1
|
Szabó K, Balogh F, Romhányi D, Erdei L, Toldi B, Gyulai R, Kemény L, Groma G. Epigenetic Regulatory Processes Involved in the Establishment and Maintenance of Skin Homeostasis-The Role of Microbiota. Int J Mol Sci 2025; 26:438. [PMID: 39859154 PMCID: PMC11764776 DOI: 10.3390/ijms26020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function. Furthermore, as the skin ages, alterations in epigenetic marks can lead to impaired regenerative capacity and increased susceptibility to environmental stressors. The interaction between skin microbiota and epigenetic regulation will also be explored, highlighting how microbial communities can influence skin health by modulating the host gene expression. Future research should focus on the development of targeted interventions to promote skin development, resilience, and longevity, even in an ever-changing environment. This underscores the need for integrative approaches to study these complex regulatory networks.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Dóra Romhányi
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lilla Erdei
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Blanka Toldi
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Gergely Groma
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
2
|
Vatapalli R, Rossi AP, Chan HM, Zhang J. Cancer epigenetic therapy: recent advances, challenges, and emerging opportunities. Epigenomics 2025; 17:59-74. [PMID: 39601374 DOI: 10.1080/17501911.2024.2430169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Epigenetic dysregulation is an important nexus in the development and maintenance of human cancers. This review provides an overview of how understanding epigenetic dysregulation in cancers has led to insights for novel cancer therapy development. Over the past two decades, significant strides have been made in drug discovery efforts targeting cancer epigenetic mechanisms, leading to successes in clinical development and approval of cancer epigenetic therapeutics. This article will discuss the current therapeutic rationale guiding the discovery and development of epigenetic therapeutics, key learnings from clinical experiences and new opportunities on the horizon.
Collapse
Affiliation(s)
- Rajita Vatapalli
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| | - Alex P Rossi
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
- Biology, Flare Therapeutics, Cambridge, MA, USA
| | - Ho Man Chan
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| | - Jingwen Zhang
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| |
Collapse
|
3
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2025; 32:66-77. [PMID: 37828086 PMCID: PMC11748643 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Weil PP, Pembaur A, Wirth B, Oetjen E, Büsscher H, Zirngibl K, Czarnetzki M, Braun S, Cremers JF, Gödde D, Degener S, Postberg J. Histone variant H3.5 in testicular cell differentiation and its interactions with histone chaperones. Sci Rep 2024; 14:30564. [PMID: 39702777 DOI: 10.1038/s41598-024-83206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Testicular cell differentiation is a highly regulated process, essential for male reproductive health. The histone variant H3.5 is apparently a critical player in this intricate orchestra of cell types, but its regulation and function remains poorly understood. To elucidate its role, we fractionized testicular cells using c-Kit/CD117 as a separation marker and analyzed H3.5 expression. Further, we investigated the regulation of H3.5 expression using public data repositories. We explored DNA methylation patterns in specific regions of the H3-5 gene and assessed H3-5 copy number gain in seminoma specimens. Additionally, we examined the testicular localization of H3.5 and its histone chaperone interactions to understand its regulation at the protein level. We used qRT-PCR, MeDIP, and qPCR to study H3.5 expression and DNA methylation in various cell types. H3-5 copy number gain was analyzed using qPCR. Protein interactions were investigated through fluorescence-2-hybrid assays in baby hamster kidney cells. H3.5 is primarily enriched in spermatocytes. DNA methylation of a CpG island overlapping the H3-5 promoter appeared to be involved in the tissue-specific regulation of H3.5 expression. Elevated H3.5 expression was observed in seminoma specimens, suggesting a potential link to testicular tumors. H3-5 copy number gain was associated with elevated H3.5 expression in seminoma specimens. Furthermore, we identified physical interactions between H3.5 and histone chaperones Asf1a and Asf1b, HIRA, CAF p150 and DAXX, shedding light on the protein-level regulation of H3.5. These findings provide valuable insights into the molecular mechanisms governing testicular cell differentiation and the potential role of H3.5 in testicular pathologies.
Collapse
Affiliation(s)
- Patrick Philipp Weil
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Anton Pembaur
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Beatrice Wirth
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Eda Oetjen
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Hannes Büsscher
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Klemens Zirngibl
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Malte Czarnetzki
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Stella Braun
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Jann-Frederik Cremers
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Daniel Gödde
- Chair of Pathology, Centre for Clinical and Translational Research (ZFKM), Helios University Hospital Wuppertal, Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany
| | - Stephan Degener
- Chair of Urology, Centre for Clinical and Translational Research (ZFKM), Helios University Hospital Wuppertal, Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany
| | - Jan Postberg
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany.
| |
Collapse
|
5
|
Hegazy YA, Dhahri H, El Osmani N, George S, Chandler DP, Fondufe-Mittendorf YN. Histone variants: The bricks that fit differently. J Biol Chem 2024; 301:108048. [PMID: 39638247 PMCID: PMC11742582 DOI: 10.1016/j.jbc.2024.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Histone proteins organize nuclear DNA in eukaryotic cells and play crucial roles in regulating chromatin structure and function. Histone variants are produced by distinct histone genes and are produced independently of their canonical counterparts throughout the cell cycle. Even though histone variants may differ by only one or a few amino acids relative to their canonical counterparts, these minor variations can profoundly alter chromatin structure, accessibility, dynamics, and gene expression. Histone variants often interact with dedicated chaperones and remodelers and can have unique post-translational modifications that shape unique gene expression landscapes. Histone variants also play essential roles in DNA replication, damage repair, and histone-protamine transition during spermatogenesis. Importantly, aberrant histone variant expression and DNA mutations in histone variants are linked to various human diseases, including cancer, developmental disorders, and neurodegenerative diseases. In this review, we explore how core histone variants impact nucleosome structure and DNA accessibility, the significance of variant-specific post-translational modifications, how variant-specific chaperones and remodelers contribute to a regulatory network governing chromatin behavior, and discuss current knowledge about the association of histone variants with human diseases.
Collapse
Affiliation(s)
- Youssef A Hegazy
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Hejer Dhahri
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Nour El Osmani
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Smitha George
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Darrell P Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | |
Collapse
|
6
|
Käver L, Hinney A, Rajcsanyi LS, Maier HB, Frieling H, Steiger H, Voelz C, Beyer C, Trinh S, Seitz J. Epigenetic alterations in patients with anorexia nervosa-a systematic review. Mol Psychiatry 2024; 29:3900-3914. [PMID: 38849516 PMCID: PMC11609096 DOI: 10.1038/s41380-024-02601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024]
Abstract
Anorexia nervosa (AN) is a complex metabolic and psychological disorder that is influenced by both heritable genetic components and environmental factors. Exposure to various environmental influences can lead to epigenetically induced changes in gene expression. Epigenetic research in AN is still in its infancy, and studies to date are limited in determining clear, valid links to disease onset and progression are limited. Therefore, the aim of this systematic review was to compile and critically evaluate the available results of epigenetic studies specifically in AN and to provide recommendations for future studies. In accordance with the PRISMA guidelines, a systematic literature search was performed in three different databases (PubMed, Embase, and Web of Science) through May 2023. Twenty-three original papers or conference abstracts on epigenetic studies in AN were collected. Epigenome-wide association studies (EWASs), which analyze DNA methylation across the genome in patients with AN and identify potential disease-relevant changes in promoter/regulatory regions of genes, are the most promising for future research. To date, five EWASs on AN have been published, suggesting a potential reversibility of malnutrition-induced epigenetic changes once patients recover. Hence, determining differential DNA methylation levels could serve as a biomarker for disease status or early diagnosis and might be involved in disease progression or chronification. For future research, EWASs with a larger sample size, longitudinal study design and uniform methods should be performed to contribute to the understanding of the pathophysiology of AN, the development of individual interventions and a better prognosis for affected patients.
Collapse
Affiliation(s)
- Larissa Käver
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Luisa Sophie Rajcsanyi
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Hannah Benedictine Maier
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Howard Steiger
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Clara Voelz
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Neuenhofer Weg 21, 52074, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
| |
Collapse
|
7
|
Saintilnord WN, Hegazy YA, Chesnutt K, Eckstein M, Cassidy RN, Dhahri H, Bennett RL, Melters DP, Lopes E, Fu Z, Lau K, Chandler DP, Poirier MG, Dalal Y, Licht JD, Fondufe-Mittendorf Y. Aberrant expression of histone H2B variants reshape chromatin and alter oncogenic gene expression programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624207. [PMID: 39605447 PMCID: PMC11601509 DOI: 10.1101/2024.11.18.624207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin architecture governs DNA accessibility and gene expression. Thus, any perturbations to chromatin can significantly alter gene expression programs and promote disease. Prior studies demonstrate that every amino acid in a histone is functionally significant, and that even a single amino acid substitution can drive specific cancers. We previously observed that naturally occurring H2B variants are dysregulated during the epithelial to mesenchymal transition (EMT) in bronchial epithelial cells. Naturally occurring H2B variants differ from canonical H2B by only a few amino acids, yet single amino acid changes in other histone variants (e.g., H3.3) can drive cancer. We therefore hypothesized that H2B variants might function like oncohistones, and investigated how they modify chromatin architecture, dynamics, and function. We find that H2B variants are frequently dysregulated in many cancers, and correlate with patient prognosis. Despite high sequence similarity, mutations in each H2B variant tend to occur at specific "hotspots" in cancer. Some H2B variants cause tighter DNA wrapping around nucleosomes, leading to more compact chromatin structures and reduced transcription factor accessibility to nucleosomal DNA. They also altered genome-wide accessibility to oncogenic regulatory elements and genes, with concomitant changes in oncogenic gene expression programs. Although we did not observe changes in cell proliferation or migration in vitro , our Gene Ontology (GO) analyses of ATAC-seq peaks and RNA-seq data indicated significant changes in oncogenic pathways. These findings suggest that H2B variants may influence early-stage, cancer-associated regulatory mechanisms, potentially setting the stage for oncogenesis later on. Thus, H2B variant expression could serve as an early cancer biomarker, and H2B variants might be novel therapeutic targets.
Collapse
|
8
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
9
|
Mews P, Van der Zee Y, Gurung A, Estill M, Futamura R, Kronman H, Ramakrishnan A, Ryan M, Reyes AA, Garcia BA, Browne CJ, Sidoli S, Shen L, Nestler EJ. Cell type-specific epigenetic priming of gene expression in nucleus accumbens by cocaine. SCIENCE ADVANCES 2024; 10:eado3514. [PMID: 39365860 PMCID: PMC11451531 DOI: 10.1126/sciadv.ado3514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024]
Abstract
A hallmark of addiction is the ability of drugs of abuse to trigger relapse after periods of prolonged abstinence. Here, we describe an epigenetic mechanism whereby chronic cocaine exposure causes lasting chromatin and downstream transcriptional modifications in the nucleus accumbens (NAc), a critical brain region controlling motivation. We link prolonged withdrawal from cocaine to the depletion of the histone variant H2A.Z, coupled with increased genome accessibility and latent priming of gene transcription, in D1 dopamine receptor-expressing medium spiny neurons (D1 MSNs) that relate to aberrant gene expression upon drug relapse. The histone chaperone ANP32E removes H2A.Z from chromatin, and we demonstrate that D1 MSN-selective Anp32e knockdown prevents cocaine-induced H2A.Z depletion and blocks cocaine's rewarding actions. By contrast, very different effects of cocaine exposure, withdrawal, and relapse were found for D2 MSNs. These findings establish histone variant exchange as an important mechanism and clinical target engaged by drugs of abuse to corrupt brain function and behavior.
Collapse
Affiliation(s)
- Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashik Gurung
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meagan Ryan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abner A. Reyes
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medticine, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Yan S, Yuan K, Yao X, Chen Q, Li J, Sun J. 14-3-3ε augments OGT stability by binding with S20-phosphorylated OGT. J Biol Chem 2024; 300:107774. [PMID: 39276932 PMCID: PMC11490702 DOI: 10.1016/j.jbc.2024.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
The relationship between O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and mitosis is intertwined. Besides the numerous mitotic OGT substrates that have been identified, OGT itself is also a target of the mitotic machinery. Previously, our investigations have shown that Checkpoint kinase 1 (Chk1) phosphorylates OGT at Ser-20 to increase OGT levels during cytokinesis, suggesting that OGT levels oscillate as mitosis progresses. Herein we studied its underlying mechanism. We set out from an R17C mutation of OGT, which is a uterine carcinoma mutation in The Cancer Genome Atlas. We found that R17C abolishes the S20 phosphorylation of OGT, as it lies in the Chk1 phosphorylating consensus motif. Consistent with our previous report that pSer-20 is essential for OGT level increases during cytokinesis, we further demonstrate that the R17C mutation renders OGT less stable, decreases vimentin phosphorylation levels and results in cytokinesis defects. Based on bioinformatic predictions, pSer-20 renders OGT more likely to interact with 14-3-3 proteins, the phospho-binding signal adaptor/scaffold protein family. By screening the seven isoforms of 14-3-3 family, we show that 14-3-3ε specifically associates with Ser-20-phosphorylated OGT. Moreover, we studied the R17C and S20A mutations in xenograft models and demonstrated that they both inhibit uterine carcinoma compared to wild-type OGT, probably due to less cellular reproduction. Our work is a sequel of our previous report on pS20 of OGT and is in line with the notion that OGT is intricately regulated by the mitotic network.
Collapse
Affiliation(s)
- Sheng Yan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Kemeng Yuan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Xinyi Yao
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiang Chen
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
11
|
Hu S, Liu Y, Yang Y, Xu L. Structural insights into instability of the nucleosome driven by histone variant H3T. Biochem Biophys Res Commun 2024; 727:150307. [PMID: 38917618 DOI: 10.1016/j.bbrc.2024.150307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The testis-specific histone variant H3T plays a crucial role in chromatin reorganization during spermatogenesis by destabilizing nucleosomes. However, the structure basis for the nucleosome instability driven by H3T is not fully understand. In this study, we determinate the crystal structure of H3T-H4 in complex with histone chaperone ASF1a at 2.8 Å resolution. Our findings reveal that H3T-H4 binds ASF1a similarly to the conventional H3.1-H4 complex. However, significant structural differences are observed in the H3 α1 helix, the N- and C-terminal region of α2, and N-terminal region of L2. These differences are driven by H3T-specific residues, particularly Val111. Unlike the smaller Ala111 in H3.1, we find that bulkier residue Val111 fits well within the ASF1-H3T-H4 complex, but is difficult to arrange in nucleosome structure. Given that H3.1-Ala111/H3T-Val111 is located at the DNA binding and tetramerization interface of H3-H4, it is likely that Ala111Val substitution will lead to the instability of the corresponding area in nucleosome, contributing to instability of H3T-containing nucleosome. These structural findings may elucidate the role of H3T in chromatin reorganization during spermatogenesis.
Collapse
Affiliation(s)
- Shenglin Hu
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, 230027, China
| | - Yongrui Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yang Yang
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Li Xu
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, 100089, China.
| |
Collapse
|
12
|
Kawaguchi T, Hashimoto M, Nakagawa R, Minami R, Ikawa M, Nakayama JI, Ueda J. Comprehensive posttranslational modifications in the testis-specific histone variant H3t protein validated in tagged knock-in mice. Sci Rep 2024; 14:21305. [PMID: 39266663 PMCID: PMC11393354 DOI: 10.1038/s41598-024-72362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
During the development of multicellular organisms and cell differentiation, the chromatin structure in the cell nucleus undergoes extensive changes, and the nucleosome structure is formed by a combination of various histone variants. Histone variants with diverse posttranslational modifications are known to play crucial roles in different regulatory functions. We have previously reported that H3t, a testis-specific histone variant, is essential for spermatogenesis. To elucidate the function of this chromatin molecule in vivo, we generated knock-in mice with a FLAG tag attached to the carboxyl terminus of H3t. In the present study, we evaluated the utility of the generated knock-in mice and comprehensively analyzed posttranslational modifications of canonical H3 and H3t using mass spectrometry. Herein, we found that H3t-FLAG was incorporated into spermatogonia and meiotic cells in the testes, as evidenced by immunostaining of testicular tissue. According to the mass spectrometry analysis, the overall pattern of H3t-FLAG posttranslational modification was comparable to that of the control H3, while the relative abundances of certain specific modifications differed between H3t-FLAG and the control bulk H3. The generated knock-in mice could be valuable for analyzing the function of histone variants in vivo.
Collapse
Affiliation(s)
- Takayuki Kawaguchi
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan
| | - Michihiro Hashimoto
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Reiko Nakagawa
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Ryunosuke Minami
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan.
| | - Jun Ueda
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan.
| |
Collapse
|
13
|
Trovato M, Bunina D, Yildiz U, Fernandez-Novel Marx N, Uckelmann M, Levina V, Perez Y, Janeva A, Garcia BA, Davidovich C, Zaugg JB, Noh KM. Histone H3.3 lysine 9 and 27 control repressive chromatin at cryptic enhancers and bivalent promoters. Nat Commun 2024; 15:7557. [PMID: 39214979 PMCID: PMC11364623 DOI: 10.1038/s41467-024-51785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Histone modifications are associated with distinct transcriptional states, but it is unclear whether they instruct gene expression. To investigate this, we mutate histone H3.3 K9 and K27 residues in mouse embryonic stem cells (mESCs). Here, we find that H3.3K9 is essential for controlling specific distal intergenic regions and for proper H3K27me3 deposition at promoters. The H3.3K9A mutation resulted in decreased H3K9me3 at regions encompassing endogenous retroviruses and induced a gain of H3K27ac and nascent transcription. These changes in the chromatin environment unleash cryptic enhancers, resulting in the activation of distinctive transcriptional programs and culminating in protein expression normally restricted to specialized immune cell types. The H3.3K27A mutant disrupts the deposition and spreading of the repressive H3K27me3 mark, particularly impacting bivalent genes with higher basal levels of H3.3 at promoters. Therefore, H3.3K9 and K27 crucially orchestrate repressive chromatin states at cis-regulatory elements and bivalent promoters, respectively, and instruct proper transcription in mESCs.
Collapse
Affiliation(s)
- Matteo Trovato
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Daria Bunina
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Umut Yildiz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | | | - Michael Uckelmann
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, and EMBL-Australia, Clayton, VIC, Australia
| | - Vita Levina
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, and EMBL-Australia, Clayton, VIC, Australia
| | - Yekaterina Perez
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Janeva
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, and EMBL-Australia, Clayton, VIC, Australia
| | - Judith B Zaugg
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Kyung-Min Noh
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
14
|
Guo P, Wang TJ, Wang S, Peng X, Kim DH, Liu Y. Arabidopsis Histone Variant H2A.X Functions in the DNA Damage-Coupling Abscisic Acid Signaling Pathway. Int J Mol Sci 2024; 25:8940. [PMID: 39201623 PMCID: PMC11354415 DOI: 10.3390/ijms25168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Environmental variations initiate chromatin modifications, leading to the exchange of histone subunits or the repositioning of nucleosomes. The phosphorylated histone variant H2A.X (γH2A.X) is recognized for the formation of foci that serve as established markers of DNA double-strand breaks (DSBs). Nevertheless, the precise roles of H2A.X in the cellular response to genotoxic stress and the impact of the plant hormone abscisic acid (ABA) remain incompletely understood. In this investigation, we implemented CRISPR/Cas9 technology to produce loss-of-function mutants of AtHTA3 and AtHTA5 in Arabidopsis. The phenotypes of the athta3 and athta5 single mutants were nearly identical to those of the wild-type Col-0. Nevertheless, the athta3 athta5 double mutants exhibited aberrant embryonic development, increased sensitivity to DNA damage, and higher sensitivity to ABA. The RT-qPCR analysis indicates that AtHTA3 and AtHTA5 negatively regulate the expression of AtABI3, a fundamental regulator in the ABA signaling pathway. Subsequent investigation demonstrated that AtABI3 participates in the genotoxic stress response by influencing the expression of DNA damage response genes, such as AtBRCA1, AtRAD51, and AtWEE1. Our research offers new insights into the role of H2A.X in the genotoxic and ABA responses of Arabidopsis.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Shuang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| |
Collapse
|
15
|
Layo-Carris DE, Lubin EE, Sangree AK, Clark KJ, Durham EL, Gonzalez EM, Smith S, Angireddy R, Wang XM, Weiss E, Toutain A, Mendoza-Londono R, Dupuis L, Damseh N, Velasco D, Valenzuela I, Codina-Solà M, Ziats C, Have J, Clarkson K, Steel D, Kurian M, Barwick K, Carrasco D, Dagli AI, Nowaczyk MJM, Hančárová M, Bendová Š, Prchalova D, Sedláček Z, Baxová A, Nowak CB, Douglas J, Chung WK, Longo N, Platzer K, Klöckner C, Averdunk L, Wieczorek D, Krey I, Zweier C, Reis A, Balci T, Simon M, Kroes HY, Wiesener A, Vasileiou G, Marinakis NM, Veltra D, Sofocleous C, Kosma K, Traeger Synodinos J, Voudris KA, Vuillaume ML, Gueguen P, Derive N, Colin E, Battault C, Au B, Delatycki M, Wallis M, Gallacher L, Majdoub F, Smal N, Weckhuysen S, Schoonjans AS, Kooy RF, Meuwissen M, Cocanougher BT, Taylor K, Pizoli CE, McDonald MT, James P, Roeder ER, Littlejohn R, Borja NA, Thorson W, King K, Stoeva R, Suerink M, Nibbeling E, Baskin S, L E Guyader G, Kaplan J, Muss C, Carere DA, Bhoj EJK, Bryant LM. Expanded phenotypic spectrum of neurodevelopmental and neurodegenerative disorder Bryant-Li-Bhoj syndrome with 38 additional individuals. Eur J Hum Genet 2024; 32:928-937. [PMID: 38678163 PMCID: PMC11291762 DOI: 10.1038/s41431-024-01610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.
Collapse
Affiliation(s)
- Dana E Layo-Carris
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily E Lubin
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annabel K Sangree
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly J Clark
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily L Durham
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth M Gonzalez
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarina Smith
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rajesh Angireddy
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Min Wang
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erin Weiss
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annick Toutain
- Service de Génétique, CHU de Tours, Tours, France
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Nadirah Damseh
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Danita Velasco
- Children's Nebraska, University of Nebraska Medical Center, Omaha, NE, USA
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics and Rare Disease Unit Hospital Vall d'Hebron, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Marta Codina-Solà
- Department of Clinical and Molecular Genetics and Rare Disease Unit Hospital Vall d'Hebron, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | | | - Jaclyn Have
- Shodair Children's Hospital, Helena, MT, USA
| | | | - Dora Steel
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Manju Kurian
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Katy Barwick
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Diana Carrasco
- Department of Clinical Genetics, Cook Children's Hospital, Fort Worth, TX, USA
| | - Aditi I Dagli
- Orlando Health, Arnold Palmer Hospital For Children, Orlando, FL, USA
| | - M J M Nowaczyk
- McMaster University Medical Centre, Hamilton, ON, Canada
| | - Miroslava Hančárová
- Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Šárka Bendová
- Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Darina Prchalova
- Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zdeněk Sedláček
- Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Alica Baxová
- Charles University First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Catherine Bearce Nowak
- Division of Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA, USA
| | | | - Wendy K Chung
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Luisa Averdunk
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Andre Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Tugce Balci
- University of Western Ontario, London, ON, Canada
| | - Marleen Simon
- Department of Genetics, University Medical Center, Utrecht, Netherlands
| | - Hester Y Kroes
- Department of Genetics, University Medical Center, Utrecht, Netherlands
| | - Antje Wiesener
- Department of Genetics, University Medical Center, Utrecht, Netherlands
| | - Georgia Vasileiou
- Department of Genetics, University Medical Center, Utrecht, Netherlands
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai Veltra
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos A Voudris
- Second Department of Paediatrics, University of Athens, 'P & A Kyriakou' Children's Hospital, Athens, Greece
| | - Marie-Laure Vuillaume
- Service de Génétique, CHU de Tours, Tours, France
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Paul Gueguen
- Service de Génétique, CHU de Tours, Tours, France
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Nicolas Derive
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Estelle Colin
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | | | - Billie Au
- University of Calgary, Calgary, AB, Canada
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, TAS, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Fatma Majdoub
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia
| | - Noor Smal
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- NEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - An-Sofie Schoonjans
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
- Department of Pediatrics, Duke University Hospital, Durham, NC, USA
| | - R Frank Kooy
- Center of Medical Genetics, Antwerp University Hospital/University of Antwerp, Edegem, Belgium
| | - Marije Meuwissen
- Department of Pediatrics, Duke University Hospital, Durham, NC, USA
- Center of Medical Genetics, Antwerp University Hospital/University of Antwerp, Edegem, Belgium
| | | | - Kathryn Taylor
- Division of Pediatric Neurology, Duke University Hospital, Durham, NC, USA
| | - Carolyn E Pizoli
- Division of Pediatric Neurology, Duke University Hospital, Durham, NC, USA
| | - Marie T McDonald
- Division of Medical Genetics, Duke University Hospital, Durham, NC, USA
| | - Philip James
- DMG Children's Rehabilitative Services, Phoenix, AZ, USA
| | - Elizabeth R Roeder
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
| | - Rebecca Littlejohn
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
| | - Nicholas A Borja
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Willa Thorson
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristine King
- Genetics Department, Mary Bridge Children's Hospital, Multicare Health System, Tacoma, WA, USA
| | - Radka Stoeva
- Medical genetics department, Centre Hospitalier, Le Mans, France
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Esther Nibbeling
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Stephanie Baskin
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gwenaël L E Guyader
- Service de Génétique médicale, Centre Labellisé Anomalies du Développement-Ouest Site, Poitiers, France
| | | | | | | | - Elizabeth J K Bhoj
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Laura M Bryant
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
16
|
Özdemir C, Purkey LR, Sanchez A, Miller KM. PARticular MARks: Histone ADP-ribosylation and the DNA damage response. DNA Repair (Amst) 2024; 140:103711. [PMID: 38924925 DOI: 10.1016/j.dnarep.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
Collapse
Affiliation(s)
- Cem Özdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura R Purkey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Dhahri H, Saintilnord WN, Chandler D, Fondufe-Mittendorf YN. Beyond the Usual Suspects: Examining the Role of Understudied Histone Variants in Breast Cancer. Int J Mol Sci 2024; 25:6788. [PMID: 38928493 PMCID: PMC11203562 DOI: 10.3390/ijms25126788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | - Wesley N. Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center of Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | | |
Collapse
|
18
|
Singh S, Anderson N, Chu D, Roy SW. Nematode histone H2A variant evolution reveals diverse histories of retention and loss and evidence for conserved core-like variant histone genes. PLoS One 2024; 19:e0300190. [PMID: 38814971 PMCID: PMC11139335 DOI: 10.1371/journal.pone.0300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/22/2024] [Indexed: 06/01/2024] Open
Abstract
Histone variants are paralogs that replace canonical histones in nucleosomes, often imparting novel functions. However, how histone variants arise and evolve is poorly understood. Reconstruction of histone protein evolution is challenging due to large differences in evolutionary rates across gene lineages and sites. Here we used intron position data from 108 nematode genomes in combination with amino acid sequence data to find disparate evolutionary histories of the three H2A variants found in Caenorhabditis elegans: the ancient H2A.ZHTZ-1, the sperm-specific HTAS-1, and HIS-35, which differs from the canonical S-phase H2A by a single glycine-to-alanine C-terminal change. Although the H2A.ZHTZ-1 protein sequence is highly conserved, its gene exhibits recurrent intron gain and loss. This pattern suggests that specific intron sequences or positions may not be important to H2A.Z functionality. For HTAS-1 and HIS-35, we find variant-specific intron positions that are conserved across species. Patterns of intron position conservation indicate that the sperm-specific variant HTAS-1 arose more recently in the ancestor of a subset of Caenorhabditis species, while HIS-35 arose in the ancestor of Caenorhabditis and its sister group, including the genus Diploscapter. HIS-35 exhibits gene retention in some descendent lineages but gene loss in others, suggesting that histone variant use or functionality can be highly flexible. Surprisingly, we find the single amino acid differentiating HIS-35 from core H2A is ancestral and common across canonical Caenorhabditis H2A sequences. Thus, we speculate that the role of HIS-35 lies not in encoding a functionally distinct protein, but instead in enabling H2A expression across the cell cycle or in distinct tissues. This work illustrates how genes encoding such partially-redundant functions may be advantageous yet relatively replaceable over evolutionary timescales, consistent with the patchwork pattern of retention and loss of both genes. Our study shows the utility of intron positions for reconstructing evolutionary histories of gene families, particularly those undergoing idiosyncratic sequence evolution.
Collapse
Affiliation(s)
- Swadha Singh
- Quantitative & Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Noelle Anderson
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Diana Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Scott W. Roy
- Quantitative & Systems Biology, University of California, Merced, Merced, California, United States of America
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
19
|
Jung H, Sokolova V, Lee G, Stevens VR, Tan D. Structural and Biochemical Characterization of the Nucleosome Containing Variants H3.3 and H2A.Z. EPIGENOMES 2024; 8:21. [PMID: 38920622 PMCID: PMC11203148 DOI: 10.3390/epigenomes8020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Variant H3.3, along with H2A.Z, is notably enriched at promoter regions and is commonly associated with transcriptional activation. However, the specific molecular mechanisms through which H3.3 influences chromatin dynamics at transcription start sites, and its role in gene regulation, remain elusive. Using a combination of biochemistry and cryo-electron microscopy (cryo-EM), we show that the inclusion of H3.3 alone does not induce discernible changes in nucleosome DNA dynamics. Conversely, the presence of both H3.3 and H2A.Z enhances DNA's flexibility similarly to H2A.Z alone. Interestingly, our findings suggest that the presence of H3.3 in the H2A.Z nucleosome provides slightly increased protection to DNA at internal sites within the nucleosome. These results imply that while H2A.Z at active promoters promotes the formation of more accessible nucleosomes with increased DNA accessibility to facilitate transcription, the simultaneous presence of H3.3 offers an additional mechanism to fine-tune nucleosome accessibility and the chromatin environment.
Collapse
Affiliation(s)
- Harry Jung
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, NY 11794, USA; (H.J.); (V.S.); (G.L.); (V.R.S.)
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, NY 11794, USA; (H.J.); (V.S.); (G.L.); (V.R.S.)
| | - Gahyun Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, NY 11794, USA; (H.J.); (V.S.); (G.L.); (V.R.S.)
| | - Victoria Rose Stevens
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, NY 11794, USA; (H.J.); (V.S.); (G.L.); (V.R.S.)
- Chembio Diagnostics Inc., Medford, NY 11763, USA
| | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, NY 11794, USA; (H.J.); (V.S.); (G.L.); (V.R.S.)
| |
Collapse
|
20
|
Yamamoto Y, Takahashi RU, Kinehara M, Yano K, Kuramoto T, Shimamoto A, Tahara H. Downregulation of Histone H3.3 Induces p53-Dependent Cellular Senescence in Human Diploid Fibroblasts. Genes (Basel) 2024; 15:543. [PMID: 38790171 PMCID: PMC11121134 DOI: 10.3390/genes15050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular senescence is an irreversible growth arrest that acts as a barrier to cancer initiation and progression. Histone alteration is one of the major events during replicative senescence. However, little is known about the function of H3.3 in cellular senescence. Here we found that the downregulation of H3.3 induced growth suppression with senescence-like phenotypes such as senescence-associated heterochromatin foci (SAHF) and β-galactosidase (SA-β-gal) activity. Furthermore, H3.3 depletion induced senescence-like phenotypes with the p53/p21-depedent pathway. In addition, we identified miR-22-3p, tumor suppressive miRNA, as an upstream regulator of the H3F3B (H3 histone, family 3B) gene which is the histone variant H3.3 and replaces conventional H3 in active genes. Therefore, our results reveal for the first time the molecular mechanisms for cellular senescence which are regulated by H3.3 abundance. Taken together, our studies suggest that H3.3 exerts functional roles in regulating cellular senescence and is a promising target for cancer therapy.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Ryou-u Takahashi
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Masaki Kinehara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Tatsuya Kuramoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda 756-0884, Japan;
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| |
Collapse
|
21
|
Bryant L, Sangree A, Clark K, Bhoj E. Histone 3.3-related chromatinopathy: missense variants throughout H3-3A and H3-3B cause a range of functional consequences across species. Hum Genet 2024; 143:497-510. [PMID: 36867246 DOI: 10.1007/s00439-023-02536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
There has been considerable recent interest in the role that germline variants in histone genes play in Mendelian syndromes. Specifically, missense variants in H3-3A and H3-3B, which both encode Histone 3.3, were discovered to cause a novel neurodevelopmental disorder, Bryant-Li-Bhoj syndrome. Most of the causative variants are private and scattered throughout the protein, but all seem to have either a gain-of-function or dominant negative effect on protein function. This is highly unusual and not well understood. However, there is extensive literature about the effects of Histone 3.3 mutations in model organisms. Here, we collate the previous data to provide insight into the elusive pathogenesis of missense variants in Histone 3.3.
Collapse
Affiliation(s)
- Laura Bryant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Annabel Sangree
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelly Clark
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Leszczynska KB, Freitas-Huhtamäki A, Jayaprakash C, Dzwigonska M, Vitorino FNL, Horth C, Wojnicki K, Gielniewski B, Szadkowska P, Kaza B, Nazarian J, Ciolkowski MK, Trubicka J, Grajkowska W, Garcia BA, Majewski J, Kaminska B, Mieczkowski J. H2A.Z histone variants facilitate HDACi-dependent removal of H3.3K27M mutant protein in pediatric high-grade glioma cells. Cell Rep 2024; 43:113707. [PMID: 38306270 PMCID: PMC11026119 DOI: 10.1016/j.celrep.2024.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are deadly pediatric brain tumors, non-resectable due to brainstem localization and diffusive growth. Over 80% of DIPGs harbor a mutation in histone 3 (H3.3 or H3.1) resulting in a lysine-to-methionine substitution (H3K27M). Patients with DIPG have a dismal prognosis with no effective therapy. We show that histone deacetylase (HDAC) inhibitors lead to a significant reduction in the H3.3K27M protein (up to 80%) in multiple glioma cell lines. We discover that the SB939-mediated H3.3K27M loss is partially blocked by a lysosomal inhibitor, chloroquine. The H3.3K27M loss is facilitated by co-occurrence of H2A.Z, as evidenced by the knockdown of H2A.Z isoforms. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis confirms the occupancy of H3.3K27M and H2A.Z at the same SB939-inducible genes. We discover a mechanism showing that HDAC inhibition in DIPG leads to pharmacological modulation of the oncogenic H3.3K27M protein levels. These findings show the possibility of directly targeting the H3.3K27M oncohistone.
Collapse
Affiliation(s)
- Katarzyna B Leszczynska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | - Chinchu Jayaprakash
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Dzwigonska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Francisca N L Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paulina Szadkowska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, University Children's Hospital Zürich, Zürich, Switzerland
| | | | | | | | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland; 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
23
|
Dubey SK, Dubey R, Kleinman ME. Unraveling Histone Loss in Aging and Senescence. Cells 2024; 13:320. [PMID: 38391933 PMCID: PMC10886805 DOI: 10.3390/cells13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
As the global population experiences a notable surge in aging demographics, the need to understand the intricate molecular pathways exacerbated by age-related stresses, including epigenetic dysregulation, becomes a priority. Epigenetic mechanisms play a critical role in driving age-related diseases through altered gene expression, genomic instability, and irregular chromatin remodeling. In this review, we focus on histones, a central component of the epigenome, and consolidate the key findings of histone loss and genome-wide redistribution as fundamental processes contributing to aging and senescence. The review provides insights into novel histone expression profiles, nucleosome occupancy, disruptions in higher-order chromatin architecture, and the emergence of noncanonical histone variants in the aging cellular landscape. Furthermore, we explore the current state of our understanding of the molecular mechanisms of histone deficiency in aging cells. Specific emphasis is placed on highlighting histone degradation pathways in the cell and studies that have explored potential strategies to mitigate histone loss or restore histone levels in aging cells. Finally, in addressing future perspectives, the insights gained from this review hold profound implications for advancing strategies that actively intervene in modulating histone expression profiles in the context of cellular aging and identifying potential therapeutic targets for alleviating a multitude of age-related diseases.
Collapse
Affiliation(s)
| | | | - Mark Ellsworth Kleinman
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.D.); (R.D.)
| |
Collapse
|
24
|
Schmidt A, Zhang H, Schmitt S, Rausch C, Popp O, Chen J, Cmarko D, Butter F, Dittmar G, Lermyte F, Cardoso MC. The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues. Cells 2024; 13:139. [PMID: 38247831 PMCID: PMC10814525 DOI: 10.3390/cells13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Stephanie Schmitt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gunnar Dittmar
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| |
Collapse
|
25
|
Boyle AL. Approaches to the Full and Partial Chemical Synthesis of Proteins. Methods Mol Biol 2024; 2819:573-582. [PMID: 39028524 DOI: 10.1007/978-1-0716-3930-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Histones are proteins which help to organize DNA. The way in which they function is complex and is partially controlled by post-translational modifications (PTMs). Histone proteins from numerous organisms can be recombinantly produced in bacteria, but many bacterial strains are incapable of installing the variety of PTMs that histones possess. An alternative method of producing histones, which can be used to introduce PTMs, is native chemical ligation (NCL). This chapter provides a general NCL protocol which can be used to produce synthetic, post-translationally modified, histone proteins. The focus is on the NCL procedure itself and not on producing the modified histone protein fragments as there are many different ways in which these can be synthesized, depending on the modification(s) required. The same NCL protocol is also applicable for expressed protein ligation (EPL) with only small modifications to the purification procedure potentially required.
Collapse
Affiliation(s)
- Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
26
|
Ragusa D, Vagnarelli P. Contribution of histone variants to aneuploidy: a cancer perspective. Front Genet 2023; 14:1290903. [PMID: 38075697 PMCID: PMC10702394 DOI: 10.3389/fgene.2023.1290903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 07/29/2024] Open
Abstract
Histone variants, which generally differ in few amino acid residues, can replace core histones (H1, H2A, H2B, and H3) to confer specific structural and functional features to regulate cellular functions. In addition to their role in DNA packaging, histones modulate key processes such as gene expression regulation and chromosome segregation, which are frequently dysregulated in cancer cells. During the years, histones variants have gained significant attention as gatekeepers of chromosome stability, raising interest in understanding how structural and functional alterations can contribute to tumourigenesis. Beside the well-established role of the histone H3 variant CENP-A in centromere specification and maintenance, a growing body of literature has described mutations, aberrant expression patterns and post-translational modifications of a variety of histone variants in several cancers, also coining the term "oncohistones." At the molecular level, mechanistic studies have been dissecting the biological mechanisms behind histones and missegregation events, with the potential to uncover novel clinically-relevant targets. In this review, we focus on the current understanding and highlight knowledge gaps of the contribution of histone variants to aneuploidy, and we have compiled a database (HistoPloidyDB) of histone gene alterations linked to aneuploidy in cancers of the The Cancer Genome Atlas project.
Collapse
Affiliation(s)
- Denise Ragusa
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Paola Vagnarelli
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
27
|
Delaney K, Weiss N, Almouzni G. The cell-cycle choreography of H3 variants shapes the genome. Mol Cell 2023; 83:3773-3786. [PMID: 37734377 PMCID: PMC10621666 DOI: 10.1016/j.molcel.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Histone variants provide versatility in the basic unit of chromatin, helping to define dynamic landscapes and cell fates. Maintaining genome integrity is paramount for the cell, and it is intimately linked with chromatin dynamics, assembly, and disassembly during DNA transactions such as replication, repair, recombination, and transcription. In this review, we focus on the family of H3 variants and their dynamics in space and time during the cell cycle. We review the distinct H3 variants' specific features along with their escort partners, the histone chaperones, compiled across different species to discuss their distinct importance considering evolution. We place H3 dynamics at different times during the cell cycle with the possible consequences for genome stability. Finally, we examine how their mutation and alteration impact disease. The emerging picture stresses key parameters in H3 dynamics to reflect on how when they are perturbed, they become a source of stress for genome integrity.
Collapse
Affiliation(s)
- Kamila Delaney
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Nicole Weiss
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
28
|
McNicholas M, De Cola A, Bashardanesh Z, Foss A, Lloyd CB, Hébert S, Faury D, Andrade AF, Jabado N, Kleinman CL, Pathania M. A Compendium of Syngeneic, Transplantable Pediatric High-Grade Glioma Models Reveals Subtype-Specific Therapeutic Vulnerabilities. Cancer Discov 2023; 13:1592-1615. [PMID: 37011011 PMCID: PMC10326601 DOI: 10.1158/2159-8290.cd-23-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Pediatric high-grade gliomas (pHGG) are lethal, incurable brain tumors frequently driven by clonal mutations in histone genes. They often harbor a range of additional genetic alterations that correlate with different ages, anatomic locations, and tumor subtypes. We developed models representing 16 pHGG subtypes driven by different combinations of alterations targeted to specific brain regions. Tumors developed with varying latencies and cell lines derived from these models engrafted in syngeneic, immunocompetent mice with high penetrance. Targeted drug screening revealed unexpected selective vulnerabilities-H3.3G34R/PDGFRAC235Y to FGFR inhibition, H3.3K27M/PDGFRAWT to PDGFRA inhibition, and H3.3K27M/PDGFRAWT and H3.3K27M/PPM1DΔC/PIK3CAE545K to combined inhibition of MEK and PIK3CA. Moreover, H3.3K27M tumors with PIK3CA, NF1, and FGFR1 mutations were more invasive and harbored distinct additional phenotypes, such as exophytic spread, cranial nerve invasion, and spinal dissemination. Collectively, these models reveal that different partner alterations produce distinct effects on pHGG cellular composition, latency, invasiveness, and treatment sensitivity. SIGNIFICANCE Histone-mutant pediatric gliomas are a highly heterogeneous tumor entity. Different histone mutations correlate with different ages of onset, survival outcomes, brain regions, and partner alterations. We have developed models of histone-mutant gliomas that reflect this anatomic and genetic heterogeneity and provide evidence of subtype-specific biology and therapeutic targeting. See related commentary by Lubanszky and Hawkins, p. 1516. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Michael McNicholas
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Antonella De Cola
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Zahedeh Bashardanesh
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amelia Foss
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cameron B. Lloyd
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Steven Hébert
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Damien Faury
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Claudia L. Kleinman
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Manav Pathania
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Karam G, Molaro A. Casting histone variants during mammalian reproduction. Chromosoma 2023:10.1007/s00412-023-00803-9. [PMID: 37347315 PMCID: PMC10356639 DOI: 10.1007/s00412-023-00803-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
During mammalian reproduction, germ cell chromatin packaging is key to prepare parental genomes for fertilization and to initiate embryonic development. While chromatin modifications such as DNA methylation and histone post-translational modifications are well known to carry regulatory information, histone variants have received less attention in this context. Histone variants alter the stability, structure and function of nucleosomes and, as such, contribute to chromatin organization in germ cells. Here, we review histone variants expression dynamics during the production of male and female germ cells, and what is currently known about their parent-of-origin effects during reproduction. Finally, we discuss the apparent conundrum behind these important functions and their recent evolutionary diversification.
Collapse
Affiliation(s)
- Germaine Karam
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antoine Molaro
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
30
|
Silveira PP, Pokhvisneva I, Howard DM, Meaney MJ. A sex-specific genome-wide association study of depression phenotypes in UK Biobank. Mol Psychiatry 2023; 28:2469-2479. [PMID: 36750733 PMCID: PMC10611579 DOI: 10.1038/s41380-023-01960-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023]
Abstract
There are marked sex differences in the prevalence, phenotypic presentation and treatment response for major depression. While genome-wide association studies (GWAS) adjust for sex differences, to date, no studies seek to identify sex-specific markers and pathways. In this study, we performed a sex-stratified genome-wide association analysis for broad depression with the UK Biobank total participants (N = 274,141), including only non-related participants, as well as with males (N = 127,867) and females (N = 146,274) separately. Bioinformatics analyses were performed to characterize common and sex-specific markers and associated processes/pathways. We identified 11 loci passing genome-level significance (P < 5 × 10-8) in females and one in males. In both males and females, genetic correlations were significant between the broad depression GWA and other psychopathologies; however, correlations with educational attainment and metabolic features including body fat, waist circumference, waist-to-hip ratio and triglycerides were significant only in females. Gene-based analysis showed 147 genes significantly associated with broad depression in the total sample, 64 in the females and 53 in the males. Gene-based analysis revealed "Regulation of Gene Expression" as a common biological process, but suggested sex-specific molecular mechanisms. Finally, sex-specific polygenic risk scores (PRSs) for broad depression outperformed total and the opposite sex PRSs in the prediction of broad major depressive disorder. These findings provide evidence for sex-dependent genetic pathways for clinical depression as well as for health conditions comorbid with depression.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Department of Psychiatry, Faculty of Medicine & Douglas Research Centre, McGill University, Montreal, QC, Canada
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Department of Psychiatry, Faculty of Medicine & Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Department of Psychiatry, Faculty of Medicine & Douglas Research Centre, McGill University, Montreal, QC, Canada.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Brain-Body Initiative, Institute for Cell & Molecular Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
31
|
Nikolic A, Maule F, Bobyn A, Ellestad K, Paik S, Marhon SA, Mehdipour P, Lun X, Chen HM, Mallard C, Hay AJ, Johnston MJ, Gafuik CJ, Zemp FJ, Shen Y, Ninkovic N, Osz K, Labit E, Berger ND, Brownsey DK, Kelly JJ, Biernaskie J, Dirks PB, Derksen DJ, Jones SJM, Senger DL, Chan JA, Mahoney DJ, De Carvalho DD, Gallo M. macroH2A2 antagonizes epigenetic programs of stemness in glioblastoma. Nat Commun 2023; 14:3062. [PMID: 37244935 PMCID: PMC10224928 DOI: 10.1038/s41467-023-38919-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.
Collapse
Affiliation(s)
- Ana Nikolic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francesca Maule
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna Bobyn
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Katrina Ellestad
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Seungil Paik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Xueqing Lun
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Claire Mallard
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander J Hay
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael J Johnston
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher J Gafuik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Franz J Zemp
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Nicoletta Ninkovic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katalin Osz
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Compararive Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N Daniel Berger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Duncan K Brownsey
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - John J Kelly
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Compararive Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter B Dirks
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Darren J Derksen
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Donna L Senger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Science, University of Toronto, Toronto, ON, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
32
|
Chandrasekhara C, Ranjan R, Urban JA, Davis BEM, Ku WL, Snedeker J, Zhao K, Chen X. A single N-terminal amino acid determines the distinct roles of histones H3 and H3.3 in the Drosophila male germline stem cell lineage. PLoS Biol 2023; 21:e3002098. [PMID: 37126497 PMCID: PMC10174566 DOI: 10.1371/journal.pbio.3002098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/11/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Adult stem cells undergo asymmetric cell divisions to produce 2 daughter cells with distinct cell fates: one capable of self-renewal and the other committed for differentiation. Misregulation of this delicate balance can lead to cancer and tissue degeneration. During asymmetric division of Drosophila male germline stem cells (GSCs), preexisting (old) and newly synthesized histone H3 are differentially segregated, whereas old and new histone variant H3.3 are more equally inherited. However, what underlies these distinct inheritance patterns remains unknown. Here, we report that the N-terminal tails of H3 and H3.3 are critical for their inheritance patterns, as well as GSC maintenance and proper differentiation. H3 and H3.3 differ at the 31st position in their N-termini with Alanine for H3 and Serine for H3.3. By swapping these 2 amino acids, we generated 2 mutant histones (i.e., H3A31S and H3.3S31A). Upon expressing them in the early-stage germline, we identified opposing phenotypes: overpopulation of early-stage germ cells in the H3A31S-expressing testes and significant germ cell loss in testes expressing the H3.3S31A. Asymmetric H3 inheritance is disrupted in the H3A31S-expressing GSCs, due to misincorporation of old histones between sister chromatids during DNA replication. Furthermore, H3.3S31A mutation accelerates old histone turnover in the GSCs. Finally, using a modified Chromatin Immunocleavage assay on early-stage germ cells, we found that H3A31S has enhanced occupancy at promoters and transcription starting sites compared with H3, while H3.3S31A is more enriched at transcriptionally silent intergenic regions compared to H3.3. Overall, these results suggest that the 31st amino acids for both H3 and H3.3 are critical for their proper genomic occupancy and function. Together, our findings indicate a critical role for the different amino acid composition of the N-terminal tails between H3 and H3.3 in an endogenous stem cell lineage and provide insights into the importance of proper histone inheritance in specifying cell fates and regulating cellular differentiation.
Collapse
Affiliation(s)
- Chinmayi Chandrasekhara
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jennifer A. Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Wai Lim Ku
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
33
|
Finkin-Groner E, Al-Kachak A, Agustinus A, Bastle R, Lepack A, Lyu Y, Maze I, David Y. Flexible and site-specific manipulation of histones in live animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533378. [PMID: 36993231 PMCID: PMC10055299 DOI: 10.1101/2023.03.19.533378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Recent advances in protein engineering have provided a wealth of methods that allow for the site-specific manipulation of proteins in vitro and in cells. However, the efforts to expand these toolkits for use in live animals has been limited. Here, we report a new method for the semi-synthesis of site-specifically modified and chemically defined proteins in live animals. Importantly, we illustrate the usefulness of this methodology in the context of a challenging, chromatin bound N-terminal histone tail within rodent postmitotic neurons located in ventral striatum (Nucleus Accumbens/NAc). This approach provides the field with a precise and broadly applicable methodology for manipulating histones in vivo, thereby serving as a unique template towards examining chromatin phenomena that may mediate transcriptomic and physiological plasticity within mammals.
Collapse
Affiliation(s)
| | - Amni Al-Kachak
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Albert Agustinus
- Chemical Biology Program, Memorial Sloan Kettering, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Ryan Bastle
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Ashley Lepack
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Yang Lyu
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Ian Maze
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
- Department of Pharmacological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
34
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
35
|
A Biophysical Study of DNA Condensation Mediated by Histones and Protamines. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Rittiner J, Cumaran M, Malhotra S, Kantor B. Therapeutic modulation of gene expression in the disease state: Treatment strategies and approaches for the development of next-generation of the epigenetic drugs. Front Bioeng Biotechnol 2022; 10:1035543. [PMID: 36324900 PMCID: PMC9620476 DOI: 10.3389/fbioe.2022.1035543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic dysregulation is an important determinant of many pathological conditions and diseases. Designer molecules that can specifically target endogenous DNA sequences provide a means to therapeutically modulate gene function. The prokaryote-derived CRISPR/Cas editing systems have transformed our ability to manipulate the expression program of genes through specific DNA and RNA targeting in living cells and tissues. The simplicity, utility, and robustness of this technology have revolutionized epigenome editing for research and translational medicine. Initial success has inspired efforts to discover new systems for targeting and manipulating nucleic acids on the epigenetic level. The evolution of nuclease-inactive and RNA-targeting Cas proteins fused to a plethora of effector proteins to regulate gene expression, epigenetic modifications and chromatin interactions opened up an unprecedented level of possibilities for the development of "next-generation" gene therapy therapeutics. The rational design and construction of different types of designer molecules paired with viral-mediated gene-to-cell transfers, specifically using lentiviral vectors (LVs) and adeno-associated vectors (AAVs) are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription. Notwithstanding the speedy progress of CRISPR/Cas-based gene therapy products, multiple challenges outlined by undesirable off-target effects, oncogenicity and other virus-induced toxicities could derail the successful translation of these new modalities. Here, we review how CRISPR/Cas-based gene therapy is translated from research-grade technological system to therapeutic modality, paying particular attention to the therapeutic flow from engineering sophisticated genome and epigenome-editing transgenes to delivery vehicles throughout efficient and safe manufacturing and administration of the gene therapy regimens. In addition, the potential solutions to some of the obstacles facing successful CRISPR/Cas utility in the clinical research are discussed in this review. We believe, that circumventing these challenges will be essential for advancing CRISPR/Cas-based tools towards clinical use in gene and cell therapies.
Collapse
Affiliation(s)
- Joseph Rittiner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Mohanapriya Cumaran
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Sahil Malhotra
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| |
Collapse
|
37
|
Yu X, Zhang B, Fan C, Yan Q, Wang S, Hu H, Dong Q, Du G, Gao Y, Zeng C. Rapid, enantioselective and colorimetric detection of D-arginine. iScience 2022; 25:104964. [PMID: 36060051 PMCID: PMC9437853 DOI: 10.1016/j.isci.2022.104964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
D-amino acids are of biological significance yet are not clearly understood due to the lack of powerful analytical tools for their identification. Thus, the specific detection of a single enantiomer of a particular amino acid remains a great challenge due to their structural similarity. Here, we report a strategy to incorporate multiple reaction sites on a chiral 1,1′-bi-2,2′-naphthol-based fluorescent probe. It can respond specifically to D-arginine, while producing no response when in contact with all other amino acids. The probe can report arginine’s concentration, and enantiomeric configuration and colorimetric studies enable its qualitative determination. A new strategy to form a fluorescent probe (S)-3 with multiple reaction sites Specific response to D-arginine among 39 chiral amino acids Metal-free detection, quick responses within a minute Qualitative determination of arginine through colorimetric studies
Collapse
|
38
|
Postmitotic accumulation of histone variant H3.3 in new cortical neurons establishes neuronal chromatin, transcriptome, and identity. Proc Natl Acad Sci U S A 2022; 119:e2116956119. [PMID: 35930666 PMCID: PMC9371731 DOI: 10.1073/pnas.2116956119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Histone variants, which can be expressed outside of S-phase and deposited DNA synthesis-independently, provide long-term histone replacement in postmitotic cells, including neurons. Beyond replenishment, histone variants also play active roles in gene regulation by modulating chromatin states or enabling nucleosome turnover. Here, we uncover crucial roles for the histone H3 variant H3.3 in neuronal development. We find that newborn cortical excitatory neurons, which have only just completed replication-coupled deposition of canonical H3.1 and H3.2, substantially accumulate H3.3 immediately postmitosis. Codeletion of H3.3-encoding genes H3f3a and H3f3b from newly postmitotic neurons abrogates H3.3 accumulation, markedly alters the histone posttranslational modification landscape, and causes widespread disruptions to the establishment of the neuronal transcriptome. These changes coincide with developmental phenotypes in neuronal identities and axon projections. Thus, preexisting, replication-dependent histones are insufficient for establishing neuronal chromatin and transcriptome; de novo H3.3 is required. Stage-dependent deletion of H3f3a and H3f3b from 1) cycling neural progenitor cells, 2) neurons immediately postmitosis, or 3) several days later, reveals the first postmitotic days to be a critical window for de novo H3.3. After H3.3 accumulation within this developmental window, codeletion of H3f3a and H3f3b does not lead to immediate H3.3 loss, but causes progressive H3.3 depletion over several months without widespread transcriptional disruptions or cellular phenotypes. Our study thus uncovers key developmental roles for de novo H3.3 in establishing neuronal chromatin, transcriptome, identity, and connectivity immediately postmitosis that are distinct from its role in maintaining total histone H3 levels over the neuronal lifespan.
Collapse
|
39
|
Ji R, Fan J, Wang N, Wang J, Shi J, Li YM. Total chemical synthesis of tyrosine iodinated histone through four-segment sequential native chemical ligation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Epigenetic Studies for Evaluation of NPS Toxicity: Focus on Synthetic Cannabinoids and Cathinones. Biomedicines 2022; 10:biomedicines10061398. [PMID: 35740419 PMCID: PMC9219842 DOI: 10.3390/biomedicines10061398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
In the recent decade, numerous new psychoactive substances (NPSs) have been added to the illicit drug market. These are synthetized to mimic the effects of classic drugs of abuse (i.e., cannabis, cocaine, etc.), with the purpose of bypassing substance legislations and increasing the pharmacotoxicological effects. To date, research into the acute pharmacological effects of new NPSs is ongoing and necessary in order to provide an appropriate contribution to public health. In fact, multiple examples of NPS-related acute intoxication and mortality have been recorded in the literature. Accordingly, several in vitro and in vivo studies have investigated the pharmacotoxicological profiles of these compounds, revealing that they can cause adverse effects involving various organ systems (i.e., cardiovascular, respiratory effects) and highlighting their potential increased consumption risks. In this sense, NPSs should be regarded as a complex issue that requires continuous monitoring. Moreover, knowledge of long-term NPS effects is lacking. Because genetic and environmental variables may impact NPS responses, epigenetics may aid in understanding the processes behind the harmful events induced by long-term NPS usage. Taken together, “pharmacoepigenomics” may provide a new field of combined study on genetic differences and epigenetic changes in drug reactions that might be predictive in forensic implications.
Collapse
|
41
|
Histone variants H3.3 and H2A.Z/H3.3 facilitate excision of uracil from nucleosome core particles. DNA Repair (Amst) 2022; 116:103355. [PMID: 35717761 PMCID: PMC9262417 DOI: 10.1016/j.dnarep.2022.103355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
At the most fundamental level of chromatin organization, DNA is packaged as nucleosome core particles (NCPs) where DNA is wound around a core of histone proteins. This ubiquitous sequestration of DNA within NCPs presents a significant barrier to many biological processes, including DNA repair. We previously demonstrated that histone variants from the H2A family facilitate excision of uracil (U) lesions by DNA base excision repair (BER) glycosylases. Here, we consider how the histone variant H3.3 and double-variant H2A.Z/H3.3 modulate the BER enzymes uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1). Using an NCP model system with U:G base pairs at a wide variety of geometric positions we generate the global repair profile for both glycosylases. Enhanced excision of U by UDG and SMUG1 is observed with the H3.3 variant. We demonstrate that these H3.3-containing NCPs form two species: (1) octasomes, which contain the full complement of eight histone proteins and (2) hexasomes which are sub-nucleosomal particles that contain six histones. Both the octasome and hexasome species facilitate excision activity of UDG and SMUG1, with the largest impacts observed at sterically-occluded lesion sites and in terminal regions of DNA of the hexasome that do not closely interact with histones. For the double-variant H2A.Z/H3.3 NCPs, which exist as octasomes, the global repair profile reveals that UDG but not SMUG1 has increased U excision activity. The enhanced glycosylase activity reveals potential functions for these histone variants to facilitate BER in packaged DNA and contributes to our understanding of DNA repair in chromatin and its significance regarding mutagenesis and genomic integrity.
Collapse
|
42
|
Sigismondo G, Papageorgiou DN, Krijgsveld J. Cracking chromatin with proteomics: From chromatome to histone modifications. Proteomics 2022; 22:e2100206. [PMID: 35633285 DOI: 10.1002/pmic.202100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Chromatin is the assembly of genomic DNA and proteins packaged in the nucleus of eukaryotic cells, which together are crucial in regulating a plethora of cellular processes. Histones may be the best known class of protein constituents in chromatin, which are decorated by a range of post-translational modifications to recruit accessory proteins and protein complexes to execute specific functions, ranging from DNA compaction, repair, transcription and duplication, all in a dynamic fashion and depending on the cellular state. The key role of chromatin in cellular fitness is emphasized by the deregulation of chromatin determinants predisposing to different diseases, including cancer. For this reason, deep investigation of chromatin composition is fundamental to better understand cellular physiology. Proteomic approaches have played a crucial role to understand critical aspects of this complex interplay, benefiting from the ability to identify and quantify proteins and their modifications in an unbiased manner. This review gives an overview of the proteomic approaches that have been developed by combining mass spectrometry-based with tailored biochemical and genetic methods to examine overall protein make-up of chromatin, to characterize chromatin domains, to determine protein interactions, and to decipher the broad spectrum of histone modifications that represent the quintessence of chromatin function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gianluca Sigismondo
- German Cancer Research Center (DKFZ), Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany
| | - Dimitris N Papageorgiou
- German Cancer Research Center (DKFZ), Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
43
|
Kreienbaum C, Paasche LW, Hake SB. H2A.Z's 'social' network: functional partners of an enigmatic histone variant. Trends Biochem Sci 2022; 47:909-920. [PMID: 35606214 DOI: 10.1016/j.tibs.2022.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
The histone variant H2A.Z has been extensively studied to understand its manifold DNA-based functions. In the past years, researchers identified its specific binding partners, the 'H2A.Z interactome', that convey H2A.Z-dependent chromatin changes. Here, we summarize the latest findings regarding vertebrate H2A.Z-associated factors and focus on their roles in gene activation and repression, cell cycle regulation, (neuro)development, and tumorigenesis. Additionally, we demonstrate how protein-protein interactions and post-translational histone modifications can fine-tune the complex interplay of H2A.Z-regulated gene expression. Last, we review the most recent results on interactors of the two isoforms H2A.Z.1 and H2A.Z.2.1, which differ in only three amino acids, and focus on cancer-associated mutations of H2A and H2A.Z, which reveal fascinating insights into the functional importance of such minuscule changes.
Collapse
Affiliation(s)
| | - Lena W Paasche
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
44
|
Fan J, Shu Q, Li YM, Shi J. Efficient synthesis of terminal-diazirine-based histone peptide probes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Guberovic I, Farkas M, Corujo D, Buschbeck M. Evolution, structure and function of divergent macroH2A1 splice isoforms. Semin Cell Dev Biol 2022; 135:43-49. [PMID: 35422391 DOI: 10.1016/j.semcdb.2022.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
The replacement of replication-coupled histones with non-canonical histone variants provides chromatin with additional properties and contributes to the plasticity of the epigenome. MacroH2A histone variants are counterparts of the replication-coupled histone H2A. They are characterized by a unique tripartite structure, consisting of a histone fold, an unstructured linker, and a globular macrodomain. MacroH2A1.1 and macroH2A1.2 are the result of alternative splicing of the MACROH2A1 gene and can have opposing biological functions. Here, we discuss the structural differences between the macrodomains of the two isoforms, resulting in differential ligand binding. We further discuss how this modulates gene regulation by the two isoforms, in cases resulting in opposing role of macroH2A1.1 and macroH2A1.2 in development and differentiation. Finally, we share recent insight in the evolution of macroH2As. Taken together, in this review, we aim to discuss in unprecedented detail distinct properties and functions of the fascinating macroH2A1 splice isoforms.
Collapse
Affiliation(s)
- Iva Guberovic
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
| | - Marina Farkas
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
| | - David Corujo
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain; Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain.
| |
Collapse
|
46
|
Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab 2022; 34:634-648.e6. [PMID: 35303422 DOI: 10.1016/j.cmet.2022.02.013] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
The pro-inflammatory activation of microglia is a hallmark of Alzheimer's disease (AD), and this process involves a switch from oxidative phosphorylation (OXPHOS) toward glycolysis. Here, we show how a positive feedback loop in microglia drives AD pathogenesis, and we demonstrate that inhibiting this cycle in microglia can ameliorate Aβ burden and cognitive deficits in an AD mouse model (5XFAD). After first detecting elevated histone lactylation in brain samples from both 5XFAD mice and individuals with AD, we observed that H4K12la levels are elevated in Aβ plaque-adjacent microglia. This lactate-dependent histone modification is enriched at the promoters of glycolytic genes and activates transcription, thereby increasing glycolytic activity. Ultimately, the glycolysis/H4K12la/PKM2 positive feedback loop exacerbates microglial dysfunction in AD. Pharmacologic inhibition of PKM2 attenuated microglial activation, and microglia-specific ablation of Pkm2 improved spatial learning and memory in AD mice. Thus, our study illustrates that disruption of the positive feedback loop may be a potential therapeutic approach for the treatment of AD.
Collapse
|
47
|
Human cytomegalovirus lytic infection inhibits replication-dependent histone synthesis and requires stem loop binding protein function. Proc Natl Acad Sci U S A 2022; 119:e2122174119. [PMID: 35344424 PMCID: PMC9169081 DOI: 10.1073/pnas.2122174119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Until now, it was not known if, how, or why pathogenic human viruses might modulate the de novo production of the replication-dependent (RD) histone proteins that decorate their DNA genomes within infected cells. Our finding that human cytomegalovirus (HCMV) inhibits RD histone production affirms that a virus targets this fundamental cellular process. Furthermore, our revelation that HCMV induces, relocalizes, and then commandeers the stem loop–binding protein (SLBP) for a purpose other than RD histone synthesis to support productive replication illuminates the potential for other functions of this highly conserved protein. The critical nature of SLBP for HCMV infection and of RD histone synthesis for cellular DNA replication highlights this process as a target for future antiviral and chemotherapeutic interventions. Replication-dependent (RD) histones are deposited onto human cytomegalovirus (HCMV) genomes at the start of infection. We examined how HCMV affects the de novo production of RD histones and found that viral infection blocked the accumulation of RD histone mRNAs that normally occurs during the S phase. Furthermore, RD histone mRNAs present in HCMV-infected cells did not undergo the unique 3′ processing required for their normal nuclear export and translation. The protein that orchestrates processing in the nucleus, stem loop–binding protein (SLBP), was found predominantly in the cytoplasm, and RD histone proteins were not de novo synthesized in HCMV-infected cells. Intriguingly, however, we found that SLBP was required for the efficient synthesis and assembly of infectious progeny virions. We conclude that HCMV infection attenuates RD histone mRNA accumulation and processing and the de novo protein synthesis of the RD histones, while utilizing SLBP for an alternative purpose to support infectious virion production.
Collapse
|
48
|
Nothof SA, Magdinier F, Van-Gils J. Chromatin Structure and Dynamics: Focus on Neuronal Differentiation and Pathological Implication. Genes (Basel) 2022; 13:genes13040639. [PMID: 35456445 PMCID: PMC9029427 DOI: 10.3390/genes13040639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Chromatin structure is an essential regulator of gene expression. Its state of compaction contributes to the regulation of genetic programs, in particular during differentiation. Epigenetic processes, which include post-translational modifications of histones, DNA methylation and implication of non-coding RNA, are powerful regulators of gene expression. Neurogenesis and neuronal differentiation are spatio-temporally regulated events that allow the formation of the central nervous system components. Here, we review the chromatin structure and post-translational histone modifications associated with neuronal differentiation. Studying the impact of histone modifications on neuronal differentiation improves our understanding of the pathophysiological mechanisms of chromatinopathies and opens up new therapeutic avenues. In addition, we will discuss techniques for the analysis of histone modifications on a genome-wide scale and the pathologies associated with the dysregulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Sophie A. Nothof
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
| | - Frédérique Magdinier
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
| | - Julien Van-Gils
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
- Reference Center AD SOOR, AnDDI-RARE, Inserm U 1211, Medical Genetics Department, Bordeaux University, Center Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
49
|
Rahal F, Capdevielle C, Rousseau B, Yzotte J, Dupuy JW, Cappellen D, Chotard G, Ménard M, Charpentier J, Jecko V, Caumont C, Gimbert E, Grosset CF, Hagedorn M. An EZH2 blocker sensitizes histone mutated diffuse midline glioma to cholesterol metabolism inhibitors through an off-target effect. Neurooncol Adv 2022; 4:vdac018. [PMID: 35300150 PMCID: PMC8923007 DOI: 10.1093/noajnl/vdac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Diffuse Midline Glioma, H3K27M-mutant (DMG) is a rare, highly aggressive pediatric tumor affecting the brainstem, and is one of the deadliest cancers. Currently available treatment options such as chemotherapy and radiotherapy do only modestly prolong survival. In this pathology, H3K27 mutations deregulate Polycomb Repressive Complex 2 (PRC2), including enzymatic activity of EZH2, which is therefore under investigation as a therapeutic target. Methods We used a chemical EZH2 inhibitor, GSK126, small interfering RNAs, and a CRISPR/Cas9 knockout approaches in a series of DMG tumor cell lines to investigate metabolic treatment responses by proteomic analysis. A combination strategy was elaborated and studied in primary and established DMG cells, spheroid 3D cultures, and in vivo in a chick chorio-allantoic membrane DMG assay and an orthotopic intracranial DMG mouse model. Results GSK126 shows significant (P < .05–.001) inhibitory effects in in vitro cell proliferation assays and induces apoptosis. Chemical targeting of EZH2 induced expression of proteins implicated in cholesterol metabolism. Low-dose GSK126 treatment together with statins revealed strong growth inhibition in combinatorial treatments, but not in single treatments, both in DMG cells in vitro, in DMG spheroid cultures, and in chick and mouse in vivo models (P < .05). All statistical tests were two-sided. Conclusions Our results reveal an unexpected GSK126-inducible sensitivity to cholesterol biosynthesis inhibitors in highly aggressive pediatric glioma that warrants further evaluation as treatment strategy. This combinatorial therapy should have few side effects because of the low doses used to achieve significant anti-tumor activity.
Collapse
Affiliation(s)
- Farah Rahal
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Caroline Capdevielle
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Benoit Rousseau
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Animalerie A2, Univ. Bordeaux, Bordeaux Cedex
| | - Julien Yzotte
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Animalerie A2, Univ. Bordeaux, Bordeaux Cedex
| | | | - David Cappellen
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Guillaume Chotard
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, place Amélie Raba Léon, Bordeaux CEDEX, France
| | - Mélissa Ménard
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Justine Charpentier
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Vincent Jecko
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, place Amélie Raba Léon, Bordeaux CEDEX, France
| | - Charline Caumont
- Department of Pathology, Hôpital Pellegrin, Bordeaux University Hospital, place Amélie Raba Léon, Bordeaux CEDEX, France
| | - Edouard Gimbert
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, place Amélie Raba Léon, Bordeaux CEDEX, France
| | - Christophe F Grosset
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Martin Hagedorn
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| |
Collapse
|
50
|
Singh A, Verma S, Modak SB, Chaturvedi MM, Purohit JS. Extra-nuclear histones: origin, significance and perspectives. Mol Cell Biochem 2022; 477:507-524. [PMID: 34796445 DOI: 10.1007/s11010-021-04300-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Histones are classically known to organize the eukaryotic DNA into chromatin. They are one of the key players in regulating transcriptionally permissive and non-permissive states of the chromatin. Nevertheless, their context-dependent appearance within the cytoplasm and systemic circulation has also been observed. The past decade has also witnessed few scientific communications on the existence of vesicle-associated histones. Diverse groups have attempted to determine the significance of these extra-nuclear histones so far, with many of those studies still underway. Of note amongst these are interactions of extra-nuclear or free histones with cellular membranes, mediated by mutual cationic and anionic natures, respectively. It is here aimed to consolidate the mechanism of formation of extra-nuclear histones; implications of histone-induced membrane destabilization and explore the mechanisms of their association/release with extracellular vesicles, along with the functional aspects of these extra-nuclear histones in cell and systemic physiology.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sudhir Verma
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, 110078, India
| | | | | | - Jogeswar S Purohit
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- Molecular and Systems Biology Lab, Cluster Innovation Centre, University of Delhi, North Campus, DREAM Building, Delhi, 110007, India.
| |
Collapse
|