1
|
Palmfeldt J. Interaction and regulation of the mitochondrial proteome - in health and disease. Expert Rev Proteomics 2025. [PMID: 39806765 DOI: 10.1080/14789450.2025.2451704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Mitochondria contain multiple pathways including energy metabolism and several signaling and synthetic pathways. Mitochondrial proteomics is highly valuable for studying diseases including inherited metabolic disorders, complex and common disorders like neurodegeneration, diabetes and cancer, since they all to some degree have mitochondrial underpinnings. AREAS COVERED The main mitochondrial functions and pathways are outlined and systematic protein lists are presented. In addition to the main energy metabolic pathways are; iron-sulfur cluster synthesis, one carbon metabolism, catabolism of hydrogen sulfide, kynurenines and reactive oxygen species (ROS), and others, described with the aim of laying a foundation for systematic mitochondrial pathway analysis based on proteomics data. The links of the proteins and pathways to functional effects and diseases are discussed. The disease examples are focussed on inherited metabolic disorders, cancer, neurological and cardiovascular disorders. EXPERT OPINION To elucidate the roles of mitochondria in health and disease, there is a need for comprehensive proteomics analyses with stringent, systematic data treatment for proper interpretation of mitochondrial pathway data. In that way comprehensive hypothesis-based research can be performed based on proteomics data.
Collapse
Affiliation(s)
- Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark
| |
Collapse
|
2
|
Chitara N, Krishan K, Kanchan T. The three-parent baby: Medicolegal, forensic and ethical concerns. MEDICINE, SCIENCE, AND THE LAW 2025; 65:71-76. [PMID: 39056221 DOI: 10.1177/00258024241266566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In the recent past, human genetics and in vitro fertilization (IVF) have undergone various advances to combat with several congenital and developmental disorders. These advances are a boon for the families and patients who were restricted from having a child due to one or the other reasons. One such reason is the mitochondrial DNA (mtDNA) mutations, which are definitely transmitted from the mother to the child due to uniparental/maternal inheritance of mitochondria. Depending upon the range of the mutation (mutation loads) present, the mtDNA mutation leads to various devitalizing to fatal disorders, all of which are incurable. Scientists and researchers developed a technique known as mitochondrial donation technique or mitochondrial replacement therapy (MRT) to combat with the mtDNA mutations. The technique relies on the replacement of faulty mitochondria in the mother's egg with the normal wild-type from a donor female resulting in a "three-parent baby." On the other side, forensic scientists and anthropologists continuously explore the mtDNA in various medicolegal cases and in uncoupling the mystery of human origin and migration respectively. In this regard, we explored the genetic, forensic and ethical aspects of a "three-parent baby." The present communication also attempts to highlight the importance and limitations of the MRT technique/three-parent baby in a medicolegal context.
Collapse
Affiliation(s)
- Nandini Chitara
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Kewal Krishan
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Tanuj Kanchan
- Department of Forensic Medicine, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
3
|
Lei J, Zhu Q, Guo J, Chen J, Qi L, Cui M, Jiang Z, Fan C, Wang L, Lai T, Jin Y, Si L, Liu Y, Yang Q, Bao D, Guo R. TEFM facilitates uterine corpus endometrial carcinoma progression by activating ROS-NFκB pathway. J Transl Med 2024; 22:1151. [PMID: 39731053 DOI: 10.1186/s12967-024-05833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Mitochondrial transcription elongation factor (TEFM) is a recently discovered factor involved in mitochondrial DNA replication and transcription. Previous studies have reported that abnormal TEFM expression can disrupt the assembly of mitochondrial respiratory chain and thus mitochondrial function. However, the role of TEFM on Uterine corpus endometrial carcinoma (UCEC) progression remains unclear. The present study aims to investigate the expression of TEFM in tumor tissue of UCEC and the effect of abnormal TEFM expression on malignant phenotype of UCEC cells. METHODS The expressions of TEFM were measured in tumor tissues and cell lines of UCEC by immunohistochemistry, Western blotting, and real-time quantitative PCR assays. Besides, the effects of TEFM knockdown or overexpression on UCEC cell growth, metastasis, apoptosis, and autophagy were also determined using EdU, colony formation, flow cytometry, TUNEL, and transmission electron microscopy assays. Xenograft model was used to confirm the role of TEFM on proliferative potential of UECE cells in vivo. RESULTS Our bioinformatics analysis of CPTAC data showed that TEFM is abnormally overexpressed in UCEC and its upregulation was significantly associated with poor survival of patients with UCEC. We found that TEFM upregulation significantly promoted the growth and metastasis of UCEC cells. Mechanically, TEFM upregulation impaired the function of mitochondria, decreased their membrane potential and activated the AKT-NFκB pathway by promoting reactive oxygen species (ROS) production, leading to enhanced intracellular autophagy and thus UCEC growth and metastasis. CONCLUSION This study demonstrates that TEFM positively regulates autophagy to promote the growth and metastasis of UCEC cells, which provides a potential prognostic biomarker and therapeutic target for the treatment of UCEC.
Collapse
Affiliation(s)
- Jia Lei
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Radiotheraphy Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Qingguo Zhu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Jianghao Guo
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Jiaxing Chen
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Lixia Qi
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Mengmeng Cui
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Zhixiong Jiang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Chunhui Fan
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Lin Wang
- Radiotheraphy Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tianjiao Lai
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Yuxi Jin
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Lulu Si
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Yana Liu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Qi Yang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dengke Bao
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, Henan, 475004, China.
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
4
|
Rahimi Darehbagh R, Khanmohammadi S, Rezaei N. The role of mitochondrial DNA variants and dysfunction in the pathogenesis and progression of multiple sclerosis. Mitochondrion 2024; 81:102002. [PMID: 39732186 DOI: 10.1016/j.mito.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/10/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). The etiology of MS remains elusive, with a complex interplay of genetic and environmental factors contributing to its pathogenesis. Recent studies showed mitochondrial DNA (mtDNA) as a potential player in the development and progression of MS. These studies encompassed mtDNA variants, copy number variations, and haplogroups. This narrative review aims to synthesize the current understanding of the role of mtDNA's in MS. The findings of this review suggest that mtDNA may indeed play a role in the development and progression of MS. Several studies have reported an association between mtDNA variants and increased susceptibility to MS, while others have found a link between mtDNA copy number variations and disease severity. Furthermore, specific mtDNA haplogroups have been demonstrated to confer protection against MS. MtDNA alterations may make neurons and oligodendrocytes more susceptible to inflammatory and oxidative stress, causing demyelination and axonal degeneration in MS patients. In conclusion, this review underscores the potential significance of mtDNA in the pathogenesis of MS and highlights the need for further research to fully elucidate its role. A deeper understanding of mtDNA's involvement in MS may pave the way for the development of novel therapeutic strategies to combat this debilitating disease.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran; Nanoclub Elites Association, Tehran, Iran; Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | - Shaghayegh Khanmohammadi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
He Y, Tang Z, Zhu G, Cai L, Chen C, Guan MX. Deafness-associated mitochondrial 12S rRNA mutation reshapes mitochondrial and cellular homeostasis. J Biol Chem 2024:108124. [PMID: 39716492 DOI: 10.1016/j.jbc.2024.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Human mitochondrial 12S ribosomal RNA (rRNA) 1555A>G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the m.1555A>G mutation impaired mitochondrial translation and oxidative phosphorylation (OXPHOS). However, the mechanisms by which mitochondrial dysfunctions induced by m.1555A>G mutation regulate intracellular signaling for mitochondrial and cellular integrity remain poorly understood. Here, we demonstrated that the m.1555A>G mutation downregulated the expression of nuclear-encoded subunits of complexes I and IV but upregulated the expression of assemble factors for OXPHOS complexes, using cybrids derived from one hearing-impaired Chinese subject bearing the m.1555A>G mutation and from one hearing normal control lacking the mutation. These alterations resulted in the aberrant assembly, instability and reduced activities of respiratory chain enzyme complexes I, IV and V, rate of oxygen consumption, and diminished ATP production. Furthermore, the mutant cell lines carrying the m.1555A>G mutation exhibited decreased membrane potential and increased the production of reactive oxygen species. The aberrant assembly and biogenesis of OXPHOS impacted mitochondrial quality controls, including the imbalance of mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology and impaired mitophagy. Strikingly, the cells bearing the m.1555A>G mutation revealed the upregulation of both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing the levels of Parkin, Pink, BNIP3L and NIX. The m.1555A>G mutation-induced deficiencies ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into pathophysiology of mitochondrial deafness arising from reshaping mitochondrial and cellular homeostasis due to 12S rRNA 1555A>G mutation.
Collapse
Affiliation(s)
- Yunfan He
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Zhining Tang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Gao Zhu
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Luhang Cai
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Mitochondrial Dysfunction in Cardiac Disease: The Fort Fell. Biomolecules 2024; 14:1534. [PMID: 39766241 PMCID: PMC11673776 DOI: 10.3390/biom14121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Myocardial cells and the extracellular matrix achieve their functions through the availability of energy. In fact, the mechanical and electrical properties of the heart are heavily dependent on the balance between energy production and consumption. The energy produced is utilized in various forms, including kinetic, dynamic, and thermal energy. Although total energy remains nearly constant, the contribution of each form changes over time. Thermal energy increases, while dynamic and kinetic energy decrease, ultimately becoming insufficient to adequately support cardiac function. As a result, toxic byproducts, unfolded or misfolded proteins, free radicals, and other harmful substances accumulate within the myocardium. This leads to the failure of crucial processes such as myocardial contraction-relaxation coupling, ion exchange, cell growth, and regulation of apoptosis and necrosis. Consequently, both the micro- and macro-architecture of the heart are altered. Energy production and consumption depend on the heart's metabolic resources and the functional state of the cardiac structure, including cardiomyocytes, non-cardiomyocyte cells, and their metabolic and energetic behavior. Mitochondria, which are intracellular organelles that produce more than 95% of ATP, play a critical role in fulfilling all these requirements. Therefore, it is essential to gain a deeper understanding of their anatomy, function, and homeostatic properties.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Dimitrios Farmakis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| |
Collapse
|
7
|
Bonfiglio F, Legati A, Lasorsa VA, Palombo F, De Riso G, Isidori F, Russo S, Furini S, Merla G, Coppedè F, Tartaglia M, Bruselles A, Pippucci T, Ciolfi A, Pinelli M, Capasso M. Best practices for germline variant and DNA methylation analysis of second- and third-generation sequencing data. Hum Genomics 2024; 18:120. [PMID: 39501379 PMCID: PMC11536923 DOI: 10.1186/s40246-024-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/09/2024] Open
Abstract
This comprehensive review provides insights and suggested strategies for the analysis of germline variants using second- and third-generation sequencing technologies (SGS and TGS). It addresses the critical stages of data processing, starting from alignment and preprocessing to quality control, variant calling, and the removal of artifacts. The document emphasized the importance of meticulous data handling, highlighting advanced methodologies for annotating variants and identifying structural variations and methylated DNA sites. Special attention is given to the inspection of problematic variants, a step that is crucial for ensuring the accuracy of the analysis, particularly in clinical settings where genetic diagnostics can inform patient care. Additionally, the document covers the use of various bioinformatics tools and software that enhance the precision and reliability of these analyses. It outlines best practices for the annotation of variants, including considerations for problematic genetic alterations such as those in the human leukocyte antigen region, runs of homozygosity, and mitochondrial DNA alterations. The document also explores the complexities associated with identifying structural variants and copy number variations, underscoring the challenges posed by these large-scale genomic alterations. The objective is to offer a comprehensive framework for researchers and clinicians, ensuring that genetic analyses conducted with SGS and TGS are both accurate and reproducible. By following these best practices, the document aims to increase the diagnostic accuracy for hereditary diseases, facilitating early diagnosis, prevention, and personalized treatment strategies. This review serves as a valuable resource for both novices and experts in the field, providing insights into the latest advancements and methodologies in genetic analysis. It also aims to encourage the adoption of these practices in diverse research and clinical contexts, promoting consistency and reliability across studies.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy
| | - Andrea Legati
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Flavia Palombo
- Programma Di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy
| | - Federica Isidori
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Laboratorio di Ricerca di Citogenetica Medica e Genetica Molecolare, Istituto Auxologico Italiano, IRCCS, 20145, Milano, Italy
| | - Simone Furini
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michele Pinelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
- CEINGE Advanced Biotechnology Franco Salvatore, Naples, Italy.
| |
Collapse
|
8
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
9
|
Li H, Xia Y, Zha H, Zhang Y, Shi L, Wang J, Huang H, Yue R, Hu B, Zhu J, Song Z. Dapagliflozin attenuates AKI to CKD transition in diabetes by activating SIRT3/PGC1-α signaling and alleviating aberrant metabolic reprogramming. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167433. [PMID: 39067538 DOI: 10.1016/j.bbadis.2024.167433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Patients with diabetes are prone to acute kidney injury (AKI) with a high mortality rate, poor prognosis, and a higher risk of progression to chronic kidney disease than non-diabetic patients. METHODS Streptozotocin (STZ)-treated type 1 and db/db type 2 diabetes model were established, AKI model was induced in mice by ischemia-reperfusion injury(IRI). Mouse proximal tubular cell cells were subjected to high glucose and hypoxia-reoxygenation in vitro. Transcriptional RNA sequencing was performed for clustering analysis and target gene screening. Renal structural damage was determined by histological staining, whereas creatinine and urea nitrogen levels were used to measure renal function. RESULTS Deteriorated renal function and renal tissue damage were observed in AKI mice with diabetic background. RNA sequencing showed a decrease in fatty acid oxidation (FAO) pathway and an increase in abnormal glycolysis. Treatment with Dapa, Sitagliptin(a DPP-4 inhibitor)and insulin reduced blood glucose levels in mice, and improved renal function. However, Dapa had a superior therapeutic effect and alleviated aberrant FAO and glycosis. Dapa reduced cellular death in cultured cells under high glucose hypoxia-reoxygenation conditions, alleviated FAO dysfunction, and reduced abnormal glycolysis. RNA sequencing showed that SIRT3 expression was reduced in diabetic IRI, which was largely restored by Dapa intervention. 3-TYP, a SIRT3 inhibitor, reversed the renal protective effects of Dapa and mediated abnormal FAO and glycolysis in mice and tubular cells. CONCLUSION Our study provides experimental evidence for the use of Dapa as a means to reduce diabetic AKI by ameliorating metabolic reprogramming in renal tubular cells.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Acute Kidney Injury/metabolism
- Acute Kidney Injury/drug therapy
- Acute Kidney Injury/pathology
- Acute Kidney Injury/etiology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/pathology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/pathology
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Metabolic Reprogramming/drug effects
- Mice, Inbred C57BL
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/pathology
- Signal Transduction/drug effects
- Sirtuin 3/metabolism
- Sirtuin 3/genetics
- Benzhydryl Compounds/pharmacology
- Benzhydryl Compounds/therapeutic use
Collapse
Affiliation(s)
- Huimin Li
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China; Institute of Kidney Disease, Three Gorges University, Yichang, Hubei 443000, China; Department of Nephrology, Affiliated Renhe Hospital of China Three Gorges University, Yichang City 443001, Hubei Province, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China; Institute of Kidney Disease, Three Gorges University, Yichang, Hubei 443000, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China; Institute of Kidney Disease, Three Gorges University, Yichang, Hubei 443000, China
| | - Yafei Zhang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China; Institute of Kidney Disease, Three Gorges University, Yichang, Hubei 443000, China
| | - Lang Shi
- Institute of Kidney Disease, Three Gorges University, Yichang, Hubei 443000, China; Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - JiaYi Wang
- Department of Anesthesiology, the Second Xiangya Hospital, Changsha, Hunan Province, China
| | - Hua Huang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China; Institute of Kidney Disease, Three Gorges University, Yichang, Hubei 443000, China
| | - Ruchi Yue
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China; Institute of Kidney Disease, Three Gorges University, Yichang, Hubei 443000, China; Department of Nephrology, Affiliated Renhe Hospital of China Three Gorges University, Yichang City 443001, Hubei Province, China
| | - Bin Hu
- Department of Nephrology, Affiliated Renhe Hospital of China Three Gorges University, Yichang City 443001, Hubei Province, China
| | - Jiefu Zhu
- Institute of Kidney Disease, Three Gorges University, Yichang, Hubei 443000, China; Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhixia Song
- Department of Nephrology, the Longhua District People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
10
|
Gitschlag BL, Pereira CV, Held JP, McCandlish DM, Patel MR. Multiple distinct evolutionary mechanisms govern the dynamics of selfish mitochondrial genomes in Caenorhabditis elegans. Nat Commun 2024; 15:8237. [PMID: 39300074 DOI: 10.1038/s41467-024-52596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Cells possess multiple mitochondrial DNA (mtDNA) copies, which undergo semi-autonomous replication and stochastic inheritance. This enables mutant mtDNA variants to arise and selfishly compete with cooperative (wildtype) mtDNA. Selfish mitochondrial genomes are subject to selection at different levels: they compete against wildtype mtDNA directly within hosts and indirectly through organism-level selection. However, determining the relative contributions of selection at different levels has proven challenging. We overcome this challenge by combining mathematical modeling with experiments designed to isolate the levels of selection. Applying this approach to many selfish mitochondrial genotypes in Caenorhabditis elegans reveals an unexpected diversity of evolutionary mechanisms. Some mutant genomes persist at high frequency for many generations, despite a host fitness cost, by aggressively outcompeting cooperative genomes within hosts. Conversely, some mutant genomes persist by evading inter-organismal selection. Strikingly, the mutant genomes vary dramatically in their susceptibility to genetic drift. Although different mechanisms can cause high frequency of selfish mtDNA, we show how they give rise to characteristically different distributions of mutant frequency among individuals. Given that heteroplasmic frequency represents a key determinant of phenotypic severity, this work outlines an evolutionary theoretic framework for predicting the distribution of phenotypic consequences among individuals carrying a selfish mitochondrial genome.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Claudia V Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James P Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA.
| |
Collapse
|
11
|
Feng B, Wang Z, Zhao X, Niu H, Wang Y, Wang K, Jiang K, Zhang H. Self-Internal Standard Fluorescence for Ultrasensitive Detecting of mtDNA to Evaluate Matrilineal Genetic Defect Levels. Anal Chem 2024; 96:14125-14132. [PMID: 38978161 DOI: 10.1021/acs.analchem.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondrial DNA (mtDNA) is a unique genetic material characterized by maternal inheritance. It possesses a circular structure devoid of histone protection and exhibits low cellular abundance, which poses great challenges for its sensitive and selective detection at the living cell level. Herein, we have designed three bis-naphthylimide probes with varying linker lengths (NANn-OH, n = 0, 2, 6), facilitating the formation of distinct twisted or folded molecular conformations in the free state. These probes emit the red fluorescence around 627 nm with different fluorescence quantum yields (ΦNAN0-OH = 0.0016, ΦNAN2-OH = 0.0136, and ΦNAN6-OH = 0.0125). When encountering mtDNA (0.4-3.4 μg/mL), these probes undergo conformational changes depending on the length of the attached C-strand and exhibit a gradually increasing fluorescence signal around 453 nm. The fluorescence intensity increased to 13.5-fold, 1.9-fold, and 8.2-fold, respectively. Notably, the red fluorescence intensities around 627 nm remain constant throughout this process, thus serving as an inherent correction mechanism for proportional fluorescence signal enhancement to improve selectivity and sensitivity. NAN0-OH, NAN2-OH, and NAN6-OH showed good linearity for mtDNA in the range of 0.4-3.4 μg/mL with detection limits of LODNAN0-OH = 1.04 μg/mL, LODNAN2-OH = 1.10 μg/mL, and LODNAN6-OH = 1.15 μg/mL. Cellular experiments reveal that NAN6-OH effectively monitors curcumin-induced mtDNA damage in HepG-2 cells while enabling monitoring of genetic mtDNA damage. We anticipate that this tool holds significant potential for the precise evaluation of maternal genetic defects, thereby enhancing hypersensitive assessment in clinical medicine.
Collapse
Affiliation(s)
- Beidou Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- College of the Environment, Henan Normal University, Xinxiang 453007, China
| | - Zhe Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaoli Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Xinxiang 453007, China
| | - Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- College of the Environment, Henan Normal University, Xinxiang 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Xinxiang 453007, China
| |
Collapse
|
12
|
Sena-Dos-Santos C, Moura DD, Epifane-de-Assunção MC, Ribeiro-Dos-Santos Â, Santos-Lobato BL. Mitochondrial DNA variants, haplogroups and risk of Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2024; 125:107044. [PMID: 38917640 DOI: 10.1016/j.parkreldis.2024.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Growing evidence has shown that mitochondrial dysfunction is part of the pathogenesis of Parkinson's disease (PD). However, the role of mitochondrial DNA (mtDNA) variants on PD onset is unclear. OBJECTIVES The present study aims to evaluate the effect of mtDNA variants and haplogroups on risk of developing PD. METHODS Systematic review and meta-analysis of studies investigating associations between PD and mtDNA variants and haplogroups. RESULTS A total of 33 studies were eligible from 957 screened studies. Among 13,640 people with PD and 22,588 control individuals, the association with PD was consistently explored in 13 mtDNA variants in 10 genes and 19 macrohaplogroups. Four mtDNA variants were associated with PD: m.4336C (odds ratio [OR] = 2.99; 95 % confidence interval [CI] = 1.79-5.02), m.7028T (OR = 0.80; 95 % CI = 0.70-0.91), m.10398G (OR = 0.92; 95 % CI = 0.85-0.98), and m.13368A (OR = 0.74; 95 % CI = 0.56-0.98). Four mtDNA macrohaplogroups were associated with PD: R (OR = 2.25; 95 % CI = 1.92-2.65), F (OR = 1.18; 95 % CI = 1.01-1.38), H (OR = 1.12; 95 % CI = 1.06-1.18), and B (OR = 0.77; 95 % CI = 0.65-0.92). CONCLUSIONS Despite most studies may be underpowered by the underrepresentation of people without dominant European- and Asian-ancestry, low use of next-generation sequencing for genotyping and small sample sizes, the identification of mtDNA variants and macrohaplogroups associated with PD strengthens the link between the disease and mitochondrial dysfunction and mtDNA genomic instability.
Collapse
Affiliation(s)
| | - Dafne Dalledone Moura
- Laboratório de Neuropatologia Experimental, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | | |
Collapse
|
13
|
Sant'Anna‐Silva ACB, Botton T, Rossi A, Dobner J, Bzioueche H, Thach N, Blot L, Pagnotta S, Kleszczynski K, Steinbrink K, Mazure NM, Rocchi S, Krutmann J, Passeron T, Tulic MK. Vitiligo auto-immune response upon oxidative stress-related mitochondrial DNA release opens up new therapeutic strategies. Clin Transl Med 2024; 14:e1810. [PMID: 39113238 PMCID: PMC11306283 DOI: 10.1002/ctm2.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Affiliation(s)
| | | | - Andrea Rossi
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | - Jochen Dobner
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | | | - Nguyen Thach
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | | | - Sophie Pagnotta
- Common Centre of Applied Microscopy (CCMA)Université Côte d'AzurNiceFrance
| | | | | | | | | | - Jean Krutmann
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
- Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Thierry Passeron
- Université Côte d'Azur, INSERM U1065, C3MNiceFrance
- Department of DermatologyUniversité Côte d'Azur, CHU NiceNiceFrance
| | | |
Collapse
|
14
|
Wang Y, Yang JS, Zhao M, Chen JQ, Xie HX, Yu HY, Liu NH, Yi ZJ, Liang HL, Xing L, Jiang HL. Mitochondrial endogenous substance transport-inspired nanomaterials for mitochondria-targeted gene delivery. Adv Drug Deliv Rev 2024; 211:115355. [PMID: 38849004 DOI: 10.1016/j.addr.2024.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Song Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Qi Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Xin Xie
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Yuan Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Na-Hui Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Juan Yi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Lin Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
15
|
Zhou G, Li T, Du J, Wu M, Lin D, Pu W, Zhang J, Gu Z. Harnessing HetHydrogel: A Universal Platform to Dropletize Single-Cell Multiomics. SMALL METHODS 2024; 8:e2301631. [PMID: 38419597 DOI: 10.1002/smtd.202301631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/12/2024] [Indexed: 03/02/2024]
Abstract
A universal platform is developed for dropletizing single cell plate-based multiomic assays, consisting of three main pillars: a miniaturized open Heterogeneous Hydrogel reactor (abbreviated HetHydrogel) for multi-step biochemistry, its tunable permeability that allows Tn5 tagmentation, and single cell droplet barcoding. Through optimizing the HetHydrogel manufacturing procedure, the chemical composition, and cell permeation conditions, simultaneous high-throughput mitochondrial DNA genotyping and chromatin profiling at the single-cell level are demonstrated using a mixed-species experiment. This platform offers a powerful way to investigate the genotype-phenotype relationships of various mtDNA mutations in biological processes. The HetHydrogel platform is believed to have the potential to democratize droplet technologies, upgrading a whole range of plate-based single cell assays to high throughput format.
Collapse
Affiliation(s)
- Guoqiang Zhou
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458, China
| | - Ting Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Jingjing Du
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458, China
| | - Mengying Wu
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458, China
| | - Deng Lin
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458, China
| | - Weilin Pu
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458, China
| | - Jingwei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
- Zhejiang Lab, Hangzhou, 310000, China
| | - Zhenglong Gu
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458, China
| |
Collapse
|
16
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
17
|
Jiang L, Ren X, Yang J, Chen H, Zhang S, Zhou X, Huang J, Jiang C, Gu Y, Tang J, Yang G, Chi H, Qin J. Mitophagy and clear cell renal cell carcinoma: insights from single-cell and spatial transcriptomics analysis. Front Immunol 2024; 15:1400431. [PMID: 38994370 PMCID: PMC11236570 DOI: 10.3389/fimmu.2024.1400431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Background Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type of kidney cancer, characterized by high heterogeneity and complexity. Recent studies have identified mitochondrial defects and autophagy as key players in the development of ccRCC. This study aims to delve into the changes in mitophagic activity within ccRCC and its impact on the tumor microenvironment, revealing its role in tumor cell metabolism, development, and survival strategies. Methods Comprehensive analysis of ccRCC tumor tissues using single cell sequencing and spatial transcriptomics to reveal the role of mitophagy in ccRCC. Mitophagy was determined to be altered among renal clear cells by gene set scoring. Key mitophagy cell populations and key prognostic genes were identified using NMF analysis and survival analysis approaches. The role of UBB in ccRCC was also demonstrated by in vitro experiments. Results Compared to normal kidney tissue, various cell types within ccRCC tumor tissues exhibited significantly increased levels of mitophagy, especially renal clear cells. Key genes associated with increased mitophagy levels, such as UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B, were identified, with their high expression closely linked to poor patient prognosis. Particularly, the ubiquitination process involving the UBB gene was found to be crucial for mitophagy and its quality control. Conclusion This study highlights the central role of mitophagy and its regulatory factors in the development of ccRCC, revealing the significance of the UBB gene and its associated ubiquitination process in disease progression.
Collapse
Affiliation(s)
- Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xing Ren
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xuancheng Zhou
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yuheng Gu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jingyi Tang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jianhua Qin
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
18
|
Khadka P, Young CKJ, Sachidanandam R, Brard L, Young MJ. Our current understanding of the biological impact of endometrial cancer mtDNA genome mutations and their potential use as a biomarker. Front Oncol 2024; 14:1394699. [PMID: 38993645 PMCID: PMC11236604 DOI: 10.3389/fonc.2024.1394699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Endometrial cancer (EC) is a devastating and common disease affecting women's health. The NCI Surveillance, Epidemiology, and End Results Program predicted that there would be >66,000 new cases in the United States and >13,000 deaths from EC in 2023, and EC is the sixth most common cancer among women worldwide. Regulation of mitochondrial metabolism plays a role in tumorigenesis. In proliferating cancer cells, mitochondria provide the necessary building blocks for biosynthesis of amino acids, lipids, nucleotides, and glucose. One mechanism causing altered mitochondrial activity is mitochondrial DNA (mtDNA) mutation. The polyploid human mtDNA genome is a circular double-stranded molecule essential to vertebrate life that harbors genes critical for oxidative phosphorylation plus mitochondrial-derived peptide genes. Cancer cells display aerobic glycolysis, known as the Warburg effect, which arises from the needs of fast-dividing cells and is characterized by increased glucose uptake and conversion of glucose to lactate. Solid tumors often contain at least one mtDNA substitution. Furthermore, it is common for cancer cells to harbor mixtures of wild-type and mutant mtDNA genotypes, known as heteroplasmy. Considering the increase in cancer cell energy demand, the presence of functionally relevant carcinogenesis-inducing or environment-adapting mtDNA mutations in cancer seems plausible. We review 279 EC tumor-specific mtDNA single nucleotide variants from 111 individuals from different studies. Many transition mutations indicative of error-prone DNA polymerase γ replication and C to U deamination events were present. We examine the spectrum of mutations and their heteroplasmy and discuss the potential biological impact of recurrent, non-synonymous, insertion, and deletion mutations. Lastly, we explore current EC treatments, exploiting cancer cell mitochondria for therapy and the prospect of using mtDNA variants as an EC biomarker.
Collapse
Affiliation(s)
- Pabitra Khadka
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Carolyn K J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | | | - Laurent Brard
- Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| | - Matthew J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| |
Collapse
|
19
|
Bury A, Pyle A, Vincent AE, Actis P, Hudson G. Nanobiopsy investigation of the subcellular mtDNA heteroplasmy in human tissues. Sci Rep 2024; 14:13789. [PMID: 38877095 PMCID: PMC11178779 DOI: 10.1038/s41598-024-64455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Alexander Bury
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, Leeds, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK.
- Bragg Centre for Materials Research, Leeds, UK.
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| |
Collapse
|
20
|
Morcillo P, Kabra K, Velasco K, Cordero H, Jennings S, Yun TD, Larrea D, Akman HO, Schon EA. Aberrant ER-mitochondria communication is a common pathomechanism in mitochondrial disease. Cell Death Dis 2024; 15:405. [PMID: 38858390 PMCID: PMC11164949 DOI: 10.1038/s41419-024-06781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Genetic mutations causing primary mitochondrial disease (i.e those compromising oxidative phosphorylation [OxPhos]) resulting in reduced bioenergetic output display great variability in their clinical features, but the reason for this is unknown. We hypothesized that disruption of the communication between endoplasmic reticulum (ER) and mitochondria at mitochondria-associated ER membranes (MAM) might play a role in this variability. To test this, we assayed MAM function and ER-mitochondrial communication in OxPhos-deficient cells, including cybrids from patients with selected pathogenic mtDNA mutations. Our results show that each of the various mutations studied indeed altered MAM functions, but notably, each disorder presented with a different MAM "signature". We also found that mitochondrial membrane potential is a key driver of ER-mitochondrial connectivity. Moreover, our findings demonstrate that disruption in ER-mitochondrial communication has consequences for cell survivability that go well beyond that of reduced ATP output. The findings of a "MAM-OxPhos" axis, the role of mitochondrial membrane potential in controlling this process, and the contribution of MAM dysfunction to cell death, reveal a new relationship between mitochondria and the rest of the cell, as well as providing new insights into the diagnosis and treatment of these devastating disorders.
Collapse
Affiliation(s)
- Patricia Morcillo
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Khushbu Kabra
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kevin Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Immunology Group, Department of Physiology, Faculty of Veterinary, University of Extremadura, Caceres, 10003, Spain
| | - Sarah Jennings
- Stony Brook University, Stony Brook, New York, NY, 11794, USA
| | - Taekyung D Yun
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Castellaneta A, Losito I, Porcelli V, Barile S, Maresca A, Del Dotto V, Losacco V, Guadalupi LS, Calvano CD, Chan DC, Carelli V, Palmieri L, Cataldi TRI. Lipidomics reveals the reshaping of the mitochondrial phospholipid profile in cells lacking OPA1 and mitofusins. J Lipid Res 2024; 65:100563. [PMID: 38763493 PMCID: PMC11225846 DOI: 10.1016/j.jlr.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Depletion or mutations of key proteins for mitochondrial fusion, like optic atrophy 1 (OPA1) and mitofusins 1 and 2 (Mfn 1 and 2), are known to significantly impact the mitochondrial ultrastructure, suggesting alterations of their membranes' lipid profiles. In order to make an insight into this issue, we used hydrophilic interaction liquid chromatography coupled with electrospray ionization-high resolution MS to investigate the mitochondrial phospholipid (PL) profile of mouse embryonic fibroblasts knocked out for OPA1 and Mfn1/2 genes. One hundred sixty-seven different sum compositions were recognized for the four major PL classes of mitochondria, namely phosphatidylcholines (PCs, 63), phosphatidylethanolamines (55), phosphatidylinositols (21), and cardiolipins (28). A slight decrease in the cardiolipin/PC ratio was found for Mfn1/2-knockout mitochondria. Principal component analysis and hierarchical cluster analysis were subsequently used to further process hydrophilic interaction liquid chromatography-ESI-MS data. A progressive decrease in the incidence of alk(en)yl/acyl species in PC and phosphatidylethanolamine classes and a general increase in the incidence of unsaturated acyl chains across all the investigated PL classes was inferred in OPA1 and Mfn1/2 knockouts compared to WT mouse embryonic fibroblasts. These findings suggest a reshaping of the PL profile consistent with the changes observed in the mitochondrial ultrastructure when fusion proteins are absent. Based on the existing knowledge on the metabolism of mitochondrial phospholipids, we propose that fusion proteins, especially Mfns, might influence the PL transfer between the mitochondria and the endoplasmic reticulum, likely in the context of mitochondria-associated membranes.
Collapse
Affiliation(s)
- Andrea Castellaneta
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Vito Porcelli
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Serena Barile
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Valentina Del Dotto
- Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Valentina Losacco
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | - Cosima Damiana Calvano
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Luigi Palmieri
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy; CNR-Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
22
|
Kremer LS, Rehling P. Coordinating mitochondrial translation with assembly of the OXPHOS complexes. Hum Mol Genet 2024; 33:R47-R52. [PMID: 38779773 PMCID: PMC11112383 DOI: 10.1093/hmg/ddae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
The mitochondrial oxidative phosphorylation (OXPHOS) system produces the majority of energy required by cells. Given the mitochondrion's endosymbiotic origin, the OXPHOS machinery is still under dual genetic control where most OXPHOS subunits are encoded by the nuclear DNA and imported into mitochondria, while a small subset is encoded on the mitochondrion's own genome, the mitochondrial DNA (mtDNA). The nuclear and mtDNA encoded subunits must be expressed and assembled in a highly orchestrated fashion to form a functional OXPHOS system and meanwhile prevent the generation of any harmful assembly intermediates. While several mechanisms have evolved in eukaryotes to achieve such a coordinated expression, this review will focus on how the translation of mtDNA encoded OXPHOS subunits is tailored to OXPHOS assembly.
Collapse
Affiliation(s)
- Laura S Kremer
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, Göttingen 37073, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Robert-Koch-Str. 40, Göttingen 37075, Germany
- Max Planck Institute for Multidisciplinary Science, Am Faßberg 11, Göttingen 37077, Germany
| |
Collapse
|
23
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
24
|
Chen X, Meng F, Chen C, Li S, Chou Z, Xu B, Mo JQ, Guo Y, Guan MX. Deafness-associated tRNA Phe mutation impaired mitochondrial and cellular integrity. J Biol Chem 2024; 300:107235. [PMID: 38552739 PMCID: PMC11046301 DOI: 10.1016/j.jbc.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Defects in mitochondrial RNA metabolism have been linked to sensorineural deafness that often occurs as a consequence of damaged or deficient inner ear hair cells. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAPhe 593T > C mutation that changed a highly conserved uracil to cytosine at position 17 of the DHU-loop. The m.593T > C mutation altered tRNAPhe structure and function, including increased melting temperature, resistance to S1 nuclease-mediated digestion, and conformational changes. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced by decreases in levels of ND1, ND5, CYTB, CO1, and CO3 harboring higher numbers of phenylalanine. These alterations resulted in aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, III, IV, and intact supercomplexes overall. Furthermore, we found that the m.593T > C mutation caused markedly diminished membrane potential, and increased the production of reactive oxygen species in the mutant cell lines carrying the m.593T > C mutation. These mitochondrial dysfunctions led to the mitochondrial dynamic imbalance via increasing fission with abnormal mitochondrial morphology. Excessive fission impaired the process of autophagy including the initiation phase, formation, and maturation of the autophagosome. In particular, the m.593T > C mutation upregulated the PARKIN-dependent mitophagy pathway. These alterations promoted an intrinsic apoptotic process for the removal of damaged cells. Our findings provide critical insights into the pathophysiology of maternally inherited deafness arising from tRNA mutation-induced defects in mitochondrial and cellular integrity.
Collapse
Affiliation(s)
- Xiaowan Chen
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Li
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Zhiqiang Chou
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, USA
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Lab of Genetics and Genomics, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Bulduk BK, Tortajada J, Valiente-Pallejà A, Callado LF, Torrell H, Vilella E, Meana JJ, Muntané G, Martorell L. High number of mitochondrial DNA alterations in postmortem brain tissue of patients with schizophrenia compared to healthy controls. Psychiatry Res 2024; 337:115928. [PMID: 38759415 DOI: 10.1016/j.psychres.2024.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Previous studies have shown mitochondrial dysfunction in schizophrenia (SZ) patients, which may be caused by mitochondrial DNA (mtDNA) alterations. However, there are few studies in SZ that have analyzed mtDNA in brain samples by next-generation sequencing (NGS). To address this gap, we used mtDNA-targeted NGS and qPCR to characterize mtDNA alterations in brain samples from patients with SZ (n = 40) and healthy controls (HC) (n = 40). 35 % of SZ patients showed mtDNA alterations, a significantly higher prevalence compared to 10 % of HC. Specifically, SZ patients had a significantly higher frequency of deletions (35 vs. 5 in HC), with a mean number of deletions of 3.8 in SZ vs. 1.0 in HC. Likely pathogenic missense variants were also significantly more frequent in patients with SZ than in HC (10 vs. three HC), encompassing 14 variants in patients and three in HC. The pathogenic tRNA variant m.3243A>G was identified in one SZ patient with a high heteroplasmy level of 32.2 %. While no significant differences in mtDNA copy number (mtDNA-CN) were observed between SZ and HC, antipsychotic users had significantly higher mtDNA-CN than non-users. These findings suggest a potential role for mtDNA alterations in the pathophysiology of SZ that require further validation and functional studies.
Collapse
Affiliation(s)
- Bengisu K Bulduk
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain
| | - Juan Tortajada
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain
| | - Alba Valiente-Pallejà
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Luís F Callado
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, and BioBizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Helena Torrell
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT Technology Centre of Catalonia, Unique Scientific and Technical Infrastructures, Reus, Catalonia, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - J Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, and BioBizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain.
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
26
|
Zou J, Zhang Y, Pan Y, Mao Z, Chen X. Advancing nanotechnology for neoantigen-based cancer theranostics. Chem Soc Rev 2024; 53:3224-3252. [PMID: 38379286 DOI: 10.1039/d3cs00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.
Collapse
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Hangzhou, Zhejiang 310009, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
27
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
28
|
Bacman SR, Barrera-Paez JD, Pinto M, Van Booven D, Stewart JB, Griswold AJ, Moraes CT. mitoTALEN reduces the mutant mtDNA load in neurons. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102132. [PMID: 38404505 PMCID: PMC10883830 DOI: 10.1016/j.omtn.2024.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Mutations within mtDNA frequently give rise to severe encephalopathies. Given that a majority of these mtDNA defects exist in a heteroplasmic state, we harnessed the precision of mitochondrial-targeted TALEN (mitoTALEN) to selectively eliminate mutant mtDNA within the CNS of a murine model harboring a heteroplasmic mutation in the mitochondrial tRNA alanine gene (m.5024C>T). This targeted approach was accomplished by the use of AAV-PHP.eB and a neuron-specific synapsin promoter for effective neuronal delivery and expression of mitoTALEN. We found that most CNS regions were effectively transduced and showed a significant reduction in mutant mtDNA. This reduction was accompanied by an increase in mitochondrial tRNA alanine levels, which are drastically reduced by the m.5024C>T mutation. These results showed that mitochondrial-targeted gene editing can be effective in reducing CNS-mutant mtDNA in vivo, paving the way for clinical trials in patients with mitochondrial encephalopathies.
Collapse
Affiliation(s)
- Sandra R. Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose Domingo Barrera-Paez
- Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James B. Stewart
- Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Xu R, Huang L, Liu J, Zhang Y, Xu Y, Li R, Su S, Xu X. Remodeling of Mitochondrial Metabolism by a Mitochondria-Targeted RNAi Nanoplatform for Effective Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305923. [PMID: 37919865 DOI: 10.1002/smll.202305923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Indexed: 11/04/2023]
Abstract
Emerging evidence has demonstrated the significant contribution of mitochondrial metabolism dysfunction to promote cancer development and progression. Aberrant expression of mitochondrial genome (mtDNA)-encoded proteins widely involves mitochondrial metabolism dysfunction, and targeted regulation of their expression can be an effective strategy for cancer therapy, which however is challenged due to the protection by the mitochondrial double membrane. Herein, a mitochondria-targeted RNAi nanoparticle (NP) platform for effective regulation of mitochondrial metabolism and breast cancer (BCa) therapy is developed. This nanoplatform is composed of a hydrophilic polyethylene glycol (PEG) shell, a hydrophobic poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) core, and charged-mediated complexes of mitochondria-targeting and membrane-penetrating peptide amphiphile (MMPA) and small interfering RNA (siRNA) embedded in the core. After tumor accumulation and internalization by tumor cells, these NPs can respond to the endosomal pH to expose the MMPA/siRNA complexes, which can specifically transport siRNA into the mitochondria to down-regulate mtDNA-encoded protein expression (e.g., ATP6 and CYB). More importantly, because ATP6 down-regulation can suppress ATP production and enhance reactive oxygen species (ROS) generation to induce mitochondrial damage and mtDNA leakage into tumor tissues, the NPs can combinatorially inhibit tumor growth via suppressing ATP production and repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like macrophages by mtDNA.
Collapse
Affiliation(s)
- Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Linzhuo Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuxuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| |
Collapse
|
30
|
Isaac RS, Tullius TW, Hansen KG, Dubocanin D, Couvillion M, Stergachis AB, Churchman LS. Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA. Nat Struct Mol Biol 2024; 31:568-577. [PMID: 38347148 PMCID: PMC11370055 DOI: 10.1038/s41594-024-01225-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2024] [Indexed: 03/03/2024]
Abstract
Cellular metabolism relies on the regulation and maintenance of mitochondrial DNA (mtDNA). Hundreds to thousands of copies of mtDNA exist in each cell, yet because mitochondria lack histones or other machinery important for nuclear genome compaction, it remains unresolved how mtDNA is packaged into individual nucleoids. In this study, we used long-read single-molecule accessibility mapping to measure the compaction of individual full-length mtDNA molecules at near single-nucleotide resolution. We found that, unlike the nuclear genome, human mtDNA largely undergoes all-or-none global compaction, with most nucleoids existing in an inaccessible, inactive state. Highly accessible mitochondrial nucleoids are co-occupied by transcription and replication components and selectively form a triple-stranded displacement loop structure. In addition, we showed that the primary nucleoid-associated protein TFAM directly modulates the fraction of inaccessible nucleoids both in vivo and in vitro, acting consistently with a nucleation-and-spreading mechanism to coat and compact mitochondrial nucleoids. Together, these findings reveal the primary architecture of mtDNA packaging and regulation in human cells.
Collapse
Affiliation(s)
- R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas W Tullius
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Katja G Hansen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mary Couvillion
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Yang T, Wan R, Tu W, Avvaru SN, Gao P. Aryl hydrocarbon receptor: Linking environment to aging process in elderly patients with asthma. Chin Med J (Engl) 2024; 137:382-393. [PMID: 38238253 PMCID: PMC10876263 DOI: 10.1097/cm9.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 02/12/2024] Open
Abstract
ABSTRACT Aging is a significant risk factor for various diseases, including asthma, and it often leads to poorer clinical outcomes, particularly in elderly individuals. It is recognized that age-related diseases are due to a time-dependent accumulation of cellular damage, resulting in a progressive decline in cellular and physiological functions and an increased susceptibility to chronic diseases. The effects of aging affect not only the elderly but also those of younger ages, posing significant challenges to global healthcare. Thus, understanding the molecular mechanisms associated with aging in different diseases is essential. One intriguing factor is the aryl hydrocarbon receptor (AhR), which serves as a cytoplasmic receptor and ligand-activated transcription factor and has been linked to the aging process. Here, we review the literature on several major hallmarks of aging, including mitochondrial dysfunction, cellular senescence, autophagy, mitophagy, epigenetic alterations, and microbiome disturbances. Moreover, we provide an overview of the impact of AhR on these hallmarks by mediating responses to environmental exposures, particularly in relation to the immune system. Furthermore, we explore how aging hallmarks affect clinical characteristics, inflammatory features, exacerbations, and the treatment of asthma. It is suggested that AhR signaling may potentially play a role in regulating asthma phenotypes in elderly populations as part of the aging process.
Collapse
Affiliation(s)
- Tianrui Yang
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Geriatric Medicine, The First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518055, China
| | - Sai Nithin Avvaru
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
32
|
Dvorak M, Dittmann IL, Pedrini-Martha V, Hamerlík L, Bitušík P, Stuchlik E, Vondrák D, Füreder L, Lackner R. Molecular and morphological characterisation of larvae of the genus Diamesa Meigen, 1835 (Diptera: Chironomidae) in Alpine streams (Ötztal Alps, Austria). PLoS One 2024; 19:e0298367. [PMID: 38358970 PMCID: PMC10868831 DOI: 10.1371/journal.pone.0298367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Diamesa species (Diptera, Chironomidae) are widely distributed in freshwater ecosystems, and their life cycles are closely linked to environmental variables such as temperature, water quality, and sediment composition. Their sensitivity to environmental changes, particularly in response to pollution and habitat alterations, makes them valuable indicators of ecosystem health. The challenges associated with the morphological identification of larvae invoke the use of DNA barcoding for species determination. The mitochondrial cytochrome oxidase subunit I (COI) gene is regularly used for species identification but faces limitations, such as similar sequences in closely related species. To overcome this, we explored the use of the internal transcribed spacers (ITS) region in addition to COI for Diamesa larvae identification. Therefore, this study employs a combination of molecular markers alongside traditional morphological identification to enhance species discrimination. In total, 129 specimens were analysed, of which 101 were sampled from a glacier-fed stream in Rotmoostal, and the remaining 28 from spring-fed streams in the neighbouring valleys of Königstal and Timmelstal. This study reveals the inadequacy of utilizing single COI or ITS genes for comprehensive species differentiation within the genus Diamesa. However, the combined application of COI and ITS markers significantly enhances species identification resolution, surpassing the limitations faced by traditional taxonomists. Notably, this is evident in cases involving morphologically indistinguishable species, such as Diamesa latitarsis and Diamesa modesta. It highlights the potential of employing a multi-marker approach for more accurate and reliable Diamesa species identification. This method can be a powerful tool for identifying Diamesa species, shedding light on their remarkable adaptations to extreme environments and the impacts of environmental changes on their populations.
Collapse
Affiliation(s)
- Martin Dvorak
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Ladislav Hamerlík
- Faculty of Natural Sciences, Matej Bel University, Banská Bystrica, Slovakia
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Bitušík
- Faculty of Natural Sciences, Matej Bel University, Banská Bystrica, Slovakia
| | - Evzen Stuchlik
- Institute of Hydrobiology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Daniel Vondrák
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Leopold Füreder
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Reinhard Lackner
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Beecher G, Gavrilova RH, Mandrekar J, Naddaf E. Mitochondrial myopathies diagnosed in adulthood: clinico-genetic spectrum and long-term outcomes. Brain Commun 2024; 6:fcae041. [PMID: 38434220 PMCID: PMC10906953 DOI: 10.1093/braincomms/fcae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondrial myopathies are frequently recognized in childhood as part of a broader multisystem disorder and often overlooked in adulthood. Herein, we describe the phenotypic and genotypic spectrum and long-term outcomes of mitochondrial myopathies diagnosed in adulthood, focusing on neuromuscular features, electrodiagnostic and myopathological findings and survival. We performed a retrospective chart review of adult patients diagnosed with mitochondrial myopathy at Mayo Clinic (2005-21). We identified 94 patients. Median time from symptom onset to diagnosis was 11 years (interquartile range 4-21 years). Median age at diagnosis was 48 years (32-63 years). Primary genetic defects were identified in mitochondrial DNA in 48 patients (10 with single large deletion, 38 with point mutations) and nuclear DNA in 29. Five patients had multiple mitochondrial DNA deletions or depletion without nuclear DNA variants. Twelve patients had histopathological features of mitochondrial myopathy without molecular diagnosis. The most common phenotypes included multisystem disorder (n = 30); mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (14); limb myopathy (13); chronic progressive external ophthalmoplegia (12); and chronic progressive external ophthalmoplegia-plus (12). Isolated skeletal muscle manifestations occurred in 27%. Sixty-nine per cent had CNS and 21% had cardiac involvement. Mutations most frequently involved MT-TL1 (27) and POLG (17); however, a wide spectrum of established and novel molecular defects, with overlapping phenotypes, was identified. Electrodiagnostic studies identified myopathy (77%), fibrillation potentials (27%) and axonal peripheral neuropathy (42%, most common with nuclear DNA variants). Among 42 muscle biopsies available, median percentage counts were highest for cytochrome C oxidase negative fibres (5.1%) then ragged blue (1.4%) and ragged red fibres (0.5%). Skeletal muscle weakness was mild and slowly progressive (decline in strength summated score of 0.01/year). Median time to gait assistance was 5.5 years from diagnosis and 17 years from symptom onset. Thirty patients died, with median survival of 33.4 years from symptom onset and 10.9 years from diagnosis. Median age at death was 55 years. Cardiac involvement was associated with increased mortality [hazard ratio 2.36 (1.05, 5.29)]. There was no difference in survival based on genotype or phenotype. Despite the wide phenotypic and genotypic spectrum, mitochondrial myopathies in adults share similar features with slowly progressive limb weakness, contrasting with common multiorgan involvement and high mortality.
Collapse
Affiliation(s)
- Grayson Beecher
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Ralitza H Gavrilova
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Mertens J, Belva F, van Montfoort APA, Regin M, Zambelli F, Seneca S, Couvreu de Deckersberg E, Bonduelle M, Tournaye H, Stouffs K, Barbé K, Smeets HJM, Van de Velde H, Sermon K, Blockeel C, Spits C. Children born after assisted reproduction more commonly carry a mitochondrial genotype associating with low birthweight. Nat Commun 2024; 15:1232. [PMID: 38336715 PMCID: PMC10858059 DOI: 10.1038/s41467-024-45446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Children conceived through assisted reproductive technologies (ART) have an elevated risk of lower birthweight, yet the underlying cause remains unclear. Our study explores mitochondrial DNA (mtDNA) variants as contributors to birthweight differences by impacting mitochondrial function during prenatal development. We deep-sequenced the mtDNA of 451 ART and spontaneously conceived (SC) individuals, 157 mother-child pairs and 113 individual oocytes from either natural menstrual cycles or after ovarian stimulation (OS) and find that ART individuals carried a different mtDNA genotype than SC individuals, with more de novo non-synonymous variants. These variants, along with rRNA variants, correlate with lower birthweight percentiles, independent of conception mode. Their higher occurrence in ART individuals stems from de novo mutagenesis associated with maternal aging and OS-induced oocyte cohort size. Future research will establish the long-term health consequences of these changes and how these findings will impact the clinical practice and patient counselling in the future.
Collapse
Affiliation(s)
- Joke Mertens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Florence Belva
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Aafke P A van Montfoort
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Sara Seneca
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Herman Tournaye
- Brussels IVF, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Research Group Biology of the Testis, Faculty of Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrien Stouffs
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Kurt Barbé
- Interfaculty Center Data Processing & Statistics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- MHeNs School Institute for Mental Health and Neuroscience, GROW Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Hilde Van de Velde
- Brussels IVF, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Research Group Reproduction and Immunology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christophe Blockeel
- Brussels IVF, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Department of Obstetrics and Gynaecology, School of Medicine, University of Zagreb, Šalata 3, Zagreb, 10000, Croatia
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
35
|
Kim LC, Lesner NP, Simon MC. Cancer Metabolism under Limiting Oxygen Conditions. Cold Spring Harb Perspect Med 2024; 14:a041542. [PMID: 37848248 PMCID: PMC10835619 DOI: 10.1101/cshperspect.a041542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Molecular oxygen (O2) is essential for cellular bioenergetics and numerous biochemical reactions necessary for life. Solid tumors outgrow the native blood supply and diffusion limits of O2, and therefore must engage hypoxia response pathways that evolved to withstand acute periods of low O2 Hypoxia activates coordinated gene expression programs, primarily through hypoxia inducible factors (HIFs), to support survival. Many of these changes involve metabolic rewiring such as increasing glycolysis to support ATP generation while suppressing mitochondrial metabolism. Since low O2 is often coupled with nutrient stress in the tumor microenvironment, other responses to hypoxia include activation of nutrient uptake pathways, metabolite scavenging, and regulation of stress and growth signaling cascades. Continued development of models that better recapitulate tumors and their microenvironments will lead to greater understanding of oxygen-dependent metabolic reprogramming and lead to more effective cancer therapies.
Collapse
Affiliation(s)
- Laura C Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Nikitchina N, Ulashchik E, Shmanai V, Heckel AM, Tarassov I, Mazunin I, Entelis N. Targeting of CRISPR-Cas12a crRNAs into human mitochondria. Biochimie 2024; 217:74-85. [PMID: 37690471 DOI: 10.1016/j.biochi.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Mitochondrial gene editing holds great promise as a therapeutic approach for mitochondrial diseases caused by mutations in the mitochondrial DNA (mtDNA). Current strategies focus on reducing mutant mtDNA heteroplasmy levels through targeted cleavage or base editing. However, the delivery of editing components into mitochondria remains a challenge. Here we investigate the import of CRISPR-Cas12a system guide RNAs (crRNAs) into human mitochondria and study the structural requirements for this process by northern blot analysis of RNA isolated from nucleases-treated mitoplasts. To investigate whether the fusion of crRNA with known RNA import determinants (MLS) improve its mitochondrial targeting, we added MLS hairpin structures at 3'-end of crRNA and demonstrated that this did not impact crRNA ability to program specific cleavage of DNA in lysate of human cells expressing AsCas12a nuclease. Surprisingly, mitochondrial localization of the fused crRNA molecules was not improved compared to non-modified version, indicating that structured scaffold domain of crRNA can probably function as MLS, assuring crRNA mitochondrial import. Then, we designed a series of crRNAs targeting different regions of mtDNA and demonstrated their ability to program specific cleavage of mtDNA fragments in cell lysate and their partial localization in mitochondrial matrix in human cells transfected with these RNA molecules. We hypothesize that mitochondrial import of crRNAs may depend on their secondary structure/sequence. We presume that imported crRNA allow reconstituting the active crRNA/Cas12a system in human mitochondria, which can contribute to the development of effective strategies for mitochondrial gene editing and potential future treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Natalia Nikitchina
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Egor Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Anne-Marie Heckel
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France.
| |
Collapse
|
37
|
Reiss AB, Gulkarov S, Jacob B, Srivastava A, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Mitochondria in Alzheimer's Disease Pathogenesis. Life (Basel) 2024; 14:196. [PMID: 38398707 PMCID: PMC10890468 DOI: 10.3390/life14020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder that primarily affects persons aged 65 years and above. It causes dementia with memory loss and deterioration in thinking and language skills. AD is characterized by specific pathology resulting from the accumulation in the brain of extracellular plaques of amyloid-β and intracellular tangles of phosphorylated tau. The importance of mitochondrial dysfunction in AD pathogenesis, while previously underrecognized, is now more and more appreciated. Mitochondria are an essential organelle involved in cellular bioenergetics and signaling pathways. Mitochondrial processes crucial for synaptic activity such as mitophagy, mitochondrial trafficking, mitochondrial fission, and mitochondrial fusion are dysregulated in the AD brain. Excess fission and fragmentation yield mitochondria with low energy production. Reduced glucose metabolism is also observed in the AD brain with a hypometabolic state, particularly in the temporo-parietal brain regions. This review addresses the multiple ways in which abnormal mitochondrial structure and function contribute to AD. Disruption of the electron transport chain and ATP production are particularly neurotoxic because brain cells have disproportionately high energy demands. In addition, oxidative stress, which is extremely damaging to nerve cells, rises dramatically with mitochondrial dyshomeostasis. Restoring mitochondrial health may be a viable approach to AD treatment.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Benna Jacob
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Ankita Srivastava
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Mark M. Stecker
- The Fresno Institute of Neuroscience, Fresno, CA 93730, USA;
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
38
|
Kanazashi Y, Maejima K, Johnson TA, Sasagawa S, Jikuya R, Hasumi H, Matsumoto N, Maekawa S, Obara W, Nakagawa H. Mitochondrial DNA Variants at Low-Level Heteroplasmy and Decreased Copy Numbers in Chronic Kidney Disease (CKD) Tissues with Kidney Cancer. Int J Mol Sci 2023; 24:17212. [PMID: 38139039 PMCID: PMC10743237 DOI: 10.3390/ijms242417212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The human mitochondrial genome (mtDNA) is a circular DNA molecule with a length of 16.6 kb, which contains a total of 37 genes. Somatic mtDNA mutations accumulate with age and environmental exposure, and some types of mtDNA variants may play a role in carcinogenesis. Recent studies observed mtDNA variants not only in kidney tumors but also in adjacent kidney tissues, and mtDNA dysfunction results in kidney injury, including chronic kidney disease (CKD). To investigate whether a relationship exists between heteroplasmic mtDNA variants and kidney function, we performed ultra-deep sequencing (30,000×) based on long-range PCR of DNA from 77 non-tumor kidney tissues of kidney cancer patients with CKD (stages G1 to G5). In total, this analysis detected 697 single-nucleotide variants (SNVs) and 504 indels as heteroplasmic (0.5% ≤ variant allele frequency (VAF) < 95%), and the total number of detected SNVs/indels did not differ between CKD stages. However, the number of deleterious low-level heteroplasmic variants (pathogenic missense, nonsense, frameshift and tRNA) significantly increased with CKD progression (p < 0.01). In addition, mtDNA copy numbers (mtDNA-CNs) decreased with CKD progression (p < 0.001). This study demonstrates that mtDNA damage, which affects mitochondrial genes, may be involved in reductions in mitochondrial mass and associated with CKD progression and kidney dysfunction.
Collapse
Affiliation(s)
- Yuki Kanazashi
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
- Department of Human Genetics, Yokohama City University, Yokohama 236-0004, Japan;
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Todd A. Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Ryosuke Jikuya
- Department of Urology, Yokohama City University, Yokohama 236-0004, Japan; (R.J.); (H.H.)
| | - Hisashi Hasumi
- Department of Urology, Yokohama City University, Yokohama 236-0004, Japan; (R.J.); (H.H.)
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University, Yokohama 236-0004, Japan;
| | - Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (S.M.); (W.O.)
| | - Wataru Obara
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (S.M.); (W.O.)
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| |
Collapse
|
39
|
Liu L, Yang J, Otani Y, Shiga T, Yamaguchi A, Oda Y, Hattori M, Goto T, Ishibashi S, Kawashima-Sonoyama Y, Ishihara T, Matsuzaki Y, Akamatsu W, Fujitani M, Taketani T. MELAS-Derived Neurons Functionally Improve by Mitochondrial Transfer from Highly Purified Mesenchymal Stem Cells (REC). Int J Mol Sci 2023; 24:17186. [PMID: 38139018 PMCID: PMC10742994 DOI: 10.3390/ijms242417186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome, caused by a single base substitution in mitochondrial DNA (m.3243A>G), is one of the most common maternally inherited mitochondrial diseases accompanied by neuronal damage due to defects in the oxidative phosphorylation system. There is no established treatment. Our previous study reported a superior restoration of mitochondrial function and bioenergetics in mitochondria-deficient cells using highly purified mesenchymal stem cells (RECs). However, whether such exogenous mitochondrial donation occurs in mitochondrial disease models and whether it plays a role in the recovery of pathological neuronal functions is unknown. Here, utilizing induced pluripotent stem cells (iPSC), we differentiated neurons with impaired mitochondrial function from patients with MELAS. MELAS neurons and RECs/mesenchymal stem cells (MSCs) were cultured under contact or non-contact conditions. Both RECs and MSCs can donate mitochondria to MELAS neurons, but RECs are more excellent than MSCs for mitochondrial transfer in both systems. In addition, REC-mediated mitochondrial transfer significantly restored mitochondrial function, including mitochondrial membrane potential, ATP/ROS production, intracellular calcium storage, and oxygen consumption rate. Moreover, mitochondrial function was maintained for at least three weeks. Thus, REC-donated exogenous mitochondria might offer a potential therapeutic strategy for treating neurological dysfunction in MELAS.
Collapse
Affiliation(s)
- Lu Liu
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Jiahao Yang
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (Y.O.); (M.F.)
| | - Takahiro Shiga
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.S.); (A.Y.); (W.A.)
| | - Akihiro Yamaguchi
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.S.); (A.Y.); (W.A.)
| | - Yasuaki Oda
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Miho Hattori
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Tsukimi Goto
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
- Clinical Laboratory Division, Shimane University Hospital, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Shuichi Ishibashi
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Yuki Kawashima-Sonoyama
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Takaya Ishihara
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (T.I.); (Y.M.)
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (T.I.); (Y.M.)
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.S.); (A.Y.); (W.A.)
| | - Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (Y.O.); (M.F.)
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| |
Collapse
|
40
|
Yılmaz A, Bahtiyar N, Doğan Mollaoğlu A, Zengin K, Taskin HE, Karimova A, Baykara O, Ulutin T, Onaran I. Mitochondrial Common Deletion Level in Adipose Tissue Is Not Associated with Obesity but Is Associated with a Structural Change in Triglycerides as Revealed by FTIR Spectroscopy. Med Princ Pract 2023; 33:74-82. [PMID: 38016428 PMCID: PMC10896617 DOI: 10.1159/000535443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE Several studies have shown that mitochondrial metabolism may be disrupted if the rate of the specific 4,977 bp deletion of mitochondrial DNA (mtDNA) reaches a threshold. This study aimed to investigate the possible associations between the mtDNA4977 deletion load and obesity-related metabolic abnormalities in the adipose tissue. METHODS The study included thirty obese individuals, who underwent bariatric surgery, and twelve control subjects. mtDNA4977 deletion, adenine nucleotides, and lactate levels, which show the bioenergetic status were evaluated in visceral adipose tissues. Fourier transform infrared (FTIR) spectroscopy was used to investigate the structural variations and composition of adipose tissues in the context of deletion load. RESULTS There were no differences between the two groups in terms of mtDNA4977 deletion, adenine nucleotides, and lactate levels. The FTIR spectra indicated a few obesity-related alterations in adipose tissues that were not related to the mtDNA deletion load. Also, statistical analysis showed a correlation between the deletion load and a band shift of 1,744 cm-1, which assigns C = O stretching of the carbonyl group of the ester group in triglycerides and other esterified fatty acids, although it is not associated with obesity. CONCLUSIONS Our data suggest that the mtDNA4977 deletion in visceral adipose tissues of obese individuals do not have a significant impact on the bioenergetic status. However, the increased accumulation of deletion may be associated with a specific change in the ester bond, indicating structural differences in the lipids. These findings shed light on our understanding of the tissue-specific distribution of mtDNA deletions and obesity-related adipose tissue pathogeneses.
Collapse
Affiliation(s)
- Ayda Yılmaz
- Department of Anesthesia, Vocational School of Health Services, Demiroglu Bilim University, Istanbul, Turkey
| | - Nurten Bahtiyar
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayça Doğan Mollaoğlu
- Department of Physiology, Faculty of Medicine, Altinbaş University, Istanbul, Turkey
| | - Kagan Zengin
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Halit Eren Taskin
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayla Karimova
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Onur Baykara
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ilhan Onaran
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
41
|
Belle K, Kreymerman A, Vadgama N, Ji MH, Randhawa S, Caicedo J, Wong M, Muscat SP, Gifford CA, Lee RT, Nasir J, Young JL, Enns G, Karakikes I, Mercola M, Wood EH. Genetic analysis and multimodal imaging identify novel mtDNA 12148T>C leading to multisystem dysfunction with tissue-specific heteroplasmy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.03.23297854. [PMID: 37961166 PMCID: PMC10635262 DOI: 10.1101/2023.11.03.23297854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patients with mitochondrial disorders present with clinically diverse symptoms, largely driven by heterogeneous mutations in mitochondrial-encoded and nuclear-encoded mitochondrial genes. These mutations ultimately lead to complex biochemical disorders with a myriad of clinical manifestations, often accumulating during childhood on into adulthood, contributing to life-altering and sometimes fatal events. It is therefore important to diagnose and characterize the associated disorders for each mitochondrial mutation as early as possible since medical management might be able to improve the quality and longevity of life in mitochondrial disease patients. Here we identify a novel mitochondrial variant in a mitochondrial transfer RNA for histidine (mt-tRNA-his) [m.12148T>C], that is associated with the development of ocular, aural, neurological, renal, and muscular dysfunctions. We provide a detailed account of a family harboring this mutation, as well as the molecular underpinnings contributing to cellular and mitochondrial dysfunction. In conclusion, this investigation provides clinical, biochemical, and morphological evidence of the pathogenicity of m.12148T>C. We highlight the importance of multiple tissue testing and in vitro disease modeling in diagnosing mitochondrial disease.
Collapse
|
42
|
Flowers S, Kothari R, Torres Cleuren YN, Alcorn MR, Ewe CK, Alok G, Fiallo SL, Joshi PM, Rothman JH. Regulation of defective mitochondrial DNA accumulation and transmission in C. elegans by the programmed cell death and aging pathways. eLife 2023; 12:e79725. [PMID: 37782016 PMCID: PMC10545429 DOI: 10.7554/elife.79725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
The heteroplasmic state of eukaryotic cells allows for cryptic accumulation of defective mitochondrial genomes (mtDNA). 'Purifying selection' mechanisms operate to remove such dysfunctional mtDNAs. We found that activators of programmed cell death (PCD), including the CED-3 and CSP-1 caspases, the BH3-only protein CED-13, and PCD corpse engulfment factors, are required in C. elegans to attenuate germline abundance of a 3.1-kb mtDNA deletion mutation, uaDf5, which is normally stably maintained in heteroplasmy with wildtype mtDNA. In contrast, removal of CED-4/Apaf1 or a mutation in the CED-4-interacting prodomain of CED-3, do not increase accumulation of the defective mtDNA, suggesting induction of a non-canonical germline PCD mechanism or non-apoptotic action of the CED-13/caspase axis. We also found that the abundance of germline mtDNAuaDf5 reproducibly increases with age of the mothers. This effect is transmitted to the offspring of mothers, with only partial intergenerational removal of the defective mtDNA. In mutants with elevated mtDNAuaDf5 levels, this removal is enhanced in older mothers, suggesting an age-dependent mechanism of mtDNA quality control. Indeed, we found that both steady-state and age-dependent accumulation rates of uaDf5 are markedly decreased in long-lived, and increased in short-lived, mutants. These findings reveal that regulators of both PCD and the aging program are required for germline mtDNA quality control and its intergenerational transmission.
Collapse
Affiliation(s)
- Sagen Flowers
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Rushali Kothari
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Yamila N Torres Cleuren
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
- Computational Biology Unit, Institute for Informatics, University of BergenBergenNorway
| | - Melissa R Alcorn
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Samantha L Fiallo
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
43
|
DeFoor N, Paul S, Li S, Basso EKG, Stevenson V, Browning JL, Prater AK, Brindley S, Tao G, Pickrell AM. Remdesivir increases mtDNA copy number causing mild alterations to oxidative phosphorylation. Sci Rep 2023; 13:15339. [PMID: 37714940 PMCID: PMC10504289 DOI: 10.1038/s41598-023-42704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
SARS-CoV-2 causes the severe respiratory disease COVID-19. Remdesivir (RDV) was the first fast-tracked FDA approved treatment drug for COVID-19. RDV acts as an antiviral ribonucleoside (adenosine) analogue that becomes active once it accumulates intracellularly. It then diffuses into the host cell and terminates viral RNA transcription. Previous studies have shown that certain nucleoside analogues unintentionally inhibit mitochondrial RNA or DNA polymerases or cause mutational changes to mitochondrial DNA (mtDNA). These past findings on the mitochondrial toxicity of ribonucleoside analogues motivated us to investigate what effects RDV may have on mitochondrial function. Using in vitro and in vivo rodent models treated with RDV, we observed increases in mtDNA copy number in Mv1Lu cells (35.26% increase ± 11.33%) and liver (100.27% increase ± 32.73%) upon treatment. However, these increases only resulted in mild changes to mitochondrial function. Surprisingly, skeletal muscle and heart were extremely resistant to RDV treatment, tissues that have preferentially been affected by other nucleoside analogues. Although our data suggest that RDV does not greatly impact mitochondrial function, these data are insightful for the treatment of RDV for individuals with mitochondrial disease.
Collapse
Affiliation(s)
- Nicole DeFoor
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Swagatika Paul
- Graduate Program in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Erwin K Gudenschwager Basso
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Valentina Stevenson
- Virginia Tech Animal Laboratory Services, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Jack L Browning
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Anna K Prater
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Samantha Brindley
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA.
| |
Collapse
|
44
|
Zeber-Lubecka N, Ciebiera M, Hennig EE. Polycystic Ovary Syndrome and Oxidative Stress-From Bench to Bedside. Int J Mol Sci 2023; 24:14126. [PMID: 37762427 PMCID: PMC10531631 DOI: 10.3390/ijms241814126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress (OS) is a condition that occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the body's ability to detoxify and neutralize them. It can play a role in a variety of reproductive system conditions, including polycystic ovary syndrome (PCOS), endometriosis, preeclampsia, and infertility. In this review, we briefly discuss the links between oxidative stress and PCOS. Mitochondrial mutations may lead to impaired oxidative phosphorylation (OXPHOS), decreased adenosine triphosphate (ATP) production, and an increased production of ROS. These functional consequences may contribute to the metabolic and hormonal dysregulation observed in PCOS. Studies have shown that OS negatively affects ovarian follicles and disrupts normal follicular development and maturation. Excessive ROS may damage oocytes and granulosa cells within the follicles, impairing their quality and compromising fertility. Impaired OXPHOS and mitochondrial dysfunction may contribute to insulin resistance (IR) by disrupting insulin signaling pathways and impairing glucose metabolism. Due to dysfunctional OXPHOS, reduced ATP production, may hinder insulin-stimulated glucose uptake, leading to IR. Hyperandrogenism promotes inflammation and IR, both of which can increase the production of ROS and lead to OS. A detrimental feedback loop ensues as IR escalates, causing elevated insulin levels that exacerbate OS. Exploring the relations between OS and PCOS is crucial to fully understand the role of OS in the pathophysiology of PCOS and to develop effective treatment strategies to improve the quality of life of women affected by this condition. The role of antioxidants as potential therapies is also discussed.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
45
|
Ibrahim AH, Rahman NNA, Saifuddeen SM. Mitochondrial Replacement Therapy: An Islamic Perspective. JOURNAL OF BIOETHICAL INQUIRY 2023; 20:485-495. [PMID: 37440155 DOI: 10.1007/s11673-023-10279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/19/2023] [Indexed: 07/14/2023]
Abstract
Mitochondrial replacement technology (MRT) is an emerging and complex bioethical issue. This treatment aims to eliminate maternal inherited mitochondrial DNA (mtDNA) disorders. For Muslims, its introduction affects every aspect of human life, especially the five essential interests of human beings-namely, religion, life, lineage, intellect, and property. Thus, this technology must be assessed using a comprehensive and holistic approach addressing these human essential interests. Consequently, this article analyses and assesses tri-parent baby technology from the perspective of Maqasidic bioethics-that is, Islamic bioethics based on the framework of Maqasid al-Shariah. Using this analysis, this article suggests that tri-parent baby technology should not be permitted for Muslims due to the existence of third-party cell gametes which lead to lineage mixing and due to the uncertain safety of the therapy itself and because the major aim of the technology is to fulfil the affected couples interest to conceive their own genetically healthy child, not to treat and cure mtDNA disorders sufferers.
Collapse
Affiliation(s)
- Abdul Halim Ibrahim
- Programme of Applied Science with Islamic Studies, Academy of Islamic Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Noor Naemah Abdul Rahman
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shaikh Mohd Saifuddeen
- Centre for Science and Environment Studies, Institute of Islamic Understanding Malaysia, 2 Langgak Tunku Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
47
|
Ijuin A, Ueno H, Hayama T, Miyai S, Miyakoshi A, Hamada H, Sueyoshi S, Tochihara S, Saito M, Hamanoue H, Takeshima T, Yumura Y, Miyagi E, Kurahashi H, Sakakibara H, Murase M. Mitochondrial DNA mutations can influence the post-implantation development of human mosaic embryos. Front Cell Dev Biol 2023; 11:1215626. [PMID: 37635871 PMCID: PMC10451077 DOI: 10.3389/fcell.2023.1215626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: Several healthy euploid births have been reported following the transfer of mosaic embryos, including both euploid and aneuploid blastomeres. This has been attributed to a reduced number of aneuploid cells, as previously reported in mice, but remains poorly explored in humans. We hypothesized that mitochondrial function, one of the most critical factors for embryonic development, can influence human post-implantation embryonic development, including a decrease of aneuploid cells in mosaic embryos. Methods: To clarify the role of mitochondrial function, we biopsied multiple parts of each human embryo and observed the remaining embryos under in vitro culture as a model of post-implantation development (n = 27 embryos). Karyotyping, whole mitochondrial DNA (mtDNA) sequencing, and mtDNA copy number assays were performed on all pre- and post-culture samples. Results: The ratio of euploid embryos was significantly enhanced during in vitro culture, whereas the ratio of mosaic embryos was significantly reduced. Furthermore, post-culture euploid and culturable embryos had significantly few mtDNA mutations, although mtDNA copy numbers did not differ. Discussion: Our results indicate that aneuploid cells decrease in human embryos post-implantation, and mtDNA mutations might induce low mitochondrial function and influence the development of post-implantation embryos with not only aneuploidy but also euploidy. Analyzing the whole mtDNA mutation number may be a novel method for selecting a better mosaic embryo for transfer.
Collapse
Affiliation(s)
- Akifumi Ijuin
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
- Department of OB and GYN, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hiroe Ueno
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Tomonari Hayama
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
- Department of GYN, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Shunsuke Miyai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Ai Miyakoshi
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Haru Hamada
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Sumiko Sueyoshi
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
- Department of OB and GYN, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shiori Tochihara
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Marina Saito
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Haruka Hamanoue
- Department of Clinical Genetics, Faculty of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Teppei Takeshima
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Yasushi Yumura
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Etsuko Miyagi
- Department of OB and GYN, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Hideya Sakakibara
- Department of GYN, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Mariko Murase
- Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
48
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
49
|
Giosa D, Lombardo D, Musolino C, Chines V, Raffa G, Casuscelli di Tocco F, D'Aliberti D, Caminiti G, Saitta C, Alibrandi A, Aiese Cigliano R, Romeo O, Navarra G, Raimondo G, Pollicino T. Mitochondrial DNA is a target of HBV integration. Commun Biol 2023; 6:684. [PMID: 37400627 DOI: 10.1038/s42003-023-05017-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Hepatitis B virus (HBV) may integrate into the genome of infected cells and contribute to hepatocarcinogenesis. However, the role of HBV integration in hepatocellular carcinoma (HCC) development remains unclear. In this study, we apply a high-throughput HBV integration sequencing approach that allows sensitive identification of HBV integration sites and enumeration of integration clones. We identify 3339 HBV integration sites in paired tumour and non-tumour tissue samples from 7 patients with HCC. We detect 2107 clonally expanded integrations (1817 in tumour and 290 in non-tumour tissues), and a significant enrichment of clonal HBV integrations in mitochondrial DNA (mtDNA) preferentially occurring in the oxidative phosphorylation genes (OXPHOS) and D-loop region. We also find that HBV RNA sequences are imported into the mitochondria of hepatoma cells with the involvement of polynucleotide phosphorylase (PNPASE), and that HBV RNA might have a role in the process of HBV integration into mtDNA. Our results suggest a potential mechanism by which HBV integration may contribute to HCC development.
Collapse
Affiliation(s)
- Domenico Giosa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Daniele Lombardo
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Cristina Musolino
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Valeria Chines
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Giuseppina Raffa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Francesca Casuscelli di Tocco
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Deborah D'Aliberti
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Giuseppe Caminiti
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Carlo Saitta
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | | | | | - Orazio Romeo
- Department of ChiBioFarAm, University of Messina, Messina, Italy
| | - Giuseppe Navarra
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Giovanni Raimondo
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy.
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy.
| |
Collapse
|
50
|
Mayeur A, Benaloun E, Benguigui J, Duperier C, Hesters L, Chatzovoulou K, Monnot S, Grynberg M, Steffann J, Frydman N, Sonigo C. Preimplantation genetic testing for mitochondrial DNA mutation: ovarian response to stimulation, outcomes and follow-up. Reprod Biomed Online 2023; 47:61-69. [PMID: 37202317 DOI: 10.1016/j.rbmo.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
RESEARCH QUESTION How do carriers of pathogenic mitochondrial DNA (mtDNA) respond to ovarian stimulation? DESIGN A single-centre, retrospective study conducted between January 2006 and July 2021 in France. Ovarian reserve markers and ovarian stimulation cycle outcomes were compared for couples undergoing preimplantation genetic testing (PGT) for maternally inherited mtDNA disease (n = 18) (mtDNA-PGT group) with a matched-control group of patients undergoing PGT for male indications (n = 96). The PGT outcomes for the mtDNA-PGT group and the follow-up of these patients in case of unsuccessful PGT was also reported. RESULTS For carriers of pathogenic mtDNA, parameters of ovarian response to FSH and ovarian stimulation cycle outcomes were not different from those of matched-control ovarian stimulation cycles. The carriers of pathogenic mtDNA needed a longer ovarian stimulation and higher dose of gonadotrophins. Three patients (16.7%) obtained a live birth after the PGT process, and eight patients (44.4%) achieved parenthood through alternative methods: oocyte donation (n = 4), natural conception with prenatal diagnosis (n = 2) and adoption (n = 2). CONCLUSION To the best of our knowledge, this is the first study of women carrying a mtDNA variant who have undergone a PGT for monogenic (single gene defects) procedure. It is one of the possible options to obtain a healthy baby without observing an impairment in ovarian response to stimulation.
Collapse
Affiliation(s)
- Anne Mayeur
- Service de Biologie de la Reproduction- CECOS, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, cedex, F-92140 Clamart, France.; Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France..
| | - Emmanuelle Benaloun
- Service de Biologie de la Reproduction- CECOS, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, cedex, F-92140 Clamart, France
| | - Jonas Benguigui
- Service de Médecine de la reproduction et Préservation de la Fertilité, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart 92140, France
| | - Constance Duperier
- Service de Médecine de la reproduction et Préservation de la Fertilité, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart 92140, France
| | - Laetitia Hesters
- Service de Biologie de la Reproduction- CECOS, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, cedex, F-92140 Clamart, France
| | | | - Sophie Monnot
- Université de Paris, Imagine INSERM UMR1163 et Service de Médecine Génomique des Maladies rares, Groupe Hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Michael Grynberg
- Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.; Service de Médecine de la reproduction et Préservation de la Fertilité, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart 92140, France
| | - Julie Steffann
- Université de Paris, Institut Imagine, INSERM UMR1163, Paris, France.; Université de Paris, Imagine INSERM UMR1163 et Service de Médecine Génomique des Maladies rares, Groupe Hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Nelly Frydman
- Service de Biologie de la Reproduction- CECOS, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, cedex, F-92140 Clamart, France.; Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Charlotte Sonigo
- Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.; Service de Médecine de la reproduction et Préservation de la Fertilité, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart 92140, France.; Inserm U1185, Faculté de médecine Paris Sud, France
| |
Collapse
|