1
|
Hu YZ, Chen Z, Zhou MH, Zhao ZY, Wang XY, Huang J, Li XT, Zeng JN. Global and regional genetic association analysis of ulcerative colitis and type 2 diabetes mellitus and causal validation analysis of two-sample two-way Mendelian randomization. Front Immunol 2024; 15:1375915. [PMID: 39650653 PMCID: PMC11621067 DOI: 10.3389/fimmu.2024.1375915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Background Clinical co-occurrence of UC (Ulcerative Colitis) and T2DM (Type 2 Diabetes Mellitus) is observed. The aim of this study is to investigate the potential causal relationship between Ulcerative Colitis (UC) and Type 2 Diabetes Mellitus (T2DM) using LDSC and LAVA analysis, followed by genetic verification through TSMR, providing insights for clinical prevention and treatment. Methods Genetic loci closely related to T2DM were extracted as instrumental variables from the GWAS database, with UC as the outcome variable, involving European populations. The UC data included 27,432 samples and 8,050,003 SNPs, while the T2DM data comprised 406,831 samples and 11,914,699 SNPs. LDSC and LAVA were used for quantifying genetic correlation at both global (genome-wide) and local (genomic regions) levels. MR analysis was conducted using IVW, MR-Egger regression, Weighted median, and Weighted mode, assessing the causal relationship between UC and diabetes with OR values and 95% CI. Heterogeneity and pleiotropy were tested using Egger-intercept, MR-PRESSO, and sensitivity analysis through the "leave-one-out" method and Cochran Q test. Subsequently, a reverse MR operation was conducted using UC as the exposure data and T2DM as the outcome data for validation. Results Univariable and bivariable LDSC calculated the genetic correlation and potential sample overlap between T2DM and UC, resulting in rg = -0.0518, se = 0.0562, P = 0.3569 with no significant genetic association found for paired traits. LAVA analysis identified 9 regions with local genetic correlation, with 6negative and 3 positive associations, indicating a negative correlation between T2DM and UC. MR analysis, with T2DM as the exposure and UC as the outcome, involved 34 SNPs as instrumental variables. The OR values and 95% CI from IVW, MR-Egger, Weighted median, and Weighted mode were 0.917 (0.848~0.992), 0.949 (0.800~1.125), 0.881 (0.779~0.996), 0.834(0.723~0.962) respectively, with IVW P-value < 0.05, suggesting a negative causal relationship between T2DM and UC. MR-Egger regression showed an intercept of -0.004 with a standard error of 0.009, P = 0.666, and MR-PRESSO Global Test P-value > 0.05, indicating no pleiotropy and no outliers detected. Heterogeneity tests showed no heterogeneity, and the "leave-one-out" sensitivity analysis results were stable. With UC as the exposure and T2DM as the outcome, 32 SNPs were detected, but no clear causal association was found. Conclusion There is a causal relationship between T2DM and UC, where T2DM reduces the risk of UC, while no significant causal relationship was observed from UC to T2DM.
Collapse
Affiliation(s)
- Yan-zhi Hu
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhe Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-han Zhou
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhen-yu Zhao
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-yan Wang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jun Huang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xin-tian Li
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Juan-ni Zeng
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Al-Balushi RA, Haque A, Saeed M, Al-Harthy T, Al-Hinaai M, Al-Hashmi S. Unlocking the Anticancer Potential of Frankincense Essential Oils (FEOs) Through Nanotechnology: A Review. Mol Biotechnol 2024; 66:3013-3024. [PMID: 37914864 DOI: 10.1007/s12033-023-00918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a group of heterogeneous diseases that occur when cells in the body proliferate and divide uncontrollably. As the current treatment modalities have pros and cons, the discovery of new chemotherapeutic agents with the least side effects is one of the most investigated research areas. In this context, plant-based natural products are a rich source of drugs and have served humanity for ages. Frankincense essential oils (FEOs) are among the most promising plant-based oils in Gulf countries. In addition to their high cultural value, FEOs are also famous for their engaging biological activities, including anti-cancerous. However, the practical application of FEOs is often hindered/by their low water solubility, limited bioavailability, high volatility, and sensitivity toward heat, humidity, light, or oxygen. Thus, a significant demand for technological advancement would improve their ability to target particular cells and tissues. Nanotechnology emerged as an exciting approach in this context. Through suitable nano-formulation (functionalization or encapsulation into a nanostructure), issues arising due to solubility, targeting capability, and delivery can be controlled.
Collapse
Affiliation(s)
- Rayya A Al-Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman.
| | - Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Hail, Kingdom of Saudi Arabia.
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Thuraya Al-Harthy
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| | - Mohammed Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| | - Salim Al-Hashmi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| |
Collapse
|
3
|
Liu M, Zou J, Li H, Zhou Y, Lv Q, Cheng Q, Liu J, Wang L, Wang Z. Orally administrated liquid metal agents for inflammation-targeted alleviation of inflammatory bowel diseases. SCIENCE ADVANCES 2024; 10:eadn1745. [PMID: 38996026 PMCID: PMC11244529 DOI: 10.1126/sciadv.adn1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Rapid drug clearance and off-target effects of therapeutic drugs can induce low bioavailability and systemic side effects and gravely restrict the therapeutic effects of inflammatory bowel diseases (IBDs). Here, we propose an amplifying targeting strategy based on orally administered gallium (Ga)-based liquid metal (LM) nano-agents to efficiently eliminate reactive oxygen and nitrogen species (RONS) and modulate the dysregulated microbiome for remission of IBDs. Taking advantage of the favorable adhesive activity and coordination ability of polyphenol structure, epigallocatechin gallate (EGCG) is applied to encapsulate LM to construct the formulations (LM-EGCG). After adhering to the inflamed tissue, EGCG not only eliminates RONS but also captures the dissociated Ga to form EGCG-Ga complexes for enhancive accumulation. The detained composites protect the intestinal barrier and modulate gut microbiota for restoring the disordered enteral microenvironment, thereby relieving IBDs. Unexpectedly, LM-EGCG markedly decreases the Escherichia_Shigella populations while augmenting the abundance of Akkermansia and Bifidobacterium, resulting in favorable therapeutic effects against the dextran sulfate sodium-induced colitis.
Collapse
Affiliation(s)
- Miaodeng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jinhui Zou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heli Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunfan Zhou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiying Lv
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jia Liu
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Zheng Wang
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Liu Y, Diao S, Ruan B, Zhou Y, Yu M, Dong G, Xu W, Ning L, Zhou W, Jiang Y, Xie C, Fan Q, Huang J. Molecular Engineering of Activatable NIR-II Hemicyanine Reporters for Early Diagnosis and Prognostic Assessment of Inflammatory Bowel Disease. ACS NANO 2024; 18:8437-8451. [PMID: 38501308 DOI: 10.1021/acsnano.3c13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Molecular imaging in the second near-infrared window (NIR-II) provides high-fidelity visualization of biopathological events in deep tissue. However, most NIR-II probes produce "always-on" output and demonstrate poor signal specificity toward biomarkers. Herein, we report a series of hemicyanine reporters (HBCs) with tunable emission to NIR-II window (715-1188 nm) and structurally amenable to constructing activatable probes. Such manipulation of emission wavelengths relies on rational molecular engineering by integrating benz[c,d]indolium, benzo[b]xanthonium, and thiophene moieties to a conventional hemicyanine skeleton. In particular, HBC4 and HBC5 possess bright and record long emission over 1050 nm, enabling improved tissue penetration depth and superior signal to background ratio for intestinal tract mapping than NIR-I fluorophore HC1. An activatable inflammatory reporter (AIR-PE) is further constructed for pH-triggered site-specific release in colon. Due to minimized background interference, oral gavage of AIR-PE allows clear delineation of irritated intestines and assessment of therapeutic responses in a mouse model of inflammatory bowel disease (IBD) through real-time NIRF-II imaging. Benefiting from its high fecal clearance efficiency (>90%), AIR-PE can also detect IBD and evaluate the effectiveness of colitis treatments via in vitro optical fecalysis, which outperforms typical clinical assays including fecal occult blood testing and histological examination. This study thus presents NIR-II molecular scaffolds that are not only applicable to developing versatile activatable probes for early diagnosis and prognostic monitoring of deeply seated diseases but also hold promise for future clinical translations.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanchao Diao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Bankang Ruan
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Ya Zhou
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengya Yu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoqi Dong
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiping Xu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wen Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, California, United States
| | - Chen Xie
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiaguo Huang
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Hoang TT, Leung Y, Rosenfeld G, Bressler B. High-definition chromoendoscopy results in more significant dysplasia detection than white light endoscopy with random biopsies in ulcerative colitis patients: A single-center retrospective study. Medicine (Baltimore) 2024; 103:e36836. [PMID: 38306575 PMCID: PMC10843359 DOI: 10.1097/md.0000000000036836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/12/2023] [Indexed: 02/04/2024] Open
Abstract
The goal of this study was to determine whether high-definition white light endoscopy with random biopsies (HD-WLR) or chromoendoscopy (HDCE) yielded a higher dysplasia detection rate in ulcerative colitis patients. Ulcerative colitis (UC) patients have a 2.4-fold increased future risk of developing colorectal cancer compared to the general population and require careful dysplasia screening modalities. Both HD-WLR and HDCE are regularly used, and recent guidelines do not suggest a preference. UC patients who underwent dysplasia surveillance at our site between January 2019 and 2021 were retrospectively reviewed. We calculated the dysplasia detection rate of both techniques at the first CRC screening colonoscopy. Eighteen dysplastic lesions were detected in total, 3 by HD-WLR and fifteen by HDCE. Dysplasia was detected in 4% (3/75) and 20% (15/75) of UC patients by HD-WLR and HDCE respectively, with significantly fewer biopsies (4.44 ± 4.3 vs 29.1 ± 13.0) required using the former. HD-WLR detected 2 polypoid and one non-polypoid lesion, while HDCE detected eleven polypoid and 4 non-polypoid lesions. No invisible dysplasia or colorectal cancer was detected. Screening was performed at 10.8 ± 4.8 and 9.72 ± 3.05 years following UC diagnosis for HDCE and HD-WLR respectively. Median withdrawal time was 9.0 ± 2.7 minutes (HD-WLR) vs 9.6 + 3.9 minutes (HDCE). HDCE is associated with higher dysplasia detection rates compared to HD-WLR in a UC patient population. Given the former technique is less tedious and costly, our findings complement existing studies that suggest HDCE may be considered over HD-WLR for UC dysplasia surveillance.
Collapse
Affiliation(s)
- Thomas T. Hoang
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Yvette Leung
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Gregory Rosenfeld
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Brian Bressler
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Jia L, Gao F, Hu G, Fang Y, Tang L, Wen Q, Gao N, Xu H, Qiao H. A Novel Cytochrome P450 2E1 Inhibitor Q11 Is Effective on Lung Cancer via Regulation of the Inflammatory Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303975. [PMID: 37875398 PMCID: PMC10724398 DOI: 10.1002/advs.202303975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Indexed: 10/26/2023]
Abstract
Lung cancer is the leading cause of death among all cancers. A persistent chronic inflammatory microenvironment is highly correlated with lung cancer. However, there are no anti-inflammatory agents effective against lung cancer. Cytochrome P450 2E1 (CYP2E1) plays an important role in the inflammatory response. Here, it is found that CYP2E1 is significantly higher in the peritumoral tissue of non-small cell lung cancer (NSCLC) patients and lung tumor growth is significantly impeded in Cyp2e1-/- mice. The novel CYP2E1 inhibitor Q11, 1-(4-methyl-5-thialzolyl) ethenone, is effective in the treatment of lung cancer in mice, which can inhibit cancer cells by changing macrophage polarization rather than directly act on the cancer cells. It is also clarify that the benefit of Q11 may associated with the IL-6/STAT3 and MAPK/ERK pathways. The data demonstrate that CYP2E1 may be a novel inflammatory target and that Q11 is effective on lung cancer by regulation of the inflammatory microenvironment. These findings provide a molecular basis for targeting CYP2E1 and illustrate the potential druggability of the CYP2E1 inhibitor Q11.
Collapse
Affiliation(s)
- Lin Jia
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Fei Gao
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Guiming Hu
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Yan Fang
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Liming Tang
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Qiang Wen
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Na Gao
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Haiwei Xu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Hailing Qiao
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
7
|
Patra R, Dey AK, Mukherjee S. Identification of genes critical for inducing ulcerative colitis and exploring their tumorigenic potential in human colorectal carcinoma. PLoS One 2023; 18:e0289064. [PMID: 37535606 PMCID: PMC10399749 DOI: 10.1371/journal.pone.0289064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease leading to continuous mucosal inflammation in the rectum extending proximally towards the colon. Chronic and/or recurrent UC is one of the critical predisposing mediators of the oncogenesis of human colorectal carcinoma (CRC). Perturbations of the differential expression of the UC-critical genes exert an intense impact on the neoplastic transformation of the affected tissue(s). Herein, a comprehensive exploration of the UC-critical genes from the transcriptomic profiles of UC patients was conducted to study the differential expression, functional enrichment, genomic alterations, signal transduction pathways, and immune infiltration level encountered by these genes concerning the oncogenesis of CRC. The study reveals that WFDC2, TTLL12, THRA, and EPHB3 play crucial roles as UC-CRC critical genes and are positively correlated with the molecular transformation of UC to CRC. Taken together, these genes can be used as potential biomarkers and therapeutic targets for combating UC-induced human CRC.
Collapse
Affiliation(s)
- Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Amit Kumar Dey
- Biomedical Research Centre, Translational Geroproteomics Unit, National Institute on Aging, National Institute of Health (NIH), Baltimore, MD, United States of America
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
8
|
Adewole TS, Dudu BB, Oladele JO, Oyeleke OM, Kuku A. Functional Bioactivities of Soluble Seed Proteins from Two Leguminous Seeds. Prev Nutr Food Sci 2023; 28:160-169. [PMID: 37416787 PMCID: PMC10321450 DOI: 10.3746/pnf.2023.28.2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/08/2023] Open
Abstract
Storage proteins from Sphenostylis stenocarpa and Phaseolus lunatus were fractionated, and their in vitro bioactivities were investigated. Albumin, globulin, prolamin, and glutelin constituents of the respective seeds were successively fractionated using the modified Osborne method. Phenylmethylsulfonyl fluoride (1 mM) was used as a protease inhibitor. The antioxidant, anti-inflammatory, and acetylcholinesterase-inhibitory activities of the protein fractions were evaluated using different appropriate techniques. Globulin was the predominant fraction, with a yield of 43.21±0.01% and 48.19±0.03% for S. stenocarpa and P. lunatus, respectively, whereas prolamin was not detected in both seeds. The protein fraction markedly scavenges hydroxyl radicals, nitric oxide radicals, and 2,2-diphenyl-1-picryldydrazyl radicals with concomitant high free radical-reducing power. Albumin and globulin fractions elicited the highest acetylcholinesterase-inhibitory potential of 48.75% and 49.75%, respectively, indicating their great application potential in managing neurodegenerative diseases. In this study, the albumin, globulin, and glutelin fractions of these underutilized legumes showed great analeptic bioactivities, which could be utilized as health-promoting dietary supplements/products.
Collapse
Affiliation(s)
- Taiwo Scholes Adewole
- Department of Chemical Sciences, Kings University, Ode-Omu, Osun State 220104, Nigeria
| | | | | | | | - Adenike Kuku
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Osun State 220282, Nigeria
| |
Collapse
|
9
|
Liu S, Nong W, Ji L, Zhuge X, Wei H, Luo M, Zhou L, Chen S, Zhang S, Lei X, Huang H. The regulatory feedback of inflammatory signaling and telomere/telomerase complex dysfunction in chronic inflammatory diseases. Exp Gerontol 2023; 174:112132. [PMID: 36849001 DOI: 10.1016/j.exger.2023.112132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Inflammation is believed to play a role in the progression of numerous human diseases. Research has shown that inflammation and telomeres are involved in a feedback regulatory loop: inflammation increases the rate of telomere attrition, leading to telomere dysfunction, while telomere components also participate in regulating the inflammatory response. However, the specific mechanism behind this feedback loop between inflammatory signaling and telomere/telomerase complex dysfunction has yet to be fully understood. This review presents the latest findings on this topic, with a particular focus on the detailed regulation and molecular mechanisms involved in the progression of aging, various chronic inflammatory diseases, cancers, and different stressors. Several feedback loops between inflammatory signaling and telomere/telomerase complex dysfunction, including NF-κB-TERT feedback, NF-κB-RAP1 feedback, NF-κB-TERC feedback, STAT3-TERT feedback, and p38 MAPK-shelterin complex-related gene feedback, are summarized. Understanding the latest discoveries of this feedback regulatory loop can help identify novel potential drug targets for the suppression of various inflammation-associated diseases.
Collapse
Affiliation(s)
- Shun Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Weihua Nong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533300, China
| | - Lin Ji
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China
| | - Xiuhong Zhuge
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Huimei Wei
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Min Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Leguang Zhou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Shun Zhang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China.
| |
Collapse
|
10
|
Fujiwara-Tani R, Takagi T, Mori S, Kishi S, Nishiguchi Y, Sasaki T, Ikeda M, Nagai K, Bhawal UK, Ohmori H, Fujii K, Kuniyasu H. Short Telomere Lesions with Dysplastic Metaplasia Histology May Represent Precancerous Lesions of Helicobacter pylori-Positive Gastric Mucosa. Int J Mol Sci 2023; 24:3182. [PMID: 36834592 PMCID: PMC9958872 DOI: 10.3390/ijms24043182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Gastric cancers are strongly associated with Helicobacter pylori infection, with intestinal metaplasia characterizing the background mucosa in most cases. However, only a subset of intestinal metaplasia cases proceed to carcinogenesis, and the characteristics of high-risk intestinal metaplasia that link it with gastric cancer are still unclear. We examined telomere reduction in five gastrectomy specimens using fluorescence in situ hybridization, and identified areas with localized telomere loss (outside of cancerous lesions), which were designated as short telomere lesions (STLs). Histological analyses indicated that STLs were characteristic of intestinal metaplasia accompanied by nuclear enlargement but lacking structural atypia, which we termed dysplastic metaplasia (DM). A review of gastric biopsy specimens from 587 H. pylori-positive patients revealed 32 cases of DM, 13 of which were classified as high-grade based on the degree of nuclear enlargement. All high-grade DM cases exhibited a telomere volume reduced to less than 60% of that of lymphocytes, increased stemness, and telomerase reverse transcriptase (TERT) expression. Two patients (15%) exhibited low levels of p53 nuclear retention. After a 10-year follow-up, 7 (54%) of the high-grade DM cases had progressed to gastric cancer. These results suggest that DM is characterized by telomere shortening, TERT expression, and stem cell proliferation, and high-grade DM is a high-grade intestinal metaplasia that likely represents a precancerous lesion of gastric cancer. High-grade DM is expected to effectively prevent progression to gastric cancer in H. pylori-positive patients.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 20K18007 Ministry of Education, Culture, Sports, Science and Technology
- 21K10143 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Tadataka Takagi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Masayuki Ikeda
- Miyoshi Central Hospital, 10531 Higashi-Sakaya-cho, Miyoshi 728-8502, Japan
| | - Kenta Nagai
- Miyoshi Central Hospital, 10531 Higashi-Sakaya-cho, Miyoshi 728-8502, Japan
| | - Ujjal Kumar Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai 600077, India
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| |
Collapse
|
11
|
Mishra RK, Ahmad A, Kanika, Kumar A, Vyawahare A, Sakla R, Nadeem A, Siddiqui N, Raza SS, Khan R. Caffeic Acid-Conjugated Budesonide-Loaded Nanomicelle Attenuates Inflammation in Experimental Colitis. Mol Pharm 2023; 20:172-182. [PMID: 36472567 DOI: 10.1021/acs.molpharmaceut.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis is a multifactorial disease of the gastrointestinal tract which is caused due to chronic inflammation in the colon; it usually starts from the lower end of the colon and may spread to other portions of the large intestine, if left unmanaged. Budesonide (BUD) is a synthetically available second-generation corticosteroidal drug with potent local anti-inflammatory activity. The pharmacokinetic properties, such as extensive first-pass metabolism and quite limited bioavailability, reduce its therapeutic efficacy. To overcome the limitations, nanosized micelles were developed in this study by conjugating stearic acid with caffeic acid to make an amphiphilic compound. The aim of the present study was to evaluate the pharmacological potential of BUD-loaded micelles in a mouse model of dextran sulfate sodium-induced colitis. Micelles were formulated by the solvent evaporation method, and their physicochemical characterizations show their spherical shape under microscopic techniques like atomic force microscopy, transmission electron microscopy, and scanning electron microscopy. The in vitro release experiment shows sustained release behavior in physiological media. These micelles show cytocompatible behavior against hTERT-BJ cells up to 500 μg/mL dose, evidenced by more than 85% viable cells. BUD-loaded micelles successfully normalized the disease activity index and physical observation of colon length. The treatment with BUD-loaded micelles alleviates the colitis severity as analyzed in histopathology and efficiently, overcoming the disease severity via downregulation of various related cytokines (MPO, NO, and TNF-α) and inflammatory enzymes such as COX-2 and iNOS. Results of the study suggest that BUD-loaded nano-sized micelles effectively attenuate the disease conditions in colitis.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Akshay Vyawahare
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Rahul Sakla
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida201301, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow226003, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| |
Collapse
|
12
|
Cao Y, Liu S, Ma Y, Ma L, Zu M, Sun J, Dai F, Duan L, Xiao B. Oral Nanomotor-Enabled Mucus Traverse and Tumor Penetration for Targeted Chemo-Sono-Immunotherapy against Colon Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203466. [PMID: 36117129 DOI: 10.1002/smll.202203466] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The therapeutic outcomes of oral nanomedicines against colon cancer are heavily compromised by their lack of specific penetration into the internal tumor, favorable anti-tumor activity, and activation of anti-tumor immunity. Herein, hydrogen peroxide (H2 O2 )/ultrasound (US)-driven mesoporous manganese oxide (MnOx )-based nanomotors are constructed by loading mitochondrial sonosensitizers into their mesoporous channels and orderly dual-functionalizing their surface with silk fibroin and chondroitin sulfate. The locomotory activities and tumor-targeting capacities of the resultant nanomotors (CS-ID@NMs) are greatly improved in the presence of H2 O2 and US irradiation, inducing efficient mucus-traversing and deep tumor penetration. The excess H2 O2 in the tumor microenvironment (TME) is decomposed into hydroxyl radicals and oxygen by an Mn2+ -mediated Fenton-like reaction, and the produced oxygen participates in sonodynamic therapy (SDT), yielding abundant singlet oxygen. The combined Mn2+ -mediated chemodynamic therapy and SDT cause effective ferropotosis of tumor cells and accelerate the release of tumor antigens. Importantly, animal experiments reveal that the treatment of combining oral hydrogel (chitosan/alginate)-embedding CS-ID@NMs and immune checkpoint inhibitors can simultaneously suppress the growth of primary and distal tumors through direct killing, reversion of immunosuppressive TME, and potentiation of systemic anti-tumor immunity, demonstrating that the CS-ID@NM-based platform is a robust oral system for synergistic treatment of colon cancer.
Collapse
Affiliation(s)
- Yingui Cao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Shengsheng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Lingli Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| |
Collapse
|
13
|
Zhong Y, Liu W, Xiong Y, Li Y, Wan Q, Zhou W, Zhao H, Xiao Q, Liu D. Astragaloside Ⅳ alleviates ulcerative colitis by regulating the balance of Th17/Treg cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154287. [PMID: 35752072 DOI: 10.1016/j.phymed.2022.154287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Restoring immune homeostasis by targeting the Th17/Treg response is a potentially valuable therapeutic strategy for ulcerative colitis (UC). Astragaloside IV (AS-Ⅳ) is a phytochemical naturally occurring in Astragalus membranaceus that has good anti-inflammatory, anti-oxidant and anti-stress properties. However, the effects of AS-IV on the homeostasis of Th17/Treg cells in colitis mice remains unknown. PURPOSE To investigate the protective effects and potential immunomodulatory mechanisms of AS-IV on UC. METHODS This study was constructed for DSS-induced acute colitis and recurrent colitis, with AS-IV administered prophylactically and therapeutically, respectively. The balance of Th17/Treg cells was analyzed by flow cytometry, their specific nuclear transcription factors were detected by RT-PCR as well as their secreted inflammatory cytokines were detected by ELISA and RT-PCR. Notch signaling-related proteins were detected by RT-PCR and Western blotting. Oxidative stress indicators were measured by biochemical technology. RESULTS In this study, AS-IV treatment not only effectively prevented and alleviated the clinical symptoms of DSS-induced colitis mice, including weight loss, DAI soaring, colon length shortening and colon weight gain, but also significantly improved ulcer formation, inflammatory cell infiltration and index, and regulated the expression of inflammatory cytokines in colon tissues. Importantly, the efficacy of high-dose AS-IV (100 mg/kg/day) in mice with recurrent colitis in this study was comparable to that of 5-ASA. AS-IV early administration was able to reshape the homeostasis of Th17/Treg cells in mice with acute colitis; meanwhile, AS-IV inhibited Th17 cell responses and promoted Treg cell responses in mice with recurrent colitis. Moreover, AS-IV not only inhibited the activation of Notch signaling pathway in colitis mice, but also prevented and ameliorated DSS-induced oxidative stress injury. CONCLUSION In conclusion, AS-IV effectively prevented and alleviated UC by reshaping Th17/Treg cell homeostasis and anti-oxidative stress.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Yanxia Xiong
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Yingmeng Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; Nanchang Medical college, Nanchang, Jiangxi 330004, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China.
| |
Collapse
|
14
|
Zimmermann-Klemd AM, Reinhardt JK, Winker M, Gründemann C. Phytotherapy in Integrative Oncology-An Update of Promising Treatment Options. Molecules 2022; 27:3209. [PMID: 35630688 PMCID: PMC9143079 DOI: 10.3390/molecules27103209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Modern phytotherapy is part of today's conventional evidence-based medicine and the use of phytopharmaceuticals in integrative oncology is becoming increasingly popular. Approximately 40% of users of such phytopharmaceuticals are tumour patients. The present review provides an overview of the most important plants and nature-based compounds used in integrative oncology and illustrates their pharmacological potential in preclinical and clinical settings. A selection of promising anti-tumour plants and ingredients was made on the basis of scientific evidence and therapeutic practical relevance and included Boswellia, gingko, ginseng, ginger, and curcumin. In addition to these nominees, there is a large number of other interesting plants and plant ingredients that can be considered for the treatment of cancer diseases or for the treatment of tumour or tumour therapy-associated symptoms. Side effects and interactions are included in the discussion. However, with the regular and intended use of phytopharmaceuticals, the occurrence of adverse side effects is rather rare. Overall, the use of defined phytopharmaceuticals is recommended in the context of a rational integrative oncology approach.
Collapse
Affiliation(s)
- Amy M. Zimmermann-Klemd
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; (A.M.Z.-K.); (M.W.)
| | - Jakob K. Reinhardt
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland;
| | - Moritz Winker
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; (A.M.Z.-K.); (M.W.)
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; (A.M.Z.-K.); (M.W.)
| |
Collapse
|
15
|
Hu Y, Ye Z, Wu M, She Y, Li L, Xu Y, Qin K, Hu Z, Yang M, Lu F, Ye Q. The Communication Between Intestinal Microbiota and Ulcerative Colitis: An Exploration of Pathogenesis, Animal Models, and Potential Therapeutic Strategies. Front Med (Lausanne) 2021; 8:766126. [PMID: 34966755 PMCID: PMC8710685 DOI: 10.3389/fmed.2021.766126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory bowel disease. The prolonged course of UC and the lack of effective treatment management make it difficult to cure, affecting the health and life safety of patients. Although UC has received more attention, the etiology and pathogenesis of UC are still unclear. Therefore, it is urgent to establish an updated and comprehensive understanding of UC and explore effective treatment strategies. Notably, sufficient evidence shows that the intestinal microbiota plays an important role in the pathogenesis of UC, and the treating method aimed at improving the balance of the intestinal microbiota exhibits a therapeutic potential for UC. This article reviews the relationship between the genetic, immunological and microbial risk factors with UC. At the same time, the UC animal models related to intestinal microbiota dysbiosis induced by chemical drugs were evaluated. Finally, the potential value of the therapeutic strategies for restoring intestinal microbial homeostasis and treating UC were also investigated. Comprehensively, this study may help to carry out preclinical research, treatment theory and methods, and health management strategy of UC, and provide some theoretical basis for TCM in the treatment of UC.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Yingqi She
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linzhen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujie Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fating Lu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Impact of G-Quadruplexes and Chronic Inflammation on Genome Instability: Additive Effects during Carcinogenesis. Genes (Basel) 2021; 12:genes12111779. [PMID: 34828385 PMCID: PMC8619830 DOI: 10.3390/genes12111779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Genome instability is an enabling characteristic of cancer, essential for cancer cell evolution. Hotspots of genome instability, from small-scale point mutations to large-scale structural variants, are associated with sequences that potentially form non-B DNA structures. G-quadruplex (G4) forming motifs are enriched at structural variant endpoints in cancer genomes. Chronic inflammation is a physiological state underlying cancer development, and oxidative DNA damage is commonly invoked to explain how inflammation promotes genome instability. We summarize where G4s and oxidative stress overlap, with a focus on DNA replication. Guanine has low ionization potential, making G4s vulnerable to oxidative damage. Impacts to G4 structure are dependent upon lesion type, location, and G4 conformation. Occasionally, G4s pose a challenge to replicative DNA polymerases, requiring specialized DNA polymerases to maintain genome stability. Therefore, chronic inflammation creates a dual challenge for DNA polymerases to maintain genome stability: faithful G4 synthesis and bypassing unrepaired oxidative lesions. Inflammation is also accompanied by global transcriptome changes that may impact mutagenesis. Several studies suggest a regulatory role for G4s within cancer- and inflammatory-related gene promoters. We discuss the extent to which inflammation could influence gene regulation by G4s, thereby impacting genome instability, and highlight key areas for new investigation.
Collapse
|
17
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Sadeghsoltani F, Hassanpour P, Qujeq D, Rashtchizadeh N, Ghorbanihaghjo A. Zinc and Selenium in Inflammatory Bowel Disease: Trace Elements with Key Roles? Biol Trace Elem Res 2021; 199:3190-3204. [PMID: 33098076 DOI: 10.1007/s12011-020-02444-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that may emerge at a young age and often lasts for life. It often goes through phases of recurrence and remission and has a devastating effect on quality of life. The exact etiology of the disease is still unclear, but it appears that an inappropriate immune response to intestinal flora bacteria in people with a genetic predisposition may cause the disease. Managing inflammatory bowel disease is still a serious challenge. Oxidative stress and free radicals appear to be involved in the pathogenesis of this disease, and a number of studies have suggested the use of antioxidants as a therapeutic approach. The antioxidant and anti-inflammatory properties of some trace elements have led some of the research to focus on studying these trace elements in inflammatory bowel disease. Zinc and selenium are among the most important trace elements that have significant anti-inflammatory and antioxidant properties. Some studies have shown the importance of these trace elements in inflammatory bowel disease. In this review, we have attempted to provide a comprehensive overview of the findings of these studies and to gather current knowledge about the association of these trace elements with the inflammatory process and inflammatory bowel disease.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Nadereh Rashtchizadeh
- Connective Tissue Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, P.O. Box 14711, Tabriz, 5166614711, Iran.
| |
Collapse
|
18
|
Ahmad A, Ansari MM, Kumar A, Bishnoi M, Raza SS, Khan R. Aminocellulose - grafted polycaprolactone-coated core-shell nanoparticles alleviate the severity of ulcerative colitis: a novel adjuvant therapeutic approach. Biomater Sci 2021; 9:5868-5883. [PMID: 34286723 DOI: 10.1039/d1bm00877c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory condition of colorectal regions. Existing therapies for UC face grave lacunae including off-target and other harmful side effects, extensive first-pass metabolism, rapid clearance, limited or poor drug absorption and various other limitations, resulting in lower bioavailability. These conditions demand advanced delivery strategies to inflammatory colonic conditions so that drugs can counter stomach acid, avail protective strategies at this pH and selectively deliver drugs to the colon. Therefore, this approach was undertaken to develop and characterize nanoparticles for the delivery of drugs glycyrrhizic acid as well as budesonide in UC. Biocompatible and biodegradable aminocellulose-conjugated polycaprolactone containing budesonide was covered onto gelatinous nanoparticles (NPs) loaded with GA. Nanoparticles were prepared by the solvent evaporation technique, which showed particle size of ∼230 nm, spherical shape, almost smooth morphological characters under transmission, scanning and atomic force microscopy. These NPs also improved disease activities like occult blood in the stool, length of the colon and fecal properties. The nanoparticle therapy appreciably decreased colonic mast cellular infiltration, significantly maintained mucin protection, ameliorated histological features of the colon. Furthermore, markers of inflammation such as iNOS, COX-2, IL1-β, TNF-α, NO, and MPO were also appreciably ameliorated with the therapy of dual drug-loaded nanoparticles. Overall, these results establish that dual drug-loaded core-shell NPs exhibit superior therapeutic properties over the free or naïve forms of GA and budesonide in acute colon inflammation and present advantages that may be assigned to their ability to significantly inhibit colon inflammatory conditions.
Collapse
Affiliation(s)
- Anas Ahmad
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Punjab Pin - 140306, India.
| | | | | | | | | | | |
Collapse
|
19
|
Ahmad A, Vaghasiya K, Kumar A, Alam P, Raza SS, Verma RK, Khan R. Enema based therapy using liposomal formulation of low molecular weight heparin for treatment of active ulcerative colitis: New adjunct therapeutic opportunity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111851. [PMID: 33579485 DOI: 10.1016/j.msec.2020.111851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic bowel disease involving chronic inflammation and ulcers in colon and implicates severe epithelial damage with disruption in colon homeostasis. Presently existing treatments possess serious concerns like off target effects and adverse reactions, drug inactivation, poor absorption and other complications resulting in poor bioavailability. In context of high risk of thrombotic events in UC patients, heparin can offer appreciable benefits in UC management due to its remarkable anti-coagulating properties, its ability to intervene inflammatory pathways and acceleration of wound healing process. However, oral administration of heparin being impractical due to harsh gastric acidic environment and heparin degradation, conventional heparin administration is done via intravenous route. Present study was designed to formulate, characterize and evaluate sustained release heparin formulation in mice model of experimental colitis. Heparin liposomes (HLp) were formulated by solvent evaporation and extrusion process and possessed hydrodynamic diameter of 242 ± 4.3 nm. Size, shape and surface morphology was confirmed by TEM, SEM and AFM micrographs while encapsulation efficiency and loading of heparin in optimized HLp were 59.61% and 12.27%, respectively. HLp enema administration ameliorated gross disease indices like body weight, colon length, stool consistency, fecal occult blood. Further, anti-inflammatory efficacy of HLp was established in histopathological analysis where HLp appreciably restored protective mucin layer, colon epithelial mucosal histoarchitecture and considerably attenuated mast cell infiltration in colon epithelia. Overall, results of this study indicate that HLp demonstrated an appreciable therapeutic efficacy in experimental colitis and these results are attributed to their ability to suppress inflammation.
Collapse
Affiliation(s)
- Anas Ahmad
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Kalpesh Vaghasiya
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajay Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Pravej Alam
- Department of Biology, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box - 173, Alkharj 11942, Saudi Arabia
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India; Department of Stem Cell Biology and Regenerative Medicine, Era University, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
20
|
Enteric-coated gelatin nanoparticles mediated oral delivery of 5-aminosalicylic acid alleviates severity of DSS-induced ulcerative colitis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111582. [DOI: 10.1016/j.msec.2020.111582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
|
21
|
Chakravarti D, Hu B, Mao X, Rashid A, Li J, Li J, Liao WT, Whitley EM, Dey P, Hou P, LaBella KA, Chang A, Wang G, Spring DJ, Deng P, Zhao D, Liang X, Lan Z, Lin Y, Sarkar S, Terranova C, Deribe YL, Blutt SE, Okhuysen P, Zhang J, Vilar E, Nielsen OH, Dupont A, Younes M, Patel KR, Shroyer NF, Rai K, Estes MK, Wang YA, Bertuch AA, DePinho RA. Telomere dysfunction activates YAP1 to drive tissue inflammation. Nat Commun 2020; 11:4766. [PMID: 32958778 PMCID: PMC7505960 DOI: 10.1038/s41467-020-18420-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Germline telomere maintenance defects are associated with an increased incidence of inflammatory diseases in humans, yet whether and how telomere dysfunction causes inflammation are not known. Here, we show that telomere dysfunction drives pATM/c-ABL-mediated activation of the YAP1 transcription factor, up-regulating the major pro-inflammatory factor, pro-IL-18. The colonic microbiome stimulates cytosolic receptors activating caspase-1 which cleaves pro-IL-18 into mature IL-18, leading to recruitment of interferon (IFN)-γ-secreting T cells and intestinal inflammation. Correspondingly, patients with germline telomere maintenance defects exhibit DNA damage (γH2AX) signaling together with elevated YAP1 and IL-18 expression. In mice with telomere dysfunction, telomerase reactivation in the intestinal epithelium or pharmacological inhibition of ATM, YAP1, or caspase-1 as well as antibiotic treatment, dramatically reduces IL-18 and intestinal inflammation. Thus, telomere dysfunction-induced activation of the ATM-YAP1-pro-IL-18 pathway in epithelium is a key instigator of tissue inflammation.
Collapse
Affiliation(s)
- Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Baoli Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Division of Pediatric Neurosurgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Xizeng Mao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Ting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Elizabeth M Whitley
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Prasenjit Dey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kyle A LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Andrew Chang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guocan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xin Liang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Division of Neurocritical Care, Department of Neurosurgery, Emory University, Atlanta, GA, 30303, USA
| | - Yiyun Lin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sharmistha Sarkar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yonathan Lissanu Deribe
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pablo Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, DK-2730, Denmark
| | - Andrew Dupont
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mamoun Younes
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, McGovern Medical School and Memorial Hermann Hospital-TMC, Houston, TX, 77030, USA
| | - Kalyani R Patel
- Department of Pathology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Noah F Shroyer
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alison A Bertuch
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Kellermann L, Jensen KB, Bergenheim F, Gubatan J, Chou ND, Moss A, Nielsen OH. Mucosal vitamin D signaling in inflammatory bowel disease. Autoimmun Rev 2020; 19:102672. [PMID: 32942038 DOI: 10.1016/j.autrev.2020.102672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Epidemiological studies have identified vitamin D (25(OH)D) deficiency to be highly prevalent among patients with inflammatory bowel disease (IBD), and low serum levels correlate with a higher disease activity and a more complicated disease course. The link to IBD pathogenesis has been subject of investigations, primarily due to the distinct immunological functions of vitamin D signaling, including anti-inflammatory and anti-fibrotic actions. Vitamin D is a pleiotropic hormone that executes its actions on cells through the vitamin D receptor (VDR). A leaky gut, i.e. an insufficient intestinal epithelial barrier, is thought to be central for the pathogenesis of IBD, and emerging data support the concept that vitamin D/VDR signaling in intestinal epithelial cells (IECs) has an important role in controlling barrier integrity. Here we review the latest evidence on how vitamin D promotes the interplay between IECs, the gut microbiome, and immune cells and thereby regulate the intestinal immune response. On the cellular level, vitamin D signaling regulates tight junctional complexes, apoptosis, and autophagy, leading to increased epithelial barrier integrity, and promotes expression of antimicrobial peptides as part of its immunomodulating functions. Further, intestinal VDR expression is inversely correlated with the severity of inflammation in patients with IBD, which might compromise the positive effects of vitamin D signaling in patients with flaring disease. Efforts to reveal the role of vitamin D in the pathophysiology of IBD will pave the road for the invention of more rational treatment strategies of this debilitating disease in the future.
Collapse
Affiliation(s)
- Lauge Kellermann
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark.
| | - Kim Bak Jensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Fredrik Bergenheim
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Dept. of Medicine, Stanford University School of Medicine, Redwood City, CA, USA
| | - Naomi D Chou
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alan Moss
- Boston Medical Center & Boston University, Boston, MA, USA
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
23
|
Ji E, Wang T, Xu J, Fan J, Zhang Y, Guan Y, Yang H, Wei J, Zhang G, Huang L. Systematic Investigation of the Efficacy of Sinitang Decoction Against Ulcerative Colitis. Front Pharmacol 2020; 11:1337. [PMID: 32982747 PMCID: PMC7490561 DOI: 10.3389/fphar.2020.01337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the precise clinical use of Sinitang decoction (SNT) in ulcerative colitis (UC). Network pharmacology-based analysis of the drug components-targets-diseases-pathways was used to predict the possible clinical applications of SNT. Next, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used to establish a rat model of UC, and the efficacy of SNT against UC was tested, followed by a proteomic analysis of the specific signatures regulated by SNT against UC. SNT was predicted to be effective in inflammatory bowel disease, UC, and several other diseases. In the rats with UC, SNT decreased the disease activity index and colon mucosal damage index compared to the untreated UC model rats. Additionally, SNT reversed the upregulated levels of serum tumor necrosis factor (TNF)-α, prostaglandin E2 (PGE2), interleukin (IL)-6, and nitric oxide (NO) in UC model rats. The proteomic analysis identified 78 proteins that were differentially regulated by SNT in the rats with UC, which were associated with the Gene Ontology terms sulfur compound binding, calcium ion binding, and Toll-like receptor (TLR)-4 binding. Among these differentially regulated proteins, C-reactive protein (CRP) and collagen alpha-1(XII) chain (COL12A1) were found to be signature proteins associated with the efficacy of SNT against UC. This study represents the first precise investigation of the efficacy and mechanisms of SNT against UC, and shows that SNT is a promising candidate for personalized management of UC.
Collapse
Affiliation(s)
- Enhui Ji
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianwei Fan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongxia Guan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Luqi Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Nakayama M, Oshima M. Mutant p53 in colon cancer. J Mol Cell Biol 2020; 11:267-276. [PMID: 30496442 PMCID: PMC6487790 DOI: 10.1093/jmcb/mjy075] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
The accumulation of genetic alterations in driver genes is responsible for the development and malignant progression of colorectal cancer. Comprehensive genome analyses have revealed the driver genes, including APC, KRAS, TGFBR2, and TP53, whose mutations are frequently found in human colorectal cancers. Among them, the p53 mutation is found in ~60% of colorectal cancers, and a majority of mutations are missense-type at ‘hot spots’, suggesting an oncogenic role of mutant p53 by ‘gain-of-function’ mechanisms. Mouse model studies have shown that one of these missense-type mutations, p53 R270H (corresponding to human R273H), causes submucosal invasion of intestinal tumors, while the loss of wild-type p53 has a limited effect on the invasion process. Furthermore, the same mutant p53 promotes metastasis when combined with Kras activation and TGF-β suppression. Importantly, either missense-type p53 mutation or loss of wild-type p53 induces NF-κB activation by a variety of mechanisms, such as increasing promoter accessibility by chromatin remodeling, which may contribute to progression to epithelial–mesenchymal transition. These results indicate that missense-type p53 mutations together with loss of wild-type p53 accelerate the late stage of colorectal cancer progression through the activation of both oncogenic and inflammatory pathways. Accordingly, the suppression of the mutant p53 function via the inhibition of nuclear accumulation is expected to be an effective strategy against malignant progression of colorectal cancer.
Collapse
Affiliation(s)
- Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Mikuda N, Schmidt-Ullrich R, Kärgel E, Golusda L, Wolf J, Höpken UE, Scheidereit C, Kühl AA, Kolesnichenko M. Deficiency in IκBα in the intestinal epithelium leads to spontaneous inflammation and mediates apoptosis in the gut. J Pathol 2020; 251:160-174. [PMID: 32222043 DOI: 10.1002/path.5437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
The IκB kinase (IKK)-NF-κB signaling pathway plays a multifaceted role in inflammatory bowel disease (IBD): on the one hand, it protects from apoptosis; on the other, it activates transcription of numerous inflammatory cytokines and chemokines. Although several murine models of IBD rely on disruption of IKK-NF-κB signaling, these involve either knockouts of a single family member of NF-κB or of upstream kinases that are known to have additional, NF-κB-independent, functions. This has made the distinct contribution of NF-κB to homeostasis in intestinal epithelium cells difficult to assess. To examine the role of constitutive NF-κB activation in intestinal epithelial cells, we generated a mouse model with a tissue-specific knockout of the direct inhibitor of NF-κB, Nfkbia/IκBα. We demonstrate that constitutive activation of NF-κB in intestinal epithelial cells induces several hallmarks of IBD including increased apoptosis, mucosal inflammation in both the small intestine and the colon, crypt hyperplasia, and depletion of Paneth cells, concomitant with aberrant Wnt signaling. To determine which NF-κB-driven phenotypes are cell-intrinsic, and which are extrinsic and thus require the immune compartment, we established a long-term organoid culture. Constitutive NF-κB promoted stem-cell proliferation, mis-localization of Paneth cells, and sensitization of intestinal epithelial cells to apoptosis in a cell-intrinsic manner. Increased number of stem cells was accompanied by a net increase in Wnt activity in organoids. Because aberrant Wnt signaling is associated with increased risk of cancer in IBD patients and because NFKBIA has recently emerged as a risk locus for IBD, our findings have critical implications for the clinic. In a context of constitutive NF-κB, our findings imply that general anti-inflammatory or immunosuppressive therapies should be supplemented with direct targeting of NF-κB within the epithelial compartment in order to attenuate apoptosis, inflammation, and hyperproliferation. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nadine Mikuda
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Ruth Schmidt-Ullrich
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Eva Kärgel
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Laura Golusda
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, iPATH.Berlin - Core Unit for Immunopathology, Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Uta E Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Anja A Kühl
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, iPATH.Berlin - Core Unit for Immunopathology, Berlin, Germany
| | - Marina Kolesnichenko
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| |
Collapse
|
26
|
Xie J, Li L, Deng S, Chen J, Gu Q, Su H, Wen L, Wang S, Lin C, Qi C, Zhang Q, Li J, He X, Li W, Wang L, Zheng L. Slit2/Robo1 Mitigates DSS-induced Ulcerative Colitis by Activating Autophagy in Intestinal Stem Cell. Int J Biol Sci 2020; 16:1876-1887. [PMID: 32398956 PMCID: PMC7211176 DOI: 10.7150/ijbs.42331] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/12/2020] [Indexed: 01/05/2023] Open
Abstract
Ulcerative colitis (UC) is a recurrent intestinal inflammatory disease. Slit2, a secreted protein, interacts with its receptor Robo1 to regulate the differentiation of intestinal stem cells and participate in inflammation and tumor development. However, whether Slit2/Robo1involved in the pathogenesis of UC is not known. We investigated Slit2/Robo1-mediated UC using a dextran sodium sulfate (DSS)-induced model. Eight-week-old male Slit2-Tg (Slit2 transgene) mice, Robo1/2+/- (Robo1+/- Robo2+/-) mice, and their WT littermates were allocated into two groups: (I) control group (n=10), of mice fed a normal diet and tap water and (II) DSS group (n=10), of mice fed a normal diet and drinking water with 2% DSS for 7 days. Colon tissues were collected and analyzed by qPCR, immunohistochemistry, western blot, and immunofluorescence. Slit2-Tg DSS mice showed less body weight loss, less blood in the stool, and less viscous stool compared to those of WTSlit DSS mice. Robo1/2+/- DSS mice displayed a heavier degree of blood in the stool and a more apparent viscosity of the stool compared to those of WTRobo1/2 DSS mice. Slit2 overexpression maintained Lgr5+ stem cell proliferation in the crypt after DSS treatment, significantly increased the LC3II/I ratio, and slightly stimulated p62 expression in the crypt compared to those of DSS-induced WTSlit mice. Robo1/2 partial knockout reduced the number of Lgr5+ stem cells, decreased the LC3II/I ratio, and markedly increased p62 expression in the crypt compare to those of DSS-treated WTRobo1/2 mice. Our findings suggest that Slit2/Robo1 mediates DSS-induced UC probably by activating the autophagy of Lgr5+ stem cells.
Collapse
Affiliation(s)
- Jingzhou Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Li Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Shuhua Deng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Jiayuan Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Quliang Gu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Huanhou Su
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Lijing Wen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Sheng Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Caixia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Qianqian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Xiaodong He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Weidong Li
- Institute of Health, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
- Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| |
Collapse
|
27
|
Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. Semin Cancer Biol 2020; 80:39-57. [PMID: 32027979 DOI: 10.1016/j.semcancer.2020.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The oleogum resins of Boswellia species known as frankincense have been used for ages in traditional medicine in India, China and the Arabian world independent of its use for cultural and religious rituals in Europe. During the past two decades, scientific investigations provided mounting evidence for the therapeutic potential of frankincense. We conducted a systematic review on the anti-inflammatory and anti-cancer activities of Boswellia species and their chemical ingredients (e.g. 3-O-acetyl-11-keto-β boswellic acid, α- and β-boswellic acids, 11-keto-β-boswellic acid and other boswellic acids, lupeolic acids, incensole, cembrenes, triterpenediol, tirucallic acids, and olibanumols). Frankincense acts by multiple mechanisms, e.g. by the inhibition of leukotriene synthesis, of cyclooxygenase 1/2 and 5-lipoxygenase, of oxidative stress, and by regulation of immune cells from the innate and acquired immune systems. Furthermore, frankincense modulates signaling transduction responsible for cell cycle arrest and inhibition of proliferation, angiogenesis, invasion and metastasis. Clinical trials showed the efficacy of frankincense and its phytochemicals against osteoarthritis, multiple sclerosis, asthma, psoriasis and erythematous eczema, plaque-induced gingivitis and pain. Frankincense revealed beneficial effects towards brain tumor-related edema, but did not reduce glioma size. Even if there is no treatment effect on brain tumors itself, the management of glioma-associated edema may represent a desirable improvement. The therapeutic potential against other tumor types is still speculative. Experimental toxicology and clinical trials revealed only mild adverse side effects. More randomized clinical trials are required to estimate the full clinical potential of frankincense for cancer therapy.
Collapse
|
28
|
Verhelst X, Dias AM, Colombel JF, Vermeire S, Van Vlierberghe H, Callewaert N, Pinho SS. Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020; 158:95-110. [PMID: 31626754 DOI: 10.1053/j.gastro.2019.08.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Severine Vermeire
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal.
| |
Collapse
|
29
|
Huang R, Wang K, Gao L, Gao W. TIMP1 Is A Potential Key Gene Associated With The Pathogenesis And Prognosis Of Ulcerative Colitis-Associated Colorectal Cancer. Onco Targets Ther 2019; 12:8895-8904. [PMID: 31802901 PMCID: PMC6826183 DOI: 10.2147/ott.s222608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is the third most frequently diagnosed cancer worldwide. As a high-risk factor for CRC, ulcerative colitis (UC) has been demonstrated to lead to epithelial dysplasia, DNA damage, and eventually cancer. There are approximately 18% of patients with UC may develop CRC. Patients and methods The gene expression profiles were retrieved from the Gene Expression Omnibus. The Database for Annotation, Visualization and Integrated Discovery was employed to conduct gene annotations. Protein-protein interaction network was constructed by the Search Tool for the Retrieval of Interacting Genes, and further analysed by the Molecular Complex Detection. The correlation between TIMP1 and prognosis was evaluated by the Gene Expression Profiling Interactive Analysis. To predict the potential functions of TIMP1, the GeneMANIA, Coremine, and FunRich were employed. After transfection with small interfering RNA targeting TIMP1, cell proliferation, migration, and apoptosis were determined by CCK-8, scratch wound, and Annexin V-FITC/PI assays, respectively. Results TIMP1, consistently overexpressed in the initiation and progression of UC-associated CRC (ucaCRC), was identified to be a potential biomarker for the prognosis of patients with CRC. Experimental results showed knockdown of TIMP1 could increase the migration, while did not affect the proliferation and apoptosis of RKO cells. The role of TIMP1 in the malignant transformation of ucaCRC was confirmed by using the protein/gene interactions and biological process annotation and validated by analysing the transcription factors targeting TIMP1. Conclusion TIMP1 is consistently upregulated in the pathological process of ucaCRC and can be a potential biomarker for the worse prognosis of CRC.
Collapse
Affiliation(s)
- Ru Huang
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kaijing Wang
- Department of Colorectal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Gao
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wei Gao
- Department of Colorectal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Farombi EO, Abolaji AO, Adetuyi BO, Awosanya O, Fabusoro M. Neuroprotective role of 6-Gingerol-rich fraction of Zingiber officinale (Ginger) against acrylonitrile-induced neurotoxicity in male Wistar rats. J Basic Clin Physiol Pharmacol 2018; 30:jbcpp-2018-0114. [PMID: 30864424 DOI: 10.1515/jbcpp-2018-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Background Acrylonitrile (AN) is a neurotoxin that is widely used to manufacture synthetic fibres, plastics and beverage containers. Recently, we reported the ameliorative role of 6-gingerol-rich fraction from Zingiber officinale (Ginger, GRF) on the chlorpyrifos-induced toxicity in rats. Here, we investigated the protective role of GRF on AN-induced brain damage in male rats. Methods Male rats were orally treated with corn oil (2 mL/kg, control), AN (50 mg/kg, Group B), GRF (200 mg/kg, Group C), AN [50 mg/kg+GRF (100 mg/kg) Group D], AN [(50 mg/kg)+GRF (200 mg/kg) Group E] and AN [(50 mg/kg)+N-acetylcysteine (AC, 50 mg/kg) Group F] for 14 days. Then, we assessed the selected markers of oxidative damage, antioxidant status and inflammation in the brain of rats. Results The results indicated that GRF restored the AN-induced elevations of brain malondialdehyde (MDA), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and Nitric Oxide (NO) levels. GRF also prevented the AN-induced depletion of brain glutathione (GSH) level and the activities of Glutathione S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in rats (p<0.05). Furthermore, GRF prevented the AN-induced cerebral cortex lesion and increased brain immunohistochemical expressions of Caspases-9 and -3. Conclusions Our data suggest that GRF may be a potential therapeutic agent in the treatment of AN-induced model of brain damage.
Collapse
Affiliation(s)
- Ebenezer Olatunde Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria, Phone: +2348023470333, Fax: 234-2-8103043
| | - Amos Olalekan Abolaji
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babatunde Oluwafemi Adetuyi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olaide Awosanya
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mobolaji Fabusoro
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
31
|
Burdak-Rothkamm S, Rothkamm K. Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:13-22. [DOI: 10.1016/j.mrrev.2018.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
|
32
|
Beggs AD, James J, Caldwell G, Prout T, Dilworth MP, Taniere P, Iqbal T, Morton DG, Matthews G. Discovery and Validation of Methylation Biomarkers for Ulcerative Colitis Associated Neoplasia. Inflamm Bowel Dis 2018; 24:1503-1509. [PMID: 29762666 PMCID: PMC6176894 DOI: 10.1093/ibd/izy119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 12/11/2022]
Abstract
Background and aims Ulcerative colitis (UC) is associated with a higher background risk of dysplasia and/or neoplasia due to chronic inflammation. There exist few biomarkers for identification of patients with dysplasia, and targeted biopsies in this group of patients are inaccurate in reliably identifying dysplasia. We aimed to examine the epigenome of UC dysplasia and to identify and validate potential biomarkers. Methods Colonic samples from patients with UC-associated dysplasia or neoplasia underwent epigenome-wide analysis on the Illumina 450K methylation array. Markers were validated by bisulphite pyrosequencing on a secondary validation cohort and accuracy calculated using logistic regression and receiver-operator curves. Results Twelve samples from 4 patients underwent methylation array analysis and 6 markers (GNG7, VAV3, KIF5C, PIK3R5, TUBB6, and ZNF583) were taken forward for secondary validation on a cohort of 71 colonic biopsy samples consisting of normal uninflamed mucosa from control patients, acute and chronic colitis, "field" mucosa in patients with dysplasia/neoplasia, dysplasia, and neoplasia. Methylation in the beta-tubulin TUBB6 correlated with the presence of dysplasia (P < 0.0001) and accurately discriminated between dysplasia and nondysplastic tissue, even in the apparently normal field mucosa downstream from dysplastic lesions (AUC 0.84, 95% CI 0.81-0.87). Conclusions Methylation in TUBB6 is a potential biomarker for UC- associated dysplasia. Further validation is needed and is ongoing as part of the ENDCAP-C study.
Collapse
Affiliation(s)
- Andrew D Beggs
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Jonathan James
- Institute of Cancer and Genomic Science, University of Birmingham
| | | | - Toby Prout
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Mark P Dilworth
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Phillipe Taniere
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Tariq Iqbal
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Dion G Morton
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Glenn Matthews
- Institute of Cancer and Genomic Science, University of Birmingham
| |
Collapse
|
33
|
Gao Z, Yu C, Liang H, Wang X, Liu Y, Li X, Ji K, Xu H, Yang M, Liu K, Qi D, Fan H. Andrographolide derivative CX-10 ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: Involvement of NF-κB and MAPK signalling pathways. Int Immunopharmacol 2018; 57:82-90. [DOI: 10.1016/j.intimp.2018.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022]
|
34
|
Gagné-Sansfaçon J, Coulombe G, Langlois MJ, Langlois A, Paquet M, Carrier J, Feng GS, Qu CK, Rivard N. SHP-2 phosphatase contributes to KRAS-driven intestinal oncogenesis but prevents colitis-associated cancer development. Oncotarget 2018; 7:65676-65695. [PMID: 27582544 PMCID: PMC5323184 DOI: 10.18632/oncotarget.11601] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023] Open
Abstract
A major risk factor of developing colorectal cancer (CRC) is the presence of chronic inflammation in the colon. In order to understand how inflammation contributes to CRC development, the present study focused on SHP-2, a tyrosine phosphatase encoded by PTPN11 gene in which polymorphisms have been shown to be markers of colitis susceptibility. Conversely, gain-of-function mutations in PTPN11 gene (E76 residue) have been found in certain sporadic CRC. Results shown herein demonstrate that SHP-2 expression was markedly increased in sporadic human adenomas but not in advanced colorectal tumors. SHP-2 silencing inhibited proliferative, invasive and tumoral properties of both intestinal epithelial cells (IECs) transformed by oncogenic KRAS and of human CRC cells. IEC-specific expression of a SHP-2E76K activated mutant in mice was not sufficient to induce tumorigenesis but markedly promoted tumor growth under the ApcMin/+ background. Conversely, mice with a conditional deletion of SHP-2 in IECs developed colitis-associated adenocarcinomas with age, associated with sustained activation of Wnt/β-catenin, NFκB and STAT3 signalings in the colonic mucosae. Moreover, SHP-2 epithelial deficiency considerably increased tumor load in ApcMin/+ mice, shifting tumor incidence toward the colon. Overall, these results reveal that SHP-2 can exert opposing functions in the large intestine: it can promote or inhibit tumorigenesis depending of the inflammatory context.
Collapse
Affiliation(s)
- Jessica Gagné-Sansfaçon
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Geneviève Coulombe
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ariane Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilene Paquet
- Département de microbiologie et pathologie, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Julie Carrier
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gen-Sheng Feng
- Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
35
|
Baker KT, Salk JJ, Brentnall TA, Risques RA. Precancer in ulcerative colitis: the role of the field effect and its clinical implications. Carcinogenesis 2018; 39:11-20. [PMID: 29087436 PMCID: PMC6248676 DOI: 10.1093/carcin/bgx117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Cumulative evidence indicates that a significant proportion of cancer evolution may occur before the development of histological abnormalities. While recent improvements in DNA sequencing technology have begun to reveal the presence of these early preneoplastic clones, the concept of 'premalignant field' was already introduced by Slaughter more than half a century ago. Also referred to as 'field effect', 'field defect' or 'field cancerization', these terms describe the phenomenon by which molecular alterations develop in normal-appearing tissue and expand to form premalignant patches with the potential to progress to dysplasia and cancer. Field effects have been well-characterized in ulcerative colitis, an inflammatory bowel disease that increases the risk of colorectal cancer. The study of the molecular alterations that define these fields is informative of mechanisms of tumor initiation and progression and has provided potential targets for early cancer detection. Herein, we summarize the current knowledge about the molecular alterations that comprise the field effect in ulcerative colitis and the clinical utility of these fields for cancer screening and prevention.
Collapse
Affiliation(s)
- Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jesse J Salk
- Division of Hematology and Oncology, Department of Medicine, University of
Washington, Seattle, WA, USA
- TwinStrand Biosciences Seattle, WA, USA
| | - Teresa A Brentnall
- Division of Gasteroenterology, Department of Medicine, University of
Washington, Seattle, WA, USA
| | - Rosa Ana Risques
- To whom correspondence should be addressed. Tel: +206-616-4976; Fax:
+206-543-1140;
| |
Collapse
|
36
|
Ishibashi F, Shimizu H, Nakata T, Fujii S, Suzuki K, Kawamoto A, Anzai S, Kuno R, Nagata S, Ito G, Murano T, Mizutani T, Oshima S, Tsuchiya K, Nakamura T, Watanabe M, Okamoto R. Contribution of ATOH1 + Cells to the Homeostasis, Repair, and Tumorigenesis of the Colonic Epithelium. Stem Cell Reports 2017; 10:27-42. [PMID: 29233556 PMCID: PMC5768891 DOI: 10.1016/j.stemcr.2017.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022] Open
Abstract
ATOH1 is a master transcription factor for the secretory lineage differentiation of intestinal epithelial cells (IECs). However, the comprehensive contribution of ATOH1+ secretory lineage IECs to the homeostasis, repair, and tumorigenesis of the intestinal epithelium remains uncertain. Through our ATOH1+ cell-lineage tracing, we show here that a definite number of ATOH1+ IECs retain stem cell properties and can form ATOH1+IEC-derived clonal ribbons (ATOH1+ICRs) under completely homeostatic conditions. Interestingly, colonic ATOH1+ IECs appeared to exhibit their stem cell function more frequently compared with those of the small intestine. Consistently, the formation of ATOH1+ICRs was significantly enhanced upon dextran sodium sulfate colitis-induced mucosal damage. In addition, colonic ATOH1+ IECs acquired tumor stem cell-like properties in the azoxymethane-DSS tumor model. Our results reveal an unexpected contribution of colonic ATOH1+ IECs to maintaining the stem cell population under both homeostatic and pathologic conditions and further illustrate the high plasticity of the crypt-intrinsic stem cell hierarchy. Intestinal ATOH1+ cells can exhibit stem cell properties under homeostatic conditions Recruitment of ATOH1+ cell-derived stem cells is enhanced by inflammation Cell-intrinsic NF-kB signaling promotes generation of ATOH1+ cell-derived stem cells ATOH1+ tumor stem cells contribute to the development of colitis-associated tumors
Collapse
Affiliation(s)
- Fumiaki Ishibashi
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiromichi Shimizu
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Toru Nakata
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Satoru Fujii
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kohei Suzuki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Ami Kawamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sho Anzai
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Reiko Kuno
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Go Ito
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Tatsuro Murano
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tetsuya Nakamura
- Department of Advanced Therapeutics in GI Diseases, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Center for Stem Cell and Regenerative Medicine, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
37
|
Guo Y, Nie Q, MacLean AL, Li Y, Lei J, Li S. Multiscale Modeling of Inflammation-Induced Tumorigenesis Reveals Competing Oncogenic and Oncoprotective Roles for Inflammation. Cancer Res 2017; 77:6429-6441. [PMID: 28951462 DOI: 10.1158/0008-5472.can-17-1662] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/03/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
Chronic inflammation is a serious risk factor for cancer; however, the routes from inflammation to cancer are poorly understood. On the basis of the processes implicated by frequently mutated genes associated with inflammation and cancer in three organs (stomach, colon, and liver) extracted from the Gene Expression Omnibus, The Cancer Genome Atlas, and Gene Ontology databases, we present a multiscale model of the long-term evolutionary dynamics leading from inflammation to tumorigenesis. The model incorporates cross-talk among interactions on several scales, including responses to DNA damage, gene mutation, cell-cycle behavior, population dynamics, inflammation, and metabolism-immune balance. Model simulations revealed two stages of inflammation-induced tumorigenesis: a precancerous state and tumorigenesis. The precancerous state was mainly caused by mutations in the cell proliferation pathway; the transition from the precancerous to tumorigenic states was induced by mutations in pathways associated with apoptosis, differentiation, and metabolism-immune balance. We identified opposing effects of inflammation on tumorigenesis. Mild inflammation removed cells with DNA damage through DNA damage-induced cell death, whereas severe inflammation accelerated accumulation of mutations and hence promoted tumorigenesis. These results provide insight into the evolutionary dynamics of inflammation-induced tumorigenesis and highlight the combinatorial effects of inflammation and metabolism-immune balance. This approach establishes methods for quantifying cancer risk, for the discovery of driver pathways in inflammation-induced tumorigenesis, and has direct relevance for early detection and prevention and development of new treatment regimes. Cancer Res; 77(22); 6429-41. ©2017 AACR.
Collapse
Affiliation(s)
- Yucheng Guo
- MOE Key Laboratory of Bioinformatics and TCM-X Center/Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Qing Nie
- Department of Mathematics, Department of Development and Cell Biology, Center for Mathematical and Computational Biology, University of California, Irvine, Irvine, California
| | - Adam L MacLean
- Department of Mathematics, Department of Development and Cell Biology, Center for Mathematical and Computational Biology, University of California, Irvine, Irvine, California
| | - Yanda Li
- MOE Key Laboratory of Bioinformatics and TCM-X Center/Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Jinzhi Lei
- Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.
| | - Shao Li
- MOE Key Laboratory of Bioinformatics and TCM-X Center/Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
38
|
Li MH, Du HZ, Kong GJ, Liu LB, Li XX, Lin SS, Jia AQ, Yuan ST, Sun L, Wang JS. Nuclear Magnetic Resonance-Based Metabolomics Approach to Evaluate the Prevention Effect of Camellia nitidissima Chi on Colitis-Associated Carcinogenesis. Front Pharmacol 2017; 8:447. [PMID: 28744216 PMCID: PMC5504182 DOI: 10.3389/fphar.2017.00447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, occurring in the colon or rectum portion of large intestine. With marked antioxidant, anti-inflammation and anti-tumor activities, Camellia nitidissima Chi has been used as an effective treatment of cancer. The azoxymethane/dextran sodium sulfate (AOM/DSS) induced CRC mice model was established and the prevention effect of C. nitidissima Chi extracts on the evolving of CRC was evaluated by examination of neoplastic lesions, histopathological inspection, serum biochemistry analysis, combined with nuclear magnetic resonance (NMR)-based metabolomics and correlation network analysis. C. nitidissima Chi extracts could significantly inhibit AOM/DSS induced CRC, relieve the colonic pathology of inflammation and ameliorate the serum biochemistry, and could significantly reverse the disturbed metabolic profiling toward the normal state. Moreover, the butanol fraction showed a better efficacy than the water-soluble fraction of C. nitidissima Chi. Further development of C. nitidissima Chi extracts as a potent CRC inhibitor was warranted.
Collapse
Affiliation(s)
- Ming-Hui Li
- Center for Molecular Metabolism, Nanjing University of Science and TechnologyNanjing, China
| | - Hong-Zhi Du
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China
| | - Gui-Ju Kong
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China
| | - Li-Bao Liu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-Sen UniversityGuangzhou, China
| | - Xin-Xin Li
- Tasly Research Institute, Tianjin Tasly Holding Group Co. Ltd.Tianjin, China
| | - Sen-Sen Lin
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China
| | - Ai-Qun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and TechnologyNanjing, China
| | - Sheng-Tao Yuan
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China
| | - Jun-Song Wang
- Center for Molecular Metabolism, Nanjing University of Science and TechnologyNanjing, China
| |
Collapse
|
39
|
Abolaji AO, Ojo M, Afolabi TT, Arowoogun MD, Nwawolor D, Farombi EO. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem Biol Interact 2017; 270:15-23. [PMID: 28373059 DOI: 10.1016/j.cbi.2017.03.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide widely used in agricultural applications and household environments. 6-Gingerol-rich fraction from Zingiber officinale (Ginger, 6-GRF) has been reported to possess potent anti-oxidative, anti-inflammatory and anti-apoptotic properties. Here, we investigated the protective properties of 6-GRF on CPF-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Five groups of rats containing 14 rats/group received corn oil (control), CPF (5 mg/kg), 6-GRF (100 mg/kg), CPF (5 mg/kg) + 6-GRF (50 mg/kg) and CPF (5 mg/kg) + 6-GRF (100 mg/kg) through gavage once per day for 35 days respectively. The results showed that 6-GRF protected against CPF-induced increases in oxidative stress ((hydrogen peroxide (H2O2) and malondialdehyde (MDA)), inflammatory (myeloperoxidase (MPO), nitric oxide (NO) and tumour necrosis factor-α (TNF- α)), and apoptotic (caspase-3) markers. Also, 6-GRF improved the activities of antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) as well as glutathione (GSH) level in the brain, ovary and uterus of rats exposed to CPF (p < 0.05). Overall, the protective effects of 6-GRF on CPF-induced toxicity in the brain and reproductive organs of rats may be due to its potent antioxidative, anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
- Amos O Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Mercy Ojo
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tosin T Afolabi
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mary D Arowoogun
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Darlinton Nwawolor
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
40
|
Abstract
Optimizing the management of colorectal cancer (CRC) risk in IBD requires a fundamental understanding of the evolutionary process underpinning tumorigenesis. In IBD, clonal evolution begins long before the development of overt neoplasia, and is probably accelerated by the repeated cycles of epithelial wounding and repair that are characteristic of the condition. Here, we review the biological drivers of mutant clone selection in IBD with particular reference to the unique histological architecture of the intestinal epithelium coupled with the inflammatory microenvironment in IBD, and the unique mutation patterns seen in IBD-driven neoplasia when compared with sporadic adenomas and CRC. How these data can be leveraged as evolutionary-based biomarkers to predict cancer risk is discussed, as well as how the efficacy of CRC surveillance programmes and the management of dysplasia can be improved. From a research perspective, the longitudinal surveillance of patients with IBD provides an under-exploited opportunity to investigate the biology of the human gastrointestinal tract over space and time.
Collapse
Affiliation(s)
- Chang-Ho R Choi
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Inflammatory Bowel Disease Unit, Level 4 St Mark's Hospital, Watford Road, London HA1 3UJ, UK
| | - Ibrahim Al Bakir
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Inflammatory Bowel Disease Unit, Level 4 St Mark's Hospital, Watford Road, London HA1 3UJ, UK
| | - Ailsa L Hart
- Inflammatory Bowel Disease Unit, Level 4 St Mark's Hospital, Watford Road, London HA1 3UJ, UK
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
41
|
Das V, Kalita J, Pal M. Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomed Pharmacother 2016; 87:8-19. [PMID: 28040600 DOI: 10.1016/j.biopha.2016.12.064] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading cause of cancer deaths worldwide. Since CRC is largely asymptomatic until alarm features develop to advanced stages, the implementation of the screening programme is very much essential to reduce cancer incidence and mortality rates. CRC occurs predominantly from accumulation of genetic and epigenetic changes in colon epithelial cells, which later gets transformed into adenocarcinomas. SCOPE OF REVIEW The current challenges of screening paradigm and diagnostic ranges are from semi-invasive methods like colonoscopy to non-invasive stool-based test, have resulted in over-diagnosis and over-treatment of CRC. Hence, new screening initiatives and deep studies are required for early diagnosis of CRC. In this regard, we not only summarise current predictive and prognostic biomarkers with their potential for diagnostic and therapeutic applications, but also describe current limitations, future perspectives and challenges associated with the progression of CRC. MAJOR CONCLUSIONS Currently many potential biomarkers have already been successfully translated into clinical practice eg. Fecal haemoglobin, Carcinoembryonic antigen (CEA) and CA19.9, although these are not highly promising diagnostic target for personalized medicine. So there is a critical need for reliable, minimally invasive, highly sensitive and specific genetic markers of an individualised and optimised patient treatment at the earliest disease stage possible. GENERAL SIGNIFICANCE Identification of a new biomarker, or a set of biomarkers to the development of a valid, and clinical sensible assay that can be served as an alternative tool for early diagnosis of CRC and open up promising new targets in therapeutic intervention strategies.
Collapse
Affiliation(s)
- Vishal Das
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Jatin Kalita
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Mintu Pal
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.
| |
Collapse
|
42
|
Lv C, Gu H, Zhao X, Huang L, Zhou S, Zhi F. Involvement of Activated Cdc42 Kinase1 in Colitis and Colorectal Neoplasms. Med Sci Monit 2016; 22:4794-4802. [PMID: 27926694 PMCID: PMC5158129 DOI: 10.12659/msm.902274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Activated Cdc42 kinase1 (ACK1) is a non-receptor tyrosine kinase which is critical for cell survival, proliferation, and migration. Genomic amplification of ACK1 has been reported in multiple human cancers. We aimed to investigate ACK1 protein expression in colorectal mucosa with inflammation and neoplasm, and to evaluate its correlation with disease activity and severity. MATERIAL AND METHODS A total of 250 individuals who underwent total colonoscopy were collected randomly from January 2007 to May 2013 in Nanfang Hospital, Guangzhou, China. Colorectal mucosal biopsy specimens were obtained by endoscopy from 78 patients with ulcerative colitis (UC), 22 with Crohn's disease (CD), 20 with infectious colitis, 26 with non-IBD and noninfectious colitis, 16 with sporadic adenomas, 4 with dysplasia-associated lesions or masses, 10 with sporadic colorectal cancer (CRC), 4 with UC-related CRC, 10 with hyperplastic polyps, and 60 without colonic abnormalities. ACK1 protein levels were determined immunohistochemically. The correlations of ACK1 expression with disease activity and severity were also evaluated. RESULTS Significantly increased ACK1 expression was observed in epithelial cells of colorectal mucosa with inflammation and dysplasia compared to controls (P<0.05). ACK1 expression correlated with clinical activity in IBD (χ²=4.57, P=0.033 for UC; χ²=5.68, P=0.017 for CD), as well as grade of dysplasia in preneoplastic lesions (P<0.05). No significant differences in ACK1 expression were found between UC and CD, or between IBD and non-IBD conditions (P>0.05). CONCLUSIONS ACK1 protein is increased extensively in colitis and colorectal dysplasia. ACK1 overexpression may play a role in colorectal inflammation and neoplasms.
Collapse
Affiliation(s)
- Chaolan Lv
- Department of Gastroenterology, Anhui Provincial Hospital, Hefei, Anhui, P.R. China
| | - Hongxiang Gu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xinmei Zhao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Liyun Huang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Sanxi Zhou
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Fachao Zhi
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Corresponding Author: Fachao Zhi, e-mail:
| |
Collapse
|
43
|
Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary Emulsifier-Induced Low-Grade Inflammation Promotes Colon Carcinogenesis. Cancer Res 2016; 77:27-40. [PMID: 27821485 DOI: 10.1158/0008-5472.can-16-1359] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
Abstract
The increased risks conferred by inflammatory bowel disease (IBD) to the development of colorectal cancer gave rise to the term "colitis-associated cancer" and the concept that inflammation promotes colon tumorigenesis. A condition more common than IBD is low-grade inflammation, which correlates with altered gut microbiota composition and metabolic syndrome, both present in many cases of colorectal cancer. Recent findings suggest that low-grade inflammation in the intestine is promoted by consumption of dietary emulsifiers, a ubiquitous component of processed foods, which alter the composition of gut microbiota. Here, we demonstrate in a preclinical model of colitis-induced colorectal cancer that regular consumption of dietary emulsifiers, carboxymethylcellulose or polysorbate-80, exacerbated tumor development. Enhanced tumor development was associated with an altered microbiota metagenome characterized by elevated levels of lipopolysaccharide and flagellin. We found that emulsifier-induced alterations in the microbiome were necessary and sufficient to drive alterations in major proliferation and apoptosis signaling pathways thought to govern tumor development. Overall, our findings support the concept that perturbations in host-microbiota interactions that cause low-grade gut inflammation can promote colon carcinogenesis. Cancer Res; 77(1); 27-40. ©2016 AACR.
Collapse
Affiliation(s)
- Emilie Viennois
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Didier Merlin
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.,Veterans Affairs Medical Center, Decatur, Georgia
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
44
|
Seidelin JB. Regulation of antiapoptotic and cytoprotective pathways in colonic epithelial cells in ulcerative colitis. Scand J Gastroenterol 2016; 50 Suppl 1:1-29. [PMID: 26513451 DOI: 10.3109/00365521.2016.1101245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease involving the colon resulting in bloody diarrhea and increased risk of colorectal cancer in certain patient subgroups. Increased apoptosis in the epithelial cell layer causes increased permeability, especially during flares; this leads to translocation of luminal pathogens resulting in a continued inflammatory drive. The present work investigates how epithelial apoptosis is regulated in ulcerative colitis. The main results are that Fas mediated apoptosis is inhibited during flares of ulcerative colitis, probably by an upregulation of cellular inhibitor of apoptosis protein 2 (cIAP2) and cellular FLICE-like inhibitory protein. cIAP2 is upregulated in regenerative epithelial cells both in ulcerative colitis and in experimental intestinal wounds. Inhibition of cIAP2 decreases wound healing in vitro possibly through inhibition of migration. Altogether, it is shown that epithelial cells in ulcerative colitis responds to the hostile microenvironment by activation of cytoprotective pathways that tend to counteract the cytotoxic effects of inflammation. However, the present studies also show that epithelial cells produce increased amounts of reactive oxygen species during stimulation with tumor necrosis factor-α and interferon-γ resulting in DNA instability. The combined effect of increased DNA-instability and decreased apoptosis responses could lead to neoplasia.
Collapse
Affiliation(s)
- Jakob B Seidelin
- a Department of Gastroenterology, Medical Section , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| |
Collapse
|
45
|
Jenkins BJ. Multifaceted Role of IRAK-M in the Promotion of Colon Carcinogenesis via Barrier Dysfunction and STAT3 Oncoprotein Stabilization in Tumors. Cancer Cell 2016; 29:615-617. [PMID: 27165738 DOI: 10.1016/j.ccell.2016.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dysregulated interactions between the host immune system and gut microbiota can underpin inflammation, leading to colorectal cancer (CRC). In this issue of Cancer Cell, Kesselring et al. reveal a bimodal role of the TLR/IL-1R-signaling negative regulator, IRAK-M, in promoting tumoral microbial colonization and STAT3 oncoprotein stabilization during CRC.
Collapse
Affiliation(s)
- Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
46
|
Shivakumar BM, Chakrabarty S, Rotti H, Seenappa V, Rao L, Geetha V, Tantry BV, Kini H, Dharamsi R, Pai CG, Satyamoorthy K. Comparative analysis of copy number variations in ulcerative colitis associated and sporadic colorectal neoplasia. BMC Cancer 2016; 16:271. [PMID: 27080994 PMCID: PMC4831153 DOI: 10.1186/s12885-016-2303-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
Background The incidence of and mortality from colorectal cancers (CRC) can be reduced by early detection. Currently there is a lack of established markers to detect early neoplastic changes. We aimed to identify the copy number variations (CNVs) and the associated genes which could be potential markers for the detection of neoplasia in both ulcerative colitis-associated neoplasia (UC-CRN) and sporadic colorectal neoplasia (S-CRN). Methods We employed array comparative genome hybridization (aCGH) to identify CNVs in tissue samples of UC nonprogressor, progressor and sporadic CRC. Select genes within these CNV regions as a panel of markers were validated using quantitative real time PCR (qRT-PCR) method along with the microsatellite instability (MSI) in an independent cohort of samples. Immunohistochemistry (IHC) analysis was also performed. Results Integrated analysis showed 10 overlapping CNV regions between UC-Progressor and S-CRN, with the 8q and 12p regions showing greater overlap. The qRT-PCR based panel of MYC, MYCN, CCND1, CCND2, EGFR and FNDC3A was successful in detecting neoplasia with an overall accuracy of 54 % in S-CRN compared to that of 29 % in UC neoplastic samples. IHC study showed that p53 and CCND1 were significantly overexpressed with an increasing frequency from pre-neoplastic to neoplastic stages. EGFR and AMACR were expressed only in the neoplastic conditions. Conclusion CNVs that are common and unique to both UC-associated and sporadic colorectal neoplasm could be the key players driving carcinogenesis. Comparative analysis of CNVs provides testable driver aberrations but needs further evaluation in larger cohorts of samples. These markers may help in developing more effective neoplasia-detection strategies during screening and surveillance programs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2303-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B M Shivakumar
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal University, Manipal, India.,School of Life Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | | | - Harish Rotti
- School of Life Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Venu Seenappa
- School of Life Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Lakshmi Rao
- Department of Pathology, Kasturba Medical College, Manipal University, Manipal, India
| | - Vasudevan Geetha
- Department of Pathology, Kasturba Medical College, Manipal University, Manipal, India
| | - B V Tantry
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Hema Kini
- Department of Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Rajesh Dharamsi
- Dharamsi Hospital, Chandni Chowk, Sangli, Maharashtra, India
| | - C Ganesh Pai
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal University, Manipal, India
| | | |
Collapse
|
47
|
Dhawan A, Graham TA, Fletcher AG. A Computational Modeling Approach for Deriving Biomarkers to Predict Cancer Risk in Premalignant Disease. Cancer Prev Res (Phila) 2016; 9:283-95. [PMID: 26851234 DOI: 10.1158/1940-6207.capr-15-0248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/15/2016] [Indexed: 11/16/2022]
Abstract
The lack of effective biomarkers for predicting cancer risk in premalignant disease is a major clinical problem. There is a near-limitless list of candidate biomarkers, and it remains unclear how best to sample the tissue in space and time. Practical constraints mean that only a few of these candidate biomarker strategies can be evaluated empirically, and there is no framework to determine which of the plethora of possibilities is the most promising. Here, we have sought to solve this problem by developing a theoretical platform for in silico biomarker development. We construct a simple computational model of carcinogenesis in premalignant disease and use the model to evaluate an extensive list of tissue sampling strategies and different molecular measures of these samples. Our model predicts that (i) taking more biopsies improves prognostication, but with diminishing returns for each additional biopsy; (ii) longitudinally collected biopsies provide slightly more prognostic information than a single biopsy collected at the latest possible time point; (iii) measurements of clonal diversity are more prognostic than measurements of the presence or absence of a particular abnormality and are particularly robust to confounding by tissue sampling; and (iv) the spatial pattern of clonal expansions is a particularly prognostic measure. This study demonstrates how the use of a mechanistic framework provided by computational modeling can diminish empirical constraints on biomarker development.
Collapse
Affiliation(s)
- Andrew Dhawan
- School of Medicine, Queen's University, Kingston, Ontario, Canada. Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. Mathematical Institute, University of Oxford, Oxford, United Kingdom. School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Trevor A Graham
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Alexander G Fletcher
- Mathematical Institute, University of Oxford, Oxford, United Kingdom. School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
48
|
The Innate Immune Receptor NLRX1 Functions as a Tumor Suppressor by Reducing Colon Tumorigenesis and Key Tumor-Promoting Signals. Cell Rep 2016; 14:2562-75. [PMID: 26971998 PMCID: PMC4853907 DOI: 10.1016/j.celrep.2016.02.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/08/2016] [Accepted: 02/19/2016] [Indexed: 12/22/2022] Open
Abstract
NOD-like receptor (NLR) proteins are intracellular innate immune sensors/receptors that regulate immunity. This work shows that NLRX1 serves as a tumor suppressor in colitis-associated cancer (CAC) and sporadic colon cancer by keeping key tumor promoting pathways in check. Nlrx1−/− mice were highly susceptible to CAC, showing increases in key cancer-promoting pathways including nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and interleukin 6 (IL-6). The tumor-suppressive function of NLRX1 originated primarily from the non-hematopoietic compartment. This prompted an analysis of NLRX1 function in the Apcmin/+ genetic model of sporadic gastrointestinal cancer. NLRX1 attenuated Apcmin/+ colon tumorigenesis, cellular proliferation, NF-κB, MAPK, STAT3 activation, and IL-6 levels. Application of anti-interleukin 6 receptor (IL6R) antibody therapy reduced tumor burden, increased survival, and reduced STAT3 activation in Nlrx1−/−Apcmin/+ mice. As an important clinical correlate, human colon cancer samples expressed lower levels of NLRX1 than healthy controls in multiple patient cohorts. These data implicate anti-IL6R as a potential personalized therapy for colon cancers with reduced NLRX1.
Collapse
|
49
|
Ro SH, Xue X, Ramakrishnan SK, Cho CS, Namkoong S, Jang I, Semple IA, Ho A, Park HW, Shah YM, Lee JH. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. eLife 2016; 5:e12204. [PMID: 26913956 PMCID: PMC4805551 DOI: 10.7554/elife.12204] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
The mTOR complex 1 (mTORC1) and endoplasmic reticulum (ER) stress pathways are critical regulators of intestinal inflammation and colon cancer growth. Sestrins are stress-inducible proteins, which suppress both mTORC1 and ER stress; however, the role of Sestrins in colon physiology and tumorigenesis has been elusive due to the lack of studies in human tissues or in appropriate animal models. In this study, we show that human SESN2 expression is elevated in the colon of ulcerative colitis patients but is lost upon p53 inactivation during colon carcinogenesis. In mouse colon, Sestrin2 was critical for limiting ER stress and promoting the recovery of epithelial cells after inflammatory injury. During colitis-promoted tumorigenesis, Sestrin2 was shown to be an important mediator of p53's control over mTORC1 signaling and tumor cell growth. These results highlight Sestrin2 as a novel tumor suppressor, whose downregulation can accelerate both colitis and colon carcinogenesis.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States.,Department of Biochemistry, University of Nebraska, Lincoln, United States
| | - Xiang Xue
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Sadeesh K Ramakrishnan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Sim Namkoong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Insook Jang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Ian A Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Allison Ho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Hwan-Woo Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States.,Department of Cell Biology, College of Medicine, Konyang University, Daejeon, Republic of Korea.,Myung-Gok Eye Research Institute, Konyang University, Seoul, Republic of Korea
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
50
|
Viennois E, Ingersoll SA, Ayyadurai S, Zhao Y, Wang L, Zhang M, Han MK, Garg P, Xiao B, Merlin D. Critical role of PepT1 in promoting colitis-associated cancer and therapeutic benefits of the anti-inflammatory PepT1-mediated tripeptide KPV in a murine model. Cell Mol Gastroenterol Hepatol 2016; 2:340-357. [PMID: 27458604 PMCID: PMC4957955 DOI: 10.1016/j.jcmgh.2016.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The human intestinal peptide transporter 1, hPepT1, is expressed in the small intestine at low levels in the healthy colon and upregulated during inflammatory bowel disease. hPepT1 plays a role in mouse colitis and human studies have demonstrated that chronic intestinal inflammation leads to colorectal cancer (colitis-associated cancer; CAC). Hence, we assessed here the role of PepT1 in CAC. METHODS Mice with hPepT1 overexpression in intestinal epithelial cells (TG) or PepT1 (PepT1-KO) deletion were used and CAC was induced by AOM/DSS. RESULTS TG mice had larger tumor sizes, increased tumor burdens, and increased intestinal inflammation compared to WT mice. Conversely, tumor number and size and intestinal inflammation were significantly decreased in PepT1-KO mice. Proliferating crypt cells were increased in TG mice and decreased in PepT1-KO mice. Analysis of human colonic biopsies revealed an increased expression of PepT1 in patients with colorectal cancer, suggesting that PepT1 might be targeted for the treatment of CAC. The use of an anti-inflammatory tripeptide KPV (Lys-Pro-Val) transported by PepT1 was able to prevent carcinogenesis in WT mice. When administered to PepT1-KO mice, KPV did not trigger any of the inhibitory effect on tumorigenesis observed in WT mice. CONCLUSIONS The observations that pepT1 was highly expressed in human colorectal tumor and that its overexpression and deletion in mice increased and decreased colitis associated tumorigenesis, respectively, suggest that PepT1 is a potential therapeutic target for the treatment of colitis associated tumorigenesis.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
- Correspondence Address correspondence to: Emilie Viennois, PhD, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 757, Atlanta, Georgia 30303. fax: (404) 413-3580.Institute for Biomedical SciencesGeorgia State University100 Piedmont AvenuePSC 757AtlantaGeorgia 30303
| | - Sarah A. Ingersoll
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Saravanan Ayyadurai
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Yuan Zhao
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Lixin Wang
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Moon K. Han
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Pallavi Garg
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Bo Xiao
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Didier Merlin
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|