1
|
Apps R, Biancotto A, Candia J, Kotliarov Y, Perl S, Cheung F, Farmer R, Mulè MP, Rachmaninoff N, Chen J, Martins AJ, Shi R, Zhou H, Bansal N, Schum P, Olnes MJ, Milanez-Almeida P, Han KL, Sellers B, Cortese M, Hagan T, Rouphael N, Pulendran B, King L, Manischewitz J, Khurana S, Golding H, van der Most RG, Dickler HB, Germain RN, Schwartzberg PL, Tsang JS. Acute and persistent responses after H5N1 vaccination in humans. Cell Rep 2024; 43:114706. [PMID: 39235945 DOI: 10.1016/j.celrep.2024.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/14/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
To gain insight into how an adjuvant impacts vaccination responses, we use systems immunology to study human H5N1 influenza vaccination with or without the adjuvant AS03, longitudinally assessing 14 time points including multiple time points within the first day after prime and boost. We develop an unsupervised computational framework to discover high-dimensional response patterns, which uncover adjuvant- and immunogenicity-associated early response dynamics, including some that differ post prime versus boost. With or without adjuvant, some vaccine-induced transcriptional patterns persist to at least 100 days after initial vaccination. Single-cell profiling of surface proteins, transcriptomes, and chromatin accessibility implicates transcription factors in the erythroblast-transformation-specific (ETS) family as shaping these long-lasting signatures, primarily in classical monocytes but also in CD8+ naive-like T cells. These cell-type-specific signatures are elevated at baseline in high-antibody responders in an independent vaccination cohort, suggesting that antigen-agnostic baseline immune states can be modulated by vaccine antigens alone to enhance future responses.
Collapse
Affiliation(s)
- Richard Apps
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | | | - Julián Candia
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD, USA
| | - Shira Perl
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; NIH Oxford-Cambridge Scholars Program, Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, UCB2 0QQ Cambridge, UK
| | - Nicholas Rachmaninoff
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rongye Shi
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Huizhi Zhou
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Paula Schum
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Matthew J Olnes
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | | | - Kyu Lee Han
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Brian Sellers
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas Hagan
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA; Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Lisa King
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | - Jody Manischewitz
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | | | | | - Ronald N Germain
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Pamela L Schwartzberg
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - John S Tsang
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Center for Systems and Engineering Immunology, Departments of Immunobiology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
2
|
Wu Y, Zhang X, Zhou L, Lu J, Zhu F, Li J. Research progress in the off-target effects of Bacille Calmette-Guérin vaccine. Chin Med J (Engl) 2024; 137:2065-2074. [PMID: 38092722 PMCID: PMC11374297 DOI: 10.1097/cm9.0000000000002890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 09/06/2024] Open
Abstract
ABSTRACT Bacille Calmette-Guérin (BCG) vaccine is designed to provide protection against tuberculosis (TB). However, numerous epidemiological, clinical, and immunological studies have shown that BCG vaccination affects neonatal and infant mortality, which may be related to the reduction of TB-unrelated infections and diseases by BCG vaccine. We aimed to discuss the off-target effects of BCG vaccine on un-TB infections and diseases, as well as the potential mechanism and influencing factors. Literature was retrieved mainly from PubMed using medical subject headings "BCG, variations, and non-specific, heterologous or off-target". Studies have showed that BCG vaccination can prevent various heterologous infections, including respiratory tract infections, leprosy, and malaria, treat viral infections including human papillomavirus and herpes simplex virus infection as immunotherapy, and improve the immune responses as vaccine adjuvant. Besides, BCG vaccine can reduce the recurrence rate of non-muscle-invasive bladder cancer, and may provide protection against autoimmune diseases. These off-target effects of BCG vaccine are thought to be achieved by modulating heterologous lymphocyte responses or inducing trained immunity, which were found to be sex-differentiated and affected by the BCG vaccine strains, sequence or time of vaccination.
Collapse
Affiliation(s)
- Yanfei Wu
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiaoyin Zhang
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Li Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Jiayu Lu
- IB Course Center of High School Affiliated to Shanghai Jiaotong University, Shanghai 200439, China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210009, China
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jingxin Li
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210009, China
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
3
|
Pedersen IB, Kjolby M, Hjelholt AJ, Madsen M, Christensen AMR, Adolfsen D, Hjelle JS, Kremke B, Støvring H, Jessen N, Vestergaard ET, Kristensen K, Frobert O. INfluenza VaccInation To mitigate typE 1 Diabetes (INVITED): a study protocol for a randomised, double-blind, placebo-controlled clinical trial in children and adolescents with recent-onset type 1 diabetes. BMJ Open 2024; 14:e084808. [PMID: 38950997 PMCID: PMC11328621 DOI: 10.1136/bmjopen-2024-084808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION Children and adolescents with recent-onset type 1 diabetes (T1D) commonly maintain a certain level of insulin production during the remission phase, which can last months to years. Preserving β-cell function can reduce T1D complications and improve glycaemic control. Influenza vaccination has pleiotropic effects and administration of the vaccine during the early phases of T1D may offer β-cell protection. This study aims to assess the effect of influenza vaccination on preserving β-cell function in children and adolescents with recent-onset T1D. METHODS AND ANALYSIS The INfluenza VaccInation To mitigate typE 1 Diabetes trial is a randomised, double-blind, placebo-controlled, multicentre trial in paediatric patients with recent-onset T1D aged 7-17 years. 100 participants will be randomised in a 1:1 ratio to receive either a standard inactivated quadrivalent influenza vaccine or a placebo within 14 days of diagnosis. The primary outcome is a difference in mean change (from baseline to 12 months) in C-peptide level between groups during a 2-hour mixed-meal tolerance test. Secondary outcomes include mean change (from baseline to 6 months) in C-peptide levels, haemoglobin A1c, ambulatory glucose profiles and insulin requirements. Exploratory outcomes are diabetes-related autoantibodies, inflammatory markers and serum haemagglutinin inhibition antibody titres against the influenza viruses. The current treatment for T1D is largely symptomatic, relying on insulin administration. There is a pressing need for novel pharmacological approaches aimed at modulating the immune system to preserve residual β-cell function. Existing immunotherapies are cost-prohibitive and associated with multiple side effects, whereas influenza vaccination is inexpensive and generally well tolerated. A positive outcome of this study holds potential for immediate implementation into standard care for children and adolescents with recent-onset T1D and may guide future research on immune modulation in T1D. ETHICS AND DISSEMINATION Ethical approval was obtained from Danish Health Authorities prior to participant enrollment. The trial results will be submitted to a peer-reviewed journal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT05585983 and EudraCT Number 2022-500906-17-01.
Collapse
Affiliation(s)
- Ida Borreby Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus Universitet Faculty of Health, Aarhus, Denmark
| | - Mads Kjolby
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus Universitet, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus N, Denmark
| | - Astrid Johannesson Hjelholt
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Pharmacology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Madsen
- Department of Paediatrics and Adolescents Medicine, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
| | - Ann-Margrethe Rønholt Christensen
- Department of Paediatrics and Adolescents Medicine, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
| | - Ditte Adolfsen
- Department of Paediatrics and Adolescents Medicine, Viborg Regional Hospital, Viborg, Denmark
| | - Jesper Sand Hjelle
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Paediatrics and Adolescents Medicine, Gødstrup Hospital, Herning, Denmark
| | - Britta Kremke
- Department of Paediatrics and Adolescents Medicine, Randers Regional Hospital, Randers, Denmark
| | - Henrik Støvring
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus Universitet, Aarhus, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus Universitet, Aarhus, Denmark
| | - Esben Thyssen Vestergaard
- Department of Clinical Medicine, Aarhus Universitet Faculty of Health, Aarhus, Denmark
- Department of Paediatrics and Adolescents Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Kurt Kristensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus Universitet Faculty of Health, Aarhus, Denmark
| | - Ole Frobert
- Department of Biomedicine, Aarhus Universitet, Aarhus, Denmark
- Department of Cardiology, Örebro University Hospital, Orebro, Sweden
| |
Collapse
|
4
|
Chen Y, Li H, Zhou J. Early life vaccination reprograms the metabolism and function of myeloid cells in neonates. Immunology 2024; 172:252-268. [PMID: 38424694 DOI: 10.1111/imm.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Vaccination after birth provides protection against pathogen infection and immune related disorders in healthy children. The detailed effects of vaccination on neonatal immunity, however, remain largely unknown. Here, we reported that vaccination using Bacillus Calmette-Guérin (BCG) diminished the immunosuppressive function of myeloid-derived suppressor cells in neonatal mice, an immature myeloid population. A combination of single-cell transcriptome, metabolite profiling, and functional analysis demonstrated that upregulation of mTOR/HIF1a signalling and the enhanced glycolysis explained the effects of BCG on neonatal myeloid cells. Pharmalogical inhibition of glycolysis or mTOR signalling efficiently rescued the effects of BCG on neonatal myeloid cells. These observations suggest that BCG facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.
Collapse
Affiliation(s)
- Yingying Chen
- Institute of Pediatric Health and Disease, Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Hui Li
- Institute of Pediatric Health and Disease, Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- Institute of Pediatric Health and Disease, Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Ukraintseva S, Yashkin AP, Akushevich I, Arbeev K, Duan H, Gorbunova G, Stallard E, Yashin A. Associations of infections and vaccines with Alzheimer's disease point to a role of compromised immunity rather than specific pathogen in AD. Exp Gerontol 2024; 190:112411. [PMID: 38548241 PMCID: PMC11060001 DOI: 10.1016/j.exger.2024.112411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Diverse pathogens (viral, bacterial, fungal) have been associated with Alzheimer's disease (AD) and related traits in various studies. This suggests that compromised immunity, rather than specific microbes, may play a role in AD by increasing an individual's vulnerability to various infections, which could contribute to neurodegeneration. If true, then vaccines that have heterologous effects on immunity, extending beyond protection against the targeted disease, may hold a potential for AD prevention. METHODS We evaluated the associations of common adult infections (herpes simplex, zoster (shingles), pneumonia, and recurrent mycoses), and vaccinations against shingles and pneumonia, with the risks of AD and other dementias in a pseudorandomized sample of the Health and Retirement Study (HRS). RESULTS Shingles, pneumonia and mycoses, diagnosed between ages 65 and 75, were all associated with significantly increased risk of AD later in life, by 16 %-42 %. Pneumococcal and shingles vaccines administered between ages 65-75 were both associated with a significantly lower risk of AD, by 15 %-21 %. These effects became less pronounced when AD was combined with other dementias. DISCUSSION Our findings suggest that both the pneumococcal polysaccharide vaccine and the live attenuated zoster vaccine can offer significant protection against AD. It remains to be determined if non-live shingles vaccine has a similar beneficial effect on AD. This study also found significant associations of various infections with the risk of AD, but not with the risks of other dementias. This indicates that vulnerability to infections may play a more significant role in AD than in other types of dementia, which warrants further investigation.
Collapse
Affiliation(s)
- Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Konstantin Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Hongzhe Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Galina Gorbunova
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Anatoliy Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Aniagyei W, Mohayideen S, Sarfo-Kantanka O, Bittner S, Vivekanandan MM, Arthur JF, Boateng AO, Yeboah A, Ahor HS, Asibey SO, Owusu E, Herebian D, Huttasch M, Burkart V, Wagner R, Roden M, Adankwah E, Owusu DO, Mayatepek E, Jacobsen M, Phillips RO, Seyfarth J. BCG Vaccination-Associated Lower HbA1c and Increased CD25 Expression on CD8 + T Cells in Patients with Type 1 Diabetes in Ghana. Vaccines (Basel) 2024; 12:452. [PMID: 38793703 PMCID: PMC11125916 DOI: 10.3390/vaccines12050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
BCG vaccination affects other diseases beyond tuberculosis by unknown-potentially immunomodulatory-mechanisms. Recent studies have shown that BCG vaccination administered during overt type 1 diabetes (T1D) improved glycemic control and affected immune and metabolic parameters. Here, we comprehensively characterized Ghanaian T1D patients with or without routine neonatal BCG vaccination to identify vaccine-associated alterations. Ghanaian long-term T1D patients (n = 108) and matched healthy controls (n = 214) were evaluated for disease-related clinical, metabolic, and immunophenotypic parameters and compared based on their neonatal BCG vaccination status. The majority of study participants were BCG-vaccinated at birth and no differences in vaccination rates were detected between the study groups. Notably, glycemic control metrics, i.e., HbA1c and IDAA1c, showed significantly lower levels in BCG-vaccinated as compared to unvaccinated patients. Immunophenotype comparisons identified higher expression of the T cell activation marker CD25 on CD8+ T cells from BCG-vaccinated T1D patients. Correlation analysis identified a negative correlation between HbA1c levels and CD25 expression on CD8+ T cells. In addition, we observed fractional increases in glycolysis metabolites (phosphoenolpyruvate and 2/3-phosphoglycerate) in BCG-vaccinated T1D patients. These results suggest that neonatal BCG vaccination is associated with better glycemic control and increased activation of CD8+ T cells in T1D patients.
Collapse
Affiliation(s)
- Wilfred Aniagyei
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Sumaya Mohayideen
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Osei Sarfo-Kantanka
- Komfo Anokye Teaching Hospital, Kumasi 00233, Ghana
- School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi 00233, Ghana
| | - Sarah Bittner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Monika M. Vivekanandan
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Joseph F. Arthur
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | | | - Augustine Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Hubert S. Ahor
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Robert Wagner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, 85764 Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, 85764 Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ernest Adankwah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Dorcas O. Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Richard O. Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
- School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi 00233, Ghana
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Riccomi A, Trombetta CM, Dorrucci M, Di Placido D, Sanarico N, Farchi F, Giuseppetti R, Villano U, Marcantonio C, Marchi S, Ciaramella A, Pezzotti P, Montomoli E, Valdarchi C, Ciccaglione AR, Vendetti S. Effects of Influenza Vaccine on the Immune Responses to SARS-CoV-2 Vaccination. Vaccines (Basel) 2024; 12:425. [PMID: 38675807 PMCID: PMC11054385 DOI: 10.3390/vaccines12040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
A number of studies have suggested that influenza vaccination can provide protection against COVID-19, but the underlying mechanisms that could explain this association are still unclear. In this study, the effect of the 2021/2022 seasonal influenza vaccination on the immune response to the booster dose of anti-SARS-CoV-2 vaccination was evaluated in a cohort of healthy individuals. A total of 113 participants were enrolled, 74 of whom had no prior COVID-19 diagnosis or significant comorbidities were considered for the analysis. Participants received the anti-influenza tetravalent vaccine and the booster dose of the anti-SARS-CoV-2 vaccine or the anti-SARS-CoV-2 vaccine alone. Blood was collected before and 4 weeks after each vaccination and 12 weeks after SARS-CoV-2 vaccination and analyzed for anti-flu and anti-spike-specific antibody titers and for in vitro influenza and SARS-CoV-2 neutralization capacity. Results indicated an increased reactivity in subjects who received both influenza and SARS-CoV-2 vaccinations compared to those who received only the SARS-CoV-2 vaccine, with sustained anti-spike antibody titers up to 12 weeks post-vaccination. Immune response to the influenza vaccine was evaluated, and individuals were stratified as high or low responders. High responders showed increased antibody titers against the SARS-CoV-2 vaccine both after 4 and 12 weeks post-vaccination. Conversely, individuals classified as low responders were less responsive to the SARS-CoV-2 vaccine. These data indicate that both external stimuli, such as influenza vaccination, and the host's intrinsic ability to respond to stimuli play a role in the response to the vaccine.
Collapse
Affiliation(s)
- A. Riccomi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - C. M. Trombetta
- Department of Molecular and Development Medicine, University of Siena, 53100 Siena, Italy (S.M.)
- VisMederi Research Srl, 53100 Siena, Italy
| | - M. Dorrucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - D. Di Placido
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - N. Sanarico
- Center for Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - F. Farchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - R. Giuseppetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - U. Villano
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - C. Marcantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - S. Marchi
- Department of Molecular and Development Medicine, University of Siena, 53100 Siena, Italy (S.M.)
| | - A. Ciaramella
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - P. Pezzotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - E. Montomoli
- Department of Molecular and Development Medicine, University of Siena, 53100 Siena, Italy (S.M.)
- VisMederi Research Srl, 53100 Siena, Italy
- VisMederi Srl, 53100 Siena, Italy
| | - C. Valdarchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - A. R. Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - S. Vendetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| |
Collapse
|
8
|
Al-Hosary A, Radwan AM, Ahmed LS, Abdelghaffar SK, Fischer S, Nijhof AM, Clausen PH, Ahmed JS. Isolation and propagation of an Egyptian Theileria annulata infected cell line and evaluation of its use as a vaccine to protect cattle against field challenge. Sci Rep 2024; 14:8565. [PMID: 38609410 PMCID: PMC11014843 DOI: 10.1038/s41598-024-57325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Tropical theileriosis is an important protozoan tick-borne disease in cattle. Vaccination using attenuated schizont-infected cell lines is one of the methods used for controlling the disease. This study describes the production of attenuated schizont-infected cell lines from Egypt and an evaluation of its use as a vaccine to protect calves against clinical disease upon field challenge. Two groups of exotic and crossbred male calves were divided into vaccinated and control groups. The vaccinated groups were inoculated with 4 ml (1 × 106 cells/ml) of the attenuated cell line. Three weeks after vaccination, calves of both groups were transported to the New Valley Governorate (Egyptian oasis) where they were kept under field conditions and exposed to the natural Theileria annulata challenge. All animals in the control group showed severe clinical signs and died despite treatment with buparvaquone, which was administered after two days of persistent fever due to a severe drop in packed cell volume (PCV). Animals in the vaccinated group became seropositive without developing severe clinical signs other than transient fever. Post-mortem examinations revealed enlarged and fragile lymph nodes, spleen, and liver with necrosis and hemorrhages. These findings indicate that the Egyptian attenuated cell line was successful in protecting both exotic and crossbred animals against tropical theileriosis under field conditions.
Collapse
Affiliation(s)
- Amira Al-Hosary
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Ahmed M Radwan
- Field Veterinarian, EL-Minia's Veterinary Directorate, EL-Minia, Egypt
| | - Laila S Ahmed
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Sary Kh Abdelghaffar
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Pathology and Clinical Pathology, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| | - Susanne Fischer
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Insel Riems, 17943, Greifswald, Germany
| | - Ard M Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
- Veterinary Center for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany.
| | - Peter-Henning Clausen
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Jabbar S Ahmed
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
9
|
Shankar-Hari M, Calandra T, Soares MP, Bauer M, Wiersinga WJ, Prescott HC, Knight JC, Baillie KJ, Bos LDJ, Derde LPG, Finfer S, Hotchkiss RS, Marshall J, Openshaw PJM, Seymour CW, Venet F, Vincent JL, Le Tourneau C, Maitland-van der Zee AH, McInnes IB, van der Poll T. Reframing sepsis immunobiology for translation: towards informative subtyping and targeted immunomodulatory therapies. THE LANCET. RESPIRATORY MEDICINE 2024; 12:323-336. [PMID: 38408467 PMCID: PMC11025021 DOI: 10.1016/s2213-2600(23)00468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 02/28/2024]
Abstract
Sepsis is a common and deadly condition. Within the current model of sepsis immunobiology, the framing of dysregulated host immune responses into proinflammatory and immunosuppressive responses for the testing of novel treatments has not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalised immunomodulation. In this Personal View, we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should be broadened beyond subtyping to encompass the identification of deterministic molecular networks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as altered homoeostasis with pathological disruption of immune-driven resistance, disease tolerance, resilience, and resolution mechanisms. Our proposal highlights opportunities to identify novel treatment targets and could enable successful immunomodulation in the future.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Thierry Calandra
- Service of Immunology and Allergy, Center of Human Immunology Lausanne, Department of Medicine and Department of Laboratory Medicine and Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kenneth J Baillie
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lieuwe D J Bos
- Department of Intensive Care, Academic Medical Center, Amsterdam, Netherlands
| | - Lennie P G Derde
- Intensive Care Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Simon Finfer
- Critical Care Division, The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Richard S Hotchkiss
- Department of Anesthesiology and Critical Care Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - John Marshall
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | | | - Christopher W Seymour
- Department of Critical Care Medicine, The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabienne Venet
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Iain B McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Rubio-Casillas A, Rodriguez-Quintero CM, Redwan EM, Gupta MN, Uversky VN, Raszek M. Do vaccines increase or decrease susceptibility to diseases other than those they protect against? Vaccine 2024; 42:426-440. [PMID: 38158298 DOI: 10.1016/j.vaccine.2023.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Contrary to the long-held belief that the effects of vaccines are specific for the disease they were created; compelling evidence has demonstrated that vaccines can exert positive or deleterious non-specific effects (NSEs). In this review, we compiled research reports from the last 40 years, which were found based on the PubMed search for the epidemiological and immunological studies on the non-specific effects (NSEs) of the most common human vaccines. Analysis of information showed that live vaccines induce positive NSEs, whereas non-live vaccines induce several negative NSEs, including increased female mortality associated with enhanced susceptibility to other infectious diseases, especially in developing countries. These negative NSEs are determined by the vaccination sequence, the antigen concentration in vaccines, the type of vaccine used (live vs. non-live), and also by repeated vaccination. We do not recommend stopping using non-live vaccines, as they have demonstrated to protect against their target disease, so the suggestion is that their detrimental NSEs can be minimized simply by changing the current vaccination sequence. High IgG4 antibody levels generated in response to repeated inoculation with mRNA COVID-19 vaccines could be associated with a higher mortality rate from unrelated diseases and infections by suppressing the immune system. Since most COVID-19 vaccinated countries are reporting high percentages of excess mortality not directly attributable to deaths from such disease, the NSEs of mRNA vaccines on overall mortality should be studied in depth.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico.
| | | | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt.
| | - Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Mikolaj Raszek
- Merogenomics (Genomic Sequencing Consulting), Edmonton, AB T5J 3R8, Canada.
| |
Collapse
|
11
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Giles ML, Cole S, O’Bryan J, Krishnaswamy S, Ben-Othman R, Amenyogbe N, Davey MA, Kollmann T. The PRotective Effect of Maternal Immunisation on preTerm birth: characterising the Underlying mechanisms and Role in newborn immune function: the PREMITUR study protocol. Front Immunol 2023; 14:1212320. [PMID: 38187392 PMCID: PMC10771328 DOI: 10.3389/fimmu.2023.1212320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Maternal immunisation, a low cost and high efficacy intervention is recommended for its pathogen specific protection. Evidence suggests that maternal immunisation has another significant impact: reduction of preterm birth (PTB), the single greatest cause of childhood morbidity and mortality globally. Our overarching question is: how does maternal immunisation modify the immune system in pregnant women and/or their newborn to reduce adverse pregnancy outcomes and enhance the newborn infant's capacity to protect itself from infectious diseases during early childhood? To answer this question we are conducting a multi-site, prospective observational cohort study collecting maternal and infant biological samples at defined time points during pregnancy and post-partum from nulliparous women. We aim to enrol 400 women and determine the immune trajectory in pregnancy and the impact of maternal immunisation (including influenza, pertussis and/or COVID-19 vaccines) on this trajectory. The results are expected to identify areas that can be targeted for future intervention studies.
Collapse
Affiliation(s)
- Michelle L. Giles
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia
- Department of Obstetric Medicine and Maternal Fetal Medicine, Royal Women’s Hospital, Melbourne, VIC, Australia
| | - Stephen Cole
- Department of Obstetrics and Gynaecology, Epworth Healthcare, Melbourne, VIC, Australia
| | - Jessica O’Bryan
- Department of Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - Sushena Krishnaswamy
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - Rym Ben-Othman
- Department of Paediatrics, Telethon Kids, Perth, WA, Australia
| | - Nelly Amenyogbe
- Department of Paediatrics, Telethon Kids, Perth, WA, Australia
| | - Mary-Ann Davey
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Tobias Kollmann
- Department of Paediatrics, Telethon Kids, Perth, WA, Australia
| |
Collapse
|
13
|
Ukraintseva S, Yashkin AP, Akushevich I, Arbeev K, Duan H, Gorbunova G, Stallard E, Yashin A. Associations of infections and vaccines with Alzheimer's disease point to a major role of compromised immunity rather than specific pathogen in AD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.04.23299092. [PMID: 38106098 PMCID: PMC10723482 DOI: 10.1101/2023.12.04.23299092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Diverse pathogens (viral, bacterial, fungal) have been linked to Alzheimer's disease (AD) indicating a possibility that the culprit may be compromised immunity rather than particular microbe. If true, then vaccines with broad beneficial effects on immunity might be protective against AD. METHODS We estimated associations of common adult infections, including herpes simplex, zoster (shingles), pneumonia, and recurrent mycoses, as well as vaccinations against shingles and pneumonia, with the risk of AD in a pseudorandomized sample of the Health and Retirement Study. RESULTS Shingles, pneumonia, and mycoses diagnosed between ages 65-75, were all associated with higher risk of AD later in life, by 16%-42%. Pneumococcal and shingles vaccines received between ages 65-75 both lowered the risk of AD, by 15%-21%. DISCUSSION Our results support the idea that the connection between AD and infections involves compromised immunity rather than specific pathogen. We discuss mechanisms by which the declining immune surveillance may promote AD, and the role of biological aging in it. Repurposing of vaccines with broad beneficial effects on immunity could be a reasonable approach to AD prevention. Pneumococcal and zoster vaccines are promising candidates for such repurposing.
Collapse
|
14
|
Nieto MA, Caballero N, Remolina CI, Moreno S, Vega D, Quintero J. Incidence and risk factors related to SARS-CoV-2 infection, reinfection, and seroconversion: Analysis of a healthcare workers cohort from a university hospital in Colombia. IJID REGIONS 2023; 9:63-71. [PMID: 37928802 PMCID: PMC10623274 DOI: 10.1016/j.ijregi.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
Objectives To determine the incidence and factors associated with SARS-CoV-2 infection and seroconversion among healthcare workers (HCWs) during the COVID-19 pandemic in a university hospital in Colombia. Methods We analyzed the CoVIDA-Fundación Santa Fe de Bogotá (FSFB) cohort, consisting of 419 HCWs from the FSFB university hospital. The cohort was followed during active surveillance (June 25, 2020, to April 30, 2021) and passive surveillance (May 01, 2021, to March 16, 2022) periods. Incidence rates for SARS-CoV-2 infection, reinfection, and seroconversion were estimated, considering pre- and post-COVID-19 vaccination. Cox proportional-hazards models were used to identify factors related to infection and seroconversion during the active surveillance period. Results COVID-19 incidence rate ranged between 16-52 cases per 1000 person-month. SARS-CoV-2 reinfections were rare, ranging between less than one case to 13 cases per 1000 person-month. The seroconversion rates ranged between 52-55 cases per 1000 person-month. High socioeconomic level was a protective factor for SARS-CoV-2 infection, while SARS-CoV-2 infection was the main factor associated with seroconversion. Conclusion This study provides insights into the incidence and risk factors of SARS-CoV-2 infection among HCWs in a Colombian university hospital. The findings may offer valuable guidance for reducing virus spread within healthcare settings.
Collapse
Affiliation(s)
- María A. Nieto
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Nohemí Caballero
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Camila I. Remolina
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Sergio Moreno
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Daniela Vega
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Juliana Quintero
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
| |
Collapse
|
15
|
Ziogas A, Bruno M, van der Meel R, Mulder WJM, Netea MG. Trained immunity: Target for prophylaxis and therapy. Cell Host Microbe 2023; 31:1776-1791. [PMID: 37944491 DOI: 10.1016/j.chom.2023.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/27/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
Trained immunity is a de facto memory for innate immune responses, leading to long-term functional reprogramming of innate immune cells. In physiological conditions, trained immunity leads to adaptive states that enhance resistance against pathogens and contributes to immunosurveillance. Dysregulated trained immunity can however lead either to defective innate immune responses in severe infections or cancer or to inflammatory and autoimmune diseases if trained immunity is inappropriately activated. Here, we review the immunological and molecular mechanisms that mediate trained immunity induction and propose that trained immunity represents an important target for prophylactic and therapeutic approaches in human diseases. On the one hand, we argue that novel approaches that induce trained immunity may enhance vaccine efficacy. On the other hand, induction of trained immunity in cancer, and inhibition of exaggerated induction of trained immunity in inflammatory disorders, are viable targets amenable for new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
McCuaig B, Goto Y. Immunostimulating Commensal Bacteria and Their Potential Use as Therapeutics. Int J Mol Sci 2023; 24:15644. [PMID: 37958628 PMCID: PMC10647581 DOI: 10.3390/ijms242115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The gut microbiome is intimately intertwined with the host immune system, having effects on the systemic immune system. Dysbiosis of the gut microbiome has been linked not only to gastrointestinal disorders but also conditions of the skin, lungs, and brain. Commensal bacteria can affect the immune status of the host through a stimulation of the innate immune system, training of the adaptive immune system, and competitive exclusion of pathogens. Commensal bacteria improve immune response through the production of immunomodulating compounds such as microbe-associated molecular patterns (MAMPs), short-chain fatty acids (SCFAs), and secondary bile acids. The microbiome, especially when in dysbiosis, is plastic and can be manipulated through the introduction of beneficial bacteria or the adjustment of nutrients to stimulate the expansion of beneficial taxa. The complex nature of the gastrointestinal tract (GIT) ecosystem complicates the use of these methods, as similar treatments have various results in individuals with different residential microbiomes and differential health statuses. A more complete understanding of the interaction between commensal species, host genetics, and the host immune system is needed for effective microbiome interventions to be developed and implemented in a clinical setting.
Collapse
Affiliation(s)
- Bonita McCuaig
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Yoshiyuki Goto
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- Division of Pandemic and Post-Disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
17
|
Guo F, Wei J, Song Y, Li B, Qian Z, Wang X, Wang H, Xu T. Immunological effects of the PE/PPE family proteins of Mycobacterium tuberculosis and related vaccines. Front Immunol 2023; 14:1255920. [PMID: 37841250 PMCID: PMC10569470 DOI: 10.3389/fimmu.2023.1255920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb), and its incidence and mortality are increasing. The BCG vaccine was developed in the early 20th century. As the most widely administered vaccine in the world, approximately 100 million newborns are vaccinated with BCG every year, which has saved tens of millions of lives. However, due to differences in region and race, the average protective rate of BCG in preventing tuberculosis in children is still not high in some areas. Moreover, because the immune memory induced by BCG will weaken with the increase of age, it is slightly inferior in preventing adult tuberculosis, and BCG revaccination cannot reduce the incidence of tuberculosis again. Research on the mechanism of Mtb and the development of new vaccines against TB are the main strategies for preventing and treating TB. In recent years, Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins have been found to have an increasingly important role in the pathogenesis and chronic protracted infection observed in TB. The development and clinical trials of vaccines based on Mtb antigens are in progress. Herein, we review the immunological effects of PE/PPE proteins and the development of common PE/PPE vaccines.
Collapse
Affiliation(s)
- Fangzheng Guo
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Jing Wei
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Yamin Song
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Tao Xu
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical College, Bengbu, China
| |
Collapse
|
18
|
Juste RA, Blanco-Vázquez C, Barral M, Prieto JM, Varela-Castro L, Lesellier S, Dave D, Sevilla IA, Martín Ezquerra AB, Adriaensen H, Herrero-García G, Garrido JM, Casais R, Balseiro A. Efficacy of heat-inactivated Mycobacterium bovis vaccine delivered to European badgers ( Meles meles) through edible bait. Heliyon 2023; 9:e19349. [PMID: 37662827 PMCID: PMC10474426 DOI: 10.1016/j.heliyon.2023.e19349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Badgers (Meles meles) are a major tuberculosis (TB) reservoir in Europe, with the potential to transmit infection to cattle. Here we assessed whether a recently described oral tuberculosis vaccine based on heat-inactivated Mycobacterium bovis (HIMB), delivered as edible baits, can protect badgers from infection. Eight badgers were given individually five baits, each one consisting of a ball of peanut butter, natural peanut and oat flakes including a dose of the vaccine containing 5 × 107 colony-forming units. In parallel, a control group of seven badgers did not receive the vaccine. One month and a half later a second dose of the vaccine was offered to the vaccinated group. Ninety-four days after the second dose, all badgers were challenged with M. bovis (103 colony-forming units per animal) delivered endobronchially to the right middle lung lobe. Clinical, immunological, pathological and bacteriological variables were measured throughout the whole study to assess the efficacy of the vaccine. Two vaccinated animals showed high bacterial load of M. bovis and worsening of pathological lesions of TB. Conversely, the other six vaccinated animals showed slight improvement in bacterial load and pathology with respect to the control group. These results suggest that delivering the TB vaccine via food bait can partially protect wild badger populations, although vaccination can lead to either protection or tolerization, likely depending on the animal's immune status and general condition at the time of vaccination. Further optimization of the vaccination trial/strategy is needed to reduce the rate of tolerization, such as altering vaccine dose, number of doses, type of bait, use of adjuvants or route of administration.
Collapse
Affiliation(s)
- Ramón A. Juste
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Cristina Blanco-Vázquez
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394, Asturias, Spain
| | - Marta Barral
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - José Miguel Prieto
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394, Asturias, Spain
| | - Lucía Varela-Castro
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), 54220, Malzéville, France
| | - Dipesh Dave
- Bacteriology Department, Animal and Plant Health Agency (APHA, Weybridge), KT15 3NB, Surrey, United Kingdom
| | - Iker A. Sevilla
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Ana Belén Martín Ezquerra
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Hans Adriaensen
- PIXANIM Plateform, Service Imagerie, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR PR China, Val-de-Loire, 37380, Nouzilly, France
| | - Gloria Herrero-García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Joseba M. Garrido
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Rosa Casais
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394, Asturias, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| |
Collapse
|
19
|
Al B, Suen TK, Placek K, Netea MG. Innate (learned) memory. J Allergy Clin Immunol 2023; 152:551-566. [PMID: 37385546 DOI: 10.1016/j.jaci.2023.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
With the growing body of evidence, it is now clear that not only adaptive immune cells but also innate immune cells can mount a more rapid and potent nonspecific immune response to subsequent exposures. This process is known as trained immunity or innate (learned) immune memory. This review discusses the different immune and nonimmune cell types of the central and peripheral immune systems that can develop trained immunity. This review highlights the intracellular signaling and metabolic and epigenetic mechanisms underlying the formation of innate immune memory. Finally, this review explores the health implications together with the potential therapeutic interventions harnessing trained immunity.
Collapse
Affiliation(s)
- Burcu Al
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.
| |
Collapse
|
20
|
Messina NL, Sperotto MG, Puga MAM, da Silva PV, de Oliveira RD, Moore CL, Pittet LF, Jamieson T, Dalcolmo M, dos Santos G, Jardim B, Lacerda MVG, Curtis N, Croda J. Impact of vaccine platform and BCG vaccination on antibody responses to COVID-19 vaccination. Front Immunol 2023; 14:1172851. [PMID: 37465688 PMCID: PMC10352084 DOI: 10.3389/fimmu.2023.1172851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Multiple factors, including vaccine platform and prior vaccinations, influence vaccine responses. We compared antibody responses to CoronaVac (Sinovac) and ChAdOx1-S (AstraZeneca-Oxford) vaccination in 874 healthcare workers in Brazil. As participants were randomised to BCG vaccination or placebo in the preceding 0-6 months as part of the BCG vaccination to reduce the impact of COVID-19 in healthcare workers (BRACE) trial, we also investigated the influence of recent BCG vaccination on antibody responses to these COVID-19 vaccines. Twenty-eight days after the second dose of each vaccine, ChAdOx1-S induced a stronger anti-spike IgG response than CoronaVac vaccination. Recent BCG vaccination did not impact IgG antibody responses to ChAdOx1-S or CoronaVac.
Collapse
Affiliation(s)
- Nicole L. Messina
- Infectious Diseases Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Mariana G. Sperotto
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Oswaldo Cruz Foundation Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marco A. M. Puga
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Oswaldo Cruz Foundation Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Patricia V. da Silva
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Oswaldo Cruz Foundation Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Roberto D. de Oliveira
- State University of Mato Grosso do Sul, Dourados-Mato Grosso do Sul, Brazil
- Federal University of Grande Dourados, Dourados, Brazil
| | - Cecilia L. Moore
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Laure F. Pittet
- Infectious Diseases Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Tenaya Jamieson
- Infectious Diseases Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Margareth Dalcolmo
- Helio Fraga Reference Center, Oswaldo Cruz Foundation Ministry of Health, Rio de Janeiro, Rio de Janeiro, Brazil
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauce dos Santos
- National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Jardim
- Institute of Clinical Research Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Marcus V. G. Lacerda
- Institute of Clinical Research Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Nigel Curtis
- Infectious Diseases Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Julio Croda
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Oswaldo Cruz Foundation Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Yale School of Public Health, New Haven, CT, United States
| |
Collapse
|
21
|
Baker MC, Vágó E, Tamang S, Horváth-Puhó E, Sørensen HT. Sarcoidosis rates in BCG-vaccinated and unvaccinated young adults: A natural experiment using Danish registers. Semin Arthritis Rheum 2023; 60:152205. [PMID: 37054583 PMCID: PMC10947408 DOI: 10.1016/j.semarthrit.2023.152205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
OBJECTIVES Sarcoidosis may have an infectious trigger, including Mycobacterium spp. The Bacille Calmette-Guérin (BCG) vaccine provides partial protection against tuberculosis and induces trained immunity. We examined the incidence rate (IR) of sarcoidosis in Danish individuals born during high BCG vaccine uptake (born before 1976) compared with individuals born during low BCG vaccine uptake (born in or after 1976). METHODS We performed a quasi-randomized registry-based incidence study using data from the Danish Civil Registration System and the Danish National Patient Registry between 1995 and 2016. We included individuals aged 25-35 years old and born between 1970 and 1981. Using Poisson regression models, we calculated the incidence rate ratio (IRR) of sarcoidosis in individuals born during low BCG vaccine uptake versus high BCG vaccine uptake, adjusting for age and calendar year (separately for men and women). RESULTS The IR of sarcoidosis was increased for individuals born during low BCG vaccine uptake compared with individuals born during high BCG vaccine uptake, which was largely attributed to men. The IRR of sarcoidosis for men born during low BCG vaccine uptake versus high BCG vaccine uptake was 1.22 (95% confidence interval [CI] 1.02-1.45). In women, the IRR was 1.08 (95% CI 0.88-1.31). CONCLUSION In this quasi-experimental study that minimizes confounding, the time period with high BCG vaccine uptake was associated with a lower incidence rate of sarcoidosis in men, with a similar effect seen in women that did not reach significance. Our findings support a potential protective effect of BCG vaccination against the development of sarcoidosis. Future interventional studies for high-risk individuals could be considered.
Collapse
Affiliation(s)
- Matthew C Baker
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America.
| | - Emese Vágó
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America
| | - Suzanne Tamang
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America
| | - Erzsébet Horváth-Puhó
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America
| | - Henrik Toft Sørensen
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America
| |
Collapse
|
22
|
Vitkov L, Herrmann M, Knopf J. Editorial: Oral neutrophils - the good, the bad, and the ugly. Front Immunol 2023; 14:1225210. [PMID: 37292199 PMCID: PMC10244779 DOI: 10.3389/fimmu.2023.1225210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
23
|
Shrivastava J, Narang M, Ahmed RS, Das S, Gomber S. Serological Response to COVID-19 and Its Association With Measles-Rubella (MR)-Containing Vaccines. Cureus 2023; 15:e39671. [PMID: 37398789 PMCID: PMC10308062 DOI: 10.7759/cureus.39671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Epidemiological studies suggest that coronavirus disease 2019 (COVID-19) has a less severe disease course and a more favorable prognosis among children. Childhood vaccines and heterologous immunity have been suggested as reasons for this. Additionally, the structural similarity between the measles, rubella, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus particles may affect immune responses. The objective of this study was to compare COVID-19 antibody titers and disease severity between measles-rubella (MR) vaccinated and unvaccinated children. Additionally, we aimed to evaluate and compare the antibody response in recipients of a single dose and two doses of the MR vaccine. METHODS The study was prospective and comparative and included 90 COVID-19-positive children aged nine months to 12 years. The study was registered under the clinical trials registry of India (CTRI/2021/01/030363). COVID-19 antibody titers were measured at two weeks, six weeks, and 12 weeks, along with the assessment of MR antibody titers. COVID-19 antibody titers and disease severity were compared between MR-vaccinated and MR-unvaccinated children. The comparison of COVID-19 antibody titers between recipients of a single dose and two doses of MR vaccine was also conducted. RESULTS The results showed significantly higher median COVID-19 antibody titers at all time points during follow-up in the MR-vaccinated group (P<0.05). However, the two groups had no significant difference in the disease severity. Moreover, there was no difference in the antibody titers of MR one dose and two dose recipients. CONCLUSION Exposure to even a single dose of MR-containing vaccine enhances the antibody response against COVID-19. However, randomized trials are necessary to further explore this subject.
Collapse
Affiliation(s)
- Jahnavi Shrivastava
- Pediatrics, University College of Medical Sciences (University of Delhi) and Guru Tegh Bahadur Hospital, Delhi, IND
| | - Manish Narang
- Pediatrics, University College of Medical Sciences (University of Delhi) and Guru Tegh Bahadur Hospital, Delhi, IND
| | - Rafat S Ahmed
- Biochemistry, University College of Medical Sciences (University of Delhi) and Guru Tegh Bahadur Hospital, Delhi, IND
| | - Shukla Das
- Microbiology, University College of Medical Sciences (University of Delhi) and Guru Tegh Bahadur Hospital, Delhi, IND
| | - Sunil Gomber
- Pediatrics, University College of Medical Sciences (University of Delhi) and Guru Tegh Bahadur Hospital, Delhi, IND
| |
Collapse
|
24
|
Chen TYT, Wang SI, Hung YM, Hartman JJ, Chang R, Wei JCC. Recent Human Papillomavirus Vaccination is Associated with a Lower Risk of COVID-19: A US Database Cohort Study. Drugs 2023; 83:621-632. [PMID: 37162705 PMCID: PMC10170435 DOI: 10.1007/s40265-023-01867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE To explore the association between human papillomavirus (HPV) vaccination and risk of coronavirus disease 2019 (COVID-19). Specifically, our study aimed to test the hypothesis that HPV vaccination may also induce trained immunity, which would potentially reduce the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and improve clinical outcomes. BACKGROUND Several vaccines have been reported to trigger non-specific immune reactions that could offer protection from heterologous infections. A recent case report showed that verruca vulgaris regressed after COVID-19, suggesting a possible negative association between COVID-19 and HPV infection. METHODS We enrolled 57,584 women with HPV vaccination and compared them with propensity score-matched controls who never received HPV vaccination in relation to the risk of COVID-19 incidence. Cox proportional hazard regression analysis was conducted to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Subgroup analyses stratified by age, race, comorbid asthma, and obesity were performed. RESULTS The risk of COVID-19 incidence was significantly lower in those who had recently received the HPV vaccine (within 1 year after HPV vaccination, aHR: 0.818, 95% CI 0.764-0.876; within 1-2 years after HPV vaccination, aHR: 0.890, 95% CI 0.824-0.961). Several limitations were recognized in this study, including residual confounding, problems of misclassification due to the use of electronic health record data, and that we were unable to keep track of the patients' HPV infection status and the HPV antibody levels in those who had received the vaccine. CONCLUSIONS Recent HPV vaccination was associated with a lower risk of incident COVID-19 and hospitalization. Based on the promising protective effect of HPV vaccine shown in this study, these findings should be replicated in an independent dataset. Further studies are needed to provide a better understanding of the underlying mechanisms and the differences in risks among 2-, 4-, or 9-valent HPV vaccine recipients.
Collapse
Affiliation(s)
- Thomas Yen-Ting Chen
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Shiow-Ing Wang
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Yao-Min Hung
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital Taitung Branch, Taitung City, Taiwan
- Master Program in Biomedicine, College of Science and Engineering, National Taitung University, Taitung, Taiwan
- College of Health and Nursing, Meiho University, Pingtung, Taiwan
| | | | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, No. 386, Dazhong First Rd., Zuoying District, Kaohsiung City, Taiwan
- Department of Recreation and Sports Management, Tajen University, Pintung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., South District, Taichung City, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Purbey PK, Roy K, Gupta S, Paul MK. Mechanistic insight into the protective and pathogenic immune-responses against SARS-CoV-2. Mol Immunol 2023; 156:111-126. [PMID: 36921486 PMCID: PMC10009586 DOI: 10.1016/j.molimm.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
COVID-19 is a severe respiratory illness that has emerged as a devasting health problem worldwide. The disease outcome is heterogeneous, which is most likely dependent on the immunity of an individual. Asymptomatic and mildly/moderate symptomatic (non-severe) patients likely develop an effective early immune response and clear the virus. However, severe symptoms dominate due to a failure in the generation of an effective and specific early immune response against SARS-CoV-2. Moreover, a late surge in pathogenic inflammation involves dysregulated innate and adaptive immune responses leading to local and systemic tissue damage and the emergence of severe disease symptoms. In this review, we describe the potential mechanisms of protective and pathogenic immune responses in "mild/moderate" and "severe" symptomatic SARS-CoV-2 infected people, respectively, and discuss the immune components that are currently targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Prabhat K Purbey
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Koushik Roy
- Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandeep Gupta
- Department of Neurobiology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
26
|
Hurle R, Soria F, Contieri R, Avolio PP, Mancon S, Lazzeri M, Bernasconi V, Mazzoli S, Pizzuto G, De Bellis M, Rosazza M, Livoti S, Lupia T, Corcione S, Lillaz B, De Rosa FG, Buffi NM, Kamat AM, Gontero P, Casale P. Evaluating the Protective Effect of Intravesical Bacillus Calmette-Guerin against SARS-CoV-2 in Non-Muscle Invasive Bladder Cancer Patients: A Multicenter Observational Trial. Cancers (Basel) 2023; 15:cancers15051618. [PMID: 36900409 PMCID: PMC10000457 DOI: 10.3390/cancers15051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
We aim to evaluate the potential protective role of intravesical Bacillus Calmette-Guerin (BCG) against SARS-CoV-2 in patients with non-muscle invasive bladder cancer (NMIBC). Patients treated with intravesical adjuvant therapy for NMIBC between January 2018 and December 2019 at two Italian referral centers were divided into two groups based on the received intravesical treatment regimen (BCG vs. chemotherapy). The study's primary endpoint was evaluating SARS-CoV-2 disease incidence and severity among patients treated with intravesical BCG compared to the control group. The study's secondary endpoint was the evaluation of SARS-CoV-2 infection (estimated with serology testing) in the study groups. Overall, 340 patients treated with BCG and 166 treated with intravesical chemotherapy were included in the study. Among patients treated with BCG, 165 (49%) experienced BCG-related adverse events, and serious adverse events occurred in 33 (10%) patients. Receiving BCG or experiencing systemic BCG-related adverse events were not associated with symptomatic proven SARS-CoV-2 infection (p = 0.9) nor with a positive serology test (p = 0.5). The main limitations are related to the retrospective nature of the study. In this multicenter observational trial, a protective role of intravesical BCG against SARS-CoV-2 could not be demonstrated. These results may be used for decision-making regarding ongoing and future trials.
Collapse
Affiliation(s)
- Rodolfo Hurle
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Francesco Soria
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Roberto Contieri
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Pier Paolo Avolio
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Stefano Mancon
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Massimo Lazzeri
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence:
| | - Valentina Bernasconi
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Simone Mazzoli
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Giuseppe Pizzuto
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Matteo De Bellis
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Matteo Rosazza
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Simone Livoti
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Beatrice Lillaz
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Nicolò Maria Buffi
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Ashish M. Kamat
- MD Anderson Cancer Center, University of Texas, Houston, TX 78712, USA
| | - Paolo Gontero
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, Torino School of Medicine, 10126 Turin, Italy
| | - Paolo Casale
- Department of Urology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
27
|
Sparks R, Lau WW, Liu C, Han KL, Vrindten KL, Sun G, Cox M, Andrews SF, Bansal N, Failla LE, Manischewitz J, Grubbs G, King LR, Koroleva G, Leimenstoll S, Snow L, Chen J, Tang J, Mukherjee A, Sellers BA, Apps R, McDermott AB, Martins AJ, Bloch EM, Golding H, Khurana S, Tsang JS. Influenza vaccination reveals sex dimorphic imprints of prior mild COVID-19. Nature 2023; 614:752-761. [PMID: 36599369 PMCID: PMC10481789 DOI: 10.1038/s41586-022-05670-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.
Collapse
Affiliation(s)
- Rachel Sparks
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - William W Lau
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- Graduate Program in Biological Sciences, University of Maryland, College Park, MD, USA
| | - Kyu Lee Han
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Kiera L Vrindten
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Guangping Sun
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Milann Cox
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | | | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Laura E Failla
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jody Manischewitz
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Lisa R King
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Galina Koroleva
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - LaQuita Snow
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | | | - Brian A Sellers
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Richard Apps
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA.
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA.
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Heinemann AS, Stalp JL, Bonifacio JPP, Silva F, Willers M, Heckmann J, Fehlhaber B, Völlger L, Raafat D, Normann N, Klos A, Hansen G, Schmolke M, Viemann D. Silent neonatal influenza A virus infection primes systemic antimicrobial immunity. Front Immunol 2023; 14:1072142. [PMID: 36761727 PMCID: PMC9902881 DOI: 10.3389/fimmu.2023.1072142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Infections with influenza A viruses (IAV) cause seasonal epidemics and global pandemics. The majority of these infections remain asymptomatic, especially among children below five years of age. Importantly, this is a time, when immunological imprinting takes place. Whether early-life infections with IAV affect the development of antimicrobial immunity is unknown. Using a preclinical mouse model, we demonstrate here that silent neonatal influenza infections have a remote beneficial impact on the later control of systemic juvenile-onset and adult-onset infections with an unrelated pathogen, Staphylococcus aureus, due to improved pathogen clearance and clinical resolution. Strategic vaccination with a live attenuated IAV vaccine elicited a similar protection phenotype. Mechanistically, the IAV priming effect primarily targets antimicrobial functions of the developing innate immune system including increased antimicrobial plasma activity and enhanced phagocyte functions and antigen-presenting properties at mucosal sites. Our results suggest a long-term benefit from an exposure to IAV during the neonatal phase, which might be exploited by strategic vaccination against influenza early in life to enforce the host's resistance to later bacterial infections.
Collapse
Affiliation(s)
- Anna Sophie Heinemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jan Lennart Stalp
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Filo Silva
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Beate Fehlhaber
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lena Völlger
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nicole Normann
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Klos
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.,Center for Infection Research, University Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Ukraintseva S, Duan M, Simanek AM, Holmes R, Bagley O, Rajendrakumar AL, Yashkin AP, Akushevich I, Tropsha A, Whitson H, Yashin A, Arbeev K. Vaccination Against Pneumonia May Provide Genotype-Specific Protection Against Alzheimer's Disease. J Alzheimers Dis 2023; 96:499-505. [PMID: 37807778 PMCID: PMC10657669 DOI: 10.3233/jad-230088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
Vaccine repurposing that considers individual genotype may aid personalized prevention of Alzheimer's disease (AD). In this retrospective cohort study, we used Cardiovascular Health Study data to estimate associations of pneumococcal polysaccharide vaccine and flu shots received between ages 65-75 with AD onset at age 75 or older, taking into account rs6859 polymorphism in NECTIN2 gene (AD risk factor). Pneumococcal vaccine, and total count of vaccinations against pneumonia and flu, were associated with lower odds of AD in carriers of rs6859 A allele, but not in non-carriers. We conclude that pneumococcal polysaccharide vaccine is a promising candidate for genotype-tailored AD prevention.
Collapse
Affiliation(s)
- Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Amanda M. Simanek
- Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Rachel Holmes
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Aravind L. Rajendrakumar
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Arseniy P. Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Alexander Tropsha
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather Whitson
- Center for Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Anatoliy Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Konstantin Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
30
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
31
|
Voyvoda B, Ozel SA, Sengul E, Memik O. Significance of PPD Test for the Relationship Between BCG Vaccine and COVID-19 in Patients on Kidney Transplant Waiting List. Transplant Proc 2022; 54:2677-2679. [PMID: 36163085 PMCID: PMC9444498 DOI: 10.1016/j.transproceed.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND The aim of this study was to determine the relationship between purified protein derivative of tuberculin (PPD) values, an indicator of BCG protection, and COVID-19 disease in patients with end-stage renal disease (ESRD) on the kidney transplant waiting list. METHODS Age, sex, dialysis type, ERSD etiologies, and PPD values of patients on the renal transplant waiting list were recorded. SARS-CoV-2 PCR data, whether the patients were previously infected with the virus, and, if infected, the severity of the disease were noted. Data were statistically compared. RESULTS PCR of 87 (47.02%) of 185 patients were studied; 107 of the patients were male and 78 were female, with a mean age of 52.8 years. The test result was positive for 28 patients. Of the patients for whom PCR was studied, 41 had a negative PPD result, while 46 had a positive PPD result. There was no correlation with SARS-CoV-2 PCR positivity in patients with a PPD ≤ 5 mm and > 5 mm. However, patients with pneumonic infiltration who required hospitalization had a significantly higher PPD value. CONCLUSIONS The PPD measurement, which is an indicator of BCG protection, might be a significant parameter for predicting the course of the disease in SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
- Bekir Voyvoda
- Urology-Kidney Transplantation Center, University of Health Sciences, Kocaeli Derince Training and Research Hospital, Derince-Kocaeli, Turkey,Address correspondence to Bekir Voyvoda, MD, University of Health Sciences, Kocaeli Derince Training and Research Hospital, Urology-Kidney Transplantation Center, Derince-Kocaeli, Turkey, İbn-Sina M. Derince-Kocaeli-Turkey. Fax: +90216 970 34 34
| | - Selcan Arslan Ozel
- Department of Infectious Disesase, University of Health Sciences, Kocaeli Derince Training and Research Hospital, Derince-Kocaeli, Turkey
| | - Erkan Sengul
- Nephrology-Kidney Transplantation Center, University of Health Sciences, Kocaeli Derince Training and Research Hospital, Derince-Kocaeli, Turkey
| | - Omur Memik
- Urology-Kidney Transplantation Center, University of Health Sciences, Kocaeli Derince Training and Research Hospital, Derince-Kocaeli, Turkey
| |
Collapse
|
32
|
Bosch-Camós L, Alonso U, Esteve-Codina A, Chang CY, Martín-Mur B, Accensi F, Muñoz M, Navas MJ, Dabad M, Vidal E, Pina-Pedrero S, Pleguezuelos P, Caratù G, Salas ML, Liu L, Bataklieva S, Gavrilov B, Rodríguez F, Argilaguet J. Cross-protection against African swine fever virus upon intranasal vaccination is associated with an adaptive-innate immune crosstalk. PLoS Pathog 2022; 18:e1010931. [PMID: 36350837 PMCID: PMC9645615 DOI: 10.1371/journal.ppat.1010931] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
African swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions. However, knowledge on the immune components associated with protection is very limited. Here we characterized the in vitro recall response induced by immune cells from pigs intranasally vaccinated with the BA71ΔCD2 deletion mutant virus. Vaccination conferred dose-dependent cross-protection associated with both ASFV-specific antibodies and IFNγ-secreting cells. Importantly, bulk and single-cell transcriptomics of blood and lymph node cells from vaccinated pigs revealed a positive feedback from adaptive to innate immunity. Indeed, activation of Th1 and cytotoxic T cells was concomitant with a rapid IFNγ-dependent triggering of an inflammatory response characterized by TNF-producing macrophages, as well as CXCL10-expressing lymphocytes and cross-presenting dendritic cells. Altogether, this study provides a detailed phenotypic characterization of the immune cell subsets involved in cross-protection against ASFV, and highlights key functional immune mechanisms to be considered for the development of an effective ASF vaccine. African swine fever (ASF) pandemic is currently the number one threat for the porcine industry worldwide. Lack of treatments hampers its control, and the insufficient knowledge regarding the immune effector mechanisms required for protection hinders rational vaccine design. Here we present the first comprehensive study characterizing the complex cellular immune response involved in cross-protection against ASF. We show that, upon in vitro reactivation, cells from immune pigs induce a Th1-biased recall response that in turn enhances the antiviral innate response. Our results suggest that this positive feedback regulation of innate immunity plays a key role in the early control of ASF virus infection. Altogether, this work represents a step forward in the understanding of ASF immunology and provide critical immune components that should be considered to more rationally design future ASF vaccines.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Uxía Alonso
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Chia-Yu Chang
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francesc Accensi
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Departament de Sanitat i Anatomia animals. Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marta Muñoz
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - María J. Navas
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Enric Vidal
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Sonia Pina-Pedrero
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Patricia Pleguezuelos
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ginevra Caratù
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - María L. Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autònoma de Madrid, Madrid, Spain
| | - Lihong Liu
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, Sofia, Bulgaria
| | - Fernando Rodríguez
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail: (FR); (JA)
| | - Jordi Argilaguet
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail: (FR); (JA)
| |
Collapse
|
33
|
Fortmann MI, Dirks J, Goedicke-Fritz S, Liese J, Zemlin M, Morbach H, Härtel C. Immunization of preterm infants: current evidence and future strategies to individualized approaches. Semin Immunopathol 2022; 44:767-784. [PMID: 35922638 PMCID: PMC9362650 DOI: 10.1007/s00281-022-00957-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
Preterm infants are at particularly high risk for infectious diseases. As this vulnerability extends beyond the neonatal period into childhood and adolescence, preterm infants benefit greatly from infection-preventive measures such as immunizations. However, there is an ongoing discussion about vaccine safety and efficacy due to preterm infants' distinct immunological features. A significant proportion of infants remains un- or under-immunized when discharged from primary hospital stay. Educating health care professionals and parents, promoting maternal immunization and evaluating the potential of new vaccination tools are important means to reduce the overall burden from infectious diseases in preterm infants. In this narrative review, we summarize the current knowledge about vaccinations in premature infants. We discuss the specificities of early life immunity and memory function, including the role of polyreactive B cells, restricted B cell receptor diversity and heterologous immunity mediated by a cross-reactive T cell repertoire. Recently, mechanistic studies indicated that tissue-resident memory (Trm) cell populations including T cells, B cells and macrophages are already established in the fetus. Their role in human early life immunity, however, is not yet understood. Tissue-resident memory T cells, for example, are diminished in airway tissues in neonates as compared to older children or adults. Hence, the ability to make specific recall responses after secondary infectious stimulus is hampered, a phenomenon that is transcriptionally regulated by enhanced expression of T-bet. Furthermore, the microbiome establishment is a dominant factor to shape resident immunity at mucosal surfaces, but it is often disturbed in the context of preterm birth. The proposed function of Trm T cells to remember benign interactions with the microbiome might therefore be reduced which would contribute to an increased risk for sustained inflammation. An improved understanding of Trm interactions may determine novel targets of vaccination, e.g., modulation of T-bet responses and facilitate more individualized approaches to protect preterm babies in the future.
Collapse
Affiliation(s)
- Mats Ingmar Fortmann
- Department of Pediatrics, University Lübeck, University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Johannes Dirks
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Johannes Liese
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Henner Morbach
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
34
|
Kulesza J, Kulesza E, Koziński P, Karpik W, Broncel M, Fol M. BCG and SARS-CoV-2-What Have We Learned? Vaccines (Basel) 2022; 10:1641. [PMID: 36298506 PMCID: PMC9610589 DOI: 10.3390/vaccines10101641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/19/2022] Open
Abstract
Despite controversy over the protective effect of the BCG (Bacille Calmette-Guérin) vaccine in preventing pulmonary tuberculosis (TB) in adults, it has been used worldwide since 1921. Although the first reports in the 1930s had noted a remarkable decrease in child mortality after BCG immunization, this could not be explained solely by a decrease in mortality from TB. These observations gave rise to the suggestion of nonspecific beneficial effects of BCG vaccination, beyond the desired protection against M. tuberculosis. The existence of an innate immunity-training mechanism based on epigenetic changes was demonstrated several years ago. The emergence of the pandemic caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in 2019 revived the debate about whether the BCG vaccine can affect the immune response against the virus or other unrelated pathogens. Due to the mortality of the coronavirus disease (COVID-19), it is important to verify each factor that may have a potential protective value against the severe course of COVID-19, complications, and death. This paper reviews the results of numerous retrospective studies and prospective trials which shed light on the potential of a century-old vaccine to mitigate the pandemic impact of the new virus. It should be noted, however, that although there are numerous studies intending to verify the hypothesis that the BCG vaccine may have a beneficial effect on COVID-19, there is no definitive evidence on the efficacy of the BCG vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, Żeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Koziński
- Tuberculosis and Lung Diseases Outpatient Clinic, Health Facility Unit in Łęczyca, Zachodnia 6, 99-100 Łęczyca, Poland
| | - Wojciech Karpik
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
35
|
Chambers GP, Kelton W, Smolenski G, Cuttance E. Impact of prepartum administration of a vaccine against infectious calf diarrhea on nonspecific colostral immunoglobulin concentrations of dairy cows. J Anim Sci 2022; 100:6604626. [PMID: 35678245 DOI: 10.1093/jas/skac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
Passive transfer of colostral immunoglobulins from the cow to the calf is essential for calf health. The objective of this study was to determine if prepartum administration of a vaccine stimulates increased concentrations of colostral immunoglobulins of dairy cows beyond what is explained by vaccine-specific immunoglobulins. A prospective cohort study was conducted on a spring-calving commercial dairy farm that had a policy of only vaccinating cows with even ear tag numbers with a calf diarrhea vaccine, while cows with odd ear tag numbers were left unvaccinated. Cows in the vaccinated group (even ear tag numbers, n=204) received a sensitizer and booster vaccination with a vaccine against bovine rotavirus (serotypes G6 and G10), bovine coronavirus and E. coli having the K99 pili adherence factor. A sensitizer was given because the study vaccine was different to the vaccine previously used. Cows in the control group (odd ear tag numbers, n=194) received a 2 mL subcutaneous sterile saline solution. Both groups received two treatments at a three-week interval, completing the treatments approximately two weeks prior to the planned start of calving. During the calving period, technicians separated calves from cows immediately after parturition and prior to suckling, and cows were completely milked out within six hours of parturition. Vaccine-specific, total, and nonvaccine-specific (total minus vaccine-specific) concentrations of immunoglobulin classes A, G1, G2a and M (IgA, IgG1, IgG2a and IgM respectively) were quantified by mass spectrometry for 20 colostrum samples from each treatment group. Predicted mean non-vaccine-specific colostral IgM concentrations were 8.76 (95% CI =7.18-10.67) and 5.78 (95% CI =4.74-7.05) mg/ml for vaccinated and control cows respectively (p =0.005). Predicted mean non-vaccine-specific colostral IgG1 concentrations were 106.08 (95% CI =92.07-120.08) and 95.30 (95% CI =81.30-109.31) mg/ml among vaccinated and control cows respectively, however these means were not significantly different (p=0.278). It is thus possible that the vaccine, in addition to specifically managing infectious calf diarrhea, may also have non-specific benefits by improving colostrum quality through increased non-vaccine-specific colostrum IgM concentrations. Further research is necessary to determine the mechanism for these preliminary findings, whether the effect may occur in other immunoglobulin classes, and what impacts it may have on calf health outcomes.
Collapse
Affiliation(s)
- Gregory P Chambers
- Zoetis New Zealand Limited, Level 5, 8 Mahuhu Crescent, Auckland 1010, New Zealand
| | - William Kelton
- Te Huataki Waiora School of Health, The University of Waikato, Hamilton 3240, New Zealand
| | - Grant Smolenski
- MS3 Solutions Ltd., Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Emma Cuttance
- EpiVets, 565 Mahoe Street, Te Awamutu, 3800, New Zealand
| |
Collapse
|
36
|
Taks EJM, Moorlag SJCFM, Netea MG, van der Meer JWM. Shifting the Immune Memory Paradigm: Trained Immunity in Viral Infections. Annu Rev Virol 2022; 9:469-489. [PMID: 35676081 DOI: 10.1146/annurev-virology-091919-072546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Trained immunity is defined as the de facto memory characteristics induced in innate immune cells after exposure to microbial stimuli after infections or certain types of vaccines. Through epigenetic and metabolic reprogramming of innate immune cells after exposure to these stimuli, trained immunity induces an enhanced nonspecific protection by improving the inflammatory response upon restimulation with the same or different pathogens. Recent studies have increasingly shown that trained immunity can, on the one hand, be induced by exposure to viruses; on the other hand, when induced, it can also provide protection against heterologous viral infections. In this review we explore current knowledge on trained immunity and its relevance for viral infections, as well as its possible future uses. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Esther J M Taks
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands; .,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| |
Collapse
|
37
|
Seo SU, Seong BL. Prospects on Repurposing a Live Attenuated Vaccine for the Control of Unrelated Infections. Front Immunol 2022; 13:877845. [PMID: 35651619 PMCID: PMC9149153 DOI: 10.3389/fimmu.2022.877845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Live vaccines use attenuated microbes to acquire immunity against pathogens in a safe way. As live attenuated vaccines (LAVs) still maintain infectivity, the vaccination stimulates diverse immune responses by mimicking natural infection. Induction of pathogen-specific antibodies or cell-mediated cytotoxicity provides means of specific protection, but LAV can also elicit unintended off-target effects, termed non-specific effects. Such mechanisms as short-lived genetic interference and non-specific innate immune response or long-lasting trained immunity and heterologous immunity allow LAVs to develop resistance to subsequent microbial infections. Based on their safety and potential for interference, LAVs may be considered as an alternative for immediate mitigation and control of unexpected pandemic outbreaks before pathogen-specific therapeutic and prophylactic measures are deployed.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Baik-Lin Seong
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
38
|
Geckin B, Konstantin Föhse F, Domínguez-Andrés J, Netea MG. Trained immunity: implications for vaccination. Curr Opin Immunol 2022; 77:102190. [PMID: 35597182 DOI: 10.1016/j.coi.2022.102190] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023]
Abstract
The concept that only adaptive immunity can build immunological memory has been challenged in the past decade. Live attenuated vaccines such as the Bacillus Calmette-Guérin, measles-containing vaccines, and the oral polio vaccine have been shown to reduce overall mortality beyond their effects attributable to the targeted diseases. After an encounter with a primary stimulus, epigenetic and metabolic reprogramming of bone marrow progenitor cells and functional changes of tissue immune cell populations result in augmented immune responses against a secondary challenge. This process has been termed trained immunity. This review describes the mechanisms leading to trained immunity and summarizes the most important developments from the past few years.
Collapse
Affiliation(s)
- Büsranur Geckin
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Friedrich Konstantin Föhse
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
39
|
Gong W, Mao Y, Li Y, Qi Y. BCG Vaccination: A potential tool against COVID-19 and COVID-19-like Black Swan incidents. Int Immunopharmacol 2022; 108:108870. [PMID: 35597119 PMCID: PMC9113676 DOI: 10.1016/j.intimp.2022.108870] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus
disease 2019 (COVID-19), and its variants have brought unprecedented
impacts to the global public health system, politics, economy, and other
fields. Although more than ten COVID-19 specific vaccines have been
approved for emergency use, COVID-19 prevention and control still face
many challenges. Bacille Calmette–Guérin (BCG) is the only authorized
vaccine used to fight against tuberculosis (TB), it has been hypothesized
that BCG may prevent and control COVID-19 based on BCG-induced
nonspecific immune responses. Herein, we summarized: 1) The nonspecific
protection effects of BCG, such as prophylactic protection effects of BCG
on nonmycobacterial infections, immunotherapy effects of BCG vaccine, and
enhancement effect of BCG vaccine on unrelated vaccines; 2) Recent
evidence of BCG's efficacy against SARS-COV-2 infection from ecological
studies, analytical analyses, clinical trials, and animal studies; 3)
Three possible mechanisms of BCG vaccine and their effects on COVID-19
control including heterologous immunity, trained immunity, and
anti-inflammatory effect. We hope that this review will encourage more
scientists to investigate further BCG induced non-specific immune
responses and explore their mechanisms, which could be a potential tool
for addressing the COVID-19 pandemic and COVID-19-like “Black Swan”
events to reduce the impacts of infectious disease outbreaks on public
health, politics, and economy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8(th) Medical Center of PLA General Hospital, Beijing 100091, China
| | - Yingqing Mao
- Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, Jiangsu Province, China
| | - Yuexi Li
- Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, Jiangsu Province, China.
| | - Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
40
|
Herweijer E, Schwamborn K, Bollaerts K, Spillmann A, Cattaert T, Verstraeten T, Hoogstraate J. Evaluation of Heterologous Effects of Travel Vaccines in Colorectal Cancer: A Database Study and a Cautionary Tale. GASTRO HEP ADVANCES 2022; 1:531-537. [PMID: 39132057 PMCID: PMC11308043 DOI: 10.1016/j.gastha.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Recently, cholera vaccine use was shown to be associated with a reduced risk of death in patients with colorectal cancer (CRC). However, evidence on heterologous effects of travel vaccines is limited. The aim of this study was to study heterologous effects of travel vaccines in patients with CRC. Methods We performed a retrospective database study on a cohort of CRC patients in Sweden and their postdiagnostic use of travel medications between July 2005 and December 2017. We obtained data from national registries on number of CRC diagnosis, death from CRC or other causes, age at diagnosis, and postdiagnostic use of travel vaccines and malaria prophylaxis. The Cox regression model was used to calculate incidence rate and incidence rate ratios of CRC-related and all-cause mortality by postdiagnostic travel medication status. Results Two hundred ninety-five patients exposed to travel vaccines and malaria prophylaxis and 73,466 patients not exposed to travel medications were identified. CRC-related mortality was lowered in the exposed patients compared to the unexposed patients, irrespective of the travel medications used. The incidence rate ratios for CRC-related mortality and overall mortality were comparable. Conclusion We postulated that patients in better health were likely to travel more frequently than patients with poor health, leading to a healthy user bias. The results suggested the same, as similar reduced mortality risks were found for all the investigated travel medications, lowering the biological plausibility of truly protective effect from post-therapeutic use of any of the travel medication studied. We advocate the use of multiple negative exposure controls and to exercise caution while drawing conclusions from travel vaccine research.
Collapse
Affiliation(s)
- Eva Herweijer
- P95 Epidemiology and Pharmacovigilance, Heverlee, Belgium
| | - Klaus Schwamborn
- Global Scientific Alliance & innovation, Valneva SE, Saint-Herblain, France
| | | | | | - Tom Cattaert
- P95 Epidemiology and Pharmacovigilance, Heverlee, Belgium
| | | | | |
Collapse
|
41
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Trained immunity-related vaccines: innate immune memory and heterologous protection against infections. Trends Mol Med 2022; 28:497-512. [DOI: 10.1016/j.molmed.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022]
|
43
|
Benedicto-Matambo P, Bines JE, Malamba-Banda C, Shawa IT, Barnes K, Kamng’ona AW, Hungerford D, Jambo KC, Iturriza-Gomara M, Cunliffe NA, Flanagan KL, Jere KC. Leveraging Beneficial Off-Target Effects of Live-Attenuated Rotavirus Vaccines. Vaccines (Basel) 2022; 10:418. [PMID: 35335050 PMCID: PMC8948921 DOI: 10.3390/vaccines10030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Following the introduction of live-attenuated rotavirus vaccines in many countries, a notable reduction in deaths and hospitalisations associated with diarrhoea in children <5 years of age has been reported. There is growing evidence to suggest that live-attenuated vaccines also provide protection against other infections beyond the vaccine-targeted pathogens. These so called off-target effects of vaccination have been associated with the tuberculosis vaccine Bacille Calmette Guérin (BCG), measles, oral polio and recently salmonella vaccines, and are thought to be mediated by modified innate and possibly adaptive immunity. Indeed, rotavirus vaccines have been reported to provide greater than expected reductions in acute gastroenteritis caused by other enteropathogens, that have mostly been attributed to herd protection and prior underestimation of rotavirus disease. Whether rotavirus vaccines also alter the immune system to reduce non targeted gastrointestinal infections has not been studied directly. Here we review the current understanding of the mechanisms underlying off-target effects of vaccines and propose a mechanism by which the live-attenuated neonatal rotavirus vaccine, RV3-BB, could promote protection beyond the targeted pathogen. Finally, we consider how vaccine developers may leverage these properties to improve health outcomes in children, particularly those in low-income countries where disease burden and mortality is disproportionately high relative to developed countries.
Collapse
Affiliation(s)
- Prisca Benedicto-Matambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Chikondi Malamba-Banda
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Blantyre 312225, Malawi
| | - Isaac T. Shawa
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Kayla Barnes
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Harvard School of Public Health, Boston, MA 02115, USA
| | - Arox W. Kamng’ona
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Health Profession, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Daniel Hungerford
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Kondwani C. Jambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
- Centre for Vaccine Innovation and Access, Program for Appropriate Technology in Health (PATH), 1218 Geneva, Switzerland
| | - Nigel A. Cunliffe
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Katie L. Flanagan
- School of Medicine, University of Tasmania, Hobart, TAS 7005, Australia;
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC 3083, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Khuzwayo C. Jere
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
44
|
Brook B, Schaltz-Buchholzer F, Ben-Othman R, Kollmann T, Amenyogbe N. A place for neutrophils in the beneficial pathogen-agnostic effects of the BCG vaccine. Vaccine 2022; 40:1534-1539. [PMID: 33863572 DOI: 10.1016/j.vaccine.2021.03.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
The BCG vaccine has long been recognized for reducing the risk to suffer from infectious diseases unrelated to its target disease, tuberculosis. Evidence from human trials demonstrate substantial reductions in all-cause mortality, especially in the first week of life. Observational studies have identified an association between BCG vaccination and reduced risk of respiratory infectious disease and clinical malaria later in childhood. The mechanistic basis for these pathogen-agnostic benefits, also known as beneficial non-specific effects (NSE) of BCG have been attributed to trained immunity, or epigenetic reprogramming of hematopoietic cells that give rise to innate immune cells responding more efficiently to a broad range of pathogens. Furthermore, within trained immunity, the focus so far has been on enhanced monocyte function. However, polymorphonuclear cells, namely neutrophils, are not only major constituents of the hematopoietic compartment but functionally as well as numerically represent a prominent component of the immune system. The beneficial NSEs of the BCG vaccine on newborn sepsis was recently demonstrated to be driven by a BCG-mediated numeric increase of neutrophils (emergency granulopoiesis (EG)). And experimental evidence in animal models suggest that BCG can modulate neutrophil function as well. Together, these findings suggest that neutrophils are crucial to at least the immediate beneficial NSE of the BCG vaccine. Efforts to uncover the full gamut of mechanisms underpinning the broad beneficial effects of BCG should therefore include neutrophils at the forefront.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Frederick Schaltz-Buchholzer
- Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Rym Ben-Othman
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Tobias Kollmann
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, Western Australia, Australia.
| |
Collapse
|
45
|
Hajishengallis G, Li X, Divaris K, Chavakis T. Maladaptive trained immunity and clonal hematopoiesis as potential mechanistic links between periodontitis and inflammatory comorbidities. Periodontol 2000 2022; 89:215-230. [PMID: 35244943 DOI: 10.1111/prd.12421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontitis is bidirectionally associated with systemic inflammatory disorders. The prevalence and severity of this oral disease and linked comorbidities increases with aging. Here, we review two newly emerged concepts, trained innate immunity (TII) and clonal hematopoiesis of indeterminate potential (CHIP), which together support a potential hypothesis on how periodontitis affects and is affected by comorbidities and why the susceptibility to periodontitis and comorbidities increases with aging. Given that chronic diseases are largely triggered by the action of inflammatory immune cells, modulation of their bone marrow precursors, the hematopoietic stem and progenitor cells (HSPCs), may affect multiple disorders that emerge as comorbidities. Such alterations in HSPCs can be mediated by TII and/or CHIP, two non-mutually exclusive processes sharing a bias for enhanced myelopoiesis and production of innate immune cells with heightened proinflammatory potential. TII is a state of elevated immune responsiveness based on innate immune (epigenetic) memory. Systemic inflammation can initiate TII in the bone marrow via sustained rewiring of HSPCs, which thereby display a skewing toward the myeloid lineage, resulting in generation of hyper-reactive or "trained" myeloid cells. CHIP arises from aging-related somatic mutations in HSPCs, which confer a survival and proliferation advantage to the mutant HSPCs and give rise to an outsized fraction of hyper-inflammatory mutant myeloid cells in the circulation and tissues. This review discusses emerging evidence that supports the notion that TII and CHIP may underlie a causal and age-related association between periodontitis and comorbidities. A holistic mechanistic understanding of the periodontitis-systemic disease connection may offer novel diagnostic and therapeutic targets for treating inflammatory comorbidities.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimon Divaris
- Division of Pediatrics and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
46
|
COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity. J Microbiol 2022; 60:321-334. [PMID: 35157221 PMCID: PMC8853094 DOI: 10.1007/s12275-022-1621-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), has led to many cases and deaths worldwide. Therefore, a number of vaccine candidates have been developed to control the COVID-19 pandemic. Of these, to date, 21 vaccines have received emergency approval for human use in at least one country. However, the recent global emergence of SARS-CoV-2 variants has compromised the efficacy of the currently available vaccines. To protect against these variants, the use of vaccines that modulate T cell-mediated immune responses or innate immune cell memory function, termed trained immunity, is needed. The major advantage of a vaccine that uses bacteria or viral systems for the delivery of COVID-19 antigens is the ability to induce both T cell-mediated and humoral immune responses. In addition, such vaccine systems can also exert off-target effects via the vector itself, mediated partly through trained immunity; compared to other vaccine platforms, suggesting that this approach can provide better protection against even vaccine escape variants. This review presents the current status of the development of COVID-19 vaccines based on recombinant viral and bacterial delivery systems. We also discuss the current status of the use of licensed live vaccines for other infections, including BCG, oral polio and MMR vaccines, to prevent COVID-19 infections.
Collapse
|
47
|
Jain M, Vadboncoeur J, Garg SJ, Biswas J. Bacille Calmette-Guérin: An ophthalmic perspective. Surv Ophthalmol 2022; 67:307-320. [PMID: 34343536 PMCID: PMC8325561 DOI: 10.1016/j.survophthal.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/20/2023]
Abstract
Vaccines such as bacille Calmette-Guérin (BCG) are known for their heterologous effects mediated through a number of mechanisms, including trained immunity constituted by monocyte-macrophage based innate immunity. Other events such as direct hematogenous spread and induction of autoimmunity are also described. There has been a resurgent interest in harnessing some of the benefits of trained immunity in the management of COVID-19, even as several specific vaccines have been approved. We summarize the current knowledge of ocular effects of BCG. Potential effect of granulomatous inflammation on angiotensin converting enzyme activity and accentuation of cytokine storm that may result in undesirable ocular and systemic effects are also discussed.
Collapse
Affiliation(s)
- Manish Jain
- Himalayan Institute of Medical Sciences, Jolly Grant, Dehradun, UK, India
| | - Julie Vadboncoeur
- Department of Ophthalmology, Université de Montréal, Montréal, Uveitis Service, University Ophthalmology Center, Maisonneuve-Rosemont Hospital, Montréal, Canada
| | - Sunir J Garg
- Thomas Jefferson University, Philadelphia, PA USA
| | - Jyotirmay Biswas
- Director of Uveitis & Ocular Pathology Department, Sankara Nethralaya, Chennai, TN, India
| |
Collapse
|
48
|
Dow CT, Greenblatt CL, Chan ED, Dow JF. Evaluation of BCG Vaccination and Plasma Amyloid: A Prospective, Pilot Study with Implications for Alzheimer’s Disease. Microorganisms 2022; 10:microorganisms10020424. [PMID: 35208878 PMCID: PMC8880735 DOI: 10.3390/microorganisms10020424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
BCG vaccine has been used for 100 years to prevent tuberculosis. Not all countries, including the United States, adopted the initial World Health Organization recommendation to use BCG. Moreover, many Western countries that had routinely used BCG have discontinued its use. Recent population studies demonstrate lower prevalence of Alzheimer’s disease (AD) in countries with high BCG coverage. Intravesicular instillation of BCG is also used to treat bladder cancer that has not invaded the bladder muscle wall and has been shown to reduce recurrence. Several retrospective studies of bladder cancer patients demonstrated that BCG treatment was associated with a significantly reduced risk of developing AD. Plasma amyloid β assessment has become a fertile area of study for an AD biomarker that is predictive of a positive amyloid PET scan. Mass spectrometry-based plasma amyloid 42/40 ratio has proven to be accurate and robust, and when combined with age and ApoE, is shown to accurately predict current and future brain amyloid status. These parameters, amyloid 42/40 ratio, age and ApoE genotype are incorporated into an Amyloid Probability Score (APS)–a score that identifies low, intermediate or high risk of having a PET scan positive for cerebral amyloid. Community recruitment was used for this open-label pilot study. Forty-nine BCG-naïve, immunocompetent individuals completed our study: prior to BCG prime and boost, as determined by the APS, 34 had low risk (APS 0–35), 5 had intermediate risk (APS 36–57) and 10 had high risk (APS 58–100). The APS range for the participant group was 0 to 94. Follow-up plasma amyloid testing 9 months after vaccination revealed a reduction in the APS in all the risk groups: low risk group (p = 0. 37), intermediate risk group (p = 0.13) and the high-risk group (statistically significant, p = 0.016). Greater benefit was seen in younger participants and those with the highest risk. The small number of participants and the nascent status of plasma amyloid testing will rightfully temper embracement of these results. However, both the favorable direction of change after BCG as well as the utility of the APS—a valuable surrogate AD biomarker—may prompt a definitive large-scale multicenter investigation of BCG and AD risk as determined by plasma amyloid peptide ratios and APS.
Collapse
Affiliation(s)
- Coad Thomas Dow
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
- Mindful Diagnostics and Therapeutics, Eau Claire, WI 54701, USA
- Correspondence:
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Hebrew University, Jerusalem 9103401, Israel;
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO 80218, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80217, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Jordan F. Dow
- Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
- Northwestern Wisconsin Region Mayo Clinic Health System, Eau Claire, WI 54703, USA
| |
Collapse
|
49
|
Contopoulos-Ioannidis DG, Altamirano J, Maldonado Y. Infectious Diseases-Related Hospitalizations During Oral Polio Vaccine(OPV) and non-OPV immunization periods: An Empirical Evaluation of all Hospital Discharges in California(1985-2010). Clin Infect Dis 2022; 75:1123-1130. [PMID: 35139187 DOI: 10.1093/cid/ciac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Live attenuated vaccines such as oral polio vaccine (OPV) can stimulate innate immunity and may have off-target protective effects on other pathogens. We aimed to address this hypothesis by examining changes in infectious diseases (ID)-related hospitalizations in all hospital discharges in California during OPV-(1985-1996) and non-OPV-immunization periods (2000-2010). METHODS We searched the OSHPD (Office of Statewide Health Planning and Development) database for all hospital discharges with any ID-related discharge diagnosis code during 1985-2010. We compared the proportion of ID-related hospitalizations (with at least one ID-related discharge diagnosis) among total hospitalizations during OPV immunization (1985-1996) vs non-OPV immunization (2000-2010) periods. RESULTS There were 19,281,039 ID-related hospitalizations (8,464,037 with an ID-related discharge-diagnosis as the principal discharge diagnosis for the hospitalization) among 98,117,475 hospitalizations in 1985-2010; 9,520,810 ID-hospitalizations/43,456,484 total hospitalizations in 2000-2010 vs 7,526,957/43,472,796 in 1985-1996. The RR for ID-related hospitalizations in 2000-2010 vs 1985-1996 was 1.27(95% CI: 1.26-1.27) for all diagnoses and 1.15(95% CI: 1.15-1.16) for principal diagnoses. Increases also existed in the proportion of lower respiratory and gastrointestinal infections. DISCUSSION The proportion of ID-related hospitalizations was lower in the OPV-immunization period compared to the period after OPV was discontinued. When focused only on hospitalizations with ID as the principal discharge diagnosis the signal remained significant but was smaller. These findings require replication in additional studies.
Collapse
Affiliation(s)
- Despina G Contopoulos-Ioannidis
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Jonathan Altamirano
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America.,Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Yvonne Maldonado
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America.,Senior Associate Dean for Faculty Development and Diversity, Stanford University, Stanford, CA, United States of America.,Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
50
|
Kleinstern G, Larson MC, Ansell SM, Thompson CA, Nowakowski GS, Call TG, Robinson DP, Maurer MJ, Mwangi R, Feldman AL, Kay NE, Novak AJ, Habermann TM, Slager SL, Cerhan JR. Vaccination History and Risk of Lymphoma and Its Major Subtypes. Cancer Epidemiol Biomarkers Prev 2022; 31:461-470. [PMID: 34782394 PMCID: PMC8825700 DOI: 10.1158/1055-9965.epi-21-0383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vaccinations have been hypothesized to play a role in lymphoma etiology, but there are few studies, mixed results, and limited data on lymphoma subtypes. Herein, we investigate the association of vaccinations with risk of major lymphoma subtypes. METHODS We studied 2,461 lymphoma cases and 2,253 controls enrolled from 2002 to 2014. Participants self-reported history of vaccinations against hepatitis A, hepatitis B, yellow fever, and influenza. Polytomous logistic regression was used to estimate OR and 95% confidence intervals (CI), adjusting for potential confounders. RESULTS After multivariable adjustment, vaccination against influenza was inversely associated with lymphoma (OR = 0.82; 95% CI, 0.66-1.02), which was stronger for last vaccination 1+ years before enrollment (OR = 0.71; 95% CI, 0.56-0.91) and for >5 influenza vaccinations (OR = 0.56; 95% CI, 0.46-0.68). Ever vaccination against hepatitis A (OR = 0.81; 95% CI, 0.66-1.00) but not hepatitis B (OR = 0.97; 95% CI, 0.81-1.18) was associated with lymphoma risk, although more recent vaccinations were inversely associated with lymphoma risk for both hepatitis A (<6 years before enrollment, OR = 0.56; 95% CI, 0.40-0.77) and hepatitis B (<9 years before enrollment, OR = 0.72; 95% CI, 0.55-0.93). Ever vaccination against yellow fever was inversely associated with risk (OR = 0.73; 95% CI, 0.55-0.96), and this did not vary by time since last vaccination. Although there was no overall statistical evidence for heterogeneity of vaccination history by lymphoma subtype, the only statistically significant inverse associations were observed for influenza and yellow fever vaccinations with diffuse large B-cell and follicular lymphoma. CONCLUSIONS Selected vaccinations were inversely associated with lymphoma risk, with time since last vaccination relevant for some of these vaccines. IMPACT Vaccinations against hepatitis A, hepatitis B, yellow fever, and influenza are unlikely to increase lymphoma risk.
Collapse
Affiliation(s)
- Geffen Kleinstern
- School of Public Health, University of Haifa, Haifa, Israel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Timothy G Call
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Dennis P Robinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Raphael Mwangi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|