1
|
Singh A, Verma AK, Kumar S, Bag SK, Roy S. Genome-wide DNA methylation and their transgenerational pattern differ in Arabidopsis thaliana populations originated along the elevation of West Himalaya. BMC PLANT BIOLOGY 2024; 24:936. [PMID: 39385079 PMCID: PMC11463068 DOI: 10.1186/s12870-024-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Methylation at 5' cytosine of DNA molecule is an important epigenetic mark. It is known to play critical role in adaptation of organisms under different biotic and abiotic stressors via modulating gene expression and/or chromatin architecture. Plant populations evolved under variable climatic conditions may have evolved different epigenetic marks including DNA methylation. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya. We show that the global methyl cytosine (mC) content is more or less similar in the three populations but differ in their distribution across genome. There was an increase in differential methylation between the populations as elevation increased. The methylation divergence was the highest between the low and the high elevation populations. The high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was associated with population specific phenotypes and climate of the region. The genes which were differentially methylated as well as differentially expressed between the low and high elevation populations were mostly related to abiotic stresses. When grown under controlled condition, there was gain of differential methylation over native condition and the maximum percent changes was observed in CHH-sequence context. Further ~ 99.8% methylated cytosines were stably passed on from F1 to F6 generation. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.Background Arabidopsis thaliana is the model plant species and has been extensively studied to understand plants life processes. There are numerous reports on its origin, demography, evolution, epigenomes and adaptation etc. however, Indian populations of Arabidopsis thaliana evolved along wide elevation ranging from ~ 700 m amsl to ~ 3400 m amsl not explored yet. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya.Results In our study we found that total mCs percent was more or less similar in the three populations but differ in their distribution across genome. The proportion of CG-mCs was the highest, followed by CHH-mCs and CHG-mCs in all the three populations. Under native field condition the methylation divergence was more prominent between low and high elevation populations and the high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was linked to population-specific phenotypes and the regional climate. The genes that showed differential methylation and expression between low and high elevation populations were primarily associated with abiotic stress responses. When grown under controlled condition, there was gain of differential methylation compared to the native condition and the maximum percent changes was observed in CHH-sequence context. Further 99.8% methylated cytosines were stably passed on from F1 to F6 generation.Conclusions The populations of A. thaliana adapted at different climatic conditions were significantly differentially methylated both under native and controlled condition. However, the magnitude and extent of gain or loss of methylation were most significant between the low and the high elevation populations. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.
Collapse
Affiliation(s)
- Akanksha Singh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Ashwani Kumar Verma
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Bag
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Computational Biology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sribash Roy
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Department of Plant Sciences, Central University of Hyderabad, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00112-2. [PMID: 38806375 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Watkins C, Willyerd KL, Liao CP, Ruhl DR, Chen C. MNase-Seq Analysis for Identifying Stress-Altered Nucleosome Occupancy in Plants. Methods Mol Biol 2024; 2832:33-46. [PMID: 38869785 DOI: 10.1007/978-1-0716-3973-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Nucleosome occupancy plays an important role in chromatin compaction, affecting biological processes by hampering the binding of cis-acting elements such as transcription factors, RNA polymerase machinery, and coregulatory. Accessible regions allow for cis-acting elements to bind DNA and regulate transcription. Here, we detail our protocol to profile nucleosome occupancy and chromatin structure dynamics under drought stress at the genome-wide scale using micrococcal nuclease (MNase) digestion. Combining variable MNase concentration treatments and high-throughput sequencing, we investigate the changes in the overall chromatin state using bread wheat samples from an exemplary drought experiment.
Collapse
Affiliation(s)
- Caleb Watkins
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Karyn L Willyerd
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Chi-Ping Liao
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Donald R Ruhl
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
4
|
Guo H, Cao P, Wang C, Lai J, Deng Y, Li C, Hao Y, Wu Z, Chen R, Qiang Q, Fernie AR, Yang J, Wang S. Population analysis reveals the roles of DNA methylation in tomato domestication and metabolic diversity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1888-1902. [PMID: 36971992 DOI: 10.1007/s11427-022-2299-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023]
Abstract
DNA methylation is an important epigenetic marker, yet its diversity and consequences in tomato breeding at the population level are largely unknown. We performed whole-genome bisulfite sequencing (WGBS), RNA sequencing, and metabolic profiling on a population comprising wild tomatoes, landraces, and cultivars. A total of 8,375 differentially methylated regions (DMRs) were identified, with methylation levels progressively decreasing from domestication to improvement. We found that over 20% of DMRs overlapped with selective sweeps. Moreover, more than 80% of DMRs in tomato were not significantly associated with single-nucleotide polymorphisms (SNPs), and DMRs had strong linkages with adjacent SNPs. We additionally profiled 339 metabolites from 364 diverse accessions and further performed a metabolic association study based on SNPs and DMRs. We detected 971 and 711 large-effect loci via SNP and DMR markers, respectively. Combined with multi-omics, we identified 13 candidate genes and updated the polyphenol biosynthetic pathway. Our results showed that DNA methylation variants could complement SNP profiling of metabolite diversity. Our study thus provides a DNA methylome map across diverse accessions and suggests that DNA methylation variation can be the genetic basis of metabolic diversity in plants.
Collapse
Affiliation(s)
- Hao Guo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Peng Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Chao Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Jun Lai
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Yuan Deng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Chun Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Yingchen Hao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Zeyong Wu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Ridong Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Qi Qiang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 144776, Germany
| | - Jun Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Shouchuang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
- College of Tropical Crops, Hainan University, Haikou, 572208, China.
| |
Collapse
|
5
|
Wang X, Li W, Feng X, Li J, Liu GE, Fang L, Yu Y. Harnessing male germline epigenomics for the genetic improvement in cattle. J Anim Sci Biotechnol 2023; 14:76. [PMID: 37277852 PMCID: PMC10242889 DOI: 10.1186/s40104-023-00874-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Sperm is essential for successful artificial insemination in dairy cattle, and its quality can be influenced by both epigenetic modification and epigenetic inheritance. The bovine germline differentiation is characterized by epigenetic reprogramming, while intergenerational and transgenerational epigenetic inheritance can influence the offspring's development through the transmission of epigenetic features to the offspring via the germline. Therefore, the selection of bulls with superior sperm quality for the production and fertility traits requires a better understanding of the epigenetic mechanism and more accurate identifications of epigenetic biomarkers. We have comprehensively reviewed the current progress in the studies of bovine sperm epigenome in terms of both resources and biological discovery in order to provide perspectives on how to harness this valuable information for genetic improvement in the cattle breeding industry.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Konge Larsen ApS, Kongens Lyngby, 2800, Denmark
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenlong Li
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xia Feng
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianbing Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
7
|
Epigenetic Changes Occurring in Plant Inbreeding. Int J Mol Sci 2023; 24:ijms24065407. [PMID: 36982483 PMCID: PMC10048984 DOI: 10.3390/ijms24065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Inbreeding is the crossing of closely related individuals in nature or a plantation or self-pollinating plants, which produces plants with high homozygosity. This process can reduce genetic diversity in the offspring and decrease heterozygosity, whereas inbred depression (ID) can often reduce viability. Inbred depression is common in plants and animals and has played a significant role in evolution. In the review, we aim to show that inbreeding can, through the action of epigenetic mechanisms, affect gene expression, resulting in changes in the metabolism and phenotype of organisms. This is particularly important in plant breeding because epigenetic profiles can be linked to the deterioration or improvement of agriculturally important characteristics.
Collapse
|
8
|
Patlar B. On the Role of Seminal Fluid Protein and Nucleic Acid Content in Paternal Epigenetic Inheritance. Int J Mol Sci 2022; 23:ijms232314533. [PMID: 36498858 PMCID: PMC9739459 DOI: 10.3390/ijms232314533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.
Collapse
Affiliation(s)
- Bahar Patlar
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
9
|
Analysis of genome and methylation changes in Chinese indigenous chickens over time provides insight into species conservation. Commun Biol 2022; 5:952. [PMID: 36097156 PMCID: PMC9467985 DOI: 10.1038/s42003-022-03907-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Conservation of natural resources is a vital and challenging task. Numerous animal genetic resources have been effectively conserved worldwide. However, the effectiveness of conservation programmes and the variation information of species have rarely been evaluated. Here, we performed whole-genome and whole-genome bisulfite sequencing of 90 Chinese indigenous chickens, which belonged to the Tibetan, Wenchang and Bian chicken breeds, and have been conserved under different conservation programmes. We observed that low genetic diversity and high DNA methylation variation occurs during ex situ in vivo conservation, while higher genetic diversity and differentiation occurs during in situ conservation. Further analyses revealed that most DNA methylation signatures are unique within ex situ in vivo conservation. Moreover, a high proportion of differentially methylated regions is found in genomic selection regions, suggesting a link between the effects of genomic variation and DNA methylation. Altogether our findings provide valuable information about genetic and DNA methylation variations during different conservation programmes, and hold practical relevance for species conservation. Comparisons of genomic and methylomic changes during the conservation of indigenous chicken breeds in China provide insight into conservation programmes for these breeds and their adaptations to unique environments.
Collapse
|
10
|
Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants. Int J Genomics 2022; 2022:1092894. [PMID: 35747076 PMCID: PMC9213152 DOI: 10.1155/2022/1092894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Plants being sessile are always exposed to various environmental stresses, and to overcome these stresses, modifications at the epigenetic level can prove vital for their long-term survival. Epigenomics refers to the large-scale study of epigenetic marks on the genome, which include covalent modifications of histone tails (acetylation, methylation, phosphorylation, ubiquitination, and the small RNA machinery). Studies based on epigenetics have evolved over the years especially in understanding the mechanisms at transcriptional and posttranscriptional levels in plants against various environmental stimuli. Epigenomic changes in plants through induced methylation of specific genes that lead to changes in their expression can help to overcome various stress conditions. Recent studies suggested that epigenomics has a significant potential for crop improvement in plants. By the induction and modulation of various cellular processes like DNA methylation, histone modification, and biogenesis of noncoding RNAs, the plant genome can be activated which can help in achieving a quicker response against various plant stresses. Epigenetic modifications in plants allow them to adjust under varied environmental stresses by modulating their phenotypic plasticity and at the same time ensure the quality and yield of crops. The plasticity of the epigenome helps to adapt the plants during pre- and postdevelopmental processes. The variation in DNA methylation in different organisms exhibits variable phenotypic responses. The epigenetic changes also occur sequentially in the genome. Various studies indicated that environmentally stimulated epimutations produce variable responses especially in differentially methylated regions (DMR) that play a major role in the management of stress conditions in plants. Besides, it has been observed that environmental stresses cause specific changes in the epigenome that are closely associated with phenotypic modifications. However, the relationship between epigenetic modifications and phenotypic plasticity is still debatable. In this review, we will be discussing the role of various factors that allow epigenetic changes to modulate phenotypic plasticity against various abiotic stress in plants.
Collapse
|
11
|
Abstract
Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are increasingly targeted in studies of natural populations. Here, I review some of the insights gained from this research, examine some of the methods currently in use and discuss some of the challenges that researchers working on natural populations are likely to face when probing epigenetic mechanisms. While studies supporting the involvement of epigenetic mechanisms in generating phenotypic variation in natural populations are amassing, many of these studies are currently correlative in nature. Thus, while empirical data point to widespread contributions of epigenetic mechanisms in generating phenotypic variation, there are still concerns as to whether epigenetic variation is instead ultimately controlled by genetic variation. Disentangling these two sources of variation will be a key to resolving the debate about the importance of epigenetic mechanisms, and studies on natural populations that partition the relative contribution of genetic and epigenetic factors to phenotypic variation can play an important role in this debate.
Collapse
Affiliation(s)
- Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden.,Centre for Biodiversity Dynamics, Norwegian University for Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
What is a phenotype? History and new developments of the concept. Genetica 2021; 150:153-158. [PMID: 34739647 DOI: 10.1007/s10709-021-00134-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Even though the word "phenotype", as well as the expression "genotype-phenotype relationship", are a part of the everyday language of biologists, they remain abstract notions that are sometimes misunderstood or misused. In this article, I begin with a review of the genesis of the concept of phenotype and of the meaning of the genotype-phenotype "relationship" from a historical perspective. I then illustrate how the development of new approaches for exploring the living world has enabled us to phenotype organisms at multiple levels, with traits that can either be measures or parameters of functions, leading to a virtually unlimited amount of phenotypic data. Thus, pleiotropy becomes a central issue in the study of the genotype-phenotype relationship. Finally, I provide a few examples showing that important genetic and evolutionary features clearly differ with the phenotypic level considered. The way genotypic variation propagates across the phenotypic levels to shape fitness variation is an essential research program in biology.
Collapse
|
13
|
Hunt von Herbing I, Tonello L, Benfatto M, Pease A, Grigolini P. Crucial Development: Criticality Is Important to Cell-to-Cell Communication and Information Transfer in Living Systems. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1141. [PMID: 34573766 PMCID: PMC8472183 DOI: 10.3390/e23091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
In the fourth paper of this Special Issue, we bridge the theoretical debate on the role of memory and criticality discussed in the three earlier manuscripts, with a review of key concepts in biology and focus on cell-to-cell communication in organismal development. While all living organisms are dynamic complex networks of organization and disorder, most studies in biology have used energy and biochemical exchange to explain cell differentiation without considering the importance of information (entropy) transfer. While all complex networks are mixtures of patterns of complexity (non-crucial and crucial events), it is the crucial events that determine the efficiency of information transfer, especially during key transitions, such as in embryogenesis. With increasing multicellularity, emergent relationships from cell-to-cell communication create reaction-diffusion exchanges of different concentrations of biochemicals or morphogenetic gradients resulting in differential gene expression. We suggest that in conjunction with morphogenetic gradients, there exist gradients of information transfer creating cybernetic loops of stability and disorder, setting the stage for adaptive capability. We specifically reference results from the second paper in this Special Issue, which correlated biophotons with lentil seed germination to show that phase transitions accompany changes in complexity patterns during development. Criticality, therefore, appears to be an important factor in the transmission, transfer and coding of information for complex adaptive system development.
Collapse
Affiliation(s)
- Ione Hunt von Herbing
- Biological Sciences Department, University of North Texas, Denton, TX 76203-5017, USA;
| | - Lucio Tonello
- GY Academy Higher Education Institution, E305, The Hub Workspace, Triq San Andrija, SGN1612 San Gwann, Malta;
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-5017, USA;
| | - Maurizio Benfatto
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy;
| | - April Pease
- Biological Sciences Department, University of North Texas, Denton, TX 76203-5017, USA;
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-5017, USA;
| |
Collapse
|
14
|
Henry LP, Bruijning M, Forsberg SKG, Ayroles JF. The microbiome extends host evolutionary potential. Nat Commun 2021; 12:5141. [PMID: 34446709 PMCID: PMC8390463 DOI: 10.1038/s41467-021-25315-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The microbiome shapes many host traits, yet the biology of microbiomes challenges traditional evolutionary models. Here, we illustrate how integrating the microbiome into quantitative genetics can help untangle complexities of host-microbiome evolution. We describe two general ways in which the microbiome may affect host evolutionary potential: by shifting the mean host phenotype and by changing the variance in host phenotype in the population. We synthesize the literature across diverse taxa and discuss how these scenarios could shape the host response to selection. We conclude by outlining key avenues of research to improve our understanding of the complex interplay between hosts and microbiomes.
Collapse
Affiliation(s)
- Lucas P. Henry
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Marjolein Bruijning
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA
| | - Simon K. G. Forsberg
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA ,grid.8993.b0000 0004 1936 9457Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Julien F. Ayroles
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| |
Collapse
|
15
|
Denkena J, Johannes F, Colomé-Tatché M. Region-level epimutation rates in Arabidopsis thaliana. Heredity (Edinb) 2021; 127:190-202. [PMID: 33966050 PMCID: PMC8322157 DOI: 10.1038/s41437-021-00441-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Failure to maintain DNA methylation patterns during plant development can occasionally give rise to so-called "spontaneous epimutations". These stochastic methylation changes are sometimes heritable across generations and thus accumulate in plant genomes over time. Recent evidence indicates that spontaneous epimutations have a major role in shaping patterns of methylation diversity in plant populations. Using single CG dinucleotides as units of analysis, previous work has shown that the epimutation rate is several orders of magnitude higher than the genetic mutation rate. While these large rate differences have obvious implications for understanding genome-methylome co-evolution, the functional relevance of single CG methylation changes remains questionable. In contrast to single CG, solid experimental evidence has linked methylation gains and losses in larger genomic regions with transcriptional variation and heritable phenotypic effects. Here we show that such region-level changes arise stochastically at about the same rate as those at individual CG sites, are only marginal dependent on region size and cytosine density, but strongly dependent on chromosomal location. We also find consistent evidence that region-level epimutations are not restricted to CG contexts but also frequently occur in non-CG regions at the genome-wide scale. Taken together, our results support the view that many differentially methylated regions (DMRs) in natural populations originate from epimutation events and may not be effectively tagged by proximal SNPs. This possibility reinforces the need for epigenome-wide association studies (EWAS) in plants as a way to identify the epigenetic basis of complex traits.
Collapse
Affiliation(s)
- Johanna Denkena
- grid.4567.00000 0004 0483 2525Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Frank Johannes
- grid.6936.a0000000123222966Department of Molecular Life Sciences, Hans Eisenmann-Zentrum for Agricultural Sciences, Technical University Munich, Freising, Germany
| | - Maria Colomé-Tatché
- grid.4567.00000 0004 0483 2525Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany ,grid.5252.00000 0004 1936 973XBiomedical Center, Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
16
|
Li WF, Ning GX, Zuo CW, Chu MY, Yang SJ, Ma ZH, Zhou Q, Mao J, Chen BH. MYB_SH[AL]QKY[RF] transcription factors MdLUX and MdPCL-like promote anthocyanin accumulation through DNA hypomethylation and MdF3H activation in apple. TREE PHYSIOLOGY 2021; 41:836-848. [PMID: 33171489 DOI: 10.1093/treephys/tpaa156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 11/08/2020] [Indexed: 05/14/2023]
Abstract
Heritable DNA methylation is a highly conserved epigenetic mark that is important for many biological processes. In a previous transcriptomic study on the fruit skin pigmentation of apple (Malus domestica Borkh.) cv. 'Red Delicious' (G0) and its four continuous-generation bud sport mutants including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee spur' (G4), we identified MYB transcription factors (TFs) MdLUX and MdPCL-like involved in regulating anthocyanin synthesis. However, how these TFs ultimately determine the fruit skin color traits remains elusive. Here, bioinformatics analysis revealed that MdLUX and MdPCL-like contained a well-conserved motif SH[AL]QKY[RF] in their C-terminal region and were located in the nucleus of onion epidermal cells. Overexpression of MdLUX and MdPCL-like in 'Golden Delicious' fruits, 'Gala' calli and Arabidopsis thaliana promoted the accumulation of anthocyanin, whereas MdLUX and MdPCL-like suppression inhibited anthocyanin accumulation in 'Red Fuji' apple fruit skin. Yeast one-hybrid assays revealed that MdLUX and MdPCL-like may bind to the promoter region of the anthocyanin biosynthesis gene MdF3H. Dual-luciferase assays indicated that MdLUX and MdPCL-like activated MdF3H. The whole-genome DNA methylation study revealed that the methylation levels of the mCG context at the upstream (i.e., promoter region) of MdLUX and MdPCL-like were inversely correlated with their mRNA levels and anthocyanin accumulation. Hence, the data suggest that MYB_SH[AL]QKY[RF] TFs MdLUX and MdPCL-like promote anthocyanin biosynthesis in apple fruit skins through the DNA hypomethylation of their promoter regions and the activation of the structural flavonoid gene MdF3H.
Collapse
Affiliation(s)
- Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Gai-Xing Ning
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Cun-Wu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ming-Yu Chu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Shi-Jin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
17
|
Moran KL, Shlyakhtina Y, Portal MM. The role of non-genetic information in evolutionary frameworks. Crit Rev Biochem Mol Biol 2021; 56:255-283. [PMID: 33970731 DOI: 10.1080/10409238.2021.1908949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The evolution of organisms has been a subject of paramount debate for hundreds of years and though major advances in the field have been made, the precise mechanisms underlying evolutionary processes remain fragmentary. Strikingly, the majority of the core principles accepted across the many fields of biology only consider genetic information as the major - if not exclusive - biological information carrier and thus consider it as the main evolutionary avatar. However, the real picture appears far more complex than originally anticipated, as compelling data suggest that nongenetic information steps up when highly dynamic evolutionary frameworks are explored. In light of recent evidence, we discuss herein the dynamic nature and complexity of nongenetic information carriers, and their emerging relevance in the evolutionary process. We argue that it is possible to overcome the historical arguments which dismissed these carriers, and instead consider that they are indeed core to life itself as they support a sustainable, continuous source of rapid adaptation in ever-changing environments. Ultimately, we will address the intricacies of genetic and non-genetic networks underlying evolutionary models to build a framework where both core biological information concepts are considered non-negligible and equally fundamental.
Collapse
Affiliation(s)
- Katherine L Moran
- Cell Plasticity & Epigenetics Lab, Cancer Research UK - Manchester Institute, The University of Manchester, Manchester, UK
| | - Yelyzaveta Shlyakhtina
- Cell Plasticity & Epigenetics Lab, Cancer Research UK - Manchester Institute, The University of Manchester, Manchester, UK
| | - Maximiliano M Portal
- Cell Plasticity & Epigenetics Lab, Cancer Research UK - Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Hazard D, Plisson-Petit F, Moreno-Romieux C, Fabre S, Drouilhet L. Genetic Determinism Exists for the Global DNA Methylation Rate in Sheep. Front Genet 2021; 11:616960. [PMID: 33424937 PMCID: PMC7786236 DOI: 10.3389/fgene.2020.616960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 01/21/2023] Open
Abstract
Recent studies showed that epigenetic marks, including DNA methylation, influence production and adaptive traits in plants and animals. So far, most studies dealing with genetics and epigenetics considered DNA methylation sites independently. However, the genetic basis of the global DNA methylation rate (GDMR) remains unknown. The main objective of the present study was to investigate genetic determinism of GDMR in sheep. The experiment was conducted on 1,047 Romane sheep allocated into 10 half-sib families. After weaning, all the lambs were phenotyped for global GDMR in blood as well as for production and adaptive traits. GDMR was measured by LUminometric Methylation Analysis (LUMA) using a pyrosequencing approach. Association analyses were conducted on some of the lambs (n = 775) genotyped by using the Illumina OvineSNP50 BeadChip. Blood GDMR varied among the animals (average 70.7 ± 6.0%). Female lambs had significantly higher GDMR than male lambs. Inter-individual variability of blood GDMR had an additive genetic component and heritability was moderate (h2 = 0.20 ± 0.05). No significant genetic correlation was found between GDMR and growth or carcass traits, birthcoat, or social behaviors. Association analyses revealed 28 QTLs associated with blood GDMR. Seven genomic regions on chromosomes 1, 5, 11, 17, 24, and 26 were of most interest due to either high significant associations with GDMR or to the relevance of genes located close to the QTLs. QTL effects were moderate. Genomic regions associated with GDMR harbored several genes not yet described as being involved in DNA methylation, but some are already known to play an active role in gene expression. In addition, some candidate genes, CHD1, NCO3A, KDM8, KAT7, and KAT6A have previously been described to be involved in epigenetic modifications. In conclusion, the results of the present study indicate that blood GDMR in domestic sheep is under polygenic influence and provide new insights into DNA methylation genetic determinism.
Collapse
Affiliation(s)
- Dominique Hazard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | | | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | |
Collapse
|
19
|
Guzella TS, Barreto VM, Carneiro J. Partitioning stable and unstable expression level variation in cell populations: A theoretical framework and its application to the T cell receptor. PLoS Comput Biol 2020; 16:e1007910. [PMID: 32841238 PMCID: PMC7498022 DOI: 10.1371/journal.pcbi.1007910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/17/2020] [Accepted: 04/24/2020] [Indexed: 11/19/2022] Open
Abstract
Phenotypic variation in the copy number of gene products expressed by cells or tissues has been the focus of intense investigation. To what extent the observed differences in cellular expression levels are persistent or transient is an intriguing question. Here, we develop a quantitative framework that resolves the expression variation into stable and unstable components. The difference between the expression means in two cohorts isolated from any cell population is shown to converge to an asymptotic value, with a characteristic time, τT, that measures the timescale of the unstable dynamics. The asymptotic difference in the means, relative to the initial value, measures the stable proportion of the original population variance Rα2. Empowered by this insight, we analysed the T-cell receptor (TCR) expression variation in CD4 T cells. About 70% of TCR expression variance is stable in a diverse polyclonal population, while over 80% of the variance in an isogenic TCR transgenic population is volatile. In both populations the TCR levels fluctuate with a characteristic time of 32 hours. This systematic characterisation of the expression variation dynamics, relying on time series of cohorts’ means, can be combined with technologies that measure gene or protein expression in single cells or in bulk. No two cells are identical. Even isogenic cells, living in the same environment and expressing the same set of genes display measurable differences or variation in the expression level of any of these genes. How much of the differences in expression levels are permanent and how much of these differences vanish in time has intrigued us for generations. We develop a theoretical framework based on a stochastic model and put it to work in the analysis of T cell receptor expression level in CD4 T cells. We show that T cell populations with genetically diverse receptors display stable variation in receptor expression but, surprisingly, we detect persistent differences in receptor levels among uniform transgenic T cells. The analysis, being based on the mean cohort expression levels logarithm, can be applied to techniques that measure expression at single-cell level and also to the myriad of genomics and proteomics techniques that measure expression in bulk populations.
Collapse
Affiliation(s)
| | - Vasco M. Barreto
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail: (VMB); (JC)
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (VMB); (JC)
| |
Collapse
|
20
|
De Long JR, Heinen R, Jongen R, Hannula SE, Huberty M, Kielak AM, Steinauer K, Bezemer TM. How plant–soil feedbacks influence the next generation of plants. Ecol Res 2020. [DOI: 10.1111/1440-1703.12165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan R. De Long
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Wageningen UR Greenhouse Horticulture Bleiswijk The Netherlands
| | - Robin Heinen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry Leiden University Leiden The Netherlands
- Lehrstuhl fur Terrestrische Okologie, Landnutzung und Umwelt Technische Universitat Munchen, Wissenschaftszentrum Weihenstephan fur Ernahrung Freising Germany
| | - Renske Jongen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - S. Emilia Hannula
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Martine Huberty
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry Leiden University Leiden The Netherlands
| | - Anna M. Kielak
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Katja Steinauer
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - T. Martijn Bezemer
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry Leiden University Leiden The Netherlands
| |
Collapse
|
21
|
Helanterä H, Uller T. Different perspectives on non-genetic inheritance illustrate the versatile utility of the Price equation in evolutionary biology. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190366. [PMID: 32146886 DOI: 10.1098/rstb.2019.0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The diversity of genetic and non-genetic processes that make offspring resemble their parents are increasingly well understood. In addition to genetic inheritance, parent-offspring similarity is affected by epigenetic, behavioural and cultural mechanisms that collectively can be referred to as non-genetic inheritance. Given the generality of the Price equation as a description of evolutionary change, is it not surprising that the Price equation has been adopted to model the evolutionary implications of non-genetic inheritance. In this paper, we briefly introduce the heredity perspectives on which those models rely, discuss the extent to which these perspectives make different assumptions and place different emphases on the roles of heredity and development in evolution, and the types of empirical research programmes they motivate. The existence of multiple perspectives and explanatory aims highlight, on the one hand, the versatility of the Price equation and, on the other hand, the importance of understanding how heredity and development can be conceptualized in evolutionary studies. This article is part of the theme issue 'Fifty years of the Price equation'.
Collapse
Affiliation(s)
- Heikki Helanterä
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, 90014 Oulu, Finland
| | - Tobias Uller
- Department of Biology, Lund University, Sölvegatan 37, 22362 Lund, Sweden
| |
Collapse
|
22
|
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate University Okinawa Japan
- Japan Society for the Promotion of Science Tokyo Japan
| | - Hidetoshi Saze
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate University Okinawa Japan
| |
Collapse
|
23
|
Duclos KK, Hendrikse JL, Jamniczky HA. Investigating the evolution and development of biological complexity under the framework of epigenetics. Evol Dev 2019; 21:247-264. [PMID: 31268245 PMCID: PMC6852014 DOI: 10.1111/ede.12301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biological complexity is a key component of evolvability, yet its study has been hampered by a focus on evolutionary trends of complexification and inconsistent definitions. Here, we demonstrate the utility of bringing complexity into the framework of epigenetics to better investigate its utility as a concept in evolutionary biology. We first analyze the existing metrics of complexity and explore the link between complexity and adaptation. Although recently developed metrics allow for a unified framework, they omit developmental mechanisms. We argue that a better approach to the empirical study of complexity and its evolution includes developmental mechanisms. We then consider epigenetic mechanisms and their role in shaping developmental and evolutionary trajectories, as well as the development and organization of complexity. We argue that epigenetics itself could have emerged from complexity because of a need to self‐regulate. Finally, we explore hybridization complexes and hybrid organisms as potential models for studying the association between epigenetics and complexity. Our goal is not to explain trends in biological complexity but to help develop and elucidate novel questions in the investigation of biological complexity and its evolution. This manuscript argues that biological complexity is better understood under the framework of epigenetics and that the epigenetic interactions emerge from the self‐regulation of complex systems. Hybrids are offered as models to study these properties.
Collapse
Affiliation(s)
- Kevin K Duclos
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Alberta, Canada
| | - Jesse L Hendrikse
- Department of Community Health Sciences, The University of Calgary, Calgary, Alberta, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Liégard B, Baillet V, Etcheverry M, Joseph E, Lariagon C, Lemoine J, Evrard A, Colot V, Gravot A, Manzanares‐Dauleux MJ, Jubault M. Quantitative resistance to clubroot infection mediated by transgenerational epigenetic variation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:468-479. [PMID: 30393890 PMCID: PMC6587750 DOI: 10.1111/nph.15579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/26/2018] [Indexed: 05/02/2023]
Abstract
Quantitative disease resistance, often influenced by environmental factors, is thought to be the result of DNA sequence variants segregating at multiple loci. However, heritable differences in DNA methylation, so-called transgenerational epigenetic variants, also could contribute to quantitative traits. Here, we tested this possibility using the well-characterized quantitative resistance of Arabidopsis to clubroot, a Brassica major disease caused by Plasmodiophora brassicae. For that, we used the epigenetic recombinant inbred lines (epiRIL) derived from the cross ddm1-2 × Col-0, which show extensive epigenetic variation but limited DNA sequence variation. Quantitative loci under epigenetic control (QTLepi ) mapping was carried out on 123 epiRIL infected with P. brassicae and using various disease-related traits. EpiRIL displayed a wide range of continuous phenotypic responses. Twenty QTLepi were detected across the five chromosomes, with a bona fide epigenetic origin for 16 of them. The effect of five QTLepi was dependent on temperature conditions. Six QTLepi co-localized with previously identified clubroot resistance genes and QTL in Arabidopsis. Co-localization of clubroot resistance QTLepi with previously detected DNA-based QTL reveals a complex model in which a combination of allelic and epiallelic variations interacts with the environment to lead to variation in clubroot quantitative resistance.
Collapse
Affiliation(s)
- Benjamin Liégard
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | - Victoire Baillet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Ecole Normale SupérieureCentre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)F‐75005ParisFrance
| | - Mathilde Etcheverry
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Ecole Normale SupérieureCentre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)F‐75005ParisFrance
| | - Evens Joseph
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | | | - Jocelyne Lemoine
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | - Aurélie Evrard
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Ecole Normale SupérieureCentre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)F‐75005ParisFrance
| | - Antoine Gravot
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | | | - Mélanie Jubault
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| |
Collapse
|
25
|
Conde D, Perales M, Sreedasyam A, Tuskan GA, Lloret A, Badenes ML, González-Melendi P, Ríos G, Allona I. Engineering Tree Seasonal Cycles of Growth Through Chromatin Modification. FRONTIERS IN PLANT SCIENCE 2019; 10:412. [PMID: 31024588 PMCID: PMC6459980 DOI: 10.3389/fpls.2019.00412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
In temperate and boreal regions, perennial trees arrest cell division in their meristematic tissues during winter dormancy until environmental conditions become appropriate for their renewed growth. Release from the dormant state requires exposure to a period of chilling temperatures similar to the vernalization required for flowering in Arabidopsis. Over the past decade, genomic DNA (gDNA) methylation and transcriptome studies have revealed signatures of chromatin regulation during active growth and winter dormancy. To date, only a few chromatin modification genes, as candidate regulators of these developmental stages, have been functionally characterized in trees. In this work, we summarize the major findings of the chromatin-remodeling role during growth-dormancy cycles and we explore the transcriptional profiling of vegetative apical bud and stem tissues during dormancy. Finally, we discuss genetic strategies designed to improve the growth and quality of forest trees.
Collapse
Affiliation(s)
- Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Gerald A. Tuskan
- Oak Ridge National Laboratory, Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - María L. Badenes
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Isabel Allona, orcid.org/0000-0002-7012-2850
| |
Collapse
|
26
|
Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S. Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev Camb Philos Soc 2018. [PMCID: PMC6378602 DOI: 10.1111/brv.12453] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After decades of debate about the existence of non‐genetic inheritance, the focus is now slowly shifting towards dissecting its underlying mechanisms. Here, we propose a new mechanism that, by integrating non‐genetic and genetic inheritance, may help build the long‐sought inclusive vision of evolution. After briefly reviewing the wealth of evidence documenting the existence and ubiquity of non‐genetic inheritance in a table, we review the categories of mechanisms of parent–offspring resemblance that underlie inheritance. We then review several lines of argument for the existence of interactions between non‐genetic and genetic components of inheritance, leading to a discussion of the contrasting timescales of action of non‐genetic and genetic inheritance. This raises the question of how the fidelity of the inheritance system can match the rate of environmental variation. This question is central to understanding the role of different inheritance systems in evolution. We then review and interpret evidence indicating the existence of shifts from inheritance systems with low to higher transmission fidelity. Based on results from different research fields we propose a conceptual hypothesis linking genetic and non‐genetic inheritance systems. According to this hypothesis, over the course of generations, shifts among information systems allow gradual matching between the rate of environmental change and the inheritance fidelity of the corresponding response. A striking conclusion from our review is that documented shifts between types of inherited non‐genetic information converge towards epigenetics (i.e. inclusively heritable molecular variation in gene expression without change in DNA sequence). We then interpret the well‐documented mutagenicity of epigenetic marks as potentially generating a final shift from epigenetic to genetic encoding. This sequence of shifts suggests the existence of a relay in inheritance systems from relatively labile ones to gradually more persistent modes of inheritance, a relay that could constitute a new mechanistic basis for the long‐proposed, but still poorly documented, hypothesis of genetic assimilation. A profound difference between the genocentric and the inclusive vision of heredity revealed by the genetic assimilation relay proposed here lies in the fact that a given form of inheritance can affect the rate of change of other inheritance systems. To explore the consequences of such inter‐connection among inheritance systems, we briefly review published theoretical models to build a model of genetic assimilation focusing on the shift in the engraving of environmentally induced phenotypic variation into the DNA sequence. According to this hypothesis, when environmental change remains stable over a sufficient number of generations, the relay among inheritance systems has the potential to generate a form of genetic assimilation. In this hypothesis, epigenetics appears as a hub by which non‐genetically inherited environmentally induced variation in traits can become genetically encoded over generations, in a form of epigenetically facilitated mutational assimilation. Finally, we illustrate some of the major implications of our hypothetical framework, concerning mutation randomness, the central dogma of molecular biology, concepts of inheritance and the curing of inherited disorders, as well as for the emergence of the inclusive evolutionary synthesis.
Collapse
Affiliation(s)
- Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Arnaud Pocheville
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- Department of Philosophy and Charles Perkins Centre; University of Sydney; Sydney NSW 2006 Australia
| | - Olivier Rey
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier; F-66860 Perpignan France
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Simon Blanchet
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
| |
Collapse
|
27
|
Shen Y, Zhang J, Liu Y, Liu S, Liu Z, Duan Z, Wang Z, Zhu B, Guo YL, Tian Z. DNA methylation footprints during soybean domestication and improvement. Genome Biol 2018; 19:128. [PMID: 30201012 PMCID: PMC6130073 DOI: 10.1186/s13059-018-1516-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In addition to genetic variation, epigenetic variation plays an important role in determining various biological processes. The importance of natural genetic variation to crop domestication and improvement has been widely investigated. However, the contribution of epigenetic variation in crop domestication at population level has rarely been explored. RESULTS To understand the impact of epigenetics on crop domestication, we investigate the variation of DNA methylation during soybean domestication and improvement by whole-genome bisulfite sequencing of 45 soybean accessions, including wild soybeans, landraces, and cultivars. Through methylomic analysis, we identify 5412 differentially methylated regions (DMRs). These DMRs exhibit characters distinct from those of genetically selected regions. In particular, they have significantly higher genetic diversity. Association analyses suggest only 22.54% of DMRs can be explained by local genetic variations. Intriguingly, genes in the DMRs that are not associated with any genetic variation are enriched in carbohydrate metabolism pathways. CONCLUSIONS This study provides a valuable map of DNA methylation across diverse accessions and dissects the relationship between DNA methylation variation and genetic variation during soybean domestication, thus expanding our understanding of soybean domestication and improvement.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| |
Collapse
|
28
|
Zhang YY, Latzel V, Fischer M, Bossdorf O. Understanding the evolutionary potential of epigenetic variation: a comparison of heritable phenotypic variation in epiRILs, RILs, and natural ecotypes of Arabidopsis thaliana. Heredity (Edinb) 2018; 121:257-265. [PMID: 29875373 PMCID: PMC6082859 DOI: 10.1038/s41437-018-0095-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 11/08/2022] Open
Abstract
Increasing evidence for epigenetic variation within and among natural plant populations has led to much speculation about its role in the evolution of plant phenotypes. However, we still have a very limited understanding of the evolutionary potential of epigenetic variation, in particular in comparison to DNA sequence-based variation. To address this question, we compared the magnitudes of heritable phenotypic variation in epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana-lines that mainly differ in DNA methylation but only very little in DNA sequence-with other types of A. thaliana lines that differ strongly also in DNA sequence. We grew subsets of two epiRIL populations with subsets of two genetic RIL populations, of natural ecotype collections, and of lines from a natural population in a common environment and assessed their heritable variation in growth, phenology, and fitness. Among-line phenotypic variation and broad-sense heritabilities tended to be largest in natural ecotypes, but for some traits the variation among epiRILs was comparable to that among RILs and natural ecotypes. Within-line phenotypic variation was generally similar in epiRILs, RILs, and ecotypes. Provided that phenotypic variation in epiRILs is mainly caused by epigenetic differences, whereas in RILs and natural lines it is largely driven by sequence variation, our results indicate that epigenetic variation has the potential to create phenotypic variation that is stable and substantial, and thus of evolutionary significance.
Collapse
Affiliation(s)
- Yuan-Ye Zhang
- Institute of Plant Sciences, University of Bern, CH-3013, Bern, Switzerland.
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Vit Latzel
- Institute of Plant Sciences, University of Bern, CH-3013, Bern, Switzerland
- Institute of Botany of the ASCR, CZ-252 43, Průhonice, Czech Republic
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, CH-3013, Bern, Switzerland
| | - Oliver Bossdorf
- Institute of Plant Sciences, University of Bern, CH-3013, Bern, Switzerland
- Plant Evolutionary Ecology, University of Tübingen, D-72076, Tübingen, Germany
| |
Collapse
|
29
|
Evolution without standing genetic variation: change in transgenerational plastic response under persistent predation pressure. Heredity (Edinb) 2018; 121:266-281. [PMID: 29959428 DOI: 10.1038/s41437-018-0108-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/22/2018] [Accepted: 06/03/2018] [Indexed: 11/08/2022] Open
Abstract
Transgenerational phenotypic plasticity is a fast non-genetic response to environmental modifications that can buffer the effects of environmental stresses on populations. However, little is known about the evolution of plasticity in the absence of standing genetic variation although several non-genetic inheritance mechanisms have now been identified. Here we monitored the pea aphid transgenerational phenotypic response to ladybird predators (production of winged offspring) during 27 generations of experimental evolution in the absence of initial genetic variation (clonal multiplication starting from a single individual). We found that the frequency of winged aphids first increased rapidly in response to predators and then remained stable over 25 generations, implying a stable phenotypic reconstruction at each generation. We also found that the high frequency of winged aphids persisted for one generation after removing predators. Winged aphid frequency then entered a refractory phase during which it dropped below the level of control lines for at least two generations before returning to it. Interestingly, the persistence of the winged phenotype decreased and the refractory phase lasted longer with the increasing number of generations of exposure to predators. Finally, we found that aphids continuously exposed to predators for 22 generations evolved a significantly weaker plastic response than aphids never exposed to predators, which, in turn, increased their fitness in presence of predators. Our findings therefore showcased an example of experimental evolution of plasticity in the absence of initial genetic variation and highlight the importance of integrating several components of non-genetic inheritance to detect evolutionary responses to environmental changes.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW It is becoming increasingly evident that epigenetic mechanisms, particularly DNA methylation, play a role in the regulation of blood lipid levels and lipid metabolism-linked phenotypes and diseases. RECENT FINDINGS Recent genome-wide methylation and candidate gene studies of blood lipids have highlighted several robustly replicated methylation markers across different ethnicities. Furthermore, many of these lipid-related CpG sites associated with blood lipids are also linked to lipid-related phenotypes and diseases. Integrating epigenome-wide association studies (EWAS) data with other layers of molecular data such as genetics or the transcriptome, accompanied by relevant statistical methods (e.g. Mendelian randomization), provides evidence for causal relationships. Recent data suggest that epigenetic changes can be consequences rather than causes of dyslipidemia. There is sparse information on many lipid classes and disorders of lipid metabolism, and also on the interplay of DNA methylation with other epigenetic layers such as histone modifications and regulatory RNAs. SUMMARY The current review provides a literature overview of epigenetic modifications in lipid metabolism and other lipid-related phenotypes and diseases focusing on EWAS of DNA methylation from January 2016 to September 2017. Recent studies strongly support the importance of epigenetic modifications, such as DNA methylation, in lipid metabolism and related diseases for relevant biological insights, reliable biomarkers, and even future therapeutics.
Collapse
Affiliation(s)
- Kirstin Mittelstraß
- Research Unit of Molecular Epidemiology
- Institute of Epidemiology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology
- Institute of Epidemiology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| |
Collapse
|
31
|
Ding M, Chen ZJ. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:37-48. [PMID: 29502038 PMCID: PMC6058195 DOI: 10.1016/j.pbi.2018.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 05/19/2023]
Abstract
Polyploidy or whole genome duplication (WGD) is a prominent feature for genome evolution of some animals and all flowering plants, including many important crops such as wheat, cotton, and canola. In autopolyploids, genome duplication often perturbs dosage regulation on biological networks. In allopolyploids, interspecific hybridization could induce genetic and epigenetic changes, the effects of which could be amplified by genome doubling (ploidy changes). Albeit the importance of genetic changes, some epigenetic changes can be stabilized and transmitted as epialleles into the progeny, which are subject to natural selection, adaptation, and domestication. Here we review recent advances for general and specific roles of epigenetic changes in the evolution of flowering plants and domestication of agricultural crops.
Collapse
Affiliation(s)
- Mingquan Ding
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Yao Y, Kovalchuk I. Exposure to zebularine and 5-azaC triggers microsatellite instability in the exposed Arabidopsis thaliana plants and their progeny. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Zhao N, Zhan X, Huang YT, Almli LM, Smith A, Epstein MP, Conneely K, Wu MC. Kernel machine methods for integrative analysis of genome-wide methylation and genotyping studies. Genet Epidemiol 2017; 42:156-167. [DOI: 10.1002/gepi.22100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/26/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Ni Zhao
- Department of Biostatistics; Johns Hopkins University; Baltimore Maryland 21205 United States of America
| | - Xiang Zhan
- Department of Public Health Sciences; Pennsylvania State University; Hershey Pennsylvania 17033 United States of America
| | - Yen-Tsung Huang
- Institute of Statistical Science; Academia Sinica; Taipei 11529 Taiwan
| | - Lynn M Almli
- Department of Psychiatry and Behavioral Sciences; Emory University; Atlanta Georgia 30322 United States of America
| | - Alicia Smith
- Department of Gynecology and Obstetrics; Emory University; Atlanta Georgia 30322 United States of America
| | - Michael P. Epstein
- Department of Human Genetics; Emory University; Atlanta Georgia 30322 United States of America
| | - Karen Conneely
- Department of Human Genetics; Emory University; Atlanta Georgia 30322 United States of America
| | - Michael C. Wu
- Public Health Sciences; Fred Hutchinson Cancer Research Center; Seattle Washington 98109 United States of America
| |
Collapse
|
34
|
Wong BSE, Hu Q, Baeg GH. Epigenetic modulations in nanoparticle-mediated toxicity. Food Chem Toxicol 2017; 109:746-752. [DOI: 10.1016/j.fct.2017.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
|
35
|
Saliva as a Blood Alternative for Genome-Wide DNA Methylation Profiling by Methylated DNA Immunoprecipitation (MeDIP) Sequencing. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
36
|
Hofmeister BT, Lee K, Rohr NA, Hall DW, Schmitz RJ. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol 2017; 18:155. [PMID: 28814343 PMCID: PMC5559844 DOI: 10.1186/s13059-017-1288-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Differences in DNA methylation can arise as epialleles, which are loci that differ in chromatin state and are inherited over generations. Epialleles offer an additional source of variation that can affect phenotypic diversity beyond changes to nucleotide sequence. Previous research has looked at the rate at which spontaneous epialleles arise but it is currently unknown how they are maintained across generations. RESULTS We used two Arabidopsis thaliana mutation accumulation (MA) lines and determined that over 99.998% of the methylated regions in the genome are stably inherited across each generation indicating that spontaneous epialleles are rare. We also developed a novel procedure that determines genotypes for offspring of genetically identical parents using only DNA methylation data. The resulting epigenotype maps are highly accurate and strongly agree with expected allele frequency and crossover number. Using epigenotype maps, we explore the inheritance of methylation states in regions of differential methylation between the parents of genetic crosses. Over half of the regions show methylation levels consistent with cis inheritance, whereas the other half show evidence of trans-chromosomal methylation and demethylation as well as other possibilities. CONCLUSIONS DNA methylation is stably inherited by offspring and spontaneous epialleles are rare. The epigenotyping procedure that we describe provides an important first step to epigenetic quantitative trait loci mapping in genetically identical individuals.
Collapse
Affiliation(s)
| | - Kevin Lee
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Nicholas A Rohr
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - David W Hall
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
37
|
Kumar J, Gupta DS, Gupta S, Dubey S, Gupta P, Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. PLANT CELL REPORTS 2017; 36:1187-1213. [PMID: 28352970 DOI: 10.1007/s00299-017-2127-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/09/2017] [Indexed: 05/24/2023]
Abstract
Advancement in the field of genetics and genomics after the discovery of Mendel's laws of inheritance has led to map the genes controlling qualitative and quantitative traits in crop plant species. Mapping of genomic regions controlling the variation of quantitatively inherited traits has become routine after the advent of different types of molecular markers. Recently, the next generation sequencing methods have accelerated the research on QTL analysis. These efforts have led to the identification of more closely linked molecular markers with gene/QTLs and also identified markers even within gene/QTL controlling the trait of interest. Efforts have also been made towards cloning gene/QTLs or identification of potential candidate genes responsible for a trait. Further new concepts like crop QTLome and QTL prioritization have accelerated precise application of QTLs for genetic improvement of complex traits. In the past years, efforts have also been made in exploitation of a number of QTL for improving grain yield or other agronomic traits in various crops through markers assisted selection leading to cultivation of these improved varieties at farmers' field. In present article, we reviewed QTLs from their identification to exploitation in plant breeding programs and also reviewed that how improved cultivars developed through introgression of QTLs have improved the yield productivity in many crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Rabat, Morocco
| |
Collapse
|
38
|
Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol 2017; 30:1612-1632. [PMID: 28597938 DOI: 10.1111/jeb.13130] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
Abstract
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally-mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.
Collapse
Affiliation(s)
- J Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
39
|
Liu H, Ma L, Yang X, Zhang L, Zeng X, Xie S, Peng H, Gao S, Lin H, Pan G, Wu Y, Shen Y. Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation. BMC PLANT BIOLOGY 2017; 17:105. [PMID: 28619030 PMCID: PMC5472921 DOI: 10.1186/s12870-017-1055-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/06/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Maize (Zea mays) is an important model crop for transgenic studies. However, genetic transformation of maize requires embryonic calli derived from immature embryo, and the impact of utilizing tissue culture methods on the maize epigenome is poorly understood. Here, we generated whole-genome MeDIP-seq data examining DNA methylation in dedifferentiated and normal immature maize embryos. RESULTS We observed that most of the dedifferentiated embryos exhibited a methylation increase compared to normal embryos. Increased methylation at promoters was associated with down-regulated protein-coding gene expression; however, the correlation was not strong. Analysis of the callus and immature embryos indicated that the methylation increase was induced during induction of embryonic callus, suggesting phenotypic consequences may be caused by perturbations in genomic DNA methylation levels. The correlation between the 21-24nt small RNAs and DNA methylation regions were investigated but only a statistically significant correlation for 24nt small RNAs was observed. CONCLUSIONS These data extend the significance of epigenetic changes during maize embryo callus formation, and the methylation changes might explain some of the observed embryonic callus variation in callus formation.
Collapse
Affiliation(s)
- Hongjun Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xuerong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Lin Zhang
- Department of Agronomy, Northeast Agricultural University, Harbin, 150030 China
| | - Xing Zeng
- Department of Agronomy, Northeast Agricultural University, Harbin, 150030 China
| | - Shupeng Xie
- Suihua Sub-academy, Heilongjiang Academy of Agricultural Sciences, Suihua, 152052 China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, 625014 China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Haijian Lin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
40
|
Araki KS, Kubo T, Kudoh H. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population. PLoS One 2017; 12:e0178145. [PMID: 28542457 PMCID: PMC5439711 DOI: 10.1371/journal.pone.0178145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
Collapse
Affiliation(s)
- Kiwako S. Araki
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takuya Kubo
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| |
Collapse
|
41
|
Affiliation(s)
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-75005 Paris, France;
| |
Collapse
|
42
|
Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population epigenomic variation. Nat Rev Genet 2016; 17:319-32. [DOI: 10.1038/nrg.2016.45] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Prasad NG, Dey S, Joshi A, Vidya TNC. Rethinking inheritance, yet again: inheritomes, contextomes and dynamic phenotypes. J Genet 2016; 94:367-76. [PMID: 26440075 DOI: 10.1007/s12041-015-0554-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years, there have been many calls for an extended evolutionary synthesis, based in part upon growing evidence for nongenetic mechanisms of inheritance, i.e., similarities in phenotype between parents and offspring that are not due to shared genes. While there has been an impressive marshalling of evidence for diverse forms of nongenetic inheritance (epigenetic, ecological, behavioural and symbolic), there have been relatively few studies trying to integrate the different forms of inheritance into a common conceptual structure, a development that would be important to formalize elements of the extended evolutionary synthesis. Here, we propose a framework for an extended view of inheritance and introduce some conceptual distinctions that we believe, are important to this issue. In this framework, the phenotype is conceived of as a dynamic entity, its state, at any point in time resulting from intertwined effects of previous phenotypic state, and of hereditary materials (DNA and otherwise) and environment. We contrast our framework with the standard gene-based view of inheritance, and also discuss our framework in the specific context of recent attempts to accommodate nongenetic inheritance within the framework of classical quantitative genetics and the Price equation. In particular, we believe that the extended view of inheritance and effects on the phenotype developed here is particularly well-suited to individual-based simulation studies of evolutionary dynamics. The results of such simulations, in turn, could be useful for assessing, how well extended models based on quantitative genetics or the Price equation perform at capturing complex evolutionary dynamics.
Collapse
Affiliation(s)
- N G Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, P.O. Manauli, Mohali 140 306, India.
| | | | | | | |
Collapse
|
44
|
Bilichak A, Kovalchuk I. Transgenerational response to stress in plants and its application for breeding. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2081-92. [PMID: 26944635 DOI: 10.1093/jxb/erw066] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A growing number of reports indicate that plants possess the ability to maintain a memory of stress exposure throughout their ontogenesis and even transmit it faithfully to the following generation. Some of the features of transgenerational memory include elevated genome instability, a higher tolerance to stress experienced by parents, and a cross-tolerance. Although the underlying molecular mechanisms of this phenomenon are not clear, a likely contributing factor is the absence of full-scale reprogramming of the epigenetic landscape during gametogenesis; therefore, epigenetic marks can occasionally escape the reprogramming process and can be passed on to the progeny. To date, it is not entirely clear which part of the epigenetic landscape is more likely to escape the reprogramming events, and whether such a process is random or directed and sequence specific. The identification of specific epigenetic marks associated with specific stressors would allow generation of stress-tolerant plants through the recently discovered techniques for precision epigenome engineering. The engineered DNA-binding domains (e.g. ZF, TALE, and dCas9) fused to particular chromatin modifiers would make it possible to target epigenetic modifications to the selected loci, probably allowing stress tolerance to be achieved in the progeny. This approach, termed epigenetic breeding, along with other methods has great potential to be used for both the assessment of the propagation of epigenetic marks across generations and trait improvement in plants. In this communication, we provide a short overview of recent reports demonstrating a transgenerational response to stress in plants, and discuss the underlying potential molecular mechanisms of this phenomenon and its use for plant biotechnology applications.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, University Drive 4401, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
45
|
Song Y, Ci D, Tian M, Zhang D. Stable methylation of a non-coding RNA gene regulates gene expression in response to abiotic stress in Populus simonii. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1477-92. [PMID: 26712827 DOI: 10.1093/jxb/erv543] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
DNA methylation plays important roles in responses to environmental stimuli. However, in perennial plants, the roles of DNA methylation in stress-specific adaptions to different abiotic stresses remain unclear. Here, we present a systematic, comparative analysis of the methylome and gene expression in poplar under cold, osmotic, heat, and salt stress conditions from 3h to 24h. Comparison of the stress responses revealed different patterns of cytosine methylation in response to the four abiotic stresses. We isolated and sequenced 1376 stress-specific differentially methylated regions (SDMRs); annotation revealed that these SDMRs represent 1123 genes encoding proteins, 16 miRNA genes, and 17 long non-coding RNA (lncRNA) genes. The SDMR162 region, consisting of Psi-MIR396e and PsiLNCRNA00268512, is regulated by epigenetic pathways and we speculate that PsiLNCRNA00268512 regulates miR396e levels by acting as a target mimic. The ratios of methylated cytosine declined to ~35.1% after 1 month of recovery from abiotic stress and to ~15.3% after 6 months. Among methylated miRNA genes, only expression of the methylation-regulated gene MIRNA6445a showed long-term stability. Our data provide a strong basis for future work and improve our understanding of the effect of epigenetic regulation of non-coding RNA expression, which will enable in-depth functional analysis.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Min Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| |
Collapse
|
46
|
Xu J, Tanino KK, Robinson SJ. Stable Epigenetic Variants Selected from an Induced Hypomethylated Fragaria vesca Population. FRONTIERS IN PLANT SCIENCE 2016; 7:1768. [PMID: 27965682 PMCID: PMC5126047 DOI: 10.3389/fpls.2016.01768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/09/2016] [Indexed: 05/05/2023]
Abstract
Epigenetic inheritance was transmitted through selection over five generations of extreme early, but not late flowering time phenotypic lines in Fragaria vesca. Epigenetic variation was initially artificially induced using the DNA demethylation reagent 5-azacytidine (5-azaC). It is the first report to explore epigenetic variant selection and phenotypic trait inheritance in strawberry. Transmission frequency of these traits was determined across generations. The early flowering (EF4) and late stolon (LS) phenotypic traits were successfully transmitted across five and three generations through meiosis, respectively. Stable mitotic transmission of the early flowering phenotype was also demonstrated using clonal daughters derived from the 4th Generation (S4) mother plant. In order to further explore the DNA methylation patterns underlying the early flowering trait, the standard MSAP method using isoschizomers Hpa II/Msp I, and newly modified MSAP method using isoschizomers Tfi I/Pfe I which detected DNA methylation at CG, CHG, CHH sites were used in two early flowering lines, EF lines 1 (P2) and EF lines 2 (P3), and control lines (P1). A significant reduction in the number of fully-methylated bands was detected in P2 and P3 when compared to P1 using the novel MSAP method. In the standard MSAP, the symmetric CG and CHG methylation was maintained over generations in the early flowering lines based on the clustering in P2 and P3, the novel MSAP approach revealed the asymmetric CHH methylation pattern was not maintained over generations. This study provides evidence of stable selection of phenotypic traits, particularly early flowering through both meiosis and mitosis, which is meaningful to both breeding programs and commercial horticulture. The maintenance in CG and CHG methylation over generations suggests the early flowering phenotype might be related to DNA methylation alterations at the CG or CHG sites. Finally, this work provides a new approach for studying the role of epigenetics on complex quantitative trait improvement in strawberry, as well as providing a tool to expand phenotypic diversity and expedite potential new horticulture cultivar releases through either seed or vegetative propagation.
Collapse
Affiliation(s)
- Jihua Xu
- Department of Plant Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Stephen J Robinson
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada; Agriculture and Agri-Food Canada, Saskatoon Research CentreSaskatoon, SK, Canada
| |
Collapse
|
47
|
Song Y, Liu L, Feng Y, Wei Y, Yue X, He W, Zhang H, An L. Chilling- and Freezing-Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana. PLoS One 2015; 10:e0135485. [PMID: 26270551 PMCID: PMC4535906 DOI: 10.1371/journal.pone.0135485] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/23/2015] [Indexed: 12/24/2022] Open
Abstract
Chilling (0–18°C) and freezing (<0°C) are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation) mediates the adaptation to cold stresses in nature (e.g., in alpine regions). Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h). To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling) and -4°C (freezing) over five periods of time (0–24 h). Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h). Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana to adapt to the intricate cold stresses in the alpine areas.
Collapse
Affiliation(s)
- Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- * E-mail: (LA); (YS)
| | - Lijun Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanhao Feng
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany
| | - Yunzhu Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiule Yue
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenliang He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- * E-mail: (LA); (YS)
| |
Collapse
|
48
|
Relton CL, Hartwig FP, Davey Smith G. From stem cells to the law courts: DNA methylation, the forensic epigenome and the possibility of a biosocial archive. Int J Epidemiol 2015; 44:1083-93. [PMID: 26424516 PMCID: PMC5279868 DOI: 10.1093/ije/dyv198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The growth in epigenetics continues to attract considerable cross-disciplinary interest, apparently representing an opportunity to move beyond genomics towards the goal of understanding phenotypic variability from molecular through organismal to the societal level. The epigenome may also harbour useful information about life-time exposures (measured or unmeasured) irrespective of their influence on health or disease, creating the potential for a person-specific biosocial archive . Furthermore such data may prove of use in providing identifying information, providing the possibility of a future forensic epigenome . The mechanisms involved in ensuring that environmentally induced epigenetic changes perpetuate across the life course remain unclear. Here we propose a potential role of adult stem cells in maintaining epigenetic states provides a useful basis for formulating such epidemiologically-relevant concepts.
Collapse
Affiliation(s)
- Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
49
|
Chen CH, Peng Q, Schork AJ, Lo MT, Fan CC, Wang Y, Desikan RS, Bettella F, Hagler DJ, Westlye LT, Kremen WS, Jernigan TL, Hellard SL, Steen VM, Espeseth T, Huentelman M, Håberg AK, Agartz I, Djurovic S, Andreassen OA, Schork N, Dale AM. Large-scale genomics unveil polygenic architecture of human cortical surface area. Nat Commun 2015; 6:7549. [PMID: 26189703 PMCID: PMC4518289 DOI: 10.1038/ncomms8549] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/19/2015] [Indexed: 12/04/2022] Open
Abstract
Little is known about how genetic variation contributes to neuroanatomical variability, and whether particular genomic regions comprising genes or evolutionarily conserved elements are enriched for effects that influence brain morphology. Here, we examine brain imaging and single-nucleotide polymorphisms (SNPs) data from ∼2,700 individuals. We show that a substantial proportion of variation in cortical surface area is explained by additive effects of SNPs dispersed throughout the genome, with a larger heritable effect for visual and auditory sensory and insular cortices (h(2)∼0.45). Genome-wide SNPs collectively account for, on average, about half of twin heritability across cortical regions (N=466 twins). We find enriched genetic effects in or near genes. We also observe that SNPs in evolutionarily more conserved regions contributed significantly to the heritability of cortical surface area, particularly, for medial and temporal cortical regions. SNPs in less conserved regions contributed more to occipital and dorsolateral prefrontal cortices.
Collapse
Affiliation(s)
- Chi-Hua Chen
- Multimodal Imaging Laboratory, Department of Radiology, University of California San Diego, La Jolla, California 92037, USA
| | - Qian Peng
- Department of Human Biology, J. Craig Venter Institute, San Diego, California 92037, USA
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Andrew J. Schork
- Multimodal Imaging Laboratory, Department of Radiology, University of California San Diego, La Jolla, California 92037, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, California 92093, USA
| | - Min-Tzu Lo
- Multimodal Imaging Laboratory, Department of Radiology, University of California San Diego, La Jolla, California 92037, USA
| | - Chun-Chieh Fan
- Multimodal Imaging Laboratory, Department of Radiology, University of California San Diego, La Jolla, California 92037, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, California 92093, USA
| | - Yunpeng Wang
- Multimodal Imaging Laboratory, Department of Radiology, University of California San Diego, La Jolla, California 92037, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
- Norwegian Center for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Rahul S. Desikan
- Multimodal Imaging Laboratory, Department of Radiology, University of California San Diego, La Jolla, California 92037, USA
| | - Francesco Bettella
- Norwegian Center for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Donald J. Hagler
- Multimodal Imaging Laboratory, Department of Radiology, University of California San Diego, La Jolla, California 92037, USA
| | - Lars T. Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Psychology, University of Oslo, 0424 Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, 0317 Oslo, Norway
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, California 92093, USA
- VA San Diego Center of Excellence for Stress and Mental Health, La Jolla, California 92037, USA
| | - Terry L. Jernigan
- Department of Cognitive Science, University of California, San Diego, La Jolla, California 92093, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, California 92093, USA
| | - Stephanie Le Hellard
- Dr E. Martens Research Group of Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Norway
| | - Vidar M. Steen
- Dr E. Martens Research Group of Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Norway
| | - Thomas Espeseth
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Psychology, University of Oslo, 0424 Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, 0317 Oslo, Norway
| | - Matt Huentelman
- Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Asta K. Håberg
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), 7489 Trondheim, Norway
- Department of Medical Imaging, St. Olav's University Hospital, 7006 Trondheim, Norway
| | - Ingrid Agartz
- Norwegian Center for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, 0319 Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Norway
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Ole A. Andreassen
- Norwegian Center for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Nicholas Schork
- Department of Human Biology, J. Craig Venter Institute, San Diego, California 92037, USA
| | - Anders M. Dale
- Multimodal Imaging Laboratory, Department of Radiology, University of California San Diego, La Jolla, California 92037, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
50
|
Abstract
Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a "system" in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states.
Collapse
Affiliation(s)
- Lidan Sun
- National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|