline of SSVs within LOAD-genome-wide association study (GWAS) regions to prioritize regulatory SSVs based on the strength of their predicted effect on transcription factor (TF) binding sites. METHODS The pipeline utilized publicly available functional genomics data sources including candidate cis-regulatory elements (cCREs) from ENCODE and single-nucleus (sn)RNA-seq data from LOAD patient samples. RESULTS We catalogued 1581 SSVs in candidate cCREs in LOAD GWAS regions that disrupted 737 TF sites. That included SSVs that disrupted the binding of RUNX3, SPI1, and SMAD3, within the APOE-TOMM40, SPI1, and MS4A6A LOAD regions. CONCLUSIONS The pipeline developed here prioritized non-coding SSVs in cCREs and characterized their putative effects on TF binding. The approach integrates multiomics datasets for validation experiments using disease models.
Collapse
Affiliation(s)
- Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
38
|
Wang N, Khan S, Elo LL. VarSCAT: A computational tool for sequence context annotations of genomic variants. PLoS Comput Biol 2023; 19:e1010727. [PMID: 37566612 PMCID: PMC10446208 DOI: 10.1371/journal.pcbi.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/23/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The sequence contexts of genomic variants play important roles in understanding biological significances of variants and potential sequencing related variant calling issues. However, methods for assessing the diverse sequence contexts of genomic variants such as tandem repeats and unambiguous annotations have been limited. Herein, we describe the Variant Sequence Context Annotation Tool (VarSCAT) for annotating the sequence contexts of genomic variants, including breakpoint ambiguities, flanking bases of variants, wildtype/mutated DNA sequences, variant nomenclatures, distances between adjacent variants, tandem repeat regions, and custom annotation with user customizable options. Our analyses demonstrate that VarSCAT is more versatile and customizable than the currently available methods or strategies for annotating variants in short tandem repeat (STR) regions or insertions and deletions (indels) with breakpoint ambiguity. Variant sequence context annotations of high-confidence human variant sets with VarSCAT revealed that more than 75% of all human individual germline and clinically relevant indels have breakpoint ambiguities. Moreover, we illustrate that more than 80% of human individual germline small variants in STR regions are indels and that the sizes of these indels correlated with STR motif sizes. VarSCAT is available from https://github.com/elolab/VarSCAT.
Collapse
Affiliation(s)
- Ning Wang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Antão-Sousa S, Pinto N, Rende P, Amorim A, Gusmão L. The sequence of the repetitive motif influences the frequency of multistep mutations in Short Tandem Repeats. Sci Rep 2023; 13:10251. [PMID: 37355683 PMCID: PMC10290632 DOI: 10.1038/s41598-023-32137-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/23/2023] [Indexed: 06/26/2023] Open
Abstract
Microsatellites, or Short Tandem Repeats (STRs), are subject to frequent length mutations that involve the loss or gain of an integer number of repeats. This work aimed to investigate the correlation between STRs' specific repetitive motif composition and mutational dynamics, specifically the occurrence of single- or multistep mutations. Allelic transmission data, comprising 323,818 allele transfers and 1,297 mutations, were gathered for 35 Y-chromosomal STRs with simple structure. Six structure groups were established: ATT, CTT, TCTA/GATA, GAAA/CTTT, CTTTT, and AGAGAT, according to the repetitive motif present in the DNA leading strand of the markers. Results show that the occurrence of multistep mutations varies significantly among groups of markers defined by the repetitive motif. The group of markers with the highest frequency of multistep mutations was the one with repetitive motif CTTTT (25% of the detected mutations) and the lowest frequency corresponding to the group with repetitive motifs TCTA/GATA (0.93%). Statistically significant differences (α = 0.05) were found between groups with repetitive motifs with different lengths, as is the case of TCTA/GATA and ATT (p = 0.0168), CTT (p < 0.0001) and CTTTT (p < 0.0001), as well as between GAAA/CTTT and CTTTT (p = 0.0102). The same occurred between the two tetrameric groups GAAA/CTTT and TCTA/GATA (p < 0.0001) - the first showing 5.7 times more multistep mutations than the second. When considering the number of repeats of the mutated paternal alleles, statistically significant differences were found for alleles with 10 or 12 repeats, between GATA and ATT structure groups. These results, which demonstrate the heterogeneity of mutational dynamics across repeat motifs, have implications in the fields of population genetics, epidemiology, or phylogeography, and whenever STR mutation models are used in evolutionary studies in general.
Collapse
Affiliation(s)
- Sofia Antão-Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), Porto, Portugal.
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| | - Nádia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Center of Mathematics of University of Porto (CMUP), Porto, Portugal
| | - Pablo Rende
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), Porto, Portugal
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), Porto, Portugal
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Xu P, Zhang J, Pan F, Mahn C, Roland C, Sagui C, Weninger K. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity. J Mol Biol 2023; 435:168086. [PMID: 37024008 PMCID: PMC10191799 DOI: 10.1016/j.jmb.2023.168086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
DNA trinucleotide repeat (TRs) expansion beyond a threshold often results in human neurodegenerative diseases. The mechanisms causing expansions remain unknown, although the tendency of TR ssDNA to self-associate into hairpins that slip along their length is widely presumed related. Here we apply single molecule FRET (smFRET) experiments and molecular dynamics simulations to determine conformational stabilities and slipping dynamics for CAG, CTG, GAC and GTC hairpins. Tetraloops are favored in CAG (89%), CTG (89%) and GTC (69%) while GAC favors triloops. We also determined that TTG interrupts near the loop in the CTG hairpin stabilize the hairpin against slipping. The different loop stabilities have implications for intermediate structures that may form when TR-containing duplex DNA opens. Opposing hairpins in the (CAG) ∙ (CTG) duplex would have matched stability whereas opposing hairpins in a (GAC) ∙ (GTC) duplex would have unmatched stability, introducing frustration in the (GAC) ∙ (GTC) opposing hairpins that could encourage their resolution to duplex DNA more rapidly than in (CAG) ∙ (CTG) structures. Given that the CAG and CTG TR can undergo large, disease-related expansion whereas the GAC and GTC sequences do not, these stability differences can inform and constrain models of expansion mechanisms of TR regions.
Collapse
Affiliation(s)
- Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA. https://twitter.com/@XPengning
| | - Jiahui Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Chelsea Mahn
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
41
|
Choi DE, Shin JW, Zeng S, Hong EP, Jang JH, Loupe JM, Wheeler VC, Stutzman HE, Kleinstiver BP, Lee JM. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538700. [PMID: 37162872 PMCID: PMC10168301 DOI: 10.1101/2023.04.28.538700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An expanded CAG repeat in the huntingtin gene ( HTT ) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and gRNAs efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion base editing strategies in HD and potentially other repeat expansion disorders.
Collapse
|
42
|
Persi E, Wolf YI, Karamycheva S, Makarova KS, Koonin EV. Compensatory relationship between low-complexity regions and gene paralogy in the evolution of prokaryotes. Proc Natl Acad Sci U S A 2023; 120:e2300154120. [PMID: 37036997 PMCID: PMC10120016 DOI: 10.1073/pnas.2300154120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
The evolution of genomes in all life forms involves two distinct, dynamic types of genomic changes: gene duplication (and loss) that shape families of paralogous genes and extension (and contraction) of low-complexity regions (LCR), which occurs through dynamics of short repeats in protein-coding genes. Although the roles of each of these types of events in genome evolution have been studied, their co-evolutionary dynamics is not thoroughly understood. Here, by analyzing a wide range of genomes from diverse bacteria and archaea, we show that LCR and paralogy represent two distinct routes of evolution that are inversely correlated. The emergence of LCR is a prominent evolutionary mechanism in fast evolving, young protein families, whereas paralogy dominates the comparatively slow evolution of old protein families. The analysis of multiple prokaryotic genomes shows that the formation of LCR is likely a widespread, transient evolutionary mechanism that temporally and locally affects also ancestral functions, but apparently, fades away with time, under mutational and selective pressures, yielding to gene paralogy. We propose that compensatory relationships between short-term and longer-term evolutionary mechanisms are universal in the evolution of life.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| |
Collapse
|
43
|
Current advances in neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:1881-1889. [PMID: 36795299 DOI: 10.1007/s10072-023-06677-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare but probably underdiagnosed neurodegenerative disorder due to pathogenic GGC expansions in the NOTCH2NLC gene. In this review, we summarize recent developments in the inheritance features, pathogenesis, and histopathologic and radiologic features of NIID that subvert the previous perceptions of NIID. GGC repeat sizes determine the age of onset and clinical phenotypes of NIID patients. Anticipation may be absent in NIID but paternal bias is observed in NIID pedigrees. Eosinophilic intranuclear inclusions in skin tissues once considered pathological hallmarks of NIID can also present in other GGC repeat diseases. Diffusion-weighted imaging (DWI) hyperintensity along the corticomedullary junction once considered the imaging hallmark of NIID can frequently be absent in muscle weakness and parkinsonism phenotype of NIID. Besides, DWI abnormalities can appear years after the onset of predominant symptoms and may even disappear completely with disease progression. Moreover, continuous reports of NOTCH2NLC GGC expansions in patients with other neurodegenerative diseases lead to the proposal of a new concept of NOTCH2NLC-related GGC repeat expansion disorders (NRED). However, by reviewing the previous literature, we point out the limitations of these studies and provide evidence that these patients are actually suffering from neurodegenerative phenotypes of NIID.
Collapse
|
44
|
Reyes CJF, Asano K. Between Order and Chaos: Understanding the Mechanism and Pathology of RAN Translation. Biol Pharm Bull 2023; 46:139-146. [PMID: 36724941 DOI: 10.1248/bpb.b22-00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Repeat-associated non-AUG (RAN) translation is a pathogenic mechanism in which repetitive sequences are translated into aggregation-prone proteins from multiple reading frames, even without a canonical AUG start codon. Since its discovery in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), RAN translation is now known to occur in the context of 12 disease-linked repeat expansions. This review discusses recent advances in understanding the regulatory mechanisms controlling RAN translation and its contribution to the pathophysiology of repeat expansion diseases. We discuss the key findings in the context of Fragile X Tremor Ataxia Syndrome (FXTAS), a neurodegenerative disorder caused by a CGG repeat expansion in the 5' untranslated region of FMR1.
Collapse
Affiliation(s)
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University.,Laboratory of Translational Control Study, Graduate School of Integrated Sciences for Life, Hiroshima University.,Hiroshima Research Center for Healthy Aging, Hiroshima University
| |
Collapse
|
45
|
Teng Y, Zhu M, Qiu Z. G-Quadruplexes in Repeat Expansion Disorders. Int J Mol Sci 2023; 24:ijms24032375. [PMID: 36768697 PMCID: PMC9916761 DOI: 10.3390/ijms24032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The repeat expansions are the main genetic cause of various neurodegeneration diseases. More than ten kinds of repeat sequences with different lengths, locations, and structures have been confirmed in the past two decades. G-rich repeat sequences, such as CGG and GGGGCC, are reported to form functional G-quadruplexes, participating in many important bioprocesses. In this review, we conducted an overview concerning the contribution of G-quadruplex in repeat expansion disorders and summarized related mechanisms in current pathological studies, including the increasing genetic instabilities in replication and transcription, the toxic RNA foci formed in neurons, and the loss/gain function of proteins and peptides. Furthermore, novel strategies targeting G-quadruplex repeats were developed based on the understanding of disease mechanism. Small molecules and proteins binding to G-quadruplex in repeat expansions were investigated to protect neurons from dysfunction and delay the progression of neurodegeneration. In addition, the effects of environment on the stability of G-quadruplex were discussed, which might be critical factors in the pathological study of repeat expansion disorders.
Collapse
|
46
|
Shibata T, Nakatani K. A small molecule binding to TGGAA pentanucleotide repeats that cause spinocerebellar ataxia type 31. Bioorg Med Chem Lett 2023; 79:129082. [PMID: 36414174 DOI: 10.1016/j.bmcl.2022.129082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Spinocerebellar ataxia type 31 is an autosomal dominant neurodegenerative disease caused by aberrant insertion of d(TGGAA)n into the intron shared by brain expressed, associated with Nedd4 and thymidine kinase 2 genes in chromosome 16. We reported that a naphthyridine dimer derivative with amidated linker structure (ND-amide) bound to GGA/GGA motifs in hairpin structures of d(TGGAA)n. The binding of naphthyridine dimer derivatives to the GGA/GGA motif was sensitive to the linker structures. The amidation of the linker in naphthyridine dimer improved the binding property to the GGA/GGA motif as compared with non-amidated naphthyridine dimer.
Collapse
Affiliation(s)
- Tomonori Shibata
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| |
Collapse
|
47
|
Sienes Bailo P, Llorente Martín E, Calmarza P, Montolio Breva S, Bravo Gómez A, Pozo Giráldez A, Sánchez-Pascuala Callau JJ, Vaquer Santamaría JM, Dayaldasani Khialani A, Cerdá Micó C, Camps Andreu J, Sáez Tormo G, Fort Gallifa I. The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. ADVANCES IN LABORATORY MEDICINE 2022; 3:342-360. [PMID: 37363428 PMCID: PMC10197325 DOI: 10.1515/almed-2022-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/23/2022] [Indexed: 06/28/2023]
Abstract
Objectives The central nervous system (CNS) is essential for homeostasis and controls the physiological functions of the body. However, the biochemical characteristics of the CNS make it especially vulnerable to oxidative damage (OS). This phenomenon compromises correct CNS functioning, leading to neurodegeneration and neuronal death. Contents OS plays a crucial role in the physiopathology of neurodegenerative diseases. It is involved in multiple mechanisms of nucleic acid, protein, and lipid oxidation, thereby contributing to progressive brain damage. These mechanisms include mitochondrial dysfunction; excessive production of reactive oxygen and nitrogen species; deficiency of antioxidant defenses; protein oligomerization; cytokine production and inflammatory response; blood-brain barrier abnormalities; and proteasome dysfunction. All these dysfunctions are involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, or amyotrophic lateral sclerosis. Summary and outlook A curative treatment is currently not available. Research is focused on the search for therapies that reduce oxidative damage and delay disease progression. In the recent years, researchers have focused their attention on the effects of antioxidant therapies.
Collapse
Affiliation(s)
- Paula Sienes Bailo
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
| | - Elena Llorente Martín
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Pilar Calmarza
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Quebec, Spain
- Universidad de Zaragoza, Zaragoza, Spain
- Comisión de Lipoproteínas y Enfermedades Cardiovasculares, SEQC-ML, Barcelona, Spain
| | - Silvia Montolio Breva
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Adrián Bravo Gómez
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Comisión de Elementos traza, SEQC-ML, Barcelona, Spain
| | - Adela Pozo Giráldez
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Servicio de Bioquímica Clínica y Patología Molecular, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Joan J. Sánchez-Pascuala Callau
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital Verge de la Cinta, Tortosa, Spain
| | - Juana M. Vaquer Santamaría
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Servicio de Bioquímica Clínica y Patología Molecular, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Anita Dayaldasani Khialani
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- UGD de Laboratorio, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Concepción Cerdá Micó
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Dirección Médica Asistencial, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Jordi Camps Andreu
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
- Hospital Universitari Sant Joan de Reus, Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Centre Recerca Biomèdica, Tarragona, Spain
| | - Guillermo Sáez Tormo
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Unidad de Patología Oxidativa-UPOX-UV, Universidad de Valencia, Valencia, Spain
- Servicio de Análisis Clínicos, Hospital Universitario Doctor Peset, Valencia, Spain
| | - Isabel Fort Gallifa
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Centre Recerca Biomèdica, Tarragona, Spain
- Laboratori ICS de Tarragona i Terres de l’Ebre, Tarragona, Spain
| |
Collapse
|
48
|
Ulhusna A, Murata A, Nakatani K. Inhibitory Effects of Mismatch Binding Molecules on the Repair Reaction of Uracil-Containing DNA. Biochemistry 2022; 61:2522-2530. [PMID: 36250600 DOI: 10.1021/acs.biochem.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stable R-loop formed during transcription induces enzyme-mediated deamination of cytosine, and the uracil in the DNA produced activates the base excision repair (BER) pathway. DNA cleavage involved in the BER pathway is thought to be one of the possible causes of trinucleotide repeat instability. Here, we performed an in vitro assay to investigate the effect of a DNA-binding small molecule, naphthyridine carbamate dimer (NCD), on BER enzyme reactions. The gel electrophoretic mobility shift assay (EMSA) and thermal melting analysis revealed the binding of NCD to a 5'-XGG-3'/5'-XGG-3' triad (X = C or U or apurinic/apyrimidinic site), which is a mimic of a BER enzyme substrate. Polyacrylamide gel electrophoresis (PAGE) of the reaction products of these substrates with hSMUG1 and APE1 enzymes in the presence of NCD showed that NCD interfered with the repair reaction in the 5'-XGG-3'/5'-XGG-3' triad. These findings would broaden the potential of small molecules in modulating trinucleotide repeat instability.
Collapse
Affiliation(s)
- Anisa Ulhusna
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
49
|
Kurosaki T, Ashizawa T. The genetic and molecular features of the intronic pentanucleotide repeat expansion in spinocerebellar ataxia type 10. Front Genet 2022; 13:936869. [PMID: 36199580 PMCID: PMC9528567 DOI: 10.3389/fgene.2022.936869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is characterized by progressive cerebellar neurodegeneration and, in many patients, epilepsy. This disease mainly occurs in individuals with Indigenous American or East Asian ancestry, with strong evidence supporting a founder effect. The mutation causing SCA10 is a large expansion in an ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. The ATTCT repeat is highly unstable, expanding to 280-4,500 repeats in affected patients compared with the 9-32 repeats in normal individuals, one of the largest repeat expansions causing neurological disorders identified to date. However, the underlying molecular basis of how this huge repeat expansion evolves and contributes to the SCA10 phenotype remains largely unknown. Recent progress in next-generation DNA sequencing technologies has established that the SCA10 repeat sequence has a highly heterogeneous structure. Here we summarize what is known about the structure and origin of SCA10 repeats, discuss the potential contribution of variant repeats to the SCA10 disease phenotype, and explore how this information can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Center for RNA Biology, University of Rochester, Rochester, NY, United States
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute and Weil Cornell Medical College at Houston Methodist Houston, TX, United States
| |
Collapse
|
50
|
Yamada T, Furuita K, Sakurabayashi S, Nomura M, Kojima C, Nakatani K. NMR determination of the 2:1 binding complex of naphthyridine carbamate dimer (NCD) and CGG/CGG triad in double-stranded DNA. Nucleic Acids Res 2022; 50:9621-9631. [PMID: 36095126 PMCID: PMC9508812 DOI: 10.1093/nar/gkac740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Trinucleotide repeat (TNR) diseases are caused by the aberrant expansion of CXG (X = C, A, G and T) sequences in genomes. We have reported two small molecules binding to TNR, NCD, and NA, which strongly bind to CGG repeat (responsible sequence of fragile X syndrome) and CAG repeat (Huntington's disease). The NMR structure of NA binding to the CAG/CAG triad has been clarified, but the structure of NCD bound to the CGG/CGG triad remained to be addressed. We here report the structural determination of the NCD-CGG/CGG complex by NMR spectroscopy and the comparison with the NA-CAG/CAG complex. While the NCD-CGG/CGG structure shares the binding characteristics with that of the NA-CAG/CAG complex, a significant difference was found in the overall structure caused by the structural fluctuation at the ligand-bound site. The NCD-CGG/CGG complex was suggested in the equilibrium between stacked and kinked structures, although NA-CAG/CAG complex has only the stacked structures. The dynamic fluctuation of the NCD-CGG/CGG structure at the NCD-binding site suggested room for optimization in the linker structure of NCD to gain improved affinity to the CGG/CGG triad.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuhei Sakurabayashi
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Nomura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| |
Collapse
|