1
|
Chawla SP, Pang SS, Jain D, Jeffrey S, Chawla NS, Song PY, Hall FL, Gordon EM. Gene and Cell Therapy for Sarcomas: A Review. Cancers (Basel) 2025; 17:1125. [PMID: 40227707 PMCID: PMC11987864 DOI: 10.3390/cancers17071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Background: The heterogeneity of sarcomas and resulting distinct sub-type specific characteristics, their high recurrence rates, and tendency for distant metastasis, continue to present significant challenges to providing optimal treatments. Objective: To provide a comprehensive review of current literature and clinical trials in gene and cell therapies for sarcomas. Methods: A comprehensive literature search was conducted utilizing the following databases: PubMed, Medline, Google Scholar and clinicaltrials.gov. Search terms included "gene therapy", "cell therapy", "NK cell therapy, "CAR-T therapy", "virotherapy", "sarcoma", "gene therapy", and "solid tumors". Additional sources were identified through manual searching for references of relevant studies. No language restrictions were set. The NCT number, study status, condition, and phase were noted for clinical trials. Results: There are only three gene and cell therapies for sarcomas that have been approved by a federal regulatory agency. Rexin-G: the first tumor-targeted gene therapy vector designed to target all advanced solid malignancies, including chemo-refractory osteosarcomas and soft tissue sarcomas, was approved by the Philippine FDA in 2007. Gendicine was the first oncolytic virus approved for intratumoral delivery in China in 2003. Afami-cel, an innovative chimeric antigen receptor (CAR) T cell therapy, was approved for synovial sarcoma in the United States in 2024. Other promising therapies are discussed in the text. Conclusions: The future of gene and cell therapy for sarcomas holds great promise, as research moves to late-stage clinical development. The integration of gene and cell therapies into standard sarcoma treatment protocols has the potential to significantly improve the quality of life and outcomes for patients with this rare and challenging group of cancers.
Collapse
Affiliation(s)
- Sant P. Chawla
- Sarcoma Oncology Center/Cancer Center of Southern California, Santa Monica, CA 90403, USA; (S.P.C.); (S.S.P.); (D.J.); (S.J.); (N.S.C.)
| | - Skyler S. Pang
- Sarcoma Oncology Center/Cancer Center of Southern California, Santa Monica, CA 90403, USA; (S.P.C.); (S.S.P.); (D.J.); (S.J.); (N.S.C.)
| | - Darshit Jain
- Sarcoma Oncology Center/Cancer Center of Southern California, Santa Monica, CA 90403, USA; (S.P.C.); (S.S.P.); (D.J.); (S.J.); (N.S.C.)
| | - Samantha Jeffrey
- Sarcoma Oncology Center/Cancer Center of Southern California, Santa Monica, CA 90403, USA; (S.P.C.); (S.S.P.); (D.J.); (S.J.); (N.S.C.)
- Aveni Foundation, Santa Monica, CA 90403, USA
| | - Neal S. Chawla
- Sarcoma Oncology Center/Cancer Center of Southern California, Santa Monica, CA 90403, USA; (S.P.C.); (S.S.P.); (D.J.); (S.J.); (N.S.C.)
| | | | | | - Erlinda M. Gordon
- Sarcoma Oncology Center/Cancer Center of Southern California, Santa Monica, CA 90403, USA; (S.P.C.); (S.S.P.); (D.J.); (S.J.); (N.S.C.)
- Aveni Foundation, Santa Monica, CA 90403, USA
- Delta Next-Gene, LLC, Santa Monica, CA 90405, USA;
| |
Collapse
|
2
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
3
|
Olarewaju O, Held F, Curtis P, Kenny CH, Maier U, Panavas T, du Plessis F. αFAP-specific nanobodies mediate a highly precise retargeting of modified AAV2 capsids thereby enabling specific transduction of tumor tissues. Mol Ther Methods Clin Dev 2024; 32:101378. [PMID: 39703904 PMCID: PMC11655695 DOI: 10.1016/j.omtm.2024.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Due to the refractiveness of tumor tissues to adeno-associated virus (AAV) transduction, AAV vectors are poorly explored for cancer therapy delivery. Here, we aimed to engineer AAVs to target tumors by enabling the specific engagement of fibroblast activation protein (FAP). FAP is a cell surface receptor distinctly upregulated in the reactive tumor stroma, but rarely expressed in healthy tissues. Thus, targeting FAP presents an opportunity to selectively transduce tumor tissues. To achieve this, we modified the capsid surface of AAV2 with an αFAP nanobody to retarget the capsid to engage FAP receptor. Following transduction, we observed a 23- to 80-fold increase in the selective transduction of FAP+ tumor cells in vitro, and greater than 5-fold transduction of FAP+ tumor tissues in vivo. Subsequent optimization of the VP1-nanobody expression cassette further enhanced the transduction efficiency of the modified capsids. Due to the limited αFAP nanobodies repertoires, we broadened the versatility of this high-fidelity platform by screening a naive VHH yeast display library, leading to the identification of several novel αFAP nanobody candidates (KD = 0.1 to >100 nM). Hence, our study offers new opportunity for the application of AAV vectors for highly selective delivery of therapeutics to the tumor stroma.
Collapse
Affiliation(s)
- Olaniyi Olarewaju
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Franziska Held
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Pamela Curtis
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Cynthia Hess Kenny
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Udo Maier
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Tadas Panavas
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Francois du Plessis
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| |
Collapse
|
4
|
Liang W, Zhou C, Deng Y, Fu L, Zhao J, Long H, Ming W, Shang J, Zeng B. The current status of various preclinical therapeutic approaches for tendon repair. Ann Med 2024; 56:2337871. [PMID: 38738394 PMCID: PMC11095292 DOI: 10.1080/07853890.2024.2337871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
5
|
Ren H, Jin Y, Huang H, Wu W, Dai X, Fang W, Qin J, Li H, Zhao P. In vivo engineering chimeric antigen receptor immune cells with emerging nanotechnologies. NANO TODAY 2024; 59:102517. [DOI: 10.1016/j.nantod.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Wang Z, Wang X, He Y, Wu H, Mao R, Wang H, Qiu L. Exploring Framework Nucleic Acids: A Perspective on Their Cellular Applications. JACS AU 2024; 4:4110-4128. [PMID: 39610738 PMCID: PMC11600171 DOI: 10.1021/jacsau.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
Cells are fundamental units of life. The coordination of cellular functions and behaviors relies on a cascade of molecular networks. Technologies that enable exploration and manipulation of specific molecular events in living cells with high spatiotemporal precision would be critical for pathological study, disease diagnosis, and treatment. Framework nucleic acids (FNAs) represent a novel class of nucleic acid materials characterized by their monodisperse and rigid nanostructure. Leveraging their exceptional programmability, convenient modification property, and predictable atomic-level architecture, FNAs have attracted significant attention in diverse cellular applications such as cell recognition, imaging, manipulation, and therapeutic interventions. In this perspective, we will discuss the utilization of FNAs in living cell systems while critically assessing the opportunities and challenges presented in this burgeoning field.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Rui Mao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Haiyuan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
7
|
Muravyeva A, Smirnikhina S. Strategies for Modifying Adenoviral Vectors for Gene Therapy. Int J Mol Sci 2024; 25:12461. [PMID: 39596526 PMCID: PMC11595218 DOI: 10.3390/ijms252212461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Adenoviral vectors (AdVs) are effective vectors for gene therapy due to their broad tropism, large capacity, and high transduction efficiency, making them widely used as oncolytic vectors and for creating vector-based vaccines. This review also considers the application of adenoviral vectors in oncolytic virotherapy and gene therapy for inherited diseases, analyzing strategies to enhance their efficacy and specificity. However, despite significant progress in this field, the use of adenoviral vectors is limited by their high immunogenicity, low specificity to certain cell types, and limited duration of transgene expression. Various strategies and technologies aimed at improving the characteristics of adenoviral vectors are being developed to overcome these limitations. Significant attention is being paid to the creation of tissue-specific promoters, which allow for the controlled expression of transgenes, as well as capsid modifications that enhance tropism to target cells, which also play a key role in reducing immunogenicity and increasing the efficiency of gene delivery. This review focuses on modern approaches to adenoviral vector modifications made to enhance their effectiveness in gene therapy, analyzing the current achievements, challenges, and prospects for applying these technologies in clinical practice, as well as identifying future research directions necessary for successful clinical implementation.
Collapse
Affiliation(s)
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| |
Collapse
|
8
|
Mao T, Nan L, Shum HC. Digital Quantification and Ultrasensitive Detection of Single Influenza Virus Using Microgel-in-Droplet Enzyme-Linked Immunosorbent Assay. Anal Chem 2024; 96:16134-16144. [PMID: 39360754 DOI: 10.1021/acs.analchem.4c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Detection and quantification of viral particles (VPs) facilitate both diagnostics of pathogenic viruses and quality control testing of virus-based products. However, existing technologies fail to afford concurrent ultrasensitive detection and large-scale absolute quantification of VPs. Here, we propose a digital Microgel-in-Droplet enzyme-linked immunosorbent assay (ELISA) system that enables the processing and monitoring of millions of ELISA reactions at the single-VP level by incorporating droplet microfluidics with sandwich ELISA. Upon validating the microfluidic workflow and optimizing ELISA parameters, we demonstrate ultrasensitive VP detection at a limit of detection of 56 PFU/test. Leveraging a fluorescence-based screening platform, we further realize high-throughput digital counting of VPs with a linear detection range of 500-64 000 PFU/test. The precision is comparable to that of the gold standard, the plaque assay, across a wide range of virus concentrations. We anticipate that our system will provide a novel paradigm for the absolute enumeration of various types of viral particles.
Collapse
Affiliation(s)
- Tianjiao Mao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lang Nan
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
9
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
10
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
11
|
Singh D. Beyond the membrane: Exploring non-viral methods for mitochondrial gene delivery. Mitochondrion 2024; 78:101922. [PMID: 38897397 DOI: 10.1016/j.mito.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mitochondrial disorders, stemming from mutations in mitochondrial DNA (mtDNA), present a significant therapeutic challenge due to their complex pathophysiology and broad spectrum of clinical manifestations. Traditional gene therapy approaches, primarily reliant on viral vectors, face obstacles such as potential immunogenicity, insertional mutagenesis, and the specificity of targeting mtDNA. This review delves into non-viral methods for mitochondrial gene delivery, emerging as a promising alternative to overcome these limitations. Focusing on lipid-based nanoparticles, polymer-based vectors, and mitochondrial-targeted peptides, the mechanisms of action, advantages, and current applications in treating mitochondrial diseases was well elucidated. Non-viral vectors offer several benefits, including reduced immunogenicity, enhanced safety profiles, and the flexibility to carry a wide range of genetic material. We examine case studies where these methods have been applied, highlighting their potential in correcting pathogenic mtDNA mutations and mitigating disease phenotypes. Despite their promise, challenges such as delivery efficiency, specificity, and long-term expression stability persist. The review underscores the need for ongoing research to refine these delivery systems carry a wide range of genetic material. We examine case studies where these methods settings. As we advance our understanding of mitochondrial biology and gene delivery technologies, non-viral methods hold the potential to revolutionize the treatment of mitochondrial disorders, offering hope for therapies that can precisely target and correct the underlying genetic defects.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| |
Collapse
|
12
|
Sun Y, You Y, Wu Q, Hu R, Dai K. Senescence-targeted MicroRNA/Organoid composite hydrogel repair cartilage defect and prevention joint degeneration via improved chondrocyte homeostasis. Bioact Mater 2024; 39:427-442. [PMID: 38855061 PMCID: PMC11157121 DOI: 10.1016/j.bioactmat.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Cartilage defect (CD) is a common complication in osteoarthritis (OA). Impairment of chondrogenesis and cellular senescence are considered as hallmarks of OA development and caused failure of cartilage repair in most clinical CD cases. Exploring markers for cellular senescence in CD patients might provide new perspectives for osteoarthritic CD patients. In the present study, we aim to explore senescent markers in CD patients with OA to fabricate a senescence-targeted SMSC organoid hydrogel for cartilage repair. Methods Clinical cartilage samples from cartilage defect patients were collected. Immunofluorescence staining of senescent markers and SA-β-Gal staining were used to detect the senescence state of SMSCs and chondrocytes in cartilage defect and OA patients. MicroRNA expression profiles of SMSC organoids and H2O2-treated SMSC organoids were analyzed and compared with high-throughput microRNA sequencing. Fluorescent in situ hybridization of miRNA were used to determine the expression level of miR-24 in SMSC organoids and cartilage samples. Interaction between miR-24 and its downstream target was analyzed via qRT-PCR, immunofluorescence and luciferase assay. Senescence-targeted miR-24 μS/SMSC organoid hydrogel (MSOH) was constructed for cartilage repair. Anti-senescence properties and chondrogenesis were determined in vitro for MSOH. Rats were used to evaluate the cartilage repair capacity of the MSOH hydrogel in vivo. Results In this study, we found Osteoarthritic cartilage defect patients demonstrated upregulated cellular senescence in joint cartilage. MicroRNA sequencing demonstrated senescence marker miR-24 was negatively associated with cartilage impairment and cellular senescence in osteoarthritic CD patients. Moreover, miR-24 mimics alleviates cellular senescence to promote chondrogenesis by targeting downstream TAOK1. Also, miR-24 downregulated TAOK1 expression and promoted chondrogenesis in SMSC organoids. Senescence-targeted miR-24 μS/SMSC organoid hydrogel (MSOH) was constructed and demonstrated superior chondrogenesis in vitro. Animal experiments demonstrated that MSOH hydrogel showed better cartilage repairing effects and better maintained joint function at 24 weeks with low intra-articular inflammatory response after transplantation in rat joint. Single-cell RNA-seq of generated cartilage indicated that implanted MSOH could affect chondrocyte homeostatic state and alter the chondrocyte cluster frequency by regulating cellular glycolysis and OXPHOS, impacting cell cycle and ferroptosis to alleviate cellular senescence and prevent joint degeneration. Conclusion Osteoarthritic cartilage defect patients demonstrated upregulated cellular senescence in joint cartilage. Senescence marker miR-24 was negatively associated with cartilage impairment in osteoarthritic CD patients. miR-24 attenuates chondrocytes senescence and promotes chondrogenesis in SMSC organoids through targeting TAOK1. Senescence-targeted miR-24 microsphere/SMSC organoid composite hydrogel could successfully repair cartilage defect in osteoarthritic microenvironment via enhanced miR-24/TAOK1 signaling pathway, suggesting MSOH might be a novel therapy for cartilage repair in osteoarthritic CD patients.
Collapse
Affiliation(s)
- Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, China
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yongqing You
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Hu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
13
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
15
|
Maremonti MI, Panzetta V, Netti PA, Causa F. HiViPore: a highly viable in-flow compression for a one-step cell mechanoporation in microfluidics to induce a free delivery of nano- macro-cargoes. J Nanobiotechnology 2024; 22:441. [PMID: 39068464 PMCID: PMC11282774 DOI: 10.1186/s12951-024-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Among mechanoporation techniques for intracellular delivery, microfluidic approaches succeed in high delivery efficiency and throughput. However, especially the entry of large cargoes (e.g. DNA origami, mRNAs, organic/inorganic nanoparticles) is currently impaired since it requires large cell membrane pores with the need to apply multi-step processes and high forces, dramatically reducing cell viability. RESULTS Here, HiViPore presents as a microfluidic viscoelastic contactless compression for one-step cell mechanoporation to produce large pores while preserving high cell viability. Inducing an increase of curvature at the equatorial region of cells, formation of a pore with a size of ~ 1 μm is obtained. The poration is coupled to an increase of membrane tension, measured as a raised fluorescence lifetime of 12% of a planarizable push-pull fluorescent probe (Flipper-TR) labelling the cell plasma membrane. Importantly, the local disruptions of cell membrane are transient and non-invasive, with a complete recovery of cell integrity and functions in ~ 10 min. As result, HiViPore guarantees cell viability as high as ~ 90%. In such conditions, an endocytic-free diffusion of large nanoparticles is obtained with typical size up to 500 nm and with a delivery efficiency up to 12 times higher than not-treated cells. CONCLUSIONS The proposed one-step contactless mechanoporation results in an efficient and safe approach for advancing intracellular delivery strategies. In detail, HiViPore solves the issues of low cell viability when multiple steps of poration are required to obtain large pores across the cell plasma membrane. Moreover, the compression uses a versatile, low-cost, biocompatible viscoelastic fluid, thus also optimizing the operational costs. With HiViPore, we aim to propose an easy-to-use microfluidic device to a wide range of users, involved in biomedical research, imaging techniques and nanotechnology for intracellular delivery applications in cell engineering.
Collapse
Affiliation(s)
- Maria Isabella Maremonti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy.
| |
Collapse
|
16
|
Baertsch NA, Marciante AB, Mitchell GS, Baker TL. Inactivity-induced phrenic motor facilitation requires PKCζ activity within phrenic motor neurons. J Neurophysiol 2024; 131:1188-1199. [PMID: 38691529 PMCID: PMC11918281 DOI: 10.1152/jn.00138.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024] Open
Abstract
Prolonged inhibition of respiratory neural activity elicits a long-lasting increase in phrenic nerve amplitude once respiratory neural activity is restored. Such long-lasting facilitation represents a form of respiratory motor plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although facilitation also occurs in inspiratory intercostal nerve activity after diminished respiratory neural activity (iIMF), it is of shorter duration. Atypical PKC activity in the cervical spinal cord is necessary for iPMF and iIMF, but the site and specific isoform of the relevant atypical PKC are unknown. Here, we used RNA interference to test the hypothesis that the zeta atypical PKC isoform (PKCζ) within phrenic motor neurons is necessary for iPMF but PKCζ within intercostal motor neurons is unnecessary for transient iIMF. Intrapleural injections of siRNAs targeting PKCζ (siPKCζ) to knock down PKCζ mRNA within phrenic and intercostal motor neurons were made in rats. Control rats received a nontargeting siRNA (NTsi) or an active siRNA pool targeting a novel PKC isoform, PKCθ (siPKCθ), which is required for other forms of respiratory motor plasticity. Phrenic nerve burst amplitude and external intercostal (T2) electromyographic (EMG) activity were measured in anesthetized and mechanically ventilated rats exposed to 30 min of respiratory neural inactivity (i.e., neural apnea) created by modest hypocapnia (20 min) or a similar recording duration without neural apnea (time control). Phrenic burst amplitude was increased in rats treated with NTsi (68 ± 10% baseline) and siPKCθ (57 ± 8% baseline) 60 min after neural apnea vs. time control rats (-3 ± 3% baseline), demonstrating iPMF. In contrast, intrapleural siPKCζ virtually abolished iPMF (5 ± 4% baseline). iIMF was transient in all groups exposed to neural apnea; however, intrapleural siPKCζ attenuated iIMF 5 min after neural apnea (50 ± 21% baseline) vs. NTsi (97 ± 22% baseline) and siPKCθ (103 ± 20% baseline). Neural inactivity elevated the phrenic, but not intercostal, responses to hypercapnia, an effect that was blocked by siPKCζ. We conclude that PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient iIMF.NEW & NOTEWORTHY We report important new findings concerning the mechanisms regulating a form of spinal neuroplasticity elicited by prolonged inhibition of respiratory neural activity, inactivity-induced phrenic motor facilitation (iPMF). We demonstrate that the atypical PKC isoform PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient inspiratory intercostal facilitation. Our findings are novel and advance our understanding of mechanisms contributing to phrenic motor plasticity.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States
| | - Alexandria B Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States
| |
Collapse
|
17
|
Park HW, Lee CE, Kim S, Jeong WJ, Kim K. Ex Vivo Peptide Decoration Strategies on Stem Cell Surfaces for Augmenting Endothelium Interaction. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:327-339. [PMID: 37830185 DOI: 10.1089/ten.teb.2023.0210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ischemic vascular diseases remain leading causes of disability and death. Although various clinical therapies have been tried, reperfusion injury is a major issue, occurring when blood recirculates at the damaged lesion. As an alternative approach, cell-based therapy has emerged. Mesenchymal stem cells (MSCs) are attractive cellular candidates due to their therapeutic capacities, including differentiation, safety, angiogenesis, and tissue repair. However, low levels of receptors/ligands limit targeted migration of stem cells. Thus, it is important to improve homing efficacy of transplanted MSCs toward damaged endothelium. Among various MSC modulations, ex vivo cell surface engineering could effectively augment homing efficiency by decorating MSC surfaces with alternative receptors/ligands, thereby facilitating intercellular interactions with the endothelium. Especially, exogenous decoration of peptides onto stem cell surfaces could provide appropriate functional signaling moieties to achieve sufficient MSC homing. Based on their protein-like functionalities, high modularity in molecular design, and high specific affinities and multivalency to target receptors, peptides could be representative surface-presentable moieties. Moreover, peptides feature a mild synthetic process, enabling precise control of amino acid composition and sequence. Such ex vivo stem cell surface engineering could be achieved primarily by hydrophobic interactions of the cellular bilayer with peptide-conjugated anchor modules and by covalent conjugation between peptides and available compartments in membranes. To this end, this review provides an overview of currently available peptide-mediated, ex vivo stem cell surface engineering strategies for enhancing MSC homing efficiency by facilitating interactions with endothelial cells. Stem cell surface engineering techniques using peptide-based bioconjugates have the potential to revolutionize current vascular disease treatments while addressing their technical limitations.
Collapse
Affiliation(s)
- Hee Won Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
19
|
Takano KA, Wong AAL, Brown R, Situ K, Chua BA, Abu AE, Pham TT, Reyes GC, Ramachandran S, Kamata M, Li MMH, Wu TT, Rao DS, Arumugaswami V, Dorshkind K, Cole S, Morizono K. Envelope protein-specific B cell receptors direct lentiviral vector tropism in vivo. Mol Ther 2024; 32:1311-1327. [PMID: 38449314 PMCID: PMC11081870 DOI: 10.1016/j.ymthe.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes. Functional analysis of the BCRs of the transduced cells demonstrated that BCRs specific to the pseudotyping envelope proteins mediate viral entry, enabling the vectors to selectively transduce the B cell populations that are capable of producing antibodies specific to their envelope proteins. Lentiviral vector entry via the BCR activated the transduced B cells and induced proliferation and differentiation into mature effectors, such as memory B and plasma cells. BCR-mediated viral entry into clonally specific B cell subpopulations raises new concepts for understanding the biodistribution of transgene expression after systemic administration of lentiviral vectors and offers new opportunities for BCR-targeted gene delivery by pseudotyped lentiviral vectors.
Collapse
Affiliation(s)
- Kari-Ann Takano
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anita A L Wong
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca Brown
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathy Situ
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bernadette Anne Chua
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angel Elma Abu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Truc T Pham
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Glania Carel Reyes
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Masakazu Kamata
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Melody M H Li
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ting-Ting Wu
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dinesh S Rao
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vaithilingaraja Arumugaswami
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steve Cole
- Departments of Psychiatry & Biobehavioral Sciences and Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Pandit S, Smith BE, Birnbaum ME, Brudno Y. A biomaterial platform for T cell-specific gene delivery. Acta Biomater 2024; 177:157-164. [PMID: 38364929 PMCID: PMC10948289 DOI: 10.1016/j.actbio.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Efficient T cell engineering is central to the success of CAR T cell therapy but involves multiple time-consuming manipulations, including T cell isolation, activation, and transduction. These steps add complexity and delay CAR T cell manufacturing, which takes a mean time of 4 weeks. To streamline T cell engineering, we strategically combine two critical engineering solutions - T cell-specific lentiviral vectors and macroporous scaffolds - that enable T cell activation and transduction in a simple, single step. The T cell-specific lentiviral vectors (referred to as STAT virus) target T cells through the display of an anti-CD3 antibody and the CD80 extracellular domain on their surface and provide robust T cell activation. Biocompatible macroporous scaffolds (referred to as Drydux) mediate robust transduction by providing effective interaction between naïve T cells and viral vectors. We show that when unstimulated peripheral blood mononuclear cells (PBMCs) are seeded together with STAT lentivirus on Drydux scaffolds, T cells are activated, selectively transduced, and reprogrammed in a single step. Further, we show that the Drydux platform seeded with PBMCs and STAT lentivirus generates tumor-specific functional CAR T cells. This potent combination of engineered lentivirus and biomaterial scaffold holds promise for an effective, simple, and safe avenue for in vitro and in vivo T cell engineering. STATEMENT OF SIGNIFICANCE: Manufacturing T cell therapies involves lengthy and labor-intensive steps, including T cell selection, activation, and transduction. These steps add complexity to current CAR T cell manufacturing protocols and limit widespread patient access to this revolutionary therapy. In this work, we demonstrate the combination of engineered virus and biomaterial platform that, together, enables selective T cell activation and transduction in a single step, eliminating multistep T cell engineering protocols and significantly simplifying the manufacturing process.
Collapse
Affiliation(s)
- Sharda Pandit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Blake E Smith
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Thalmann L, Martin-Gonzalez N, Brücher D, Plückthun A, de Pablo PJ, Suomalainen M, Greber UF. Gutless Helper-Dependent and First-Generation HAdV5 Vectors Have Similar Mechanical Properties and Common Transduction Mechanisms. Hum Gene Ther 2024; 35:163-176. [PMID: 38386500 DOI: 10.1089/hum.2023.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Delivering vectorized information into cells with the help of viruses has been of high interest to fundamental and applied science, and bears significant therapeutic promise. Human adenoviruses (HAdVs) have been at the forefront of gene delivery for many years, and the subject of intensive development resulting in several generations of agents, including replication-competent, -defective or retargeted vectors, and recently also helper-dependent (HD), so-called gutless vectors lacking any viral protein coding information. While it is possible to produce HD-AdVs in significant amounts, physical properties of these virus-like particles and their efficiency of transduction have not been addressed. Here, we used single-cell and single virus particle assays to probe the effect of genome length on HAdV-C5 vector transduction. Our results demonstrate that first-generation C5 vectors lacking the E1/E3 regions of the viral genome as well as HD-AdV-C5 particles with a wild type (wt) ∼36 kbp or an undersized double-strand DNA genome are similar to human adenovirus C5 (HAdV-C5) wt regarding attachment to human lung epithelial cells, endocytic uptake, endosome penetration and dependency on the E3 RING ubiquitin ligase Mind Bomb 1 for DNA uncoating at the nuclear pore complex. Atomic force microscopy measurements of single virus particles indicated that small changes in the genome length from 94% to 103% of HAdV-C5 have no major impact on physical and mechanical features of AdV vectors. In contrast, an HD-AdV-C5 with ∼30 kbp genome was slightly stiffer and less heat-resistant than the other particles, despite comparable entry and transduction efficiencies in tissue culture cell lines, including murine alveolar macrophage-like Max-Planck-Institute (MPI)-2 cells. Together, our in vitro studies reinforce the use of HD-AdV vectors for effective single round gene delivery. The results illustrate how physical properties and cell entry behavior of single virus particles can provide functional information for anticipated therapeutic vector applications.
Collapse
Affiliation(s)
- Lars Thalmann
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | | - Dominik Brücher
- Department of Condensed Matter Physics and IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Andreas Plückthun
- Department of Condensed Matter Physics and IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pedro J de Pablo
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
22
|
Min J, Rong X, Zhang J, Su R, Wang Y, Qi W. Computational Design of Peptide Assemblies. J Chem Theory Comput 2024; 20:532-550. [PMID: 38206800 DOI: 10.1021/acs.jctc.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.
Collapse
Affiliation(s)
- Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
23
|
Zawadzki S, Martín-Serrano Á, Okła E, Kędzierska M, Garcia-Gallego S, López PO, de la Mata FJ, Michlewska S, Makowski T, Ionov M, Pędziwiatr-Werbicka E, Bryszewska M, Miłowska K. Synthesis and biophysical evaluation of carbosilane dendrimers as therapeutic siRNA carriers. Sci Rep 2024; 14:1615. [PMID: 38238354 PMCID: PMC10796380 DOI: 10.1038/s41598-024-51238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Gene therapy presents an innovative approach to the treatment of previously incurable diseases. The advancement of research in the field of nanotechnology has the potential to overcome the current limitations and challenges of conventional therapy methods, and therefore to unlocking the full potential of dendrimers for use in the gene therapy of neurodegenerative disorders. The blood-brain barrier (BBB) poses a significant challenge when delivering therapeutic agents to the central nervous system. In this study, we investigated the biophysical properties of dendrimers and their complexes with siRNA directed against the apolipoprotein E (APOE) gene to identify an appropriate nanocarrier capable of safely delivering the cargo across the BBB. Our study yielded valuable insights into the complexation process, stability over time, the mechanisms of interaction, the influence of dendrimers on the oligonucleotide's spatial structure, and the potential cytotoxic effects on human cerebral microvascular endothelium cells. Based on our findings, we identified that the dendrimer G3Si PEG6000 was an optimal candidate for further research, potentially serving as a nanocarrier capable of safely delivering therapeutic agents across the BBB for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Serafin Zawadzki
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland.
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki St., 90-237, Lodz, Poland.
| | - Ángela Martín-Serrano
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
| | - Elżbieta Okła
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Sandra Garcia-Gallego
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Paula O López
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Francisco J de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 2 Dabrowskiego Sq, 09-402, Plock, Poland
| | - Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| |
Collapse
|
24
|
Mohammed OA, Alghamdi M, Alfaifi J, Alamri MMS, Al-Shahrani AM, Alharthi MH, Alshahrani AM, Alhalafi AH, Adam MIE, Bahashwan E, Jarallah AlQahtani AA, BinAfif WF, Abdel-Reheim MA, Abdel Mageed SS, Doghish AS. The emerging role of miRNAs in myocardial infarction: From molecular signatures to therapeutic targets. Pathol Res Pract 2024; 253:155087. [PMID: 38183820 DOI: 10.1016/j.prp.2023.155087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Globally, myocardial infarction (MI) and other cardiovascular illnesses have long been considered the top killers. Heart failure and mortality are the results of myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, all of which are caused by MI. MicroRNAs (miRNAs) play a crucial regulatory function in the progression and advancement of heart disease following an MI. By consolidating the existing data on miRNAs, our aim is to gain a more comprehensive understanding of their role in the pathological progression of myocardial injury after MI and to identify potential crucial target pathways. Also included are the primary treatment modalities and their most recent developments. miRNAs have the ability to regulate both normal and pathological activity, including the key signaling pathways. As a result, they may exert medicinal benefits. This review presents a comprehensive analysis of the role of miRNAs in MI with a specific emphasis on their impact on the regeneration of cardiomyocytes and other forms of cell death, such as apoptosis, necrosis, and autophagy. Furthermore, the targets of pro- and anti-MI miRNAs are comparatively elucidated.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Al-Shahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
25
|
Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis 2024; 11:268-282. [PMID: 37588217 PMCID: PMC10425811 DOI: 10.1016/j.gendis.2023.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
CRISPR/Cas9 is an effective gene editing tool with broad applications for the prevention or treatment of numerous diseases. It depends on CRISPR (clustered regularly interspaced short palindromic repeats) as a bacterial immune system and plays as a gene editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9 compared to other editing approaches, it has been broadly investigated to treat numerous hereditary and acquired illnesses, including cancers, hemolytic diseases, immunodeficiency disorders, cardiovascular diseases, visual maladies, neurodegenerative conditions, and a few X-linked disorders. CRISPR/Cas9 system has been used to treat cancers through a variety of approaches, with stable gene editing techniques. Here, the applications and clinical trials of CRISPR/Cas9 in various illnesses are described. Due to its high precision and efficiency, CRISPR/Cas9 strategies may treat gene-related illnesses by deleting, inserting, modifying, or blocking the expression of specific genes. The most challenging barrier to the in vivo use of CRISPR/Cas9 like off-target effects will be discussed. The use of transfection vehicles for CRISPR/Cas9, including viral vectors (such as an Adeno-associated virus (AAV)), and the development of non-viral vectors is also considered.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14155-6463, Iran
| | - Hossein Soltaninejad
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14117-13116, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
26
|
Chen Z, Hu Y, Mei H. Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303215. [PMID: 37906032 PMCID: PMC10724421 DOI: 10.1002/advs.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a highly efficacious treatment modality for refractory and relapsed hematopoietic malignancies in recent years. Furthermore, CAR technologies for cancer immunotherapy have expanded from CAR-T to CAR-natural killer cell (CAR-NK), CAR-cytokine-induced killer cell (CAR-CIK), and CAR-macrophage (CAR-MΦ) therapy. Nevertheless, the high cost and complex manufacturing processes of ex vivo generation of autologous CAR products have hampered broader application. There is an urgent need to develop an efficient and economical paradigm shift for exploring new sourcing strategies and engineering approaches toward generating CAR-engineered immune cells to benefit cancer patients. Currently, researchers are actively investigating various strategies to optimize the preparation and sourcing of these potent immunotherapeutic agents. In this work, the latest research progress is summarized. Perspectives on the future of CAR-engineered immune cell manufacturing are provided, and the engineering approaches, and diverse sources used for their development are focused upon.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Heng Mei
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| |
Collapse
|
27
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
28
|
Azadpour B, Aharipour N, Paryab A, Omid H, Abdollahi S, Madaah Hosseini H, Malek Khachatourian A, Toprak MS, Seifalian AM. Magnetically-assisted viral transduction (magnetofection) medical applications: An update. BIOMATERIALS ADVANCES 2023; 154:213657. [PMID: 37844415 DOI: 10.1016/j.bioadv.2023.213657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Gene therapy involves replacing a faulty gene or adding a new gene inside the body's cells to cure disease or improve the body's ability to fight disease. Its popularity is evident from emerging concepts such as CRISPR-based genome editing and epigenetic studies and has been moved to a clinical setting. The strategy for therapeutic gene design includes; suppressing the expression of pathogenic genes, enhancing necessary protein production, and stimulating the immune system, which can be incorporated into both viral and non-viral gene vectors. Although non-viral gene delivery provides a safer platform, it suffers from an inefficient rate of gene transfection, which means a few genes could be successfully transfected and expressed within the cells. Incorporating nucleic acids into the viruses and using these viral vectors to infect cells increases gene transfection efficiency. Consequently, more cells will respond, more genes will be expressed, and sustained and successful gene therapy can be achieved. Combining nanoparticles (NPs) and nucleic acids protects genetic materials from enzymatic degradation. Furthermore, the vectors can be transferred faster, facilitating cell attachment and cellular uptake. Magnetically assisted viral transduction (magnetofection) enhances gene therapy efficiency by mixing magnetic nanoparticles (MNPs) with gene vectors and exerting a magnetic field to guide a significant number of vectors directly onto the cells. This research critically reviews the MNPs and the physiochemical properties needed to assemble an appropriate magnetic viral vector, discussing cellular hurdles and attitudes toward overcoming these barriers to reach clinical gene therapy perspectives. We focus on the studies conducted on the various applications of magnetic viral vectors in cancer therapies, regenerative medicine, tissue engineering, cell sorting, and virus isolation.
Collapse
Affiliation(s)
- Behnam Azadpour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nazli Aharipour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamed Omid
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sorosh Abdollahi
- Department of Biomedical Engineering, University of Calgary, Alberta, Canada
| | | | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK.
| |
Collapse
|
29
|
Dogbey DM, Torres VES, Fajemisin E, Mpondo L, Ngwenya T, Akinrinmade OA, Perriman AW, Barth S. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv Transl Res 2023; 13:2719-2738. [PMID: 37301780 PMCID: PMC10257536 DOI: 10.1007/s13346-023-01362-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
The burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy. An important advantage of a delivery vector either viral or non-viral is the cumulative ability to penetrate the haphazardly arranged and immunosuppressive tumour microenvironment of solid tumours and or withstand antibody-mediated immune response. Biotechnological approaches incorporating rational protein engineering for the development of targeted delivery systems which may serve as vehicles for packaging and distribution of anti-cancer agents to selectively target and kill cancer cells are highly desired. Over the years, these chemically and genetically modified delivery systems have aimed at distribution and selective accumulation of drug molecules at receptor sites resulting in constant maintenance of high drug bioavailability for effective anti-tumour activity. In this review, we highlighted the state-of-the art viral and non-viral drug and gene delivery systems and those under developments focusing on cancer therapy.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Fajemisin
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Liyabona Mpondo
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Takunda Ngwenya
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Olusiji Alex Akinrinmade
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, Bristol, UK
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
30
|
R G, Kar S, Nagai M, Mahapatra PS, Santra TS. Massively Parallel High-Throughput Single-Cell Patterning and Large Biomolecular Delivery in Mammalian Cells Using Light Pulses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303053. [PMID: 37548122 DOI: 10.1002/smll.202303053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Indexed: 08/08/2023]
Abstract
The recent advancements of single-cell analysis have significantly enhanced the ability to understand cellular physiology when compared to bulk cellular analysis. Here a massively parallel single-cell patterning and very large biomolecular delivery is reported. Micro-pillar polydimethyl siloxane stamp with different diameters (40-100 µm with 1 cm × 1 cm patterning area) is fabricated and then imprint distinct proteins and finally pattern single-cell to small clusters of cells depending on the micro-pillar diameters. The maximum patterning efficiency is achieved 99.7% for SiHa, 96.75% for L929, and 98.6% for MG63 cells, for the 100 µm micro-pillar stamp. For intracellular delivery of biomolecules into the patterned cells, a titanium micro-dish device is aligned on top of the cells and exposed by infrared light pulses. The platform successfully delivers small to very large biomolecules such as PI dyes (668 Da), dextran 3000 Da, siRNA (20-24 bp), and large size enzymes (464 KDa) in SiHa, L929 and MG63 cells. The delivery efficiency for PI dye, Dextran 3000, siRNA, and enzyme for patterned cells are ≈95 ± 3%, 97 ± 1%, 96 ± 1% and 94 ± 3%, with cell viability of 98 ± 1%. Thus, the platform is compact, robust, easy for printing, and potentially applicable for single-cell therapy and diagnostics.
Collapse
Affiliation(s)
- Gayathri R
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Srabani Kar
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, 517507, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, 441-8580, Japan
| | - Pallab Sinha Mahapatra
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
31
|
Fischer A, Ehrlich A, Plotkin Y, Ouyang Y, Asulin K, Konstantinos I, Fan C, Nahmias Y, Willner I. Stimuli-Responsive Hydrogel Microcapsules Harnessing the COVID-19 Immune Response for Cancer Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202311590. [PMID: 37675854 DOI: 10.1002/anie.202311590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
The combination of gene therapy and immunotherapy concepts, along recent advances in DNA nanotechnology, have the potential to provide important tools for cancer therapies. We present the development of stimuli-responsive microcapsules, loaded with a viral immunogenetic agent, harnessing the immune response against the Coronavirus Disease 2019, COVID-19, to selectively attack liver cancer cells (hepatoma) or recognize breast cancer or hepatoma, by expression of green fluorescence protein, GFP. The pH-responsive microcapsules, modified with DNA-tetrahedra nanostructures, increased hepatoma permeation by 50 %. Incorporation of a GFP-encoding lentivirus vector inside the tumor-targeting pH-stimulated miRNA-triggered and Alpha-fetoprotein-dictated microcapsules enables the demonstration of neoplasm selectivity, with approximately 5,000-, 8,000- and 50,000-fold more expression in the cancerous cells, respectively. The incorporation of the SARS-CoV-2 spike protein in the gene vector promotes specific recognition of the immune-evading hepatoma by the COVID-19-analogous immune response, which leads to cytotoxic and inflammatory activity, mediated by serum components taken from vaccinated or recovered COVID-19 patients, resulting in effective elimination of the hepatoma (>85 % yield).
Collapse
Affiliation(s)
- Amit Fischer
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yevgeni Plotkin
- The Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah University Hospital, Jerusalem, 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem Jerusalem, 9112001, (Israel)
| | - Yu Ouyang
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Klil Asulin
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ioannidis Konstantinos
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
32
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Khidr EG, Abulsoud AI, Doghish AA, El-Mahdy HA, Ismail A, Elballal MS, Sarhan OM, Abdel Mageed SS, Elsakka EGE, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Mohammed OA, Abulsoud LA, Doghish AS. The potential role of miRNAs in the pathogenesis of cardiovascular diseases - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154624. [PMID: 37348290 DOI: 10.1016/j.prp.2023.154624] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.
Collapse
Affiliation(s)
- Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
34
|
Johnston KE, Fannjiang C, Wittmann BJ, Hie BL, Yang KK, Wu Z. Machine Learning for Protein Engineering. ARXIV 2023:arXiv:2305.16634v1. [PMID: 37292483 PMCID: PMC10246115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Directed evolution of proteins has been the most effective method for protein engineering. However, a new paradigm is emerging, fusing the library generation and screening approaches of traditional directed evolution with computation through the training of machine learning models on protein sequence fitness data. This chapter highlights successful applications of machine learning to protein engineering and directed evolution, organized by the improvements that have been made with respect to each step of the directed evolution cycle. Additionally, we provide an outlook for the future based on the current direction of the field, namely in the development of calibrated models and in incorporating other modalities, such as protein structure.
Collapse
Affiliation(s)
| | | | - Bruce J Wittmann
- work done while at California Institute of Technology, now at Microsoft
| | | | | | | |
Collapse
|
35
|
Lu J, Atochina-Vasserman EN, Maurya DS, Shalihin MI, Zhang D, Chenna SS, Adamson J, Liu M, Shah HUR, Shah H, Xiao Q, Queeley B, Ona NA, Reagan EK, Ni H, Sahoo D, Peterca M, Weissman D, Percec V. Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids. Pharmaceutics 2023; 15:1572. [PMID: 37376020 DOI: 10.3390/pharmaceutics15061572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.
Collapse
Affiliation(s)
- Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Muhammad Irhash Shalihin
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Habib Ur Rehman Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Honey Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bryn Queeley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Nathan A Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
36
|
Li D, Liu Q, Yang M, Xu H, Zhu M, Zhang Y, Xu J, Tian C, Yao J, Wang L, Liang Y. Nanomaterials for mRNA-based therapeutics: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10492. [PMID: 37206219 PMCID: PMC10189457 DOI: 10.1002/btm2.10492] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Messenger RNA (mRNA) holds great potential in developing immunotherapy, protein replacement, and genome editing. In general, mRNA does not have the risk of being incorporated into the host genome and does not need to enter the nucleus for transfection, and it can be expressed even in nondividing cells. Therefore, mRNA-based therapeutics provide a promising strategy for clinical treatment. However, the efficient and safe delivery of mRNA remains a crucial constraint for the clinical application of mRNA therapeutics. Although the stability and tolerability of mRNA can be enhanced by directly retouching the mRNA structure, there is still an urgent need to improve the delivery of mRNA. Recently, significant progress has been made in nanobiotechnology, providing tools for developing mRNA nanocarriers. Nano-drug delivery system is directly used for loading, protecting, and releasing mRNA in the biological microenvironment and can be used to stimulate the translation of mRNA to develop effective intervention strategies. In the present review, we summarized the concept of emerging nanomaterials for mRNA delivery and the latest progress in enhancing the function of mRNA, primarily focusing on the role of exosomes in mRNA delivery. Moreover, we outlined its clinical applications so far. Finally, the key obstacles of mRNA nanocarriers are emphasized, and promising strategies to overcome these obstacles are proposed. Collectively, nano-design materials exert functions for specific mRNA applications, provide new perception for next-generation nanomaterials, and thus revolution of mRNA technology.
Collapse
Affiliation(s)
- De‐feng Li
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Qi‐song Liu
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Mei‐feng Yang
- Department of HematologyYantian District People's HospitalShenzhenGuangdongChina
| | - Hao‐ming Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Min‐zheng Zhu
- Department of Gastroenterology and Hepatologythe Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Yuan Zhang
- Department of Medical AdministrationHuizhou Institute of Occupational Diseases Control and PreventionHuizhouGuangdongChina
| | - Jing Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Cheng‐mei Tian
- Department of EmergencyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Jun Yao
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Li‐sheng Wang
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yu‐jie Liang
- Department of Child and Adolescent PsychiatryShenzhen Kangning Hospital, Shenzhen Mental Health CenterShenzhenChina
- Affiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
| |
Collapse
|
37
|
Ragothaman M, Yoo SY. Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions. Vaccines (Basel) 2023; 11:vaccines11050919. [PMID: 37243023 DOI: 10.3390/vaccines11050919] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteriophages have emerged as versatile tools in the field of bioengineering, with enormous potential in tissue engineering, vaccine development, and immunotherapy. The genetic makeup of phages can be harnessed for the development of novel DNA vaccines and antigen display systems, as they can provide a highly organized and repetitive presentation of antigens to immune cells. Bacteriophages have opened new possibilities for the targeting of specific molecular determinants of cancer cells. Phages can be used as anticancer agents and carriers of imaging molecules and therapeutics. In this review, we explored the role of bacteriophages and bacteriophage engineering in targeted cancer therapy. The question of how the engineered bacteriophages can interact with the biological and immunological systems is emphasized to comprehend the underlying mechanism of phage use in cancer immunotherapy. The effectiveness of phage display technology in identifying high-affinity ligands for substrates, such as cancer cells and tumor-associated molecules, and the emerging field of phage engineering and its potential in the development of effective cancer treatments are discussed. We also highlight phage usage in clinical trials as well as the related patents. This review provides a new insight into engineered phage-based cancer vaccines.
Collapse
Affiliation(s)
- Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
38
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
39
|
Xu H, Chang J, Wu H, Wang H, Xie W, Li Y, Li X, Zhang Y, Fan L. Carbon Dots with Guanidinium and Amino Acid Functional Groups for Targeted Small Interfering RNA Delivery toward Tumor Gene Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207204. [PMID: 36840641 DOI: 10.1002/smll.202207204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Small interfering RNA (siRNA)-based gene therapy represents a promising strategy for tumor treatment. Novel gene vectors that can achieve targeted delivery of siRNA to the tumor cells without causing any side effects are urgently needed. To this end, the large amino acid mimicking carbon dots with guanidinium functionalization (LAAM GUA-CDs) are designed and synthesized by choosing arginine and dopamine hydrochloride as precursors. LAAM GUA-CDs can load siRNA through the multiple hydrogen bonds between their guanidinium groups and phosphate groups in siRNA. Meanwhile, the amino acid groups at the edges of LAAM GUA-CDs endow them the capacity to target tumors. After loading siBcl-2 as a therapeutic agent, LAAM GUA-CDs/siBcl-2 has a high tumor inhibition rate of up to 68%, which is twice more than that of commercial Lipofectamine 2000. Furthermore, LAAM GUA-CDs do not cause side effect during antitumor treatment owing to their high tumor-targeting ability, thus providing a versatile strategy for tumor-targeted siRNA delivery and cancer therapy.
Collapse
Affiliation(s)
- Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jianqiao Chang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Haoyu Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
40
|
Takatsuka S, Kubota T, Kurashina Y, Onoe H. Near-Infrared-Triggered On-Demand Controlled Release of Adeno-Associated Virus from Alginate Hydrogel Microbeads with Heat Transducer for Gene Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204139. [PMID: 36494160 DOI: 10.1002/smll.202204139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Gene therapy using adeno-associated virus (AAV) has potential as a radical treatment modality for genetic diseases such as sensorineural deafness. To establish clinical applications, it is necessary to avoid immune response to AAV by controlled release system of AAV. Here, a near-infrared (NIR)-triggered on-demand AAV release system using alginate hydrogel microbeads with a heat transducer is proposed. By using a centrifuge-based microdroplet shooting device, the microbeads encapsulating AAV with Fe3 O4 microparticles (Fe3 O4 -MPs) as a heat transducer are fabricated. Fe3 O4 -MPs generated heat by NIR enhanced the diffusion speed of the AAV, resulting in the AAV being released from the microbeads. By irradiating the microbeads encapsulating fluorescent polystyrene nanoparticles (FP-NPs) (viral model) with NIR, the fluorescence intensity decreased only for FP-NPs with a diameter of 20 nm and not for 100 or 200 nm, confirming that this system can release virus with a diameter of several tens of nanometers. By irradiating NIR to the AAV-encapsulating microbeads with Fe3 O4 -MPs, the AAV is released on demand, and gene transfection to cells by AAV is confirmed without loss of viral activity. The NIR-triggered AAV release system proposed in this study increases the number of alternatives for the method of drug release in gene therapy.
Collapse
Affiliation(s)
- Shuhei Takatsuka
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takeshi Kubota
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuta Kurashina
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Hanamachi, Koganei-shi, Tokyo, 184-8588, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
41
|
Kadkhodazadeh M, Mohajel N, Behdani M, Baesi K, Khodaei B, Azadmanesh K, Arashkia A. Fiber manipulation and post-assembly nanobody conjugation for adenoviral vector retargeting through SpyTag-SpyCatcher protein ligation. Front Mol Biosci 2022; 9:1039324. [PMID: 36545512 PMCID: PMC9760943 DOI: 10.3389/fmolb.2022.1039324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
For adenoviruses (Ads) to be optimally effective in cancer theranostics, they need to be retargeted toward target cells and lose their natural tropism. Typically, this is accomplished by either engineering fiber proteins and/or employing bispecific adapters, capable of bonding Ad fibers and tumor antigen receptors. This study aimed to present a simple and versatile method for generating Ad-based bionanoparticles specific to target cells, using the SpyTag-SpyCatcher system. The SpyTag peptide was inserted into the HI loop of fiber-knob protein, which could act as a covalent anchoring site for a targeting moiety fused to a truncated SpyCatcher (SpyCatcherΔ) pair. After confirming the presence and functionality of SpyTag on the Ad type-5 (Ad5) fiber knob, an adapter molecule, comprising of SpyCatcherΔ fused to an anti-vascular endothelial growth factor receptor 2 (VEGFR2) nanobody, was recombinantly expressed in Escherichia coli and purified before conjugation to fiber-modified Ad5 (fmAd5). After evaluating fmAd5 detargeting from its primary coxsackie and adenovirus receptor (CAR), the nanobody-decorated fmAd5 could be efficiently retargeted to VEGFR2-expressing 293/KDR and human umbilical vein endothelial (HUVEC) cell lines. In conclusion, a plug-and-play platform was described in this study for detargeting and retargeting Ad5 through the SpyTag-SpyCatcher system, which could be potentially applied to generate tailored bionanoparticles for a broad range of specific targets; therefore, it can be introduced as a promising approach in cancer nanotheranostics.
Collapse
Affiliation(s)
| | - Nasir Mohajel
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur institute of Iran, Tehran, Iran
| | - Behzad Khodaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran,*Correspondence: Kayhan Azadmanesh, ; Arash Arashkia,
| | - Arash Arashkia
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran,*Correspondence: Kayhan Azadmanesh, ; Arash Arashkia,
| |
Collapse
|
42
|
Dai L, Du L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front Genet 2022; 13:961848. [PMID: 36506323 PMCID: PMC9730536 DOI: 10.3389/fgene.2022.961848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and lethal vascular disease of diverse etiologies, mainly caused by proliferation of endothelial cells, smooth muscle cells in the pulmonary artery, and fibroblasts, which ultimately leads to right-heart hypertrophy and cardiac failure. Recent genetic studies of childhood-onset PAH report that there is a greater genetic burden in children than in adults. Since the first-identified pathogenic gene of PAH, BMPR2, which encodes bone morphogenetic protein receptor 2, a receptor in the transforming growth factor-β superfamily, was discovered, novel causal genes have been identified and substantially sharpened our insights into the molecular genetics of childhood-onset PAH. Currently, some newly identified deleterious genetic variants in additional genes implicated in childhood-onset PAH, such as potassium channels (KCNK3) and transcription factors (TBX4 and SOX17), have been reported and have greatly updated our understanding of the disease mechanism. In this review, we summarized and discussed the advances of genetic variants underlying childhood-onset PAH susceptibility and potential mechanism, and the most promising BMPR2 gene therapy and gene delivery approaches to treat childhood-onset PAH in the future.
Collapse
|
43
|
Bacteriophage-Mediated Cancer Gene Therapy. Int J Mol Sci 2022; 23:ijms232214245. [PMID: 36430720 PMCID: PMC9697857 DOI: 10.3390/ijms232214245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Bacteriophages have long been considered only as infectious agents that affect bacterial hosts. However, recent studies provide compelling evidence that these viruses are able to successfully interact with eukaryotic cells at the levels of the binding, entry and expression of their own genes. Currently, bacteriophages are widely used in various areas of biotechnology and medicine, but the most intriguing of them is cancer therapy. There are increasing studies confirming the efficacy and safety of using phage-based vectors as a systemic delivery vehicle of therapeutic genes and drugs in cancer therapy. Engineered bacteriophages, as well as eukaryotic viruses, demonstrate a much greater efficiency of transgene delivery and expression in cancer cells compared to non-viral gene transfer methods. At the same time, phage-based vectors, in contrast to eukaryotic viruses-based vectors, have no natural tropism to mammalian cells and, as a result, provide more selective delivery of therapeutic cargos to target cells. Moreover, numerous data indicate the presence of more complex molecular mechanisms of interaction between bacteriophages and eukaryotic cells, the further study of which is necessary both for the development of gene therapy methods and for understanding the cancer nature. In this review, we summarize the key results of research into aspects of phage-eukaryotic cell interaction and, in particular, the use of phage-based vectors for highly selective and effective systemic cancer gene therapy.
Collapse
|
44
|
Episomes and Transposases-Utilities to Maintain Transgene Expression from Nonviral Vectors. Genes (Basel) 2022; 13:genes13101872. [PMID: 36292757 PMCID: PMC9601623 DOI: 10.3390/genes13101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and adverse immunological reactions. Nonviral vector systems have been extensively studied and refined during the last decades. Emerging knowledge of the epigenetic regulation of replication and spatial chromatin organisation, as well as new technologies, such as Crispr/Cas, were employed to enhance the performance of different nonviral vector systems. Thus, nonviral vectors are in focus and hold some promising perspectives for future applications in gene therapy. This review addresses three prominent nonviral vector systems: the Sleeping Beauty transposase, S/MAR-based episomes, and viral plasmid replicon-based EBV vectors. Exemplarily, we review different utilities, modifications, and new concepts that were pursued to overcome limitations regarding stable transgene expression and mitotic stability. New insights into the nuclear localisation of nonviral vector molecules and the potential consequences thereof are highlighted. Finally, we discuss the remaining limitations and provide an outlook on possible future developments in nonviral vector technology.
Collapse
|
45
|
Greber UF, Suomalainen M. Adenovirus entry: Stability, uncoating, and nuclear import. Mol Microbiol 2022; 118:309-320. [PMID: 35434852 PMCID: PMC9790413 DOI: 10.1111/mmi.14909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosuppressed people. Mastadenoviruses infecting mammals comprise several hundred different types, and many specifically infect humans. Human adenoviruses are the most widely used vectors in clinical applications, including cancer treatment and COVID-19 vaccination. AdV vectors are physically and genetically stable and generally safe in humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA genome. We describe the concept of AdV cell entry and highlight recent advances in cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight a recently discovered "linchpin" function of the virion protein V ensuring cytoplasmic particle stability, which is relaxed at the nuclear pore complex by cues from the E3 ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid disruption by kinesin motor proteins and microtubules exposes the linchpin and renders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA and enhances DNA nuclear import. These advances uncover mechanisms controlling capsid stability and premature uncoating and provide insight into nuclear transport of nucleic acids.
Collapse
Affiliation(s)
- Urs F. Greber
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Maarit Suomalainen
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
46
|
Yang H, Han M, Li J, Ke H, Kong Y, Wang W, Wang L, Ma W, Qiu J, Wang X, Xin T, Liu H. Delivery of miRNAs through Metal-Organic Framework Nanoparticles for Assisting Neural Stem Cell Therapy for Ischemic Stroke. ACS NANO 2022; 16:14503-14516. [PMID: 36065995 DOI: 10.1021/acsnano.2c04886] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stroke is the most common cause of disability globally. Neural stem cell (NSC) therapy, which can replace lost and damaged neurons, has been proposed as a potential treatment for stroke. The therapeutic efficacy of NSC therapy is hindered by the fact that only a small number of NSCs undergo neuronal differentiation. Neuron-specific miR-124, which promotes the differentiation of NSCs into mature neurons, can be combined with NSC therapy to cure ischemic stroke. However, the instability and poor internalization of miR-124 seriously hamper its broad clinical application. Herein, an innovative strategy involving delivery of miR-124 via a Ca-MOF@miR-124 nanodelivery system, which effectively prevents the degradation of miR-124 by nucleases and promotes the internalization of miR-124 by NSCs, is presented. The effect of accelerated neuronal directed differentiation of NSCs was assessed through in vitro cell experiments, and the clinical application potential of this nanodelivery system for the treatment of ischemic stroke was assessed through in vivo experiments involving the combination of NSC therapy and Ca-MOF@miR-124 nanoparticles. The results indicate that Ca-MOF@miR-124 nanoparticles can promote the differentiation of NSCs into mature neurons with electrophysiological function within 5 days. The differentiation rate of cells treated with Ca-MOF@miR-124 nanoparticles was at least 5 days faster than that of untreated cells. Moreover, Ca-MOF@miR-124 nanoparticles decreased the ischemic area to almost normal levels by day 7. The combination of Ca-MOF@miR-124 nanoparticles and NSC therapy will enhance the treatment of traumatic nerve injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, People's Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, People's Republic of China
| | - Jian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, People's Republic of China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Ying Kong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Wenjun Ma
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xiwei Wang
- Institute of Novel Semiconductors, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, People's Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong 250003, People's Republic of China
| |
Collapse
|
47
|
Zhou L, Emenuga M, Kumar S, Lamantia Z, Figueiredo M, Emrick T. Designing Synthetic Polymers for Nucleic Acid Complexation and Delivery: From Polyplexes to Micelleplexes to Triggered Degradation. Biomacromolecules 2022; 23:4029-4040. [PMID: 36125365 DOI: 10.1021/acs.biomac.2c00767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene delivery as a therapeutic tool continues to advance toward impacting human health, with several gene therapy products receiving FDA approval over the past 5 years. Despite this important progress, the safety and efficacy of gene therapy methodology requires further improvement to ensure that nucleic acid therapeutics reach the desired targets while minimizing adverse effects. Synthetic polymers offer several enticing features as nucleic acid delivery vectors due to their versatile functionalities and architectures and the ability of synthetic chemists to rapidly build large libraries of polymeric candidates equipped for DNA/RNA complexation and transport. Current synthetic designs are pursuing challenging objectives that seek to improve transfection efficiency and, at the same time, mitigate cytotoxicity. This Perspective will describe recent work in polymer-based gene complexation and delivery vectors in which cationic polyelectrolytes are modified synthetically by introduction of additional components─including hydrophobic, hydrophilic, and fluorinated units─as well as embedding of degradable linkages within the macromolecular structure. As will be seen, recent advances employing these emerging design strategies are promising with respect to their excellent biocompatibility and transfection capability, suggesting continued promise of synthetic polymer gene delivery vectors going forward.
Collapse
Affiliation(s)
- Le Zhou
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Miracle Emenuga
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Shreya Kumar
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Zachary Lamantia
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Marxa Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
β-cyclodextrin based nano gene delivery using pharmaceutical applications to treat Wolfram syndrome. Ther Deliv 2022; 13:449-462. [PMID: 36748654 DOI: 10.4155/tde-2022-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wolfram syndrome is a rare multisystem autosomal recessive neurodegenerative disorder that affects the brain and central nervous system. Currently, there is no cure or treatment for Wolfram syndrome. Therefore, new techniques are needed to target the loss of the WFS1 gene. Gene therapy approach to introduce a functional gene using a viral or a non-viral vector could be a treatment strategy for Wolfram syndrome 1 (WS1). Viral vectors have therapeutic benefits and greater efficiency; however, they pose a high health risk. Recently pharmaceutical therapeutic research has developed cell-penetrating non-viral nano molecules that could be used as vectors for gene delivery. Among nonviral vectors, the unique properties of β-cyclodextrin suggest that it can be a promising safe vector for gene delivery.
Collapse
|
49
|
Jin J, Yang QQ, Zhou YL. Non-Viral Delivery of Gene Therapy to the Tendon. Polymers (Basel) 2022; 14:3338. [PMID: 36015594 PMCID: PMC9415435 DOI: 10.3390/polym14163338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 01/19/2023] Open
Abstract
The tendon, as a compact connective tissue, is difficult to treat after an acute laceration or chronic degeneration. Gene-based therapy is a highly efficient strategy for diverse diseases which has been increasingly applied in tendons in recent years. As technology improves by leaps and bounds, a wide variety of non-viral vectors have been manufactured that attempt to have high biosecurity and transfection efficiency, considered to be a promising treatment modality. In this review, we examine the unwanted biological barriers, the categories of applicable genes, and the introduction and comparison of non-viral vectors. We focus on lipid-based nanoparticles and polymer-based nanoparticles, differentiating between them based on their combination with diverse chemical modifications and scaffolds.
Collapse
Affiliation(s)
| | | | - You Lang Zhou
- Hand Surgery Research Center, Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
50
|
Asavarut P, Waramit S, Suwan K, Marais GJK, Chongchai A, Benjathummarak S, Al‐Bahrani M, Vila‐Gomez P, Williams M, Kongtawelert P, Yata T, Hajitou A. Systemically targeted cancer immunotherapy and gene delivery using transmorphic particles. EMBO Mol Med 2022; 14:e15418. [PMID: 35758207 PMCID: PMC9358398 DOI: 10.15252/emmm.202115418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/21/2023] Open
Abstract
Immunotherapy is a powerful tool for cancer treatment, but the pleiotropic nature of cytokines and immunological agents strongly limits clinical translation and safety. To address this unmet need, we designed and characterised a systemically targeted cytokine gene delivery system through transmorphic encapsidation of human recombinant adeno-associated virus DNA using coat proteins from a tumour-targeted bacteriophage (phage). We show that Transmorphic Phage/AAV (TPA) particles provide superior delivery of transgenes over current phage-derived vectors through greater diffusion across the extracellular space and improved intracellular trafficking. We used TPA to target the delivery of cytokine-encoding transgenes for interleukin-12 (IL12), and novel isoforms of IL15 and tumour necrosis factor alpha (TNF α ) for tumour immunotherapy. Our results demonstrate selective and efficient gene delivery and immunotherapy against solid tumours in vivo, without harming healthy organs. Our transmorphic particle system provides a promising modality for safe and effective gene delivery, and cancer immunotherapies through cross-species complementation of two commonly used viruses.
Collapse
Affiliation(s)
- Paladd Asavarut
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
| | - Sajee Waramit
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
| | - Keittisak Suwan
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
| | - Gert J K Marais
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
| | - Aitthiphon Chongchai
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Surachet Benjathummarak
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
- Center of Excellence for Antibody Research, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Mariam Al‐Bahrani
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
| | - Paula Vila‐Gomez
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
| | | | - Prachya Kongtawelert
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Teerapong Yata
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
- Present address:
Department of PhysiologyChulalongkorn UniversityBangkokThailand
| | - Amin Hajitou
- Cancer Phagotherapy, Department of Brain SciencesImperial College LondonLondonUK
| |
Collapse
|