1
|
Yang X, Wang X, Zhang M, Shen Y, Teng Y, Li M, Pan H. Gut Mycobiota of Three Rhinopithecus Species Provide New Insights Into the Association Between Diet and Environment. Integr Zool 2024. [PMID: 39690132 DOI: 10.1111/1749-4877.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024]
Abstract
Gut mycobiota are part of the gut microbiome, typically derived from the host diet and living environment. In this study, we examined the gut mycobiota of three snub-nosed monkeys: Rhinopithecus roxellana, R. bieti, and R. strykeri using next-generation amplicon sequencing targeting the fungal internal transcribed spacer. The alpha diversity indexes of gut mycobiota in R. bieti were significantly higher than R. roxellana and R. strykeri, the beta diversity indicated that R. roxellana and R. bieti had more similar feeding habits. Core mycobiota demonstrated commonalities among the three species and potentially associated with feeding habits. Mycobiota displaying significant differences exhibited the respective characteristics of the host, likely associated with the hosts' living environment. Among them, animal and plant pathogenic fungi and lichen parasites are potential threats to the survival of snub-nosed monkeys for their pathogenicity to both monkeys and their food plants. Functionally, fungal trophic modes and functional guilds revealed a strong association between gut mycobiota and host diet. We found a higher abundance and more significant correlations with lichen parasitic fungi in R. strykeri than the other two species, indicating potential threats to their foods. Accordingly, this study revealed the basic structures of gut mycobiota of three wild Rhinopithecus species and highlighted the associations between gut mycobiota and their feeding habits and living environments. Furthermore, due to the close connection between fungi and the environment, animals could ingest fungi from their diet; thus, we speculate that gut mycobiota may serve a role in environmental monitoring for wildlife.
Collapse
Affiliation(s)
- Xuanyi Yang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mingyi Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
La Monica MB, Raub B, Hartshorn S, Gustat AL, Grdic J, Kirby TO, Townsend JR, Sandrock J, Ziegenfuss TN. The effects of AG1® supplementation on the gut microbiome of healthy adults: a randomized, double-blind, placebo-controlled clinical trial. J Int Soc Sports Nutr 2024; 21:2409682. [PMID: 39352252 PMCID: PMC11445888 DOI: 10.1080/15502783.2024.2409682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND This study aimed to examine the effect of a commercially available multi-ingredient powder (AG1Ⓡ) on the gut microbiome and assess the impact of AG1Ⓡ on GI tolerability and other clinical safety markers in healthy men and women. METHODS Using a double-blind, randomized, two-arm, placebo-controlled, parallel design, we examined a 4-week daily supplementation regimen of AG1Ⓡ vs. placebo (PL). Fifteen men and 15 women provided stool samples for microbiome analysis, questionnaires for digestive quality of life (DQLQ), and completed visual analog scales (VAS) and Bristol stool charts to assess stool consistency and bowel frequency before and after the 4-week intervention. Participant's blood work (CBC, CMP, and lipid panel) was also assessed before and after the 4-week intervention. Alpha diversity was determined by Shannon and Chao1 index scores and evaluated by a two-way ANOVA, beta diversity in taxonomic abundances and functional pathways was visualized using partial least squares-discriminant analyses and statistically evaluated by PERMANOVA. To identify key biomarkers, specific feature differences in taxonomic relative abundance and normalized functional pathway counts were analyzed by linear discriminant analysis (LDA) effect size (LEfSe). Questionnaires, clinical safety markers, and hemodynamics were evaluated by mixed factorial ANOVAs with repeated measures. This study was registered on clinicaltrials.gov (NCT06181214). RESULTS AG1Ⓡ supplementation enriched two probiotic taxa (Lactobacillus acidophilus and Bifidobacterium bifidum) that likely stem from the probiotics species that exist in the product, as well as L. lactis CH_LC01 and Acetatifactor sp900066565 ASM1486575v1 while reducing Clostridium sp000435835. Regarding community function, AG1Ⓡ showed an enrichment of two functional pathways while diminishing none. Alternatively, the PL enriched six, but diminished five functional pathways. Neither treatment negatively impacted the digestive quality of life via DQLQ, bowel frequency via VAS, or stool consistency via VAS and Bristol. However, there may have been a greater improvement in the DQLQ score (+62.5%, p = 0.058, d = 0.73) after four weeks of AG1Ⓡ supplementation compared to a reduction (-50%) in PL. Furthermore, AG1Ⓡ did not significantly alter clinical safety markers following supplementation providing evidence for its safety profile. CONCLUSIONS AG1Ⓡ can be consumed safely by healthy adults over four weeks with a potential beneficial impact in their digestive symptom quality of life.
Collapse
Affiliation(s)
| | - Betsy Raub
- The Center for Applied Health Sciences, Canfield, OH, USA
| | | | | | - Jodi Grdic
- The Center for Applied Health Sciences, Canfield, OH, USA
| | - Trevor O. Kirby
- AG1, Research, Nutrition, and Innovation, Carson City, NV, USA
| | - Jeremy R. Townsend
- AG1, Research, Nutrition, and Innovation, Carson City, NV, USA
- Concordia University Chicago, Health & Human Performance, River Forest, IL, USA
| | - Jen Sandrock
- The Center for Applied Health Sciences, Canfield, OH, USA
| | | |
Collapse
|
3
|
Hao Z, Lu Y, Hao Y, Luo Y, Wu K, Zhu C, Shi P, Zhu F, Lin Y, Zeng X. Fungal mycobiome dysbiosis in choledocholithiasis concurrent with cholangitis. J Gastroenterol 2024:10.1007/s00535-024-02183-y. [PMID: 39604579 DOI: 10.1007/s00535-024-02183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The gut mycobiome might have an important influence on the pathogenesis of choledocholithiasis concurrent with cholangitis (CC). The aim of this study was to characterize the fungal mycobiome profiles, explore the correlation and equilibrium of gut interkingdom network among bacteria-fungi-metabolites triangle in CCs. METHODS In a retrospective case-control study, we recruited patients with CC (n = 25) and healthy controls (HCs) (n = 25) respectively to analyze the gut fungal dysbiosis. Metagenomic sequencing was employed to characterize the gut mycobiome profiles, and liquid chromatography/mass spectrometry (LC/MS) analysis was used to quantify the metabolites composition. RESULTS The Shannon index displayed a reduction in fungal α-diversity in CCs compared to HCs (p = 0.041), and the overall fungal composition differed significantly between two groups. The dominant 7 fungi species with the remarkable altered abundance were identified (LDA score > 3.0, p < 0.05), including CC-enriched Aspergillus_niger and CC-depleted fungi Saccharomyces_boulardii. In addition, the correlations between CC-related fungi and clinical variables in CCs were analyzed. Moreover, the increased abundance ratio of Basidiomycota-to-Ascomycota and a dense linkage of bacteria-fungi interkingdom network in CCs were demonstrated. Finally, we identified 30 markedly altered metabolites in CCs (VIP > 1.0 and p < 0.05), including low level of acetate and butyrate, and the deeper understanding on the complexity of bacteria-fungi-metabolites triangle involving bile inflammation was verified. CONCLUSION Our investigation demonstrated a distinct gut fungal dysbiosis in CCs and proposed that, beyond bacteria, the more attention should be paid to significantly potential influence of fungi and bacteria-fungi-metabolites triangle interkingdom interactions on pathogenesis of CC.
Collapse
Affiliation(s)
- Zhiyuan Hao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yiting Lu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yarong Hao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yuanyuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Kaiming Wu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Changpeng Zhu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Peimei Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Feng Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
4
|
Bai H, Lai Z, Zhang J, Zheng X, Zhang J, Jin W, Lin L, Mao S. Host genetic regulation of specific functional groups in the rumen microbiome of dairy cows: Implications for lactation trait. J Adv Res 2024:S2090-1232(24)00531-9. [PMID: 39537026 DOI: 10.1016/j.jare.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Ruminants play a pivotal role in our society by transforming non-consumable substances from industrial by-products and plant fibers into valuable resources such as meat and milk. This remarkable conversion ability is primarily attributed to the rumen microbiota, which is influenced by various factors, including diet, climate, and geographical location. In recent years, increasing research has shown that host factors (breed, genetic variation, etc.) also play vital roles in shaping rumen microbial composition and function in cattle. OBJECTIVE This study aims to provide a theoretical basis and an opportunity for further investigating the regulation of lactation traits in dairy cows through host genetics and the interaction with the rumen microbiota. METHOD To investigate the interactions between host genotype, rumen microbiota, and animal phenotype, we curated and analyzed the dairy herd improvement data, single nucleotide polymorphisms (SNPs) genotypes, and 16S rumen microbiota data from 1,169 Holstein dairy cows. Heritability and microbiability estimation, along with genome-wide association studies, were performed to identify candidate microorganisms and host genetic loci. RESULT We identified thirty-one heritable taxa, whose functions were predominantly enriched in carbohydrate metabolism and energy metabolism. The genome-wide association study revealed that nine heritable bacteria were significantly associated with forty-three SNPs. Functional genes located within or near these SNPs were primarily associated with rumen epithelial development. Additionally, these nine heritable bacteria were primarily annotated as complex polysaccharide degraders and butyrate producers, such as Fibrobacter sp900143055 and Pseudoruminococcus massiliensis, which showed significant associations with milk yield and milk fat percentage. Compared to previous studies, we newly discovered the existence of a high heritability of Olsenella umbonate, Butyrivibrio hungatei, among others. CONCLUSION This study identified thirty-one heritable bacterial taxa in Holstein dairy cows' rumen microbiota, with nine showing significant associations with forty-three SNPs related to rumen epithelial development. The discovery of novel heritable species and their correlations with lactation traits provides valuable insights for future breeding strategies aimed at improving dairy cattle productivity through the manipulation of host genetics and rumen microbiota.
Collapse
Affiliation(s)
- Hao Bai
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Lai
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawei Zhang
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Zheng
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiyou Zhang
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Limei Lin
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Center for Ruminant Nutrition and Clean Production Innovation, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Moonsamy G, Roets-Dlamini Y, Langa CN, Ramchuran SO. Advances in Yeast Probiotic Production and Formulation for Preventative Health. Microorganisms 2024; 12:2233. [PMID: 39597622 PMCID: PMC11596959 DOI: 10.3390/microorganisms12112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The use of probiotics has been gaining popularity in terms of inclusion into human diets over recent years. Based on properties exerted by these organisms, several benefits have been elucidated and conferred to the host. Bacteria have been more commonly used in probiotic preparations compared to yeast candidates; however, yeast exhibit several beneficial properties, such as the prevention and treatment of diarrhea, the production of antimicrobial agents, the prevention of pathogen adherence to intestinal sites, the maintenance of microbial balance, the modulation of the immune system, antibiotic resistance, amongst others. Saccharomyces boulardii is by far the most studied strain; however, the potential for the use of other yeast candidates, such as Kluyveromyces lactis and Debaryomyces hansenii, amongst others, have also been evaluated in this review. Furthermore, a special focus has been made regarding the production considerations for yeast-based probiotics and their formulation into different delivery formats. When drafting this review, evidence suggests that the use of yeasts, both wild-type and genetically modified candidates, can extend beyond gut health to support skin, the respiratory system, and overall immune health. Hence, this review explores the potential of yeast probiotics as a safe, effective strategy for preventative health in humans, highlighting their mechanisms of action, clinical applications, and production considerations.
Collapse
Affiliation(s)
- Ghaneshree Moonsamy
- Council for Scientific and Industrial Research (CSIR) Future Production Chemicals, Meiring Naude Drive, Pretoria 0081, South Africa; (Y.R.-D.); (C.N.L.); (S.O.R.)
| | | | | | | |
Collapse
|
6
|
Ghozzi M, Mankai A, Mechi F, Ben Chedly Z, Kallala O, Melayah S, Trabelsi A, Ghedira I. High frequency of anti-Saccharomyces cerevisiae antibodies in chronic hepatitis C. Arab J Gastroenterol 2024; 25:378-382. [PMID: 39289081 DOI: 10.1016/j.ajg.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND AND STUDY AIM Chronic hepatitis C (CHC) is a liver disease caused by the hepatitis C virus. Anti-Saccharomyces cerevisiae (S. cerevisiae) antibodies (ASCA) are frequently reported in autoimmune diseases but rarely in viral infections. We aimed to determine the frequency of ASCA in adult patients with CHC. PATIENTS AND METHODS Eighty-eight patients with CHC and 160 healthy blood donors were included in this study. ASCA-IgG and IgA levels were determined using enzyme linked immunosorbent assay. For statistical analysis, we used open EPI version 3 as software. Correlations were determined by Spearman's test using IBM® SPSS® Statistics. RESULTS ASCA (IgG or IgA) were present in 31.8 % of patients and in 3.7 % of controls (p < 10-6). ASCA-IgG and ASCA-IgA were more frequent in patients with CHC than in healthy subjects (23.9 % vs. 3.1 %; p < 10-5 and 9.1 % vs. 0.6 %; p = 0.002, respectively). In patients, mean levels of ASCA-IgG and IgA were significantly higher than in controls (9.95 ± 11.78 U/mL vs. 2.28 ± 2.86 U/mL, p < 10-6 and 5.96 ± 7.69 U/mL vs. 0.56 ± 0.12 U/mL, p < 10-6; respectively). In patients with CHC, the mean level of ASCA-IgG was significantly higher than that of ASCA-IgA (9.95 ± 11.78 U/mL vs. 5.96 ± 7.69 U/mL, p = 0.008). CONCLUSION The frequency of ASCA was significantly higher in patients with CHC than in healthy controls.
Collapse
Affiliation(s)
- Mariam Ghozzi
- Department of Immunology, Faculty of Pharmacy, Monastir University, Monastir, Tunisia; Laboratory of Immunology, Farhat Hached Hospital, Sousse, Tunisia; Research Unit "Epidemiology and Immunogenetics of Viral Infections, LR14SP02", Sahloul University Hospital, Sousse, Tunisia.
| | - Amani Mankai
- High School of Sciences and Techniques of Health, Tunis El Manar University, Tunis, Tunisia; Research Unit "Obesity: Etiopathology and Treatment, UR18ES01", National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Fatma Mechi
- Department of Immunology, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Zeineb Ben Chedly
- Department of Immunology, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Ouafa Kallala
- Research Unit "Epidemiology and Immunogenetics of Viral Infections, LR14SP02", Sahloul University Hospital, Sousse, Tunisia; Laboratory of Microbiology, Sahloul University Hospital, Sousse, Tunisia; Department of Microbiology, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Sarra Melayah
- Department of Immunology, Faculty of Pharmacy, Monastir University, Monastir, Tunisia; Laboratory of Immunology, Farhat Hached Hospital, Sousse, Tunisia; LR12SP11, Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Abdelhalim Trabelsi
- Research Unit "Epidemiology and Immunogenetics of Viral Infections, LR14SP02", Sahloul University Hospital, Sousse, Tunisia; Laboratory of Microbiology, Sahloul University Hospital, Sousse, Tunisia; Department of Microbiology, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Ibtissem Ghedira
- Department of Immunology, Faculty of Pharmacy, Monastir University, Monastir, Tunisia; Laboratory of Immunology, Farhat Hached Hospital, Sousse, Tunisia
| |
Collapse
|
7
|
Gentili M, Sabbatini S, Nunzi E, Lusenti E, Cari L, Mencacci A, Ballet N, Migliorati G, Riccardi C, Ronchetti S, Monari C. Glucocorticoid-Induced Leucine Zipper Protein and Yeast-Extracted Compound Alleviate Colitis and Reduce Fungal Dysbiosis. Biomolecules 2024; 14:1321. [PMID: 39456254 PMCID: PMC11506796 DOI: 10.3390/biom14101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, poorly understood pathogenesis and lack long-lasting effective treatments. Recent research suggests that intestinal fungal dysbiosis may play a role in IBD development. This study investigates the effects of the glucocorticoid-induced leucine zipper protein (GILZp)", known for its protective role in gut mucosa, and a yeast extract (Py) with prebiotic properties, either alone or combined, in DSS-induced colitis. Both treatments alleviated symptoms via overlapping or distinct mechanisms. In particular, they reduced the transcription levels of pro-inflammatory cytokines IL-1β and TNF-α, as well as the expression of the tight junction protein Claudin-2. Additionally, GILZp increased MUC2 transcription, while Py reduced IL-12p40 and IL-6 levels. Notably, both treatments were effective in restoring the intestinal burden of clinically important Candida and related species. Intestinal mycobiome analysis revealed that they were able to reduce colitis-associated fungal dysbiosis, and this effect was mainly the result of a decreased abundance of the Meyerozima genus, which was dominant in colitic mice. Overall, our results suggest that combined treatment regimens with GILZp and Py could represent a new strategy for the treatment of IBD by targeting multiple mechanisms, including the fungal dysbiosis.
Collapse
Affiliation(s)
- Marco Gentili
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Eleonora Lusenti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Luigi Cari
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Antonella Mencacci
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Nathalie Ballet
- Lesaffre Institute of Science & Technology, Lesaffre International, 59700 Marcq-en-Baroeul, France;
| | - Graziella Migliorati
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| |
Collapse
|
8
|
Chen J, Chen B, Lin B, Huang Y, Li J, Li J, Chen Z, Wang P, Ran B, Yang J, Huang H, Liu L, Wei Q, Ai J, Cao D. The role of gut microbiota in prostate inflammation and benign prostatic hyperplasia and its therapeutic implications. Heliyon 2024; 10:e38302. [PMID: 39386817 PMCID: PMC11462338 DOI: 10.1016/j.heliyon.2024.e38302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Background The gut microbiota thrives in a complex ecological environment and its dynamic balance is closely related to host health. Recent studies have shown that the occurrence of various diseases including prostate inflammation is related to the dysregulation of the gut microbiome. Objective This review focus on the mechanisms by which the gut microbiota induces prostate inflammation and benign prostatic hyperplasia and its therapeutic implications. Materials and methods Publications related to gut microbiota, prostate inflammation, and benign prostatic hyperplasia (BPH) until April 2023 were systematically reviewed. The research questions were formulated using the Problem, Intervention, Comparison/Control, and Outcome (PICO) frameworks. Results Fifteen articles covering the relationship between the gut microbiota and prostate inflammation/BPH, the mechanisms by which the gut microbiota influences prostate inflammation and BPH, and potential therapeutic approaches targeting the gut microbiota for these conditions were included. Conclusion Short-chain fatty acids (SCFAs), which are metabolites of the intestinal microbiota, protect the integrity of the intestinal barrier, regulate immunity, and inhibit inflammation. However, dysregulation of the gut microbiota significantly reduces the SCFA content in feces and impairs the integrity of the gut barrier, leading to the translocation of bacteria and bacterial components such as lipopolysaccharide, mediating the development of prostate inflammation through microbe-associated molecular patterns (MAMPs).
Collapse
Affiliation(s)
- Jie Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Bin Lin
- West China Hospital, Sichuan University, Jintang Hospital, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Puze Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Biao Ran
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jiahao Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Huijian Huang
- Department of Urology, Karamay people's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Zheng X, Qian Y, Wang L. Causal relationship between gut microbiota and insulin-like growth factor 1: a bidirectional two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1406132. [PMID: 39386166 PMCID: PMC11463061 DOI: 10.3389/fcimb.2024.1406132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background The causal relationship between gut microbiota and insulin-like growth factor 1 (IGF-1) remains unclear. The purpose of this study was to explore the causal relationship between gut microbiota and IGF-1 in men and women. Methods Single-nucleotide polymorphisms (SNPs) related to gut microbiota were derived from pooled statistics from large genome-wide association studies (GWASs) published by the MiBioGen consortium. Pooled data for IGF-1 were obtained from a large published GWAS. We conducted Mendelian randomization (MR) analysis, primarily using the inverse variance weighted (IVW) method. Additionally, we performed sensitivity analyses to enhance the robustness of our results, focusing on assessing heterogeneity and pleiotropy. Results In forward MR analysis, 11 bacterial taxa were found to have a causal effect on IGF-1 in men; 14 bacterial taxa were found to have a causal effect on IGF-1 in women (IVW, all P < 0.05). After false discovery rate (FDR) correction, all bacterial traits failed to pass the FDR correction. In reverse MR analysis, IGF-1 had a causal effect on nine bacterial taxa in men and two bacterial taxa in women respectively (IVW, all P < 0.05). After FDR correction, the causal effect of IGF-1 on order Actinomycetales (PFDR = 0.049) remains in men. The robustness of the IVW results was further confirmed after heterogeneity and pleiotropy analysis. Conclusion Our study demonstrates a bidirectional causal link between the gut microbiota and IGF-1, in both men and women.
Collapse
Affiliation(s)
- Xuejie Zheng
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuping Qian
- Department of Neonatology, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Lili Wang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Das M, Dam S. Evaluation of probiotic efficacy of indigenous yeast strain, Saccharomyces cerevisiae Y-89 isolated from a traditional fermented beverage of West Bengal, India having protective effect against DSS-induced colitis in experimental mice. Arch Microbiol 2024; 206:398. [PMID: 39254791 DOI: 10.1007/s00203-024-04128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Increasing awareness regarding health promotion and disease prevention has driven inclusion of fermented foods and beverages in the daily diet. These are the enormous sources of beneficial microbes, probiotics. This study aims to isolate yeast strains having probiotic potential and effectivity against colitis. Initially, ninety-two yeast strains were isolated from Haria, an ethnic fermented beverage of West Bengal, India. Primary screening was done by their acid (pH 4) and bile salt (0.3%) tolerance ability. Four potent isolates were selected and found effective against Entamoeba histolytica, as this human pathogen is responsible to cause colitis. They were identified as Saccharomyces cerevisiae. They showed luxurious growth even at 37 oC, tolerance up to 5% of NaCl, resistance to gastric juice and high bile salt (2.0%) and oro-gastrointestinal transit tolerance. They exhibited good auto-aggregation and co-aggregation ability and strong hydrophobicity. Finally, heat map and principal component analysis revealed that strain Y-89 was the best candidate. It was further characterised and found to have significant protective effects against DSS-induced colitis in experimental mice model. It includes improvement in colon length, body weight and organ indices; reduction in disease activity index; reduction in cholesterol, LDL, SGPT, SGOT, urea and creatinine levels; improvement in HDL, ALP, total protein and albumin levels; decrease in coliform count and restoration of tissue damage. This study demonstrates that the S. cerevisiae strain Y-89 possesses remarkable probiotic traits and can be used as a potential bio-therapeutic candidate for the prevention of colitis.
Collapse
Affiliation(s)
- Moubonny Das
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
11
|
Saenz E, Montagut NE, Wang B, Stein-Thöringer C, Wang K, Weng H, Ebert M, Schneider KM, Li L, Teufel A. Manipulating the Gut Microbiome to Alleviate Steatotic Liver Disease: Current Progress and Challenges. ENGINEERING 2024; 40:51-60. [DOI: 10.1016/j.eng.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Liu C, Shao J. Therapy of traditional Chinese medicine in Candida spp. and Candida associated infections: A comprehensive review. Fitoterapia 2024; 177:106139. [PMID: 39047847 DOI: 10.1016/j.fitote.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Candida spp. are commonly a group of opportunistic dimorphic fungi, frequently causing diverse fungal infections in immunocompromised or immunosuppressant patients from mucosal disturbs (oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated infections (systemic candidiasis) with high morbidity and mortality. Importantly, several Candida species can be isolated from diseased individuals with digestive, neuropathic, respiratory, metabolic and autoimmune diseases. Due to increased resistance to conventional antifungal agents, the arsenal for antifungal purpose is in urgent need. Traditional Chinese Medicines (TCMs) are a huge treasury that can be used as promising candidates for antimycotic applications. In this review, we make a short survey of microbiological (morphology and virulence) and pathological (candidiasis and Candida related infections) features of and host immune response (innate and adaptive immunity) to Candida spp.. Based on the chemical structures and well-studied antifungal mechanisms, the monomers, extracts, decoctions, essential oils and other preparations of TCMs that are reported to have fair antifungal activities or immunomodulatory effects for anticandidal purpose are comprehensively reviewed. We also emphasize the importance of combination and drug pair of TCMs as useful anticandidal strategies, as well as network pharmacology and molecular docking as beneficial complements to current experimental approaches. This review construct a therapeutic module that can be helpful to guide in-future experimental and preclinical studies in the combat against fungal threats aroused by C. albicans and non-albicans Candida species.
Collapse
Affiliation(s)
- Chengcheng Liu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
13
|
Wu WC, Pan YF, Zhou WD, Liao YQ, Peng MW, Luo GY, Xin GY, Peng YN, An T, Li B, Luo H, Barrs VR, Beatty JA, Holmes EC, Zhao W, Shi M, Shu Y. Meta-transcriptomic analysis of companion animal infectomes reveals their diversity and potential roles in animal and human disease. mSphere 2024; 9:e0043924. [PMID: 39012105 PMCID: PMC11351045 DOI: 10.1128/msphere.00439-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Companion animals such as cats and dogs harbor diverse microbial communities that can potentially impact human health due to close and frequent contact. To better characterize their total infectomes and assess zoonotic risks, we characterized the overall infectomes of companion animals (cats and dogs) and evaluated their potential zoonotic risks. Meta-transcriptomic analyses were performed on 239 samples from cats and dogs collected across China, identifying 24 viral species, 270 bacterial genera, and two fungal genera. Differences in the overall microbiome and infectome composition were compared across different animal species (cats or dogs), sampling sites (rectal or oropharyngeal), and health status (healthy or diseased). Diversity analyses revealed that viral abundance was generally higher in diseased animals compared to healthy ones, while differences in microbial composition were mainly driven by sampling site, followed by animal species and health status. Disease association analyses validated the pathogenicity of known pathogens and suggested potential pathogenic roles of previously undescribed bacteria and newly discovered viruses. Cross-species transmission analyses identified seven pathogens shared between cats and dogs, such as alphacoronavirus 1, which was detected in both oropharyngeal and rectal swabs albeit with differential pathogenicity. Further analyses showed that some viruses, like alphacoronavirus 1, harbored multiple lineages exhibiting distinct pathogenicity, tissue, or host preferences. Ultimately, a systematic evolutionary screening identified 27 potential zoonotic pathogens in this sample set, with far more bacterial than viral species, implying potential health threats to humans. Overall, our meta-transcriptomic analysis reveals a landscape of actively transcribing microorganisms in major companion animals, highlighting key pathogens, those with the potential for cross-species transmission, and possible zoonotic threats. IMPORTANCE This study provides a comprehensive characterization of the entire community of infectious microbes (viruses, bacteria, and fungi) in companion animals like cats and dogs, termed the "infectome." By analyzing hundreds of samples from across China, the researchers identified numerous known and novel pathogens, including 27 potential zoonotic agents that could pose health risks to both animals and humans. Notably, some of these zoonotic pathogens were detected even in apparently healthy pets, highlighting the importance of surveillance. The study also revealed key microbial factors associated with respiratory and gastrointestinal diseases in pets, as well as potential cross-species transmission events between cats and dogs. Overall, this work sheds light on the complex microbial landscapes of companion animals and their potential impacts on animal and human health, underscoring the need for monitoring and management of these infectious agents.
Collapse
Affiliation(s)
- Wei-Chen Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuan-Fei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wu-Di Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yu-Qi Liao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Min-Wu Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Geng-Yan Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gen-Yang Xin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ya-Ni Peng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Tongqing An
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Li
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary, Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Hong Kong SAR, China
| | - Julia A. Beatty
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Hong Kong SAR, China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Wenjing Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Mang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Wang A, Zhai Z, Ding Y, Wei J, Wei Z, Cao H. The oral-gut microbiome axis in inflammatory bowel disease: from inside to insight. Front Immunol 2024; 15:1430001. [PMID: 39131163 PMCID: PMC11310172 DOI: 10.3389/fimmu.2024.1430001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic and persistent inflammatory illness of the bowels, leading to a substantial burden on both society and patients due to its high incidence and recurrence. The pathogenesis of IBD is multifaceted, partly attributed to the imbalance of immune responses toward the gut microbiota. There is a correlation between the severity of the disease and the imbalance in the oral microbiota, which has been discovered in recent research highlighting the role of oral microbes in the development of IBD. In addition, various oral conditions, such as angular cheilitis and periodontitis, are common extraintestinal manifestations (EIMs) of IBD and are associated with the severity of colonic inflammation. However, it is still unclear exactly how the oral microbiota contributes to the pathogenesis of IBD. This review sheds light on the probable causal involvement of oral microbiota in intestinal inflammation by providing an overview of the evidence, developments, and future directions regarding the relationship between oral microbiota and IBD. Changes in the oral microbiota can serve as markers for IBD, aiding in early diagnosis and predicting disease progression. Promising advances in probiotic-mediated oral microbiome modification and antibiotic-targeted eradication of specific oral pathogens hold potential to prevent IBD recurrence.
Collapse
Affiliation(s)
- Aili Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Zihan Zhai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhiqiang Wei
- Department of Orthodontics, Tianjin Stomatological Hospital School of Medicine, Nankai University, Tianjin, China
- Tianjin Key laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Ghannoum MA, Elshaer M, Al-Shakhshir H, Retuerto M, McCormick TS. A Probiotic Amylase Blend Positively Impacts Gut Microbiota Modulation in a Randomized, Placebo-Controlled, Double-Blind Study. Life (Basel) 2024; 14:824. [PMID: 39063578 PMCID: PMC11277872 DOI: 10.3390/life14070824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The present study was performed to determine if ingesting a blend of probiotics plus amylase would alter the abundance and diversity of gut microbiota in subjects consuming the blend over a 6-week period. 16S and ITS ribosomal RNA (rRNA) sequencing was performed on fecal samples provided by subjects who participated in a clinical study where they consumed either a probiotic amylase blend (Bifidobacterium breve 19bx, Lactobacillus acidophilus 16axg, Lacticaseibacillus rhamnosus 18fx, and Saccharomyces boulardii 16mxg, alpha amylase (500 SKB (Alpha-amylase-Dextrinizing Units)) or a placebo consisting of rice oligodextrin. The abundance and diversity of both bacterial and fungal organisms was assessed at baseline and following 6 weeks of probiotic amylase blend or placebo consumption. In the subjects consuming the probiotic blend, the abundance of Saccharomyces cerevisiae increased 200-fold, and its prevalence increased (~20% to ~60%) (p ≤ 0.05), whereas the potential pathogens Bacillus thuringiensis and Macrococcus caseolyticus decreased more than 150- and 175-fold, respectively, after probiotic-amylase blend consumption. We also evaluated the correlation between change in microbiota and clinical features reported following probiotic amylase consumption. Nine (9) species (seven bacterial and two fungal) were significantly (negatively or positively) associated with the change in 32 clinical features that were originally evaluated in the clinical study. Oral supplementation with the probiotic-amylase blend caused a marked increase in abundance of the beneficial yeast S. cerevisiae and concomitant modulation of gut-dwelling commensal bacterial organisms, providing the proof of concept that a beneficial commensal organism can re-align the gut microbiota.
Collapse
Affiliation(s)
- Mahmoud A. Ghannoum
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Mohammed Elshaer
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hilmi Al-Shakhshir
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mauricio Retuerto
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas S. McCormick
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Liang Y, Jiang Z, Fu Y, Lu S, Miao Z, Shuai M, Liang X, Gou W, Zhang K, Shi RQ, Gao C, Shi MQ, Wang XH, Hu WS, Zheng JS. Cross-Sectional and Prospective Association of Serum 25-Hydroxyvitamin D with Gut Mycobiota during Pregnancy among Women with Gestational Diabetes. Mol Nutr Food Res 2024; 68:e2400022. [PMID: 38763911 DOI: 10.1002/mnfr.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/30/2024] [Indexed: 05/21/2024]
Abstract
SCOPE Little is known about the effect of blood vitamin D status on the gut mycobiota (i.e., fungi), a crucial component of the gut microbial ecosystem. The study aims to explore the association between 25-hydroxyvitamin D [25(OH)D] and gut mycobiota and to investigate the link between the identified mycobial features and blood glycemic traits. METHODS AND RESULTS The study examines the association between serum 25(OH)D levels and the gut mycobiota in the Westlake Precision Birth Cohort, which includes pregnant women with gestational diabetes mellitus (GDM). The study develops a genetic risk score (GRS) for 25(OH)D to validate the observational results. In both the prospective and cross-sectional analyses, the vitamin D is associated with gut mycobiota diversity. Specifically, the abundance of Saccharomyces is significantly lower in the vitamin D-sufficient group than in the vitamin D-deficient group. The GRS of 25(OH)D is inversely associated with the abundance of Saccharomyces. Moreover, the Saccharomyces is positively associated with blood glucose levels. CONCLUSION Blood vitamin D status is associated with the diversity and composition of gut mycobiota in women with GDM, which may provide new insights into the mechanistic understanding of the relationship between vitamin D levels and metabolic health.
Collapse
Affiliation(s)
- Yuhui Liang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Zengliang Jiang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yuanqing Fu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Sha Lu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Menglei Shuai
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Xinxiu Liang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Ke Zhang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Rui-Qi Shi
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Chang Gao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Mei-Qi Shi
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Xu-Hong Wang
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Wen-Sheng Hu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| |
Collapse
|
17
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mech Dis 2024; 16:e1641. [PMID: 38228159 DOI: 10.1002/wsbm.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
18
|
San Mauro Martín I, López Oliva S, Garicano Vilar E, Sánchez Niño GM, Penadés BF, Terrén Lora A, Sanz Rojo S, Collado Yurrita L. Effects of Gluten on Gut Microbiota in Patients with Gastrointestinal Disorders, Migraine, and Dermatitis. Nutrients 2024; 16:1228. [PMID: 38674918 PMCID: PMC11053402 DOI: 10.3390/nu16081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
As gluten may trigger gastrointestinal disorders (GIDs), its presence or absence in the diet can change the diversity and proportion of gut microbiota. The effects of gluten after six weeks of a double-blind, placebo-controlled intervention with a gluten-free diet (GFD) were studied in participants with GIDs suffering from migraines and atopic dermatitis (n = 46). Clinical biomarkers, digestive symptoms, stool, the Migraine Disability Assessment questionnaire, and zonulin levels were analyzed. Next-generation sequencing was used to amplify the 16S rRNA gene of bacteria and the internal transcribed spacer (ITS) regions of fungi. The GFD increased Chao1 fungal diversity after the intervention, while the fungal composition showed no changes. Bacterial diversity and composition remained stable, but a positive association between bacterial and fungal Chao1 diversity and a negative association between Dothideomycetes and Akkermansia were observed. GIDs decreased in both groups and migraines improved in the placebo group. Our findings may aid the development of GID treatment strategies.
Collapse
Affiliation(s)
- Ismael San Mauro Martín
- Research Centers in Nutrition and Health (CINUSA Group), Paseo de la Habana 43, 28036 Madrid, Spain; (I.S.M.M.); (S.L.O.); (E.G.V.); (G.M.S.N.); (B.F.P.); (A.T.L.); (S.S.R.)
| | - Sara López Oliva
- Research Centers in Nutrition and Health (CINUSA Group), Paseo de la Habana 43, 28036 Madrid, Spain; (I.S.M.M.); (S.L.O.); (E.G.V.); (G.M.S.N.); (B.F.P.); (A.T.L.); (S.S.R.)
| | - Elena Garicano Vilar
- Research Centers in Nutrition and Health (CINUSA Group), Paseo de la Habana 43, 28036 Madrid, Spain; (I.S.M.M.); (S.L.O.); (E.G.V.); (G.M.S.N.); (B.F.P.); (A.T.L.); (S.S.R.)
| | - Guerthy Melissa Sánchez Niño
- Research Centers in Nutrition and Health (CINUSA Group), Paseo de la Habana 43, 28036 Madrid, Spain; (I.S.M.M.); (S.L.O.); (E.G.V.); (G.M.S.N.); (B.F.P.); (A.T.L.); (S.S.R.)
| | - Bruno F. Penadés
- Research Centers in Nutrition and Health (CINUSA Group), Paseo de la Habana 43, 28036 Madrid, Spain; (I.S.M.M.); (S.L.O.); (E.G.V.); (G.M.S.N.); (B.F.P.); (A.T.L.); (S.S.R.)
| | - Ana Terrén Lora
- Research Centers in Nutrition and Health (CINUSA Group), Paseo de la Habana 43, 28036 Madrid, Spain; (I.S.M.M.); (S.L.O.); (E.G.V.); (G.M.S.N.); (B.F.P.); (A.T.L.); (S.S.R.)
| | - Sara Sanz Rojo
- Research Centers in Nutrition and Health (CINUSA Group), Paseo de la Habana 43, 28036 Madrid, Spain; (I.S.M.M.); (S.L.O.); (E.G.V.); (G.M.S.N.); (B.F.P.); (A.T.L.); (S.S.R.)
| | | |
Collapse
|
19
|
García-Gamboa R, Díaz-Torres O, Senés-Guerrero C, Gradilla-Hernández MS, Moya A, Pérez-Brocal V, Garcia-Gonzalez A, González-Avila M. Associations between bacterial and fungal communities in the human gut microbiota and their implications for nutritional status and body weight. Sci Rep 2024; 14:5703. [PMID: 38459054 PMCID: PMC10923939 DOI: 10.1038/s41598-024-54782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
This study examined the interplay between bacterial and fungal communities in the human gut microbiota, impacting on nutritional status and body weight. Cohorts of 10 participants of healthy weight, 10 overweight, and 10 obese individuals, underwent comprehensive analysis, including dietary, anthropometric, and biochemical evaluations. Microbial composition was studied via gene sequencing of 16S and ITS rDNA regions, revealing bacterial (bacteriota) and fungal (mycobiota) profiles. Bacterial diversity exceeded fungal diversity. Statistically significant differences in bacterial communities were found within healthy-weight, overweight, and obese groups. The Bacillota/Bacteroidota ratio (previously known as the Firmicutes/Bacteroidetes ratio) correlated positively with body mass index. The predominant fungal phyla were Ascomycota and Basidiomycota, with the genera Nakaseomyces, Kazachstania, Kluyveromyces, and Hanseniaspora, inversely correlating with weight gain; while Saccharomyces, Debaryomyces, and Pichia correlated positively with body mass index. Overweight and obese individuals who harbored a higher abundance of Akkermansia muciniphila, demonstrated a favorable lipid and glucose profiles in contrast to those with lower abundance. The overweight group had elevated Candida, positively linked to simple carbohydrate consumption. The study underscores the role of microbial taxa in body mass index and metabolic health. An imbalanced gut bacteriota/mycobiota may contribute to obesity/metabolic disorders, highlighting the significance of investigating both communities.
Collapse
Affiliation(s)
- Ricardo García-Gamboa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas No. 800, col Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. General Ramon Corona 2514, Nuevo Mexico, 45138, Zapopan, Jalisco, Mexico
| | - Osiris Díaz-Torres
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, 45138, Zapopan, Jalisco, Mexico
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, 45138, Zapopan, Jalisco, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, 45138, Zapopan, Jalisco, Mexico
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC-UVEG), Valencia, Spain
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Alejandro Garcia-Gonzalez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. General Ramon Corona 2514, Nuevo Mexico, 45138, Zapopan, Jalisco, Mexico
| | - Marisela González-Avila
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas No. 800, col Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
20
|
Chen S, He F, Cheng X. Analysis of subgingival bacterial and fungal diversity in patients with peri-implantitis based on 16sRNA and internal transcribed spacer sequencing. Future Microbiol 2024; 19:397-411. [PMID: 38047905 DOI: 10.2217/fmb-2023-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Aim: To analyze subgingival fungal diversity in peri-implant inflammation patients and their relationship with bacteria. Methods: We collected saliva samples from four groups. 16sRNA and internal transcribed spacer sequencing was performed preceded by quantitative PCR and enzyme-linked immunosorbent assay tests. Analyses were done using R and Cytoscape software. Results: Significant differences were observed in the Abundance-based Coverage Estimator (ACE) index between control and peri-implantitis samples. Basidiomycota was the dominant fungal species, while Firmicutes dominated the bacteria. The most abundant fungal and bacterial species were 's_unclassified g Apiotrichum' and 's_unclassified g Streptococcus', respectively. Dothiorella was strongly associated with immunoglobulin G levels, with positive correlations between specific microorganisms and peri-implantitis in Q-PCR. Conclusion: Our findings have significant clinical implications, suggesting specific fungal and bacterial taxa roles in peri-implant inflammation.
Collapse
Affiliation(s)
- Song Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xi Cheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
21
|
Gaire TN, Scott HM, Noyes NR, Ericsson AC, Tokach MD, William H, Menegat MB, Vinasco J, Nagaraja TG, Volkova VV. Temporal dynamics of the fecal microbiome in female pigs from early life through estrus, parturition, and weaning of the first litter of piglets. Anim Microbiome 2024; 6:7. [PMID: 38383422 PMCID: PMC10882843 DOI: 10.1186/s42523-024-00294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Age-associated changes in the gastrointestinal microbiome of young pigs have been robustly described; however, the temporal dynamics of the fecal microbiome of the female pig from early life to first parity are not well understood. Our objective was to describe microbiome and antimicrobial resistance dynamics of the fecal microbiome of breeding sows from early life through estrus, parturition and weaning of the first litter of piglets (i.e., from 3 to 53 weeks of age). RESULTS Our analysis revealed that fecal bacterial populations in developing gilts undergo changes consistent with major maturation milestones. As the pigs progressed towards first estrus, the fecal bacteriome shifted from Rikenellaceae RC9 gut group- and UCG-002-dominated enterotypes to Treponema- and Clostridium sensu stricto 1-dominated enterotypes. After first estrus, the fecal bacteriome stabilized, with minimal changes in enterotype transition and associated microbial diversity from estrus to parturition and subsequent weaning of first litter piglets. Unlike bacterial communities, fecal fungal communities exhibited low diversity with high inter- and intra-pig variability and an increased relative abundance of certain taxa at parturition, including Candida spp. Counts of resistant fecal bacteria also fluctuated over time, and were highest in early life and subsequently abated as the pigs progressed to adulthood. CONCLUSIONS This study provides insights into how the fecal microbial community and antimicrobial resistance in female pigs change from three weeks of age throughout their first breeding lifetime. The fecal bacteriome enterotypes and diversity are found to be age-driven and established by the time of first estrus, with minimal changes observed during subsequent physiological stages, such as parturition and lactation, when compared to the earlier age-related shifts. The use of pigs as a model for humans is well-established, however, further studies are needed to understand how our results compare to the human microbiome dynamics. Our findings suggest that the fecal microbiome exhibited consistent changes across individual pigs and became more diverse with age, which is a beneficial characteristic for an animal model system.
Collapse
Affiliation(s)
- Tara N Gaire
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - H Morgan Scott
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Noelle R Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Michael D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | - Hayden William
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | - Mariana B Menegat
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | - Javier Vinasco
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| | - Victoriya V Volkova
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
22
|
Sendid B, Cornu M, Cordier C, Bouckaert J, Colombel JF, Poulain D. From ASCA breakthrough in Crohn's disease and Candida albicans research to thirty years of investigations about their meaning in human health. Autoimmun Rev 2024; 23:103486. [PMID: 38040100 DOI: 10.1016/j.autrev.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Anti-Saccharomyces cerevisiae antibodies (ASCA) are human antibodies that can be detected using an enzyme-linked immunosorbent assay involving a mannose polymer (mannan) extracted from the cell wall of the yeast S. cerevisiae. The ASCA test was developed in 1993 with the aim of differentiating the serological response in two forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis. The test, which is based on the detection of anti-oligomannosidic antibodies, has been extensively performed worldwide and there have been hundreds of publications on ASCA. The earlier studies concerned the initial diagnostic indications of ASCA and investigations then extended to many human diseases, generally in association with studies on intestinal microorganisms and the interaction of the micro-mycobiome with the immune system. The more information accumulates, the more the mystery of the meaning of ASCA deepens. Many fundamental questions remain unanswered. These questions concern the heterogeneity of ASCA, the mechanisms of their generation and persistence, the existence of self-antigens, and the relationship between ASCA and inflammation and autoimmunity. This review aims to discuss the gray areas concerning the origin of ASCA from an analysis of the literature. Structured around glycobiology and the mannosylated antigens of S. cerevisiae and Candida albicans, this review will address these questions and will try to clarify some lines of thought. The importance of the questions relating to the pathophysiological significance of ASCA goes far beyond IBD, even though these diseases remain the preferred models for their understanding.
Collapse
Affiliation(s)
- Boualem Sendid
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France; Pôle de Biologie-Pathologie-Génétique, Institut de Microbiologie, Service de Parasitologie-Mycologie, CHU Lille, F-59000 Lille, France.
| | - Marjorie Cornu
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France; Pôle de Biologie-Pathologie-Génétique, Institut de Microbiologie, Service de Parasitologie-Mycologie, CHU Lille, F-59000 Lille, France
| | - Camille Cordier
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France; Pôle de Biologie-Pathologie-Génétique, Institut de Microbiologie, Service de Parasitologie-Mycologie, CHU Lille, F-59000 Lille, France
| | - Julie Bouckaert
- CNRS UMR 8576, Computational Molecular Systems Biology, Université de Lille, F-59000 Lille, France
| | - Jean Frederic Colombel
- Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Poulain
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France.
| |
Collapse
|
23
|
Abstract
The development of novel culture-independent techniques of microbial identification has allowed a rapid progress in the knowledge of the nasopharyngeal microbiota and its role in health and disease. Thus, it has been demonstrated that the nasopharyngeal microbiota defends the host from invading pathogens that enter the body through the upper airways by participating in the modulation of innate and adaptive immune responses. The current COVID-19 pandemic has created an urgent need for fast-track research, especially to identify and characterize biomarkers to predict the disease severity and outcome. Since the nasopharyngeal microbiota diversity and composition could potentially be used as a prognosis biomarker for COVID-19 patients, which would pave the way for strategies aiming to reduce the disease severity by modifying such microbiota, dozens of research articles have already explored the possible associations between changes in the nasopharyngeal microbiota and the severity or outcome of COVID-19 patients. Unfortunately, results are controversial, as many studies with apparently similar experimental designs have reported contradictory data. Herein we put together, compare, and discuss all the relevant results on this issue reported to date. Even more interesting, we discuss in detail which are the limitations of these studies, that probably are the main sources of the high variability observed. Therefore, this work is useful not only for people interested in current knowledge about the relationship between the nasopharyngeal microbiota and COVID-19, but also for researchers who want to go further in this field while avoiding the limitations and variability of previous works.
Collapse
Affiliation(s)
- Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain,Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sylwia D. Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain,Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain,Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain, Victoriano Mulero ; Sergio Candel ; Sylwia D. Tyrkalska Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
24
|
Liu Q, Zhang W, Pei Y, Tao H, Ma J, Li R, Zhang F, Wang L, Shen L, Liu Y, Jia X, Hu Y. Gut mycobiome as a potential non-invasive tool in early detection of lung adenocarcinoma: a cross-sectional study. BMC Med 2023; 21:409. [PMID: 37904139 PMCID: PMC10617124 DOI: 10.1186/s12916-023-03095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-invasive biomarkers for early diagnosis. METHODS In total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy. RESULTS Fungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD. Candida and Saccharomyces were the dominant genera, with a reduction in Candida and an increase in Saccharomyces, Aspergillus, and Apiotrichum in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 0.9538, 0.9628, and 0.8833, respectively. CONCLUSIONS For the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-invasive biomarkers for early-stage diagnosis.
Collapse
Affiliation(s)
- Qingyan Liu
- Graduate School, Chinese People's Liberation Army Medical School, Beijing, China
- Department of Oncology, Fifth Medical Center of the Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Distrist, Beijing, 100000, China
| | - Weidong Zhang
- Graduate School, Chinese People's Liberation Army Medical School, Beijing, China
- Department of Thoracic Surgery, First Medical Center of the Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100000, China
| | - Yanbin Pei
- Graduate School, Chinese People's Liberation Army Medical School, Beijing, China
| | - Haitao Tao
- Department of Oncology, Fifth Medical Center of the Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Distrist, Beijing, 100000, China
| | - Junxun Ma
- Department of Oncology, Fifth Medical Center of the Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Distrist, Beijing, 100000, China
| | - Rong Li
- Department of Health Medicine, Second Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Fan Zhang
- Department of Oncology, Fifth Medical Center of the Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Distrist, Beijing, 100000, China
| | - Lijie Wang
- Department of Oncology, Fifth Medical Center of the Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Distrist, Beijing, 100000, China
| | - Leilei Shen
- Department of Thoracic Surgery, Hainan Medical Center of the Chinese People's Liberation Army General Hospital, Hainan, China
| | - Yang Liu
- Department of Thoracic Surgery, First Medical Center of the Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100000, China.
| | - Xiaodong Jia
- Department of Oncology, Fifth Medical Center of the Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Distrist, Beijing, 100000, China.
| | - Yi Hu
- Department of Oncology, Fifth Medical Center of the Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Distrist, Beijing, 100000, China.
| |
Collapse
|
25
|
Romo JA, Tomihiro M, Kumamoto CA. Pre-colonization with the fungus Candida glabrata exacerbates infection by the bacterial pathogen Clostridioides difficile in a murine model. mSphere 2023; 8:e0012223. [PMID: 37358292 PMCID: PMC10449511 DOI: 10.1128/msphere.00122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 06/27/2023] Open
Abstract
The contributions of commensal fungi to human health and disease are not well understood. Candida species such as C. albicans and C. glabrata are opportunistic pathogenic fungi and common colonizers of the human intestinal tract. They have been shown to affect the host immune system and interact with the gut microbiome and pathogenic microorganisms. Therefore, Candida species could be expected to play important ecological roles in the host gastrointestinal tract. Previously, our group demonstrated that pre-colonization of mice with C. albicans protected them against lethal C. difficile infection (CDI). Here, we show that mice pre-colonized with C. glabrata succumbed to CDI more rapidly than mice that were not pre-colonized suggesting an enhancement in C. difficile pathogenesis. Further, when C. difficile was added to pre-formed C. glabrata biofilms, an increase in matrix and overall biomass was observed. These effects were also shown with C. glabrata clinical isolates. Interestingly, the presence of C. difficile increased C. glabrata biofilm susceptibility to caspofungin, indicating potential effects on the fungal cell wall. Defining this intricate and intimate relationship will lead to an understanding of the role of Candida species in the context of CDI and novel aspects of Candida biology. IMPORTANCE Most microbiome studies have only considered the bacterial populations while ignoring other members of the microbiome such as fungi, other eukaryotic microorganisms, and viruses. Therefore, the role of fungi in human health and disease has been significantly understudied compared to their bacterial counterparts. This has generated a significant gap in knowledge that has negatively impacted disease diagnosis, understanding, and the development of therapeutics. With the development of novel technologies, we now have an understanding of mycobiome composition, but we do not understand the roles of fungi in the host. Here, we present findings showing that Candida glabrata, an opportunistic pathogenic yeast that colonizes the mammalian gastrointestinal tract, can impact the severity and outcome of a Clostridioides difficile infection (CDI) in a murine model. These findings bring attention to fungal colonizers during CDI, a bacterial infection of the gastrointestinal tract.
Collapse
Affiliation(s)
- Jesús A. Romo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Makenzie Tomihiro
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Wu S, Song R, Liu T, Li C. Antifungal therapy: Novel drug delivery strategies driven by new targets. Adv Drug Deliv Rev 2023; 199:114967. [PMID: 37336246 DOI: 10.1016/j.addr.2023.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
In patients with compromised immunity, invasive fungal infections represent a significant cause of mortality. Given the limited availability and drawbacks of existing first-line antifungal drugs, there is a growing interest in exploring novel targets that could facilitate the development of new antifungal agents or enhance the effectiveness of conventional ones. While previous studies have extensively summarized new antifungal targets inherent in fungi for drug development purposes, the exploration of potential targets for novel antifungal drug delivery strategies has received less attention. In this review, we provide an overview of recent advancements in new antifungal drug delivery strategies that leverage novel targets, including those located in the physio-pathological barrier at the site of infection, the infection microenvironment, fungal-host interactions, and the fungal pathogen itself. The objective is to enhance therapeutic efficacy and mitigate toxic effects in fungal infections, particularly in challenging cases such as refractory, recurrent, and drug-resistant invasive fungal infections. We also discuss the current challenges and future prospects associated with target-driven antifungal drug delivery strategies, offering important insights into the clinical implementation of these innovative approaches.
Collapse
Affiliation(s)
- Shuang Wu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China
| | - Ruiqi Song
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China
| | - Tongbao Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China.
| | - Chong Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
27
|
Gryaznova M, Smirnova Y, Burakova I, Morozova P, Nesterova E, Gladkikh M, Mikhaylov E, Syromyatnikov M. Characteristics of the Fecal Microbiome of Piglets with Diarrhea Identified Using Shotgun Metagenomics Sequencing. Animals (Basel) 2023; 13:2303. [PMID: 37508080 PMCID: PMC10376196 DOI: 10.3390/ani13142303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Diarrhea in piglets is one of the most common diseases leading to high mortality and, as a result, to economic losses. Shotgun metagenomic sequencing was performed on the DNBSEQ-G50, MGI system to study the role of the fecal microbiome in the development of diarrhea in newborn piglets. Analysis of the study data showed that the composition of the fecal microbiome at the level of bacteria and fungi did not differ in piglets with diarrhea from the healthy group. Bacteria belonging to the phyla Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria were the most abundant. However, a higher level of bacterial alpha diversity was observed in the group of piglets with diarrhea, which may be due to dysbacteriosis and inflammation. The study of the virome showed the difference between the two types of phages: Bacteroides B40-8 prevailed in diseased piglets, while Escherichia virus BP4 was found in greater numbers in healthy piglets. The results of our study suggest that the association between the fecal microbiome and susceptibility to diarrhea in suckling piglets may have been previously overestimated.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina Nesterova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gladkikh
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Evgeny Mikhaylov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| |
Collapse
|
28
|
Li W, Shu Y, Zhang J, Wu M, Zhu GH, Huang WY, Shen L, Kang Y. Long-term prednisone treatment causes fungal microbiota dysbiosis and alters the ecological interaction between gut mycobiome and bacteriome in rats. Front Microbiol 2023; 14:1112767. [PMID: 37342562 PMCID: PMC10277626 DOI: 10.3389/fmicb.2023.1112767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Glucocorticoids (GCs) are widely used in the treatment of immune-mediated diseases due to their anti-inflammatory and immunosuppressive effects. Prednisone is one of the most commonly used GCs. However, it is still unknown whether prednisone affects gut fungi in rats. Herein we investigated whether prednisone changed the composition of gut fungi and the interactions between gut mycobiome and bacteriome/fecal metabolome in rats. Twelve male Sprague-Dawley rats were randomly assigned to a control group and a prednisone group which received prednisone daily by gavage for 6 weeks. ITS2 rRNA gene sequencing of fecal samples was performed to identify differentially abundant gut fungi. The associations between gut mycobiome and bacterial genera/fecal metabolites obtained from our previously published study were explored by using Spearman correlation analysis. Our data showed that there were no changes in the richness of gut mycobiome in rats after prednisone treatment, but the diversity increased significantly. The relative abundance of genera Triangularia and Ciliophora decreased significantly. At the species level, the relative abundance of Aspergillus glabripes increased significantly, while Triangularia mangenotii and Ciliophora sp. decreased. In addition, prednisone altered the gut fungi-bacteria interkingdom interactions in rats after prednisone treatment. Additionally, the genus Triangularia was negatively correlated with m-aminobenzoic acid, but positively correlated with hydrocinnamic acid and valeric acid. Ciliophora was negatively correlated with phenylalanine and homovanillic acid, but positively correlated with 2-Phenylpropionate, hydrocinnamic acid, propionic acid, valeric acid, isobutyric acid, and isovaleric acid. In conclusion, long-term prednisone treatment caused fungal microbiota dysbiosis and might alter the ecological interaction between gut mycobiome and bacteriome in rats.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Shu
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengmeng Wu
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-hua Zhu
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Kang
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Ghozzi M, Mankai A, Zneidi I, Manoubi W, Melayah S, Mechi F, Trabelsi A, Ghedira I. Serological markers of rheumatoid arthritis in patients with primary biliary cholangitis and the vice versa: A Tunisian study. Immunobiology 2023; 228:152398. [PMID: 37269587 DOI: 10.1016/j.imbio.2023.152398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is an autoimmune disease of the liver characterized by destructive lymphocytic cholangitis and anti-mitochondrial antibodies (AMA). Anti-gp210 and anti-Sp100, are used for the diagnosis of PBC in AMA-negative PBC patients. Patients with PBC have a propensity to have an extrahepatic manifestation which is especially autoimmune. OBJECTIVE We aimed to determine the frequency of serological markers of rheumatoid arthritis (RA) (CCP-Ab or RF) in PBC patients and to do the vice versa. METHODS Our PBC study included 70 patients with PBC and 80 healthy blood donors (HBD) and our RA study included 75 patients with RA and 75 HBD. Anti-cyclic citrullinated peptide antibodies (CCP-Ab) and rheumatoid factor (RF) were performed by indirect ELISA. AMA, anti-Sp100 and anti-gp210 were determined by indirect immunofluorescence. RESULTS RA autoantibodies (CCP-Ab or RF) were more frequent in PBC patients than in HBD (65.7% vs. 8.7% p 〈10-6). CCP-Ab were significantly more frequent in patients than in controls (15.7% vs. 2.5%; p = 0.004). Nine patients had both CCP-Ab and RF vs. none of controls (12.8% vs. 0%; p = 0.001). RF were detected in 45 patients with PBC and in 5 HBD (64.3% vs. 6.2%; p 〈10-6). In PBC patients, RF were more frequent than CCP-Ab (64.3% vs. 15.7%; p 〈10-6). RF-IgG were present in 18.5% of patients; RF-immunoglobulin (Ig) A in 34.3% and RF-IgM in 54.3%. These frequencies were significantly higher than those found in control group (1.2% for RF-IgG (p 〈10-3); 0% for RF-IgA (p 〈10-6); and 6.2% for RF-IgM (p 〈10-6)). In our PBC patients, RF-IgA were more frequent than RF-IgG (34.3% vs. 18.5%; p = 0.03) and than CCP-Ab (34.3% vs. 15.7%; p = 0.01). Six patients had only RF-IgA versus none of the control group (8.6% vs. 0%; p = 0.01). AMA, anti-Sp100 and anti-gp 210 were absent in all RA patients. CONCLUSIONS Serological markers of RA were more frequent in PBC patients than in HBD and the vice versa was not true.
Collapse
Affiliation(s)
- Mariam Ghozzi
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia; Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia; Research Laboratory for "Epidemiology and Immunogenetics of Viral Infections" (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia.
| | - Amani Mankai
- High School of Sciences and Techniques of Health, Tunis El Manar University, Tunis, Tunisia; Research Unit "Obesity: Etiopathology and Treatment, UR18ES01", National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Inssaf Zneidi
- Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
| | - Wiem Manoubi
- Erasmus University Medical Centre, Department of Neuroscience, Rotterdam, Netherlands
| | - Sarra Melayah
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia; Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia; LR12SP11, Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Fatma Mechi
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia; Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
| | - Abdelhalim Trabelsi
- Research Laboratory for "Epidemiology and Immunogenetics of Viral Infections" (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia; Laboratory of Microbiology and Virology, Sahloul University Hospital, Sousse, Tunisia
| | - Ibtissem Ghedira
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia; Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
| |
Collapse
|
30
|
Anderson FM, Visser ND, Amses KR, Hodgins-Davis A, Weber AM, Metzner KM, McFadden MJ, Mills RE, O’Meara MJ, James TY, O’Meara TR. Candida albicans selection for human commensalism results in substantial within-host diversity without decreasing fitness for invasive disease. PLoS Biol 2023; 21:e3001822. [PMID: 37205709 PMCID: PMC10234564 DOI: 10.1371/journal.pbio.3001822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/01/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Candida albicans is a frequent colonizer of human mucosal surfaces as well as an opportunistic pathogen. C. albicans is remarkably versatile in its ability to colonize diverse host sites with differences in oxygen and nutrient availability, pH, immune responses, and resident microbes, among other cues. It is unclear how the genetic background of a commensal colonizing population can influence the shift to pathogenicity. Therefore, we examined 910 commensal isolates from 35 healthy donors to identify host niche-specific adaptations. We demonstrate that healthy people are reservoirs for genotypically and phenotypically diverse C. albicans strains. Using limited diversity exploitation, we identified a single nucleotide change in the uncharacterized ZMS1 transcription factor that was sufficient to drive hyper invasion into agar. We found that SC5314 was significantly different from the majority of both commensal and bloodstream isolates in its ability to induce host cell death. However, our commensal strains retained the capacity to cause disease in the Galleria model of systemic infection, including outcompeting the SC5314 reference strain during systemic competition assays. This study provides a global view of commensal strain variation and within-host strain diversity of C. albicans and suggests that selection for commensalism in humans does not result in a fitness cost for invasive disease.
Collapse
Affiliation(s)
- Faith M. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Noelle D. Visser
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin R. Amses
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea Hodgins-Davis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexandra M. Weber
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katura M. Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael J. McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Timothy Y. James
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
31
|
Hu J, Tang J, Zhang X, Yang K, Zhong A, Yang Q, Liu Y, Li Y, Zhang T. Landscape in the gallbladder mycobiome and bacteriome of patients undergoing cholelithiasis with chronic cholecystitis. Front Microbiol 2023; 14:1131694. [PMID: 37032855 PMCID: PMC10073429 DOI: 10.3389/fmicb.2023.1131694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Gallstone disease (GSD) is associated with changes in the gut and gallbladder bacterial composition, but there is limited information on the role of the fungal community (mycobiome) in disease development. This study aimed to characterize the gallbladder mycobiome profiles and their interactions with bacteriome in GSD. A total of 136 bile and gallstone samples (34 paired for bacteriome, and 33 paired and extra 2 bile samples for mycobiome) were obtained from calculi patients with chronic cholecystitis. Bile and gallstone bacteriome and mycobiome were profiled by 16S and internal transcribed spacer (ITS) rRNA gene sequencing, respectively. Gallbladder bacteriome, mycobiome, and interkingdom and intrakingdom interactions were compared between bile and gallstone. In general, microbial diversity was higher in bile than in gallstone, and distinct microbial community structures were observed among them. Deep Sea Euryarchaeotic Group, Rhodobacteraceae, and Rhodobacterales were microbial biomarkers of bile, while Clostridiales and Eubacterium coprostanoligenes were biomarkers of gallstone. Five fungal taxa, including Colletotrichum, Colletotrichum sublineola, and Epicoccum, were enriched in gallstone. Further ecologic analyses revealed that intensive transkingdom correlations between fungi and bacteria and intrakingdom correlations within them observed in gallstone were significantly decreased in bile. Large and complex fungal communities inhabit the gallbladder of patients with GSD. Gallstone, compared with bile, is characterized by significantly altered bacterial taxonomic composition and strengthened bacterial-bacterial, fungal-fungal, and bacterial-fungal correlations in the gallbladder of patients with GSD.
Collapse
Affiliation(s)
- Junqing Hu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jichao Tang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Xinpeng Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Kaijin Yang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Ayan Zhong
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Qin Yang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Section for Hepato-Pancreato-Biliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yi Li
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| |
Collapse
|
32
|
Chen Q, Fan Y, Zhang B, Yan C, Chen Z, Wang L, Hu Y, Huang Q, Su J, Ren J, Xu H. Specific fungi associated with response to capsulized fecal microbiota transplantation in patients with active ulcerative colitis. Front Cell Infect Microbiol 2023; 12:1086885. [PMID: 36683707 PMCID: PMC9849685 DOI: 10.3389/fcimb.2022.1086885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Objective Fecal microbiota transplantation (FMT) is a novel microbial treatment for patients with ulcerative colitis (UC). In this study, we performed a clinical trial of capsulized FMT in UC patients to determine the association between the gut fungal community and capsulized FMT outcomes. Design This study recruited patients with active UC (N = 22) and healthy individuals (donor, N = 9) according to the criteria. The patients received capsulized FMT three times a week. Patient stool samples were collected before (week 0) and after FMT follow-up visits at weeks 1, 4, and 12. Fungal communities were analysed using shotgun metagenomic sequencing. Results According to metagenomic analysis, fungal community evenness index was greater in samples collected from patients, and the overall fungal community was clustered among the samples collected from donors. The dominant fungi in fecal samples collected from donors and patients were Ascomycota and Basidiomycota. However, capsulized FMT ameliorated microbial fungal diversity and altered fungal composition, based on metagenomic analysis of fecal samples collected before and during follow-up visits after capsulized FMT. Fungal diversity decreased in samples collected from patients who achieved remission after capsulized FMT, similar to samples collected from donors. Patients achieving remission after capsulized FMT had specific enrichment of Kazachstania naganishii, Pyricularia grisea, Lachancea thermotolerans, and Schizosaccharomyces pombe compared with patients who did not achieve remission. In addition, the relative abundance of P. grisea was higher in remission fecal samples during the follow-up visit. Meanwhile, decreased levels of pathobionts, such as Candida and Debaryomyces hansenii, were associated with remission in patients receiving capsulized FMT. Conclusion In the metagenomic analysis of fecal samples from donors and patients with UC receiving capsulized FMT, shifts in gut fungal diversity and composition were associated with capsulized FMT and validated in patients with active UC. We also identified the specific fungi associated with the induction of remission. ClinicalTrails.gov (NCT03426683).
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China,Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China,Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Jianlin Ren, ; Hongzhi Xu,
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China,Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China,Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Jianlin Ren, ; Hongzhi Xu,
| |
Collapse
|
33
|
Shoukat M, Ullah F, Tariq MN, Din G, Khadija B, Faryal R. Profiling of potential pathogenic candida species in obesity. Microb Pathog 2023; 174:105894. [PMID: 36496057 DOI: 10.1016/j.micpath.2022.105894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF RESEARCH The aim of the current study was gut profiling of culturable Candida species and their possible pathogenic potential to asses role in obesity. METHODS This case control study includes stool samples from 75 obese individuals and 50 controls. Isolation and identification of various Candida species was carried out by standard microbiological techniques. For pathogenic profiling, extracellular enzymatic assays, biofilm forming ability and resistance to azole were analyzed. RESULTS Culturable gut profiling identified comparative higher abundance and diversity of Candida species among obese compared to controls. The most abundant specie among both groups was C.kefyr. A comparatively higher pathogenic potential as more hydrolases expression was detected in C.kefyr, C.albicans and Teunomyces krusei from obese group. Majority isolates from obese group were strong biofilm formers (47.1%) compared to control group (35.4%) suggesting it as strong risk factor for obesity. Fluconazole resistance was highest among C.kefyr (51%) followed by Teunomyces krusei and C.albicans. All the isolates from different species were voriconazole sensitive except C.kefyr displaying a 4.2% resistance in obese group only. A significant association of dominant colonizing species with meat, fruit/vegetable consumption and residence area was present (p < 0.05). CONCLUSION The presence of hydrolytic enzymes in gut Candida species showed strong association with protein's degradation and enhanced pathogenicity. C.kefyr and Teunomyces krusei has emerged as potential pathogen showing increased colonization as result of protein rich and low carb diet. Thus presenting it as a bad choice for weight loss in obese individuals.
Collapse
Affiliation(s)
- Mehreen Shoukat
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Faheem Ullah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan; Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Marbaila Nane Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Ghufranud Din
- Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Bibi Khadija
- Department of Medical Lab Technology, National Skills University, Islamabad, Pakistan.
| | - Rani Faryal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
34
|
Upadhaya SD, Kim IH. Maintenance of gut microbiome stability for optimum intestinal health in pigs - a review. J Anim Sci Biotechnol 2022; 13:140. [PMID: 36474259 PMCID: PMC9727896 DOI: 10.1186/s40104-022-00790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pigs are exposed to various challenges such as weaning, environmental stressors, unhealthy diet, diseases and infections during their lifetime which adversely affects the gut microbiome. The inability of the pig microbiome to return to the pre-challenge baseline may lead to dysbiosis resulting in the outbreak of diseases. Therefore, the maintenance of gut microbiome diversity, robustness and stability has been influential for optimum intestinal health after perturbations. Nowadays human and animal researches have focused on more holistic approaches to obtain a robust gut microbiota that provides protection against pathogens and improves the digestive physiology and the immune system. In this review, we present an overview of the swine gut microbiota, factors affecting the gut microbiome and the importance of microbial stability in promoting optimal intestinal health. Additionally, we discussed the current understanding of nutritional interventions using fibers and pre/probiotics supplementation as non-antibiotic alternatives to maintain microbiota resilience to replace diminished species.
Collapse
Affiliation(s)
- Santi Devi Upadhaya
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| | - In Ho Kim
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| |
Collapse
|
35
|
Lu Y. Mycobiota Signatures and Colorectal Cancer: A True Association or Not? Gastroenterology 2022; 163:813-815. [PMID: 35940253 DOI: 10.1053/j.gastro.2022.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Yunxia Lu
- Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, Irvine, California.
| |
Collapse
|
36
|
Olaisen M, Richard ML, Beisvåg V, Granlund AVB, Røyset ES, Rué O, Martinsen TC, Sandvik AK, Sokol H, Fossmark R. The ileal fungal microbiota is altered in Crohn's disease and is associated with the disease course. Front Med (Lausanne) 2022; 9:868812. [PMID: 36237548 PMCID: PMC9551188 DOI: 10.3389/fmed.2022.868812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Fungal microbiota's involvement in the pathogenesis of Crohn's disease (CD) is incompletely understood. The terminal ileum is a predilection site both for primary involvement and recurrences of CD. We, therefore, assessed the mucosa-associated mycobiota in the inflamed and non-inflamed ileum in patients with CD. Methods The mucosa-associated mycobiota was assessed by ITS2 sequencing in a total of 168 biopsies sampled 5 and 15 cm proximal of the ileocecal valve or ileocolic anastomosis in 44 CD patients and 40 healthy controls (HC). CD patients with terminal ileitis, with endoscopic inflammation at 5 cm and normal mucosa at 15 cm and no history of upper CD involvement, were analyzed separately. The need for additional CD treatment the year following biopsy collection was recorded. Results CD patients had reduced mycobiota evenness, increased Basidiomycota/Ascomycota ratio, and reduced abundance of Chytridiomycota compared to HC. The mycobiota of CD patients were characterized by an expansion of Malassezia and a depletion of Saccharomyces, along with increased abundances of Candida albicans and Malassezia restricta. Malassezia was associated with the need for treatment escalation during follow-up. Current anti-TNF treatment was associated with lower abundances of Basidiomycota. The alpha diversity of the inflamed and proximal non-inflamed mucosa within the same patients was similar. However, the inflamed mucosa had a more dysbiotic composition with increased abundances of Candida sake and reduced abundances of Exophiala equina and Debaryomyces hansenii. Conclusions The ileal mucosa-associated mycobiota in CD patients is altered compared to HC. The mycobiota in the inflamed and proximal non-inflamed ileum within the same patients harbor structural differences which may play a role in the CD pathogenesis. Increased abundance of Malassezia was associated with an unfavorable disease course.
Collapse
Affiliation(s)
- Maya Olaisen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Mathias L. Richard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Vidar Beisvåg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Central Administration, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elin S. Røyset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Olivier Rué
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tom Christian Martinsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
- Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Harry Sokol
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- Gastroenterology Department, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Sorbonne Université, Paris, France
| | - Reidar Fossmark
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
- *Correspondence: Reidar Fossmark
| |
Collapse
|
37
|
Pitarch A, Diéguez-Uribeondo J, Martín-Torrijos L, Sergio F, Blanco G. Fungal signatures of oral disease reflect environmental degradation in a facultative avian scavenger. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155397. [PMID: 35460785 DOI: 10.1016/j.scitotenv.2022.155397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Degradation of natural ecosystems increases the risk of infections in wildlife due to microbiota dysbiosis. However, little is known about its influence on the development of fungal communities in predators and facultative avian scavengers. We evaluated the incidence of oral disease in wild nestling black kites (Milvus migrans) under contrasting environmental degradation conditions, and explored their oral fungal patterns using molecular methods and multivariate analysis. Oral lesions were found in 36.8% of the 38 nestlings examined in an anthropogenically altered habitat (southeastern Madrid, Spain), but in none of the 105 nestlings examined in a well-conserved natural area (Doñana National Park, Spain). In a subsample of 48 black kites, the composition of the oral fungal community differed among symptomatic nestlings from Madrid (SM) and asymptomatic nestlings from Madrid (AM) and Doñana (AD). Opportunistic fungal pathogens (e.g., Fusarium incarnatum-equiseti species complex, Mucor spp., Rhizopus oryzae) were more prevalent in SM and AM than in AD. Hierarchical clustering and principal component analyses revealed that fungal patterns were distinct between both study areas, and that anthropogenic and natural environmental factors had a greater impact on them than oral disease. Fungal signatures associated with anthropogenic and natural stresses harbored some taxa that could be used to flag oral infection (F. incarnatum-equiseti species complex and Alternaria), indicate environmental degradation (Alternaria) or provide protective benefits in degraded environments (Trichoderma, Epicoccum nigrum and Sordaria). Co-occurrence associations between potentially beneficial and pathogenic fungi were typical of AM and AD, hinting at a possible role in host health. This study shows that early-life exposure to highly degraded environments induces a shift towards a higher prevalence of pathogenic species in the oral cavity of black kites, favoring oral disease. Furthermore, our findings suggest potential ecological applications of the monitoring of oral mycobiome as a bioindication of oral disease and environmental degradation.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM) and Ramón y Cajal Institute of Health Research (IRYCIS), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Teaching Unit of Microbiology and Parasitology, Faculty of Optics and Optometry, Complutense University of Madrid (UCM), Arcos de Jalón, 118, 28037 Madrid, Spain.
| | | | - Laura Martín-Torrijos
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain
| | - Fabrizio Sergio
- Department of Conservation Biology, Estacion Biologica de Doñana-CSIC, Americo Vespucio 26, 41092 Sevilla, Spain
| | - Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
38
|
Jena A, Dutta U, Shah J, Sharma V, Prasad KK, Shivaprakash RM, Mandavdhare HS, Samanta J, Sharma P, Popli P, Sharma AK, Sinha SK, Chakrabarti A, Kochhar R. Oral Fluconazole Therapy in Patients With Active Ulcerative Colitis Who Have Detectable Candida in the Stool : A Double-Blind Randomized Placebo-controlled Trial. J Clin Gastroenterol 2022; 56:705-711. [PMID: 34516459 DOI: 10.1097/mcg.0000000000001609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/24/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND There is an emerging role of fungal dysbiosis in the pathogenesis of inflammatory bowel disease. Prevalence of Candida in patients with active ulcerative colitis (UC) and the effect of fluconazole therapy in reducing disease activity of UC are not known. PATIENTS AND METHODS All consecutive consenting patients with active UC defined as Mayo score ≥3 were evaluated for presence of Candida by stool culture and predictors for presence of Candida were identified. Those who had evidence of Candida in the stool were randomized to receive oral fluconazole 200 mg daily or placebo for 3 weeks along with standard medical therapy. Patients were assessed by clinical, sigmoidoscopy, and laboratory parameters at baseline and at 4 weeks. The primary outcome was clinical and endoscopic response at 4 weeks defined by a 3-point reduction in Mayo score. Secondary outcomes were reduction in fecal calprotectin, histologic response, and adverse events. RESULTS Of the 242 patients with active UC, 68 (28%) patients had Candida in stool culture. Independent predictors for presence of Candida in patients with active UC were partial Mayo score of ≥3 and steroid exposure. Among those with Candida on stool culture (n=68), 61 patients fulfilled eligibility criteria and were randomized to receive fluconazole (n=31) or placebo (n=30). Three-point reduction in Mayo score though was numerically higher in the fluconazole group than the placebo group but was not statistically significant [5 (16.1%) vs. 1 (3.33%); P =0.19]. Postintervention median Mayo score was lower in fluconazole than placebo group [4 (3, 5) vs. 5 (4, 6); P =0.034]. Patients in fluconazole group had more often reduction in fecal calprotectin [26 (83.9%) vs. 11 (36.7%); P =0.001] and histologic scores [23 (74.1%) vs. 10 (33.3%); P =0.001] compared with placebo. All patients were compliant and did not report any serious adverse event. CONCLUSION Candida colonization is found in 28% of patients with UC. Steroid exposure and active disease were independent predictors for the presence of Candida . There was no statistically significant difference in the number of patients who achieved 3-point reduction in Mayo score between 2 groups. However, clinical, histologic, and calprotectin levels showed significant improvement in fluconazole group.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Arunaloke Chakrabarti
- Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
39
|
Shuai M, Fu Y, Zhong HL, Gou W, Jiang Z, Liang Y, Miao Z, Xu JJ, Huynh T, Wahlqvist ML, Chen YM, Zheng JS. Mapping the human gut mycobiome in middle-aged and elderly adults: multiomics insights and implications for host metabolic health. Gut 2022; 71:1812-1820. [PMID: 35017200 PMCID: PMC9380515 DOI: 10.1136/gutjnl-2021-326298] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The human gut fungal community, known as the mycobiome, plays a fundamental role in the gut ecosystem and health. Here we aimed to investigate the determinants and long-term stability of gut mycobiome among middle-aged and elderly adults. We further explored the interplay between gut fungi and bacteria on metabolic health. DESIGN The present study included 1244 participants from the Guangzhou Nutrition and Health Study. We characterised the long-term stability and determinants of the human gut mycobiome, especially long-term habitual dietary consumption. The comprehensive multiomics analyses were performed to investigate the ecological links between gut bacteria, fungi and faecal metabolome. Finally, we examined whether the interaction between gut bacteria and fungi could modulate the metabolic risk. RESULTS The gut fungal composition was temporally stable and mainly determined by age, long-term habitual diet and host physiological states. Specifically, compared with middle-aged individuals, Blastobotrys and Agaricomycetes spp were depleted, while Malassezia was enriched in the elderly. Dairy consumption was positively associated with Saccharomyces but inversely associated with Candida. Notably, Saccharomycetales spp interacted with gut bacterial diversity to influence insulin resistance. Bidirectional mediation analyses indicated that bacterial function or faecal histidine might causally mediate an impact of Pichia on blood cholesterol. CONCLUSION We depict the sociodemographic and dietary determinants of human gut mycobiome in middle-aged and elderly individuals, and further reveal that the gut mycobiome may be closely associated with the host metabolic health through regulating gut bacterial functions and metabolites.
Collapse
Affiliation(s)
- Menglei Shuai
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Hai-li Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanglong Gou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yuhui Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jin-Jian Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tien Huynh
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Mark L Wahlqvist
- Monash Asia Institute, Monash University, Clayton, Victoria, Australia .,Institute of Nutrition and Health, Qingdao University, Qingdao, Shandong, China.,Institute of Population Health, National Health Research Institutes, Zhunan, Taiwan, China
| | - Yu-ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China .,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Pinto D, Calabrese FM, De Angelis M, Celano G, Giuliani G, Rinaldi F. Lichen Planopilaris: The first biopsy layer microbiota inspection. PLoS One 2022; 17:e0269933. [PMID: 35849580 PMCID: PMC9292073 DOI: 10.1371/journal.pone.0269933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Lichen Planopilaris (LPP) is a lymphatic disease affecting the scalp that is characterized by a chronic and destructive inflammation process, named as ‘cicatricial alopecia’ in which the hair follicles are targeted and may involve predominantly lymphocytes or neutrophils. Scalp and biopsy layers have never been used to investigate microbial community composition and its relative taxa abundances in LPP. We sought to examine the significant taxa of this chronic relapsing inflammatory skin disease, together with inspect the existing connections with metabolic pathways featuring this microbial community. We used a multilevel analysis based on 16S rRNA marker sequencing in order to detect OTU abundances in pathologic/healthy samples, real time PCR for measuring the levels of IL-23 interleukin expression and urinary metabolomics to find out volatile organic metabolites (VOMs). By using a linear regression model, we described peculiar taxa that significantly differentiated LPP and healthy samples. We inspected taxa abundances and interleukin mRNA levels and the Microbacteriaceae family resulted negatively correlated with the IL-23 expression. Moreover, starting from 16S taxa abundances, we predicted the metabolic pathways featuring this microbial community. By inspecting microbial composition, sample richness, metabolomics profiles and the relative metabolic pathways in a cohort of LPP and healthy samples we deepened the contribution of significant taxa that are connected to inflammation maintenance and microbiota plasticity in LPP pathology.
Collapse
Affiliation(s)
- Daniela Pinto
- Human Advanced Microbiome Project-HMAP, Milan, Italy
- * E-mail: (DP); (FMC)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Bari, Italy
- * E-mail: (DP); (FMC)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Bari, Italy
| | | | - Fabio Rinaldi
- Human Advanced Microbiome Project-HMAP, Milan, Italy
| |
Collapse
|
41
|
Zhang Y, Si X, Yang L, Wang H, Sun Y, Liu N. Association between intestinal microbiota and inflammatory bowel disease. Animal Model Exp Med 2022; 5:311-322. [PMID: 35808814 PMCID: PMC9434590 DOI: 10.1002/ame2.12255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), has emerged as a global disease with high incidence, long duration, devastating clinical symptoms, and low curability (relapsing immune response and barrier function defects). Mounting studies have been performed to investigate its pathogenesis to provide an ever‐expanding arsenal of therapeutic options, while the precise etiology of IBD is not completely understood yet. Recent advances in high‐throughput sequencing methods and animal models have provided new insights into the association between intestinal microbiota and IBD. In general, dysbiosis characterized by an imbalanced microbiota has been widely recognized as a pathology of IBD. However, intestinal microbiota alterations represent the cause or result of IBD process remains unclear. Therefore, more evidences are needed to identify the precise role of intestinal microbiota in the pathogenesis of IBD. Herein, this review aims to outline the current knowledge of commonly used, chemically induced, and infectious mouse models, gut microbiota alteration and how it contributes to IBD, and dysregulated metabolite production links to IBD pathogenesis.
Collapse
Affiliation(s)
- Yunchang Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Chauhan A, Semwal DK, Semwal RB, Joshi SK, Adhana RK, Goswami MS. Modulation of gut microbiota with Ayurveda diet and lifestyle: A review on its possible way to treat type 2 diabetes. Ayu 2022; 43:35-44. [PMID: 37655174 PMCID: PMC10468021 DOI: 10.4103/ayu.ayu_7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2021] [Accepted: 04/17/2023] [Indexed: 09/02/2023] Open
Abstract
Background The prevalence of type 2 diabetes (T2D) has increased substantially in the past few decades throughout the world. In India, the epidemic of diabetes continues to increase irrespective of area, status, and age. Despite various scientific societies involved in the treatment of diabetes, still, the burden of diabetes keeps growing. Aims The aim of this work is to explore the Ayurvedic concept of a personalized diet to modulate the gut microbiota for the treatment of T2D. Material and methods A thorough study of literature from online scientific databases including Web of Science, PubMed, Scopus, and Google Scholar as well as from classical texts of Ayurveda was done. A careful compilation was done to extract the valuable output of the personalized diet to modulate the gut microbiota. Results There are various diets used to control blood glucose levels, and their effects are also being studied on the transcriptome or epigenome despite 99.9% genomic similarity among human beings. However, microbiomes have only 10% similarity. Ayurvedic diet is given on the basis of Prakriti (body constitution), therefore, it is also called personalized diet. Conclusion The diets prescribed for T2D in Ayurveda are high in fibers, polyphenols, and complex carbohydrates which enrich butyrate-producing bacteria and decrease lipopolysaccharide-producing bacteria. Hence, there is a need to have a personalized diet to manage the glucose level by enriching beneficial gut microbiota. The approach of a personalized diet associated with gut microbiota can be helpful in maintaining blood sugar in T2D patients.
Collapse
Affiliation(s)
- Ashutosh Chauhan
- Department of Biotechnology, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Deepak Kumar Semwal
- Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Ruchi Badoni Semwal
- Department of Chemistry, VSKC Government Postgraduate College, Dakpathar, Dehradun, Uttarakhand, India
| | - Sunil Kumar Joshi
- Department of Shalya Tantra, Uttarakhand Ayurved University, Haridwar, Uttarakhand, India
| | - Rajesh Kumar Adhana
- Department of Agad Tantra, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Madhavi Sanjay Goswami
- Department of Rachna Sharir, Uttarakhand Ayurved University, Rishikul Campus, Haridwar, Uttarakhand, India
| |
Collapse
|
43
|
Liberato I, Lino LA, Souza JK, Neto JB, Sá LG, Cabral VP, Silva CR, Cavalcanti BC, Moraes MO, Freire VN, Júnior HV, Andrade CR. Gallic acid leads to cell death of Candida albicans by the apoptosis mechanism. Future Microbiol 2022; 17:599-606. [PMID: 35354285 DOI: 10.2217/fmb-2021-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To evaluate the antifungal activity of gallic acid (GA) against the strains of Candida spp. resistant to fluconazole and to determine its mechanism of action. Materials & methods: Antifungal activity was evaluated using the broth microdilution and flow cytometry techniques. Results: GA presented minimum inhibitory concentrations ranging from 16 to 72 μg/ml, causing alterations of the membrane integrity and mitochondrial transmembrane potential, production of reactive oxygen species and externalization of phosphatidylserine. Conclusion: GA has potential antifungal activity against Candida spp.
Collapse
Affiliation(s)
- Ito Liberato
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Leticia A Lino
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Juan Kd Souza
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - João Ba Neto
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Livia Gav Sá
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vitória Pf Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília R Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bruno C Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel O Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vn Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
44
|
Mahalingam SS, Jayaraman S, Pandiyan P. Fungal Colonization and Infections-Interactions with Other Human Diseases. Pathogens 2022; 11:212. [PMID: 35215155 PMCID: PMC8875122 DOI: 10.3390/pathogens11020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is a commensal fungus that asymptomatically colonizes the skin and mucosa of 60% of healthy individuals. Breaches in the cutaneous and mucosal barriers trigger candidiasis that ranges from asymptomatic candidemia and mucosal infections to fulminant sepsis with 70% mortality rates. Fungi influence at least several diseases, in part by mechanisms such as the production of pro-carcinogenic agents, molecular mimicking, and triggering of the inflammation cascade. These processes impact the interactions among human pathogenic and resident fungi, the bacteriome in various organs/tissues, and the host immune system, dictating the outcomes of invasive infections, metabolic diseases, and cancer. Although mechanistic investigations are at stages of infancy, recent studies have advanced our understanding of host-fungal interactions, their role in immune homeostasis, and their associated pathologies. This review summarizes the role of C. albicans and other opportunistic fungi, specifically their association with various diseases, providing a glimpse at the recent developments and our current knowledge in the context of inflammatory-bowel disease (IBD), cancers, and COVID-19. Two of the most common human diseases where fungal interactions have been previously well-studied are cancer and IBD. Here we also discuss the emerging role of fungi in the ongoing and evolving pandemic of COVID-19, as it is relevant to current health affairs.
Collapse
Affiliation(s)
- Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
45
|
Yalcin SS, Aksu T, Kuskonmaz B, Ozbek NY, Pérez-Brocal V, Celik M, Uckan Cetinkaya D, Moya A, Dinleyici EC. Intestinal mycobiota composition and changes in children with thalassemia who underwent allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer 2022; 69:e29411. [PMID: 34699120 DOI: 10.1002/pbc.29411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) alters the diversity of the intestinal bacterial microbiota. This study aimed to evaluate human mycobiota composition pre-HSCT and post-HSCT in children with thalassemia. METHOD Ten children with thalassemia undergoing allogeneic HSCT were enrolled. The stool samples were collected before the transplantation regimen, before the transplant day, and +15, +30 days, and three months after transplantation. Stool samples were also collected from the donor and the patient's caregivers. Gut mycobiota composition was evaluated with metagenomic analysis. RESULTS Pretransplant mycobiota of children with thalassemia (the predominant genus was Saccharomyces, 64.1%) has been shown to approximate the diverse mycobiota compositions of healthy adult donors but becomes altered (lower diversity) following transplant procedures. Three months after HSCT, phyla Ascomycota and Basidiomycota were 83.4% and 15.6%, respectively. The predominant species were Saccaharomyces_uc and Saccharomyces cerevisiae (phylum Ascomycota); we also observed Malassezia restricta and Malassezia globosa (phylum Basidiomycota) (∼13%). On day 90 after HSCT, we observed 65.3% M. restricta and 18.4% M. globosa predominance at the species level in a four-year-old boy with acute graft-versus-host disease (GVHD) (skin and gut involvement) 19 days after transplantation included. CONCLUSION The mycobiota composition of children with thalassemia altered after HSCT. We observed Malassezia predominance in a child with GVHD. Further studies in children with GVHD will identify this situation.
Collapse
Affiliation(s)
- Siddika Songul Yalcin
- Department of Social Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tekin Aksu
- Department of Pediatric Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Baris Kuskonmaz
- Department of Pediatric Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Namık Yasar Ozbek
- Ankara City Hospital, Department of Pediatric Hematology, Health Science University Faculty of Medicine, Ankara, Turkey
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain.,CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Melda Celik
- Department of Social Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Duygu Uckan Cetinkaya
- Department of Pediatric Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain.,CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain.,Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| |
Collapse
|
46
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
47
|
Pancreatic Cancer and Gut Microbiome-Related Aspects: A Comprehensive Review and Dietary Recommendations. Nutrients 2021; 13:nu13124425. [PMID: 34959977 PMCID: PMC8709322 DOI: 10.3390/nu13124425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays a significant role in the human body providing many beneficial effects on the host. However, its dysbiotic alterations may affect the tumorigenic pathway and then trigger the development of pancreatic cancer. This dysbiosis can also modulate the aggressiveness of the tumor, influencing the microenvironment. Because pancreatic cancer is still one of the most lethal cancers worldwide with surgery as the only method that influences prognosis and has curative potential, there is a need to search for other strategies which will enhance the efficiency of standard therapy and improve patients' quality of life. The administration of prebiotics, probiotics, next-generation probiotics (Faecalibacterium prausnitzii, Akkermansia muciniphila), synbiotics, postbiotics, and fecal microbiota transplantation through multiple mechanisms affects the composition of the gut microbiota and may restore its balance. Despite limited data, some studies indicate that the aforementioned methods may allow to achieve better effect of pancreatic cancer treatment and improve therapeutic strategies for pancreatic cancer patients.
Collapse
|
48
|
Pierre JF, Phillips GJ, Chandra LC, Rendina DN, Thomas-Gosain NF, Lubach GR, Lyte M, Coe CL, Gosain A. Lyticase Facilitates Mycobiome Resolution Without Disrupting Microbiome Fidelity in Primates. J Surg Res 2021; 267:336-341. [PMID: 34186310 PMCID: PMC8678161 DOI: 10.1016/j.jss.2021.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Microbiome research has expanded to consider contributions of microbial kingdoms beyond bacteria, including fungi (i.e., the mycobiome). However, optimal specimen handling protocols are varied, including uncertainty of how enzymes utilized to facilitate fungal DNA recovery may interfere with bacterial microbiome sequencing from the same samples. METHODS With Institutional Animal Care and Use Committee approval, fecal samples were obtained from 20 rhesus macaques (10 males, 10 females; Macaca mulatta). DNA was extracted using commercially available kits, with or without lyticase enzyme treatment. 16S ribosomal RNA (bacterial) and Internal Transcribed Spacer (ITS; fungal) sequencing was performed on the Illumina MiSeq platform. Bioinformatics analysis was performed using Qiime and Calypso. RESULTS Inclusion of lyticase in the sample preparation pipeline significantly increased usable fungal ITS reads, community alpha diversity, and enhanced detection of numerous fungal genera that were otherwise poorly or not detected in primate fecal samples. Bacterial 16S ribosomal RNA amplicons obtained from library preparation were statistically unchanged by the presence of lyticase. CONCLUSIONS We demonstrate inclusion of the enzyme lyticase for fungal cell wall digestion markedly enhances mycobiota detection while maintaining fidelity of microbiome identification and community features in non-human primates. In restricted sample volumes, as are common in limited human samples, use of single sample DNA isolation will facilitate increased rigor and controlled approaches in future work.
Collapse
Affiliation(s)
- Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.
| | - Greg J Phillips
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Lawrance C Chandra
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Danielle N Rendina
- Harlow Center, Department. of Psychology, University of Wisconsin, Madison, Wisconsin
| | - Neena F Thomas-Gosain
- Department. of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gabriele R Lubach
- Harlow Center, Department. of Psychology, University of Wisconsin, Madison, Wisconsin
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Christopher L Coe
- Harlow Center, Department. of Psychology, University of Wisconsin, Madison, Wisconsin
| | - Ankush Gosain
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
49
|
Structural Insights into the Azole Resistance of the Candida albicans Darlington Strain Using Saccharomyces cerevisiae Lanosterol 14α-Demethylase as a Surrogate. J Fungi (Basel) 2021; 7:jof7110897. [PMID: 34829185 PMCID: PMC8621857 DOI: 10.3390/jof7110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Target-based azole resistance in Candida albicans involves overexpression of the ERG11 gene encoding lanosterol 14α-demethylase (LDM), and/or the presence of single or multiple mutations in this enzyme. Overexpression of Candida albicans LDM (CaLDM) Y132H I471T by the Darlington strain strongly increased resistance to the short-tailed azoles fluconazole and voriconazole, and weakly increased resistance to the longer-tailed azoles VT-1161, itraconazole and posaconazole. We have used, as surrogates, structurally aligned mutations in recombinant hexahistidine-tagged full-length Saccharomyces cerevisiae LDM6×His (ScLDM6×His) to elucidate how differential susceptibility to azole drugs is conferred by LDM of the C. albicans Darlington strain. The mutations Y140H and I471T were introduced, either alone or in combination, into ScLDM6×His via overexpression of the recombinant enzyme from the PDR5 locus of an azole hypersensitive strain of S. cerevisiae. Phenotypes and high-resolution X-ray crystal structures were determined for the surrogate enzymes in complex with representative short-tailed (voriconazole) and long-tailed (itraconazole) triazoles. The preferential high-level resistance to short-tailed azoles conferred by the ScLDM Y140H I471T mutant required both mutations, despite the I471T mutation conferring only a slight increase in resistance. Crystal structures did not detect changes in the position/tilt of the heme co-factor of wild-type ScLDM, I471T and Y140H single mutants, or the Y140H I471T double-mutant. The mutant threonine sidechain in the Darlington strain CaLDM perturbs the environment of the neighboring C-helix, affects the electronic environment of the heme, and may, via differences in closure of the neck of the substrate entry channel, increase preferential competition between lanosterol and short-tailed azole drugs.
Collapse
|
50
|
Mercurio K, Singh D, Walden E, Baetz K. Global analysis of Saccharomyces cerevisiae growth in mucin. G3 (BETHESDA, MD.) 2021; 11:jkab294. [PMID: 34849793 PMCID: PMC8527512 DOI: 10.1093/g3journal/jkab294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/03/2021] [Indexed: 11/12/2022]
Abstract
Metagenomic profiling of the human gut microbiome has discovered DNA from dietary yeasts like Saccharomyces cerevisiae. However, it is unknown if the S. cerevisiae detected by common metagenomic methods are from dead dietary sources, or from live S. cerevisiae colonizing the gut similar to their close relative Candida albicans. While S. cerevisiae can adapt to minimal oxygen and acidic environments, it has not been explored whether this yeast can metabolize mucin, the large, gel-forming, highly glycosylated proteins representing a major source of carbon in the gut mucosa. We reveal that S. cerevisiae can utilize mucin as their main carbon source, as well as perform both a transcriptome analysis and a chemogenomic screen to identify biological pathways required for this yeast to grow optimally in mucin. In total, 739 genes demonstrate significant differential expression in mucin culture, and deletion of 21 genes impact growth in mucin. Both screens suggest that mitochondrial function is required for proper growth in mucin, and through secondary assays we determine that mucin exposure induces mitogenesis and cellular respiration. We further show that deletion of an uncharacterized ORF, YCR095W-A, led to dysfunction in mitochondrial morphology and oxygen consumption in mucin. Finally, we demonstrate that Yps7, an aspartyl protease and homolog to mucin-degrading proteins in C. albicans, is important for growth on mucin. Collectively, our work serves as the initial step toward establishing how this common dietary fungus can survive in the mucus environment of the human gut.
Collapse
Affiliation(s)
- Kevin Mercurio
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Dylan Singh
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Elizabeth Walden
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kristin Baetz
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|