1
|
Costaguta A, Costaguta G, Álvarez F. Autoimmune hepatitis: Towards a personalized treatment. World J Hepatol 2024; 16:1225-1242. [DOI: 10.4254/wjh.v16.i11.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Autoimmune hepatitis is an uncommon condition that affects both adults and children and is characterized by chronic and recurrent inflammatory activity in the liver. This inflammation is accompanied by elevated IgG and autoantibody levels. Historically, treatment consists of steroids with the addition of azathioprine, which results in remission in approximately 80% of patients. Despite significant advancements in our understanding of the immune system over the past two decades, few modifications have been made to treatment algorithms, which have remained largely unchanged since they were first proposed more than 40 years ago. This review summarized the various treatment options currently available as well as our experiences using them. Although steroids are the standard treatment for induction therapy, other medications may be considered. Cyclosporin A, a calcineurin inhibitor that decreases T cell activation, has proven effective for induction of remission, but its long-term side effects limit its appeal for maintenance. Tacrolimus, a drug belonging to the same family, has been used in patients with refractory diseases with fewer side effects. Sirolimus and everolimus have interesting effects on regulatory T cell populations and may become viable options in the future. Mycophenolate mofetil is not effective for induction but is a valid alternative for patients who are intolerant to azathioprine. B cell-depleting drugs, such as rituximab and belimumab, have been successfully used in refractory cases and are useful in both the short and long term. Other promising treatments include anti-tumor necrosis factors, Janus kinases inhibitors, and chimeric antigen receptor T cell therapy. This growing armamentarium allows us to imagine a more tailored approach to the treatment of autoimmune hepatitis in the near future.
Collapse
Affiliation(s)
- Alejandro Costaguta
- Department of Hepatology and Liver Transplant Unit, Sanatorio de Niños de Rosario, Rosario 2000, Santa Fe, Argentina
| | - Guillermo Costaguta
- Department of Gastroenterology, Hepatology, and Nutrition, CHU Sainte-Justine, Montreal H3T 1C5, Quebec, Canada
| | - Fernando Álvarez
- Department of Pediatrics, CHU Sainte-Justine, Montreal H3T 1C5, Quebec, Canada
| |
Collapse
|
2
|
Cucchiari D, Podestà MA, Ponticelli C. Pathophysiology of rejection in kidney transplantation. Expert Rev Clin Immunol 2024:1-11. [PMID: 39467249 DOI: 10.1080/1744666x.2024.2421310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Rejection remains a major obstacle to successful kidney transplantation. The complex pathophysiology of rejection depends on a fine-tuned interplay between the innate and adaptive immune systems. AREAS COVERED This review provides a comprehensive analysis of the pathophysiology of rejection of kidney grafts, performed through careful selection of most relevant papers available on the topic in the PubMed database. The two types of rejection usually observed at the kidney biopsy, i.e. cellular and humoral rejection, are described with an accurate outline of the biological processes that lead to their development. EXPERT OPINION The incidence of T-cell-mediated rejection is decreasing, and most cases promptly respond to appropriate immunosuppression. However, late diagnosis or incomplete response to treatment may have deleterious consequences in the long term. The main issue is represented by antibody-mediated rejection, which unsatisfactorily responds to aggressive immunosuppression, especially when diagnosed late. Prevention of acute ABMR rests on HLA-specific antibody detection prior to transplantation, adequate immunosuppression, and optimal patients' compliance. Late diagnosis and poor response to treatment inevitably lead to chronic ABMR, for which no therapies are currently available.
Collapse
Affiliation(s)
- David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Manuel Alfredo Podestà
- Transplantation Research Center, Renal Division, Brigham and Women's Hopsital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
3
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
4
|
O'Grady SM, Kita H. ATP functions as a primary alarmin in allergen-induced type 2 immunity. Am J Physiol Cell Physiol 2023; 325:C1369-C1386. [PMID: 37842751 PMCID: PMC10861152 DOI: 10.1152/ajpcell.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.
Collapse
Affiliation(s)
- Scott M O'Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hirohito Kita
- Division of Allergy, Asthma and Immunology, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
5
|
Subburayalu J. Immune surveillance and humoral immune responses in kidney transplantation - A look back at T follicular helper cells. Front Immunol 2023; 14:1114842. [PMID: 37503334 PMCID: PMC10368994 DOI: 10.3389/fimmu.2023.1114842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
T follicular helper cells comprise a specialized, heterogeneous subset of immune-competent T helper cells capable of influencing B cell responses in lymphoid tissues. In physiology, for example in response to microbial challenges or vaccination, this interaction chiefly results in the production of protecting antibodies and humoral memory. In the context of kidney transplantation, however, immune surveillance provided by T follicular helper cells can take a life of its own despite matching of human leukocyte antigens and employing the latest immunosuppressive regiments. This puts kidney transplant recipients at risk of subclinical and clinical rejection episodes with a potential risk for allograft loss. In this review, the current understanding of immune surveillance provided by T follicular helper cells is briefly described in physiological responses to contrast those pathological responses observed after kidney transplantation. Sensitization of T follicular helper cells with the subsequent emergence of detectable donor-specific human leukocyte antigen antibodies, non-human leukocyte antigen antibodies their implication for kidney transplantation and lessons learnt from other transplantation "settings" with special attention to antibody-mediated rejection will be addressed.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Xu H, Li T, Zhang X, Li H, Lv D, Wang Y, Huo F, Bai J, Wang C. Impaired Circulating Antibody-Secreting Cells Generation Predicts the Dismal Outcome in the Elderly Septic Shock Patients. J Inflamm Res 2022; 15:5293-5308. [PMID: 36124208 PMCID: PMC9482413 DOI: 10.2147/jir.s376962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Sepsis is a condition that derives from a dysregulated host response to infection. Although B lymphocytes play a pivotal role in immune response, little is known about status of their terminally differentiated cells, antibody-secreting cells (ASCs) during immunosuppressive phase of sepsis, especially in elderly patients. Our aim was to extensively characterize the immune functions of ASCs in elderly septic patients. Patients and Methods Clinical and laboratory data were collected on days 1, 3, and 7 of hospitalization. Circulating ASCs were evaluated by flow cytometry from fresh whole blood in elderly septic patients at the onset of disease. RNA sequencing analyzed ASCs gene expression profile. Receiver operating characteristic (ROC) curve analysis and logistic regression predicted the survival rate of 28-day mortality. Results A total of 103 septic patients were enrolled. The number and proportion of ASCs among total lymphocytes dramatically increased in septic patients, and RNA sequencing analysis showed that ASCs from septic patients exhibited a different gene expression profile. Furthermore, we found these ASCs could promote the function of T cells. Logistic regression analysis showed ASCs population was an independent outcome predictor in septic shock patients. Conclusion Our study revealed the complex nature of immune disorders in sepsis and identified circulating ASCs population as a useful biomarker for predicting mortality in elderly septic patients, which provided a novel clue to combat this severe disease.
Collapse
Affiliation(s)
- Huihui Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Teng Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.,Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052, People's Republic of China
| | - Hongqiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Diyu Lv
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Yiyuan Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Fangjie Huo
- Department of Respiratory Medicine, Xi'an No. 4 hospital, Xi'an, 710004, People's Republic of China
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.,Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, People's Republic of China
| | - Chunmei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.,Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, People's Republic of China
| |
Collapse
|
7
|
Ogongo P, Nyakundi RK, Chege GK, Ochola L. The Road to Elimination: Current State of Schistosomiasis Research and Progress Towards the End Game. Front Immunol 2022; 13:846108. [PMID: 35592327 PMCID: PMC9112563 DOI: 10.3389/fimmu.2022.846108] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The new WHO Roadmap for Neglected Tropical Diseases targets the global elimination of schistosomiasis as a public health problem. To date, control strategies have focused on effective diagnostics, mass drug administration, complementary and integrative public health interventions. Non-mammalian intermediate hosts and other vertebrates promote transmission of schistosomiasis and have been utilized as experimental model systems. Experimental animal models that recapitulate schistosomiasis immunology, disease progression, and pathology observed in humans are important in testing and validation of control interventions. We discuss the pivotal value of these models in contributing to elimination of schistosomiasis. Treatment of schistosomiasis relies heavily on mass drug administration of praziquantel whose efficacy is comprised due to re-infections and experimental systems have revealed the inability to kill juvenile schistosomes. In terms of diagnosis, nonhuman primate models have demonstrated the low sensitivity of the gold standard Kato Katz smear technique. Antibody assays are valuable tools for evaluating efficacy of candidate vaccines, and sera from graded infection experiments are useful for evaluating diagnostic sensitivity of different targets. Lastly, the presence of Schistosomes can compromise the efficacy of vaccines to other infectious diseases and its elimination will benefit control programs of the other diseases. As the focus moves towards schistosomiasis elimination, it will be critical to integrate treatment, diagnostics, novel research tools such as sequencing, improved understanding of disease pathogenesis and utilization of experimental models to assist with evaluating performance of new approaches.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Ruth K. Nyakundi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Gerald K. Chege
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
- Department of Environmental Health, School of Behavioural and Lifestyle Sciences, Faculty of Health Sciences, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
8
|
Braud VM, Meghraoui-Kheddar A, Elaldi R, Petti L, Germain C, Anjuère F. LLT1-CD161 Interaction in Cancer: Promises and Challenges. Front Immunol 2022; 13:847576. [PMID: 35185935 PMCID: PMC8854185 DOI: 10.3389/fimmu.2022.847576] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
The success of immune checkpoint therapy in cancer has changed our way of thinking, promoting the design of future cancer treatments that places the immune system at the center stage. The knowledge gained on immune regulation and tolerance helped the identification of promising new clinical immune targets. Among them, the lectin-like transcript 1 (LLT1) is the ligand of CD161 (NKR-P1A) receptor expressed on natural killer cells and T cells. LLT1/CD161 interaction modulates immune responses but the exact nature of the signals delivered is still partially resolved. Investigation on the role of LLT1/CD161 interaction has been hampered by the lack of functional homologues in animal models. Also, some studies have been misled by the use of non-specific reagents. Recent studies and meta-analyses of single cell data are bringing new insights into the function of LLT1 and CD161 in human pathology and notably in cancer. The advances made on the characterization of the tumor microenvironment prompt us to integrate LLT1/CD161 interaction into the equation. This review recapitulates the key findings on the expression profile of LLT1 and CD161, their regulation, the role of their interaction in cancer development, and the relevance of targeting LLT1/CD161 interaction.
Collapse
Affiliation(s)
- Veronique M. Braud
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Veronique M. Braud,
| | - Aïda Meghraoui-Kheddar
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Roxane Elaldi
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Luciana Petti
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Fabienne Anjuère
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
9
|
Shim JA, Jo Y, Hwang H, Lee SE, Ha D, Lee JH, Kim J, Song P, Lee D, Hong C. Defects in aminoacyl-tRNA synthetase cause partial B and T cell immunodeficiency. Cell Mol Life Sci 2022; 79:87. [PMID: 35067747 PMCID: PMC11071942 DOI: 10.1007/s00018-021-04122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are emerging as important regulators in various immune diseases; however, their roles in immune cells remain unclear. In this study, using alanyl-tRNA synthetase (AARS) mutant (sti) mice with neurodegenerative disorder, we investigated the effect of translational fidelity in immune cells. Dysfunctional AARS caused disorders in immune cell responses and cellularity. The impairment was caused by dampened TCR signaling than cytokine signaling. Therefore, sti mutant inhibits TCR signaling, impeding T cell survival and responses. B cell numbers were decreased in sti mice. Despite low B cell cellularity, serum IgM, IgA, and IgE levels were higher in sti mice than in wild-type mice. Misacylation of ARS and the consequent translational infidelity induce disturbances in signaling pathways critical for immune cell survival and responses. Our findings provide a novel mechanism by which translational fidelity might play a critical role in cellular and humoral immune responses.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Hyunju Hwang
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - So Eun Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Dahyeon Ha
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Jun Hwa Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Parkyong Song
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
10
|
Laghmouchi A, Graça NAG, Voorberg J. Emerging Concepts in Immune Thrombotic Thrombocytopenic Purpura. Front Immunol 2021; 12:757192. [PMID: 34858410 PMCID: PMC8631936 DOI: 10.3389/fimmu.2021.757192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Immune thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder of which the etiology is not fully understood. Autoantibodies targeting ADAMTS13 in iTTP patients have extensively been studied, the immunological mechanisms leading to the breach of tolerance remain to be uncovered. This review addresses the current knowledge on genetic factors associated with the development of iTTP and the interplay between the patient's immune system and environmental factors in the induction of autoimmunity against ADAMTS13. HLA-DRB1*11 has been identified as a risk factor for iTTP in the Caucasian population. Interestingly, HLA-DRB1*08:03 was recently identified as a risk factor in the Japanese population. Combined in vitro and in silico MHC class II peptide presentation approaches suggest that an ADAMTS13-derived peptide may bind to both HLA-DRB1*11 and HLA-DRB1*08:03 through different anchor-residues. It is apparent that iTTP is associated with the presence of infectious microorganisms, viruses being the most widely associated with development of iTTP. Infections may potentially lead to loss of tolerance resulting in the shift from immune homeostasis to autoimmunity. In the model we propose in this review, infections disrupt the epithelial barriers in the gut or lung, promoting exposure of antigen presenting cells in the mucosa-associated lymphoid tissue to the microorganisms. This may result in breach of tolerance through the presentation of microorganism-derived peptides that are homologous to ADAMTS13 on risk alleles for iTTP.
Collapse
Affiliation(s)
| | | | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
11
|
Bekele Y, Sui Y, Berzofsky JA. IL-7 in SARS-CoV-2 Infection and as a Potential Vaccine Adjuvant. Front Immunol 2021; 12:737406. [PMID: 34603318 PMCID: PMC8484798 DOI: 10.3389/fimmu.2021.737406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
IL-7/IL-7R signaling is critical for development, maturation, maintenance and survival of many lymphocytes in the thymus and periphery. IL-7 has been used as immunotherapy in pre-clinical and clinical studies to treat cancer, HIV infection and sepsis. Here, we discuss the critical function of IL-7 in diagnosis, prognosis and treatment of COVID-19 patients. We also summarize a promising role of IL-7 as a vaccine adjuvant. It could potentially enhance the immune responses to vaccines especially against SARS-CoV-2 or other new vaccines.
Collapse
Affiliation(s)
- Yonas Bekele
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Yoon SE, Cho J, Kim YJ, Ko YH, Park WY, Kim SJ, Kim WS. Comprehensive analysis of clinical, pathological, and genomic characteristics of follicular helper T-cell derived lymphomas. Exp Hematol Oncol 2021; 10:33. [PMID: 33990228 PMCID: PMC8120779 DOI: 10.1186/s40164-021-00224-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background The 2016 World Health Organization (WHO) classification introduced nodal lymphomas of T follicular helper (Tfh) cell origin, such as angioimmunoblastic T-cell lymphoma (AITL), follicular peripheral T-cell lymphoma (F-PTCL), and nodal peripheral T-cell lymphoma with T follicular helper phenotype (nodal PTCL with TFH phenotype). However, the accurate incidence rate and clinical characteristics of F-PTCL and nodal PTCL with TFH are unstudied. Methods Between February 2012 to June 2020, a total of 207 cases diagnosed with nodal lymphomas of T follicular helper (Tfh) cell origin and PTCL-NOS were reviewed for clinical and histopathologic data. PTCL-NOS was defined to not correlate to any of the specific entities of mature T cell lymphoma in the WHO 2016 classification. We attempted to classify PTCL-GATA3 and PTCL-TBX21 by IHC staining. Target gene analysis was performed on a few patients with sufficient blood and tissue samples additionally. Results Among 207 patients, 111 patients (53.6%) had AITL, 67 patients (32.4%) had PTCL-NOS, 19 patients (9.2%) had F-PTCL, and 10 patients (4.8%) had nodal PTCL with TFH phenotype. We re-defined and analyzed F-PTCL and nodal PTCL with TFH phenotype into other TFH lymphomas. AITL (N = 101/111, 91.0%) was found to have a higher frequency of stage III/IV cancers compared to other TFH lymphomas (N = 22/29, 75.0%) and PTCL-NOS (N = 53/67, 79.1%; p-value = 0.03). The OS of AITL and other TFH lymphomas was similarly superior to PTCL-NOS (p-value = 0.02). AITL and other TFH lymphomas showed the TBX21 subtype more commonly than the GATA3 subtype. Mutations related to the RAS family (RHOA) and those related to epigenetic regulators (IDH2, DNMT3A, and TET2) were shown mainly in AITL and other TFH lymphomas. Conclusions Other TFH lymphomas appear to be a rare disease entity around one-quarter in nodal lymphomas of T follicular helper (Tfh) cell origin. Their less aggressive clinical feature than we did not expect is utterly different from PTCL-NOS and AITL. On the other hand, other TFH lymphomas share some characteristics, such as the cell of origin, a more common TBX21 subtype, and genetic variation such as RAS family mutation and epigenetic regulators, with AITL. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-021-00224-3.
Collapse
Affiliation(s)
- Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
13
|
Abstract
BACKGROUND Reduced B cell numbers play a critical role in sepsis immunosuppression. The role of B-cell maturation regulated by T follicular helper (Tfh) cells in reduced B cell numbers during sepsis remains unclear. We tested the hypothesis that impaired B-cell maturation contributes to reduced B cell numbers. DESIGN Retrospective study and observational prospective cohort study. SETTINGS Critical care units. METHODS To identify the exact lymphocyte counts that affect the prognosis of sepsis, we first conducted a retrospective study. Then in the prospective cohort study, differences in B-cell maturation, B cell death, and numbers of circulating Tfh (cTfh) cell were compared between 28-day survivors and 28-day non-survivors, mainly by flow cytometry and enzyme-linked immunosorbent assay. MAIN RESULTS In retrospective study (n = 123), we found patients with lymphocyte counts less than 0.4 × 10 cells/L had higher mortality than patients with lymphocyte counts above 0.4 × 10 cells/L. In observational prospective cohort study (n = 40), compared with survivors, non-survivors had fewer numbers of mature B cell and circulating Tfh (cTfh) cell (sepsis onset: memory B cells: 3.44% vs. 4.48%, antibody-secreting cells: 4.53% vs. 6.30%, cTfh cells: 3.57% vs. 4.49%; 24 h after sepsis onset: memory B cells: 4.05% vs. 7.20%, antibody-secreting cells: 5.25% vs. 8.78%, cTfh cells: 3.98% vs. 6.15%), while there were no differences in cell death of mature B cells between them. We further noticed the numbers of cTfh cell positively correlated with the numbers of mature B cell and immunoglobulin concentrations. CONCLUSIONS Impaired B-cell maturation contributes to reduced B cell numbers, while the numbers of cTfh cell, acting as a warning indicator for sepsis prognosis, may be a new therapeutic target for treating sepsis.
Collapse
|
14
|
Worku MG. Pluripotent and Multipotent Stem Cells and Current Therapeutic Applications: Review. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:3-7. [PMID: 33880040 PMCID: PMC8052119 DOI: 10.2147/sccaa.s304887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
There is numerous evidence for the presence of stem cells, which is important for the treatment of a wide variety of disease conditions. Stem cells have a great therapeutic effect on different degenerative diseases through the development of specialized cells. Embryonic stem (ES) cells are derived from preimplantation embryos, which have a natural karyotype. This cell has the capacity of proliferation indefinitely and undifferentiated. Stem cells are very crucial for the treatment of different chronic and degenerative diseases. For instance, stem cell clinical trials have been done for ischemic heart disease. Also, the olfactory cells for spinal cord lesions and human fetal pancreatic cells for diabetes mellitus are the other clinical importance of stem cell therapy. Extracellular matrix (ECM) and other environmental factors influence the fate and activity of stem cells.
Collapse
Affiliation(s)
- Misganaw Gebrie Worku
- Department of Human Anatomy, University of Gondar, College of Medicine and Health Science, School of Medicine, Gondar, Ethiopia
| |
Collapse
|
15
|
d'Alessandro M, Bergantini L, Cameli P, Fanetti M, Alderighi L, Armati M, Refini RM, Alonzi V, Sestini P, Bargagli E. Immunologic responses to antifibrotic treatment in IPF patients. Int Immunopharmacol 2021; 95:107525. [PMID: 33714885 DOI: 10.1016/j.intimp.2021.107525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease limited to the lungs. Immunological dysregulation may significantly participate in the pathophysiology of IPF. The immunological responses to nintedanib therapy in IPF patients were investigated for the first time in this study. MATERIALS AND METHODS Fifty IPF patients (median age (IQR) 69 (65-75) years; 38 males), were selected retrospectively. Flowcytometry analysis were performed to phenotype immunological biomarkers in peripheral blood from IPF patients after 1 year of antifibrotic therapy and a group of healthy volunteers. RESULTS Before starting antifibrotic treatment, IPF patients showed increased CD1d+CD5+ (p = 0.0460), Treg (p = 0.0354), T effector (CD25highCD127high) (p = 0.0336), central cells (CD4+CD45RA-) (p = 0.0354), effector cells (CD4+CD45RA+) (p = 0.0249) and follicular cell percentages (p = 0.0006), notably Tfh1 (p = 0.0412) and Tfh17 (p = 0.0051) cell percentages, in respect with healthy controls (HC). After nintedanib therapy, Breg (p = 0.0302), T effector (p = 0.0468), Th17.1 (p = 0.0146) and follicular cells (p = 0.0006), notably Tfh1 (p = 0.0006) and Tfh17 (p = 0.0182) cell percentages, were significantly decreased. In the logistic regression, Tfh panel showed a significant area under the receiver operating characteristics curve (AUROC) to distinguish IPF than HC (90.5%), as well as t0 and t1 (99.3%). CONCLUSION In conclusion, the immunological results obtained in this study demonstrate that nintedanib significantly helps to restore immunological responses in IPF patients. These findings will be useful in the search for biomarkers predictive of response to antifibrotic treatment.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy.
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Matteo Fanetti
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Lorenzo Alderighi
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Martina Armati
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Valerio Alonzi
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Piersante Sestini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| |
Collapse
|
16
|
Subburayalu J, Dolff S, Xu S, Sun M, Lindemann M, Heinold A, Heinemann FM, Tervaert JWC, Eisenberger U, Korth J, Brinkhoff A, Kribben A, Witzke O, Wilde B. Characterization of follicular T helper cells and donor-specific T helper cells in renal transplant patients with de novo donor-specific HLA-antibodies. Clin Immunol 2021; 226:108698. [PMID: 33639275 DOI: 10.1016/j.clim.2021.108698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
T follicular helper (TFH) cells are a heterogeneous subset of immunocompetent T helper (TH) cells capable of augmenting B cell responses in lymphoid tissues. In transplantation, exposure to allogeneic tissue activates TFH cells increasing the risk of the emergence of de novo donor-specific HLA-antibodies (dnDSA). These can cause antibody-mediated rejection (AMR) and allograft loss. Follicular regulatory T (TFR) cells counteract TFH cell activity. Here, we investigated the implications of TFH and TFR cells on dnDSA formation after renal transplantation (RTX). Considering TFH cells to be CXCR5+ and IL-21+, we found by flow cytometry that patients with dnDSA produced IL-21 more abundantly compared to healthy volunteers. In in vitro alloreactivity assays, patients with dnDSA featured an enhanced alloreactive TH cell pool in response to donor-specific HLA antigens. Besides, longitudinal investigations suggested enhanced alloreactivity shortly after transplantation increasing the risk of dnDSA development. Taken together, in spite of continuous immunosuppression we report a strong IL-21 response in TFH cells and an expanded reservoir of donor-specific memory TH cells in patients with dnDSA. This warrants further investigations if aberrant TFH cell activation may precede the formation of dnDSA promoting AMR.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Shilei Xu
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Department of General Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510530, China
| | - Ming Sun
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Ute Eisenberger
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Johannes Korth
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Alexandra Brinkhoff
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany.
| |
Collapse
|
17
|
King C, Sprent J. Dual Nature of Type I Interferons in SARS-CoV-2-Induced Inflammation. Trends Immunol 2021; 42:312-322. [PMID: 33622601 PMCID: PMC7879020 DOI: 10.1016/j.it.2021.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ability of our cells to secrete type I interferons (IFN-Is) is essential for the control of virus replication and for effective antiviral immune responses; for this reason, viruses have evolved the means to antagonize IFN-I. Inhibition of IFN-I production is pronounced in SARS-CoV-2 infection, which can impair the adaptive immune response and exacerbate inflammatory disease at late stages of infection. However, therapeutic boosting of IFN-I offers a narrow time window for efficacy and safety. Here, we discuss how limits placed on IFN-I by SARS-CoV-2 shape the immune response and whether this might be countered with therapeutic approaches and vaccine design.
Collapse
Affiliation(s)
- Cecile King
- Department of Immunology, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, UNSW, Sydney, NSW 2010, Australia.
| | - Jonathan Sprent
- Department of Immunology, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, UNSW, Sydney, NSW 2010, Australia
| |
Collapse
|
18
|
Caldirola MS, Martínez MP, Bezrodnik L, Zwirner NW, Gaillard MI. Immune Monitoring of Patients With Primary Immune Regulation Disorders Unravels Higher Frequencies of Follicular T Cells With Different Profiles That Associate With Alterations in B Cell Subsets. Front Immunol 2020; 11:576724. [PMID: 33193371 PMCID: PMC7658009 DOI: 10.3389/fimmu.2020.576724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
Primary immune regulation disorders lead to autoimmunity, allergy and inflammatory conditions due to defects in the immune homeostasis affecting different T, B and NK cell subsets. To improve our understanding of these conditions, in this work we analyzed the T and B cell compartments of 15 PID patients with dysregulation, including 3 patients with STAT1 GOF mutation, 7 patients with CVID with dysregulation, 3 patients with mutations in CTLA4, 1 patient with CD25 mutation and 1 patient with STAT5b mutation and compared them with healthy donors and with CVID patients without dysregulation. CD4+ and CD8+ T cells from the patients exhibited a significant decreased frequency of naïve and regulatory T cells with increased frequencies of activated cells, central memory CD4+ T cells, effector memory CD8+ T cells and terminal effector CD8+ T cells. Patients also exhibited a significantly increased frequency of circulating CD4+ follicular helper T cells, with altered frequencies of cTfh cell subsets. Such cTfh cells were skewed toward cTfh1 cells in STAT1 GOF, CTLA4, and CVID patients, while the STAT5b deficient patient presented a skew toward cTfh17 cells. These alterations confirmed the existence of an imbalance in the cTfh1/cTfh17 ratio in these diseases. In addition, we unraveled a marked dysregulation in the B cell compartment, characterized by a prevalence of transitional and naïve B cells in STAT1 GOF and CVID patients, and of switched-memory B cells and plasmablast cells in the STAT5b deficient patient. Moreover, we observed a significant positive correlation between the frequencies cTfh17 cells and switched-memory B cells and between the frequency of switched-memory B cells and the serum IgG. Therefore, primary immunodeficiencies with dysregulation are characterized by a skew toward an activated/memory phenotype within the CD4+ and CD8+ T cell compartment, accompanied by abnormal frequencies of Tregs, cTfh, and their cTfh1 and cTfh17 subsets that likely impact on B cell help for antibody production, which likely contributes to their autoimmune and inflammatory conditions. Therefore, assessment of these alterations by flow cytometry constitutes a simple and straightforward manner to improve diagnosis of these complex clinical entities that may impact early diagnosis and patients' treatment. Also, our findings unravel phenotypic alterations that might be associated, at least in part, with some of the clinical manifestations observed in these patients.
Collapse
Affiliation(s)
- María Soledad Caldirola
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María Paula Martínez
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Centro de Inmunología Clínica Dra. Bezrodnik, Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Isabel Gaillard
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Sección Citometría-Laboratorio Stamboulian, Buenos Aires, Argentina
| |
Collapse
|
19
|
Src Family Protein Kinase Controls the Fate of B Cells in Autoimmune Diseases. Inflammation 2020; 44:423-433. [PMID: 33037966 DOI: 10.1007/s10753-020-01355-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
There are more than 80 kinds of autoimmune diseases known at present, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), inflammatory bowel disease (IBD), as well as other disorders. Autoimmune diseases have a characteristic of immune responses directly attacking own tissues, leading to systematic inflammation and subsequent tissue damage. B cells play a vital role in the development of autoimmune diseases and differentiate into plasma cells or memory B cells to secrete high-affinity antibody or provide long-lasting function. Drugs targeting B cells show good therapeutic effects for the treatment of autoimmune diseases, such as rituximab (anti-CD20 antibody). Src family protein kinases (SFKs) are believed to play important roles in a variety of cellular functions such as growth, proliferation, and differentiation of B cell via B cell antigen receptor (BCR). Lck/Yes-related novel protein tyrosine kinase (LYN), BLK (B lymphocyte kinase), and Fyn are three different kinds of SFKs mainly expressed in B cells. LYN has a dual role in the BCR signal. On the one hand, positive signals are beneficial to the development and maturation of B cells. On the other hand, LYN can also inhibit excessively activated B cells. BLK is involved in the proliferation, differentiation, and immune tolerance of B lymphocytes, and further affects the function of B cells, which may lead to autoreactive or regulatory cellular responses, increasing the risk of autoimmune diseases. Fyn may affect the development of autoimmune disorders via the differentiation of B cells in the early stage of B cell development. This article reviews the recent advances of SFKs in B lymphocytes in autoimmune diseases.
Collapse
|
20
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
21
|
|
22
|
Townsend W, Pasikowska M, Yallop D, Phillips EH, Patten PEM, Salisbury JR, Marcus R, Pepper A, Devereux S. The architecture of neoplastic follicles in follicular lymphoma; analysis of the relationship between the tumor and follicular helper T cells. Haematologica 2020; 105:1593-1603. [PMID: 31537685 PMCID: PMC7271595 DOI: 10.3324/haematol.2019.220160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
CD4+ T-follicular helper cells are essential for the survival, proliferation, and differentiation of germinal center B cells and have been implicated in the pathogenesis of follicular lymphoma (FL). To further define the role of these cells in FL, we used multiparameter confocal microscopy to compare the architecture of normal and neoplastic follicles and next generation sequencing to analyze the T-cell receptor repertoire in FL lymph nodes (LN). Multiparameter analysis of LN showed that the proportion of T-follic-ular helper cells (TFH) in normal and neoplastic follicles is the same and that the previously reported increase in TFH numbers in FL is thus due to an increase in the number and not content of follicles. As in normal germinal centers, TFH were shown to have a close spatial correlation with proliferating B cells in neoplastic follicles, where features of immunological synapse formation were observed. The number of TFH in FL correlate with the rate of B-cell proliferation and TFH co-localized to activation induced cytidine deaminase expressing proliferating B cells. T-cell receptor repertoire analysis of FL LN revealed that follicular areas are significantly more clonal when compared to the rest of the LN. These novel findings show that neoplastic follicles and germinal centers share important structural features and provide further evidence that TFH may play a role in driving B-cell proliferation and genomic evolution in TFH Our results also suggest that targeting this interaction would be an attractive therapeutic option.
Collapse
Affiliation(s)
- William Townsend
- Department of Haematological Medicine, Rayne Institute, King's College London, London
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London
| | - Marta Pasikowska
- Department of Haematological Medicine, Rayne Institute, King's College London, London
| | - Deborah Yallop
- Department of Haematological Medicine, Rayne Institute, King's College London, London
- Department of Haematology, King's College Hospital, London
| | - Elizabeth H Phillips
- Department of Haematological Medicine, Rayne Institute, King's College London, London
| | - Piers E M Patten
- Department of Haematological Medicine, Rayne Institute, King's College London, London
- Department of Haematology, King's College Hospital, London
| | | | - Robert Marcus
- Department of Haematology, King's College Hospital, London
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Stephen Devereux
- Department of Haematological Medicine, Rayne Institute, King's College London, London
- Department of Haematology, King's College Hospital, London
| |
Collapse
|
23
|
Hollern DP, Xu N, Thennavan A, Glodowski C, Garcia-Recio S, Mott KR, He X, Garay JP, Carey-Ewend K, Marron D, Ford J, Liu S, Vick SC, Martin M, Parker JS, Vincent BG, Serody JS, Perou CM. B Cells and T Follicular Helper Cells Mediate Response to Checkpoint Inhibitors in High Mutation Burden Mouse Models of Breast Cancer. Cell 2020; 179:1191-1206.e21. [PMID: 31730857 DOI: 10.1016/j.cell.2019.10.028] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/12/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022]
Abstract
This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nuo Xu
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aatish Thennavan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Cherise Glodowski
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph P Garay
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kelly Carey-Ewend
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John Ford
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Siyao Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah C Vick
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Miguel Martin
- Instituto de Investigación Sanitaria Gregorio Marañon, CIBERONC, Universidad Complutense, Madrid, Spain
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
A Solution with Ginseng Saponins and Selenium as Vaccine Diluent to Increase Th1/Th2 Immune Responses in Mice. J Immunol Res 2020; 2020:2714257. [PMID: 32149156 PMCID: PMC7054799 DOI: 10.1155/2020/2714257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/24/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Pseudorabies is an important infectious disease of swine, and immunization using attenuated pseudorabies virus (aPrV) vaccine is a routine practice to control this disease in swine herds. This study was to evaluate a saline solution containing ginseng stem-leaf saponins (GSLS) and sodium selenite (Se) as a vaccine adjuvant for its enhancement of immune response to aPrV vaccine. The results showed that aPrV vaccine diluted with saline containing GSLS-Se (aP-GSe) induced significantly higher immune responses than that of the vaccine diluted with saline alone (aP-S). The aP-GSe promoted higher production of gB-specific IgG, IgG1, and IgG2a, neutralizing antibody titers, secretion of Th1-type (IFN-γ, IL-2, IL-12), and Th2-type (IL-4, IL-6, IL-10) cytokines, and upregulated the T-bet/GATA-3 mRNA expression when compared to aP-S. In addition, cytolytic activity of NK cells, lymphocyte proliferation, and CD4+/CD8+ ratio was also significantly increased by aP-GSe. More importantly, aP-GSe conferred a much higher resistance of mice to a field virulent pseudorabies virus (fPrV) challenge. As the present study was conducted in mice, further study is required to evaluate the aP-GSe to improve the vaccination against PrV in swine.
Collapse
|
25
|
Zheng B, Zhang J, Chen H, Nie H, Miller H, Gong Q, Liu C. T Lymphocyte-Mediated Liver Immunopathology of Schistosomiasis. Front Immunol 2020; 11:61. [PMID: 32132991 PMCID: PMC7040032 DOI: 10.3389/fimmu.2020.00061] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
The parasitic worms, Schistosoma mansoni and Schistosoma japonicum, reside in the mesenteric veins, where they release eggs that induce a dramatic granulomatous response in the liver and intestines. Subsequently, infection may further develop into significant fibrosis and portal hypertension. Over the past several years, uncovering the mechanism of immunopathology in schistosomiasis has become a major research objective. It is known that T lymphocytes, especially CD4+ T cells, are essential for immune responses against Schistosoma species. However, obtaining a clear understanding of how T lymphocytes regulate the pathological process is proving to be a daunting challenge. To date, CD4+ T cell subsets have been classified into several distinct T helper (Th) phenotypes including Th1, Th2, Th17, T follicular helper cells (Tfh), Th9, and regulatory T cells (Tregs). In the case of schistosomiasis, the granulomatous inflammation and the chronic liver pathology are critically regulated by the Th1/Th2 responses. Animal studies suggest that there is a moderate Th1 response to parasite antigens during the acute stage, but then, egg-derived antigens induce a sustained and dominant Th2 response that mediates granuloma formation and liver fibrosis. In addition, the newly discovered Th17 cells also play a critical role in the hepatic immunopathology of schistosomiasis. Within the liver, Tregs are recruited to hepatic granulomas and exert an immunosuppressive role to limit the granulomatous inflammation and fibrosis. Moreover, recent studies have shown that Tfh and Th9 cells might also promote liver granulomas and fibrogenesis in the murine schistosomiasis. Thus, during infection, T-cell subsets undergo complicated cross-talk with antigen presenting cells that then defines their various roles in the local microenvironment for regulating the pathological progression of schistosomiasis. This current review summarizes a vast body of literature to elucidate the contribution of T lymphocytes and their associated cytokines in the immunopathology of schistosomiasis.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
26
|
Franke F, Kirchenbaum GA, Kuerten S, Lehmann PV. IL-21 in Conjunction with Anti-CD40 and IL-4 Constitutes a Potent Polyclonal B Cell Stimulator for Monitoring Antigen-Specific Memory B Cells. Cells 2020; 9:cells9020433. [PMID: 32069813 PMCID: PMC7072853 DOI: 10.3390/cells9020433] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Detection of antigen-specific memory B cells for immune monitoring requires their activation, and is commonly accomplished through stimulation with the TLR7/8 agonist R848 and IL-2. To this end, we evaluated whether addition of IL-21 would further enhance this TLR-driven stimulation approach; which it did not. More importantly, as most antigen-specific B cell responses are T cell-driven, we sought to devise a polyclonal B cell stimulation protocol that closely mimics T cell help. Herein, we report that the combination of agonistic anti-CD40, IL-4 and IL-21 affords polyclonal B cell stimulation that was comparable to R848 and IL-2 for detection of influenza-specific memory B cells. An additional advantage of anti-CD40, IL-4 and IL-21 stimulation is the selective activation of IgM+ memory B cells, as well as the elicitation of IgE+ ASC, which the former fails to do. Thereby, we introduce a protocol that mimics physiological B cell activation through helper T cells, including induction of all Ig classes, for immune monitoring of antigen-specific B cell memory.
Collapse
Affiliation(s)
- Fridolin Franke
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (F.F.); (G.A.K.)
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Greg A. Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (F.F.); (G.A.K.)
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Paul V. Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (F.F.); (G.A.K.)
- Correspondence: ; Tel.: +1-216-965-6311
| |
Collapse
|
27
|
Matthias J, Zielinski CE. Shaping the diversity of Th2 cell responses in epithelial tissues and its potential for allergy treatment. Eur J Immunol 2019; 49:1321-1333. [PMID: 31274191 DOI: 10.1002/eji.201848011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Th2 cells have evolved to protect from large helminth infections and to exert tissue protective functions in response to nonmicrobial noxious stimuli. The initiation, maintenance, and execution of these functions depend on the integration of diverse polarizing cues by cellular sensors and molecular programs as well as the collaboration with cells that are coopted for signal exchange. The complexity of input signals and cellular collaboration generates tissue specific Th2 cell heterogeneity and specialization. In this review, we aim to discuss the advances and recent breakthroughs in our understanding of Th2 cell responses and highlight developmental and functional differences among T cells within the diversifying field of type 2 immunity. We will focus on factors provided by the tissue microenvironment and highlight factors with potential implications for the pathogenesis of allergic skin and lung diseases. Especially new insights into the role of immunometabolism, the microbiota and ionic signals enhance the complexity of Th2 cell regulation and warrant a critical evaluation. Finally, we will discuss how this ensemble of established knowledge and recent breakthroughs about Th2 immunobiology advance our understanding of the pathogenesis of allergic diseases and how this could be exploited for future immunotherapies.
Collapse
Affiliation(s)
- Julia Matthias
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Christina E Zielinski
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany.,TranslaTUM, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
28
|
Li Q, Hu Y, Chen Y, Lv Z, Wang J, An G, Du X, Wang H, Corrigan CJ, Wang W, Ying S. IL-33 induces production of autoantibody against autologous respiratory epithelial cells: a potential mechanism for the pathogenesis of COPD. Immunology 2019; 157:137-150. [PMID: 30801682 DOI: 10.1111/imm.13054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
The mechanisms underlying the chronic, progressive airways inflammation, remodelling and alveolar structural damage characteristic of human chronic obstructive pulmonary disease (COPD) remain unclear. In the present study, we address the hypothesis that these changes are at least in part mediated by respiratory epithelial alarmin (IL-33)-induced production of autoantibodies against airways epithelial cells. Mice immunized with homologous, syngeneic lung tissue lysate along with IL-33 administered directly to the respiratory tract or systemically produced IgG autoantibodies binding predominantly to their own alveolar type II epithelial cells, along with increased percentages of Tfh cells and B2 B-cells in their local, mediastinal lymph nodes. Consistent with its specificity for respiratory epithelial cells, this autoimmune inflammation was confined principally to the lung and not other organs such as the liver and kidney. Furthermore, the serum autoantibodies produced by the mice bound not only to murine, but also to human alveolar type II epithelial cells, suggesting specificity for common, cross-species determinants. Finally, concentrations of antibodies against both human and murine alveolar epithelial cells were significantly elevated in the serum of patients with COPD compared with those of control subjects. These data are consistent with the hypothesis that IL-33 contributes to the chronic, progressive airways obstruction, inflammation and alveolar destruction characteristic of phenotypes of COPD/emphysema through induction of autoantibodies against lung tissue, and particularly alveolar type II epithelial cells.
Collapse
Affiliation(s)
- Qin Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Gao An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaonan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huating Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Oh-Hora M, Lu X, Shiokawa M, Takayanagi H, Yamasaki S. Stromal Interaction Molecule Deficiency in T Cells Promotes Spontaneous Follicular Helper T Cell Development and Causes Type 2 Immune Disorders. THE JOURNAL OF IMMUNOLOGY 2019; 202:2616-2627. [PMID: 30910863 DOI: 10.4049/jimmunol.1700610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 03/03/2019] [Indexed: 12/24/2022]
Abstract
Appropriate T cell responses are controlled by strict balance between activatory and inhibitory pathways downstream of TCR. Although mice or humans with impaired TCR signaling develop autoimmunity, the precise molecular mechanisms linking reduced TCR signaling to autoimmunity are not fully understood. Engagement of TCR activates Ca2+ signaling mainly through store-operated Ca2+ entry activated by stromal interaction molecule (Stim) 1 and Stim2. Despite defective T cell activation, mice deficient in both Stim1 and Stim2 in T cells (conditional double knockout [cDKO]) developed lymphoproliferative disorders and skin inflammation with a concomitant increase in serum IgG1 and IgE levels. In cDKO mice, follicular helper T (Tfh) cells were dramatically increased in number, and they produced IL-4 spontaneously. These inflammatory symptoms were abolished by the deletion of IL-4 in cDKO mice. Tfh development and inflammatory symptoms in cDKO mice were abrogated by further deletion of NFAT2 in T cells. These findings suggest that Tfh cells spontaneously developed in the absence of Ca2+ signaling and caused unregulated type 2 responses.
Collapse
Affiliation(s)
- Masatsugu Oh-Hora
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; .,Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Xiuyuan Lu
- Division of Molecular and Cellular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Moe Shiokawa
- Division of Molecular and Cellular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; and
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan; .,Division of Molecular and Cellular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
30
|
Cosorich I, McGuire HM, Warren J, Danta M, King C. CCR9 Expressing T Helper and T Follicular Helper Cells Exhibit Site-Specific Identities During Inflammatory Disease. Front Immunol 2019; 9:2899. [PMID: 30662436 PMCID: PMC6329311 DOI: 10.3389/fimmu.2018.02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
CD4+ T helper (Th) cells that express the gut homing chemokine receptor CCR9 are increased in the peripheral blood of patients with inflammatory bowel disease and Sjögren's syndrome and in the inflamed lesions of autoimmune diseases that affect the accessory organs of the digestive system. However, despite the important role of the GIT in both immunity and autoimmunity, the nature of CCR9-expressing cells in GIT lymphoid organs and their role in chronic inflammatory diseases remains unknown. In this study, we analyzed the characteristics of CCR9+ Th and T follicular helper (Tfh) cells in GIT associated lymphoid tissues in health, chronic inflammation and autoimmunity. Our findings reveal an association between the transcriptome and phenotype of CCR9+ Th in the pancreas and CCR9+ Tfh cells from GIT-associated lymphoid tissues. GIT CCR9+ Tfh cells exhibited characteristics, including a Th17-like transcriptome and production of effector cytokines, which indicated a microenvironment-specific signature. Both CCR9+ Tfh cells and CCR9+ Th cells from GIT-associated lymphoid tissues migrated to the pancreas. The expression of CCR9 was important for migration of both subsets to the pancreas, but Tfh cells that accumulated in the pancreas had downmodulated expression of CXCR5. Taken together, the findings provide evidence that CCR9+ Tfh cells and Th cells from the GIT exhibit plasticity and can accumulate in distal accessory organs of the digestive system where they may participate in autoimmunity.
Collapse
Affiliation(s)
- Ilaria Cosorich
- Department of Immunology, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Helen M McGuire
- Department of Immunology, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Joanna Warren
- Department of Immunology, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Mark Danta
- St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Cecile King
- Department of Immunology, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
31
|
Transient Expression of Interleukin-21 in the Second Hit of Acute Pancreatitis May Potentiate Immune Paresis in Severe Acute Pancreatitis. Pancreas 2019; 48:107-112. [PMID: 30451792 DOI: 10.1097/mpa.0000000000001207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Interleukin-21 (IL-21) is a cytokine associated with tissue inflammation, autoimmune and infectious diseases. Organ dysfunction and death can occur in patients with acute pancreatitis (AP) in two distinct clinical phases. Initially, a systemic inflammatory response syndrome may be followed by systemic sepsis from infected pancreatic necrosis, known as the "second hit." The expression and possible role of IL-21 in AP has not been established. METHODS Thirty-six patients with mild, moderate, and severe AP (SAP) were enrolled. Peripheral blood samples of patients were drawn on days 7, 9, 11, and 13. Reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were performed to determine the expression and concentration of IL-21. RESULTS Interleukin-21 mRNA levels increased significantly at day 9 in severe (P = 0.002) pancreatitis compared with both the mild and control patient groups. At the protein level, IL-21 was elevated in SAP patients compared with those with mild pancreatitis, although this was not significant. Furthermore, day 9 IL-21 was elevated in septic SAP patients and patients with pancreatic necrosis. CONCLUSIONS Interleukin-21 is transiently elevated in SAP compared with the mild/moderate group, and hence IL-21 may contribute to the immune imbalance that occurs in AP.
Collapse
|
32
|
Fang D, Cui K, Mao K, Hu G, Li R, Zheng M, Riteau N, Reiner SL, Sher A, Zhao K, Zhu J. Transient T-bet expression functionally specifies a distinct T follicular helper subset. J Exp Med 2018; 215:2705-2714. [PMID: 30232200 PMCID: PMC6219743 DOI: 10.1084/jem.20180927] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanisms underlying the differentiation of T follicular helper (Tfh) cell subsets are poorly understood. Here, Fang et al. show that the NKG2Dhigh Tfh cells in germinal centers with a history of T-bet expression represent the IFN-γ–producing Tfh subset. T follicular helper (Tfh) cells express transcription factor BCL-6 and cytokine IL-21. Mature Tfh cells are also capable of producing IFN-γ without expressing the Th1 transcription factor T-bet. Whether this IFN-γ–producing Tfh population represents a unique Tfh subset with a distinct differentiation pathway is poorly understood. By using T-bet fate–mapping mouse strains, we discovered that almost all the IFN-γ–producing Tfh cells have previously expressed T-bet and express high levels of NKG2D. DNase I hypersensitivity analysis indicated that the Ifng gene locus is partially accessible in this “ex–T-bet” population with a history of T-bet expression. Furthermore, multicolor tissue imaging revealed that the ex–T-bet Tfh cells found in germinal centers express IFN-γ in situ. Finally, we found that IFN-γ–expressing Tfh cells are absent in T-bet–deficient mice, but fully present in mice with T-bet deletion at late stages of T cell differentiation. Together, our findings demonstrate that transient expression of T-bet epigenetically imprints the Ifng locus for cytokine production in this Th1-like Tfh cell subset.
Collapse
Affiliation(s)
- Difeng Fang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kairui Mao
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Rao Li
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mingzhu Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nicolas Riteau
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven L Reiner
- Department of Microbiology and Immunology, Columbia University Medical Center, New York
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
33
|
Loo TT, Gao Y, Lazarevic V. Transcriptional regulation of CD4 + T H cells that mediate tissue inflammation. J Leukoc Biol 2018; 104:1069-1085. [PMID: 30145844 DOI: 10.1002/jlb.1ri0418-152rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Acquired and genetic immunodeficiencies have revealed an indispensable role for CD4+ T cells in the induction of protective host immune responses against a myriad of microbial pathogens. Influenced by the cytokines present in the microenvironment, activated CD4+ T cells may differentiate into several highly-specialized helper subsets defined by the production of distinct signature cytokines tailored to combat diverse classes of pathogens. The process of specification and differentiation is controlled by networks of core, master, and accessory transcription factors, which ensure that CD4+ T helper (TH ) cell responses mounted against an invading microbe are of the correct specificity and type. However, aberrant activation or inactivation of transcription factors can result in sustained and elevated expression of immune-related genes, leading to chronic activation of CD4+ TH cells and organ-specific autoimmunity. In this review, we provide an overview of the molecular basis of CD4+ TH cell differentiation and examine how combinatorial expression of transcription factors, which promotes genetic plasticity of CD4+ TH cells, can contribute to immunological dysfunction of CD4+ TH responses. We also discuss recent studies which highlight the potential of exploiting the genetic plasticity of CD4+ TH cells in the treatment of autoimmune and other immune-mediated disorders.
Collapse
Affiliation(s)
- Tiffany T Loo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuanyuan Gao
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Abudukelimu A, Barberis M, Redegeld FA, Sahin N, Westerhoff HV. Predictable Irreversible Switching Between Acute and Chronic Inflammation. Front Immunol 2018; 9:1596. [PMID: 30131800 PMCID: PMC6090016 DOI: 10.3389/fimmu.2018.01596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/27/2018] [Indexed: 01/28/2023] Open
Abstract
Many a disease associates with inflammation. Upon binding of antigen-antibody complexes to immunoglobulin-like receptors, mast cells release tumor necrosis factor-α and proteases, causing fibroblasts to release endogenous antigens that may be cross reactive with exogenous antigens. We made a predictive dynamic map of the corresponding extracellular network. In silico, this map cleared bacterial infections, via acute inflammation, but could also cause chronic inflammation. In the calculations, limited inflammation flipped to strong inflammation when cross-reacting antigen exceeded an “On threshold.” Subsequent reduction of the antigen load to below this “On threshold” did not remove the strong inflammation phenotype unless the antigen load dropped below a much lower and subtler “Off” threshold. In between both thresholds, the network appeared caught either in a “low” or a “high” inflammatory state. This was not simply a matter of bi-stability, however, the transition to the “high” state was temporarily revertible but ultimately irreversible: removing antigen after high exposure reduced the inflammatory phenotype back to “low” levels but if then the antigen dosage was increased only a little, the high inflammation state was already re-attained. This property may explain why the high inflammation state is indeed “chronic,” whereas only the naive low-inflammation state is “acute.” The model demonstrates that therapies of chronic inflammation such as with anti-IgLC should require fibroblast implantation (or corresponding stem cell activation) for permanence in order to redress the irreversible transition.
Collapse
Affiliation(s)
- Abulikemu Abudukelimu
- Department of Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Department of Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Frank A Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nilgun Sahin
- Department of Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Hans V Westerhoff
- Department of Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands.,School for Chemical Engineering and Analytical Science, The Mill, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
35
|
Tay C, Liu YH, Kanellakis P, Kallies A, Li Y, Cao A, Hosseini H, Tipping P, Toh BH, Bobik A, Kyaw T. Follicular B Cells Promote Atherosclerosis via T Cell–Mediated Differentiation Into Plasma Cells and Secreting Pathogenic Immunoglobulin G. Arterioscler Thromb Vasc Biol 2018; 38:e71-e84. [DOI: 10.1161/atvbaha.117.310678] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Objective—
B cells promote or protect development of atherosclerosis. In this study, we examined the role of MHCII (major histocompatibility II), CD40 (cluster of differentiation 40), and Blimp-1 (B-lymphocyte–induced maturation protein) expression by follicular B (FO B) cells in development of atherosclerosis together with the effects of IgG purified from atherosclerotic mice.
Approach and Results—
Using mixed chimeric
Ldlr
−/−
mice whose B cells are deficient in MHCII or CD40, we demonstrate that these molecules are critical for the proatherogenic actions of FO B cells. During development of atherosclerosis, these deficiencies affected T–B cell interactions, germinal center B cells, plasma cells, and IgG. As FO B cells differentiating into plasma cells require Blimp-1, we also assessed its role in the development of atherosclerosis. Blimp-1-deficient B cells greatly attenuated atherosclerosis and immunoglobulin—including IgG production, preventing IgG accumulation in atherosclerotic lesions; Blimp-1 deletion also attenuated lesion proinflammatory cytokines, apoptotic cell numbers, and necrotic core. To determine the importance of IgG for atherosclerosis, we purified IgG from atherosclerotic mice. Their transfer but not IgG from nonatherosclerotic mice into
Ldlr
−/−
mice whose B cells are Blimp-1-deficient increased atherosclerosis; transfer was associated with IgG accumulating in atherosclerotic lesions, increased lesion inflammatory cytokines, apoptotic cell numbers, and necrotic core size.
Conclusions—
The mechanism by which FO B cells promote atherosclerosis is highly dependent on their expression of MHCII, CD40, and Blimp-1. FO B cell differentiation into IgG-producing plasma cells also is critical for their proatherogenic actions. Targeting B–T cell interactions and pathogenic IgG may provide novel therapeutic strategies to prevent atherosclerosis and its adverse cardiovascular complications.
Collapse
Affiliation(s)
- Christopher Tay
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Yu-Han Liu
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Peter Kanellakis
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Axel Kallies
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia (A.K.)
| | - Yi Li
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Anh Cao
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Hamid Hosseini
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Peter Tipping
- Department of Medicine, Centre for Inflammatory Diseases (P.T., B.-H.T., T.K)
| | - Ban-Hock Toh
- Department of Medicine, Centre for Inflammatory Diseases (P.T., B.-H.T., T.K)
| | - Alex Bobik
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
- Department of Immunology (A.B.), Monash University, Melbourne, Victoria, Australia
| | - Tin Kyaw
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
- Department of Medicine, Centre for Inflammatory Diseases (P.T., B.-H.T., T.K)
| |
Collapse
|
36
|
MyD88 Signaling in T Cells Is Critical for Effector CD4 T Cell Differentiation following a Transitional T Follicular Helper Cell Stage. Infect Immun 2018; 86:IAI.00791-17. [PMID: 29507085 DOI: 10.1128/iai.00791-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/28/2018] [Indexed: 12/24/2022] Open
Abstract
Activation of CD4 T cells by dendritic cells leads to their differentiation into various effector lineages. The nature of the effector lineage is determined by the innate cues provided by dendritic cells to newly primed T cells. Although the cytokines necessary for several effector lineages have been identified, the innate cues that drive T follicular helper (Tfh) lineage cell development remain unclear. Here we found that following priming, CD4 T cells undergoing clonal expansion acquire a transient Tfh-like phenotype before differentiating into other effector lineages. In addition, we found that T cell-intrinsic myeloid differentiation antigen 88 (MyD88) signaling, which occurs downstream of interleukin-1 (IL-1) and IL-18 receptors, is critical for the primed CD4 T cells to transition out of the temporary Tfh lineage. Mice with T cell-specific deletion of MyD88 have a higher proportion of Tfh cells and germinal center (GC) B cells. These exaggerated Tfh cell and GC B cell responses, however, do not lead to protective immunity against infections. We demonstrate that T cell-intrinsic MyD88 is critical for effector lineage differentiation as well as production of the cytokines that are necessary for class switching. Overall, our study establishes that following priming and clonal expansion, CD4 T cells undergo a transitional Tfh-like phase and that further differentiation into effector lineages is dictated by T cell-intrinsic MyD88-dependent cues.
Collapse
|
37
|
Wang J, Hilchey SP, DeDiego M, Perry S, Hyrien O, Nogales A, Garigen J, Amanat F, Huertas N, Krammer F, Martinez-Sobrido L, Topham DJ, Treanor JJ, Sangster MY, Zand MS. Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice. PLoS One 2018; 13:e0193680. [PMID: 29641537 PMCID: PMC5894995 DOI: 10.1371/journal.pone.0193680] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/15/2018] [Indexed: 12/17/2022] Open
Abstract
Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity.
Collapse
Affiliation(s)
- Jiong Wang
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shannon P. Hilchey
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Marta DeDiego
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sheldon Perry
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ollivier Hyrien
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aitor Nogales
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jessica Garigen
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Fatima Amanat
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nelson Huertas
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Luis Martinez-Sobrido
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David J. Topham
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John J. Treanor
- Division of Infectious Disease, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Mark Y. Sangster
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Martin S. Zand
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Rochester Center for Health Informatics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev 2018; 278:173-184. [PMID: 28658560 DOI: 10.1111/imr.12552] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-33 is a key cytokine involved in type 2 immunity and allergic airway diseases. Abundantly expressed in lung epithelial cells, IL-33 plays critical roles in both innate and adaptive immune responses in mucosal organs. In innate immunity, IL-33 and group 2 innate lymphoid cells (ILC2s) provide an essential axis for rapid immune responses and tissue homeostasis. In adaptive immunity, IL-33 interacts with dendritic cells, Th2 cells, follicular T cells, and regulatory T cells, where IL-33 influences the development of chronic airway inflammation and tissue remodeling. The clinical findings that both the IL-33 and ILC2 levels are elevated in patients with allergic airway diseases suggest that IL-33 plays an important role in the pathogenesis of these diseases. IL-33 and ILC2 may also serve as biomarkers for disease classification and to monitor the progression of diseases. In this article, we reviewed the current knowledge of the biology of IL-33 and discussed the roles of the IL-33 in regulating airway immune responses and allergic airway diseases.
Collapse
Affiliation(s)
- Li Yin Drake
- Division of Allergic Diseases and Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hirohito Kita
- Division of Allergic Diseases and Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
39
|
Long S, Ma L, Wang D, Shang X. High frequency of circulating follicular helper T cells is correlated with B cell subtypes in patients with ankylosing spondylitis. Exp Ther Med 2018; 15:4578-4586. [PMID: 29731839 DOI: 10.3892/etm.2018.5991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/02/2018] [Indexed: 01/17/2023] Open
Abstract
T follicular helper (Tfh) cells are known to support effector B cells and enhance autoimmunity; however, the association between the Tfh cells and B cells in ankylosing spondylitis (AS) is unclear. The aim of the present study was to measure the frequency of circulating cluster of differentiation (CD)4+ C-X-C chemokine receptor type 5 (CXCR5)+ Tfh cells and B cell subtypes in peripheral blood from patients with AS, and evaluate the correlation of these factors. Percentages of peripheral blood circulating CD4+CXCR5+ Tfh cells and B cell subtypes were measured via flow cytometry and the disease activity of individual patients was measured using the Bath AS Disease Activity Index (BASDAI). The potential association among these measures was analyzed via Spearman's or Pearson's correlations. In comparison with those in healthy controls (HC), significantly increased percentages of CD4+CXCR5+ cTfh, CD4+CXCR5+ programmed death 1+, CD4+CXCR5+ inducible T cell costimulator (ICOS)+, CD3+CD8-CXCR5+ interleukin (IL)-21+ T cells, CD19+CD27high plasmablast and CD19+CD38+ antibody-secreting B cells were detected in patients with AS, whereas there was no significant difference in CD19+CD27- naïve B cells and CD19+CD27+ memory B cells. When Patients with AS were divided into high and low activity groups, significantly higher percentages of CD4+CXCR5+, CD3+CD8-CXCR5+IL-21+ T cells, CD19+CD27- naïve B cells and CD19+CD38+ antibody-secreting B cells, and lower CD19+CD27+ memory B cells were detected in high activity AS group compared with the low activity AS group. In addition, percentages of CD4+CXCR5+ circulating (c)Tfh, CD3+CD8-CXCR5+IL-21+ T and CD19+CD38+ antibody-secreting B cells were positively correlated with BASDAI values. Furthermore, the percentage of CD4+CXCR5+ cTfh cells was positively correlated with CD19+CD38+ antibody-secreting B cells and the percentage of CD3+CD8-CXCR5+IL-21+ T cells was positively correlated with CD19+CD27- naïve B cells in patients with AS. These findings suggest that CD4+CXCR5+ cTfh, CD3+CD8-CXCR5+IL-21+ T and CD19+CD38+ antibody-secreting B cells may participate in the pathogenesis of AS because of their distinct functions. As such, levels of cTfh and B cell subtypes may be a useful biomarker for the evaluation of disease activity in patients with AS.
Collapse
Affiliation(s)
- Siqi Long
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Li Ma
- Central Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dongsheng Wang
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xianwen Shang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
40
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
41
|
de Ruiter K, Tahapary DL, Wammes LJ, Wiria AE, Hamid F, van Lieshout L, Smit JWA, Houwing-Duistermaat JJ, Sartono E, Supali T, Yazdanbakhsh M. The effect of three-monthly albendazole treatment on Th2 responses: Differential effects on IgE and IL-5. Parasite Immunol 2017; 39. [PMID: 28370210 DOI: 10.1111/pim.12428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/23/2017] [Indexed: 12/24/2022]
Abstract
Helminth parasites induce a strong Th2 response, characterized by high levels of IgE and elevated signature cytokines such as IL-5. As many global deworming programmes are underway, there is concern that this might lead to emergence of Th1-mediated pathologies when the counterbalancing helminth-induced Th2 response is absent. Therefore, we assessed the effect of deworming on Th2-mediated responses in a household-clustered randomized controlled trial in Indonesia. Total plasma IgE and whole-blood IL-5 responses to mitogen phytohaemagglutinin (PHA) were measured in 1494 and 682 subjects, respectively, at baseline, 9 and 21 months after three-monthly single-dose treatment with albendazole or placebo. Anthelmintic treatment did not result in complete removal of helminth infections in the community. However, treatment significantly decreased IgE levels in albendazole- compared to placebo-treated subjects. IL-5 responses to PHA were not significantly affected by anthelmintic treatment and tended to increase in albendazole-treated subjects, indicating that intensive treatment of helminth parasites has different outcomes on B-cell (IgE levels) and T-cell (IL-5) responses. The data shows that 2 years of deworming can have differential effects on responses typified as Th2-mediated, which needs to be taken into account when examining the impact of helminths on noncommunicable diseases.
Collapse
Affiliation(s)
- K de Ruiter
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - D L Tahapary
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - L J Wammes
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - A E Wiria
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - F Hamid
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - L van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - J W A Smit
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - J J Houwing-Duistermaat
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Statistics, School of Mathematics, University of Leeds, Leeds, UK
| | - E Sartono
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - T Supali
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - M Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Yang H, Wei R, Liu Q, Shi Y, Li J. Frequency and distribution of CD4+CXCR5+ follicular B helper T cells within involved tissues in IgG4‑related ophthalmic disease. Mol Med Rep 2017; 16:9512-9520. [PMID: 29039547 PMCID: PMC5780010 DOI: 10.3892/mmr.2017.7780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/22/2017] [Indexed: 12/24/2022] Open
Abstract
Immonoglobulin G4-related ophthalmic disease (IgG4-ROD) is a IgG4-RD and exhibits two main characteristics: Fibrosis that is not necessarily marked histopathologically; and frequent formation of germinal centers (GCs). Follicular B helper T (Tfh) cells are now recognized as the true helper cells for B cells in antibody responses. In the present study, the profile and distribution of Tfh cells in involved tissues from patients with IgG4-ROD was compared to those of type 1 autoimmune pancreatitis (AIP) and patients with IgG4-related lymphadenopathy (IgG4-RL). A total of 7 patients with IgG4-ROD, 7 patients with type 1 AIP or IgG4-RL and 7 IgG4-negative controls were evaluated. The expression of Tfh-cell immunological proteins, the inducible T-cell costimulator, B-cell lymphoma 6 protein, C-X-C chemokine receptor type 5 (CXCR5) and interleukin-21 (IL-21) in affected tissues was analyzed using immunohistochemical staining and dual immunofluorescence. It was demonstrated that patients with IgG4-RD exhibited a significantly increased number of CD4+CXCR5+ Tfh cells compared with the IgG4-negative controls. Furthermore, CD4+CXCR5+ Tfh cells were detected in and outside of GCs in patients with IgG4-ROD and IgG4-RLF, whereas CD4+CXCR5+ Tfh cells were randomly distributed in areas demonstrating type 1 AIP. Fewer CD4+CXCR5+ Tfh cells were observed in patients with type 1 AIP compared with patients with IgG4-ROD and IgG4-RL. In addition, increased expression of IL-21 was observed in patients with IgG4-ROD and IgG4-RL compared with type 1 AIP. IL-21 expression was positively correlated with the IgG4/IgG ratio in immunohistochemically-positive cells. The results of the present study indicate that Tfh cells are involved in the histopathological pathogenesis of IgG4-RD and may serve a different role in IgG4-ROD and type 1 AIP. Tfh cells may serve a direct role in the IL-21-mediated pathogenesis of IgG4-ROD.
Collapse
Affiliation(s)
- Huimin Yang
- Department of Ophthalmology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ruili Wei
- Department of Ophthalmology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Qiang Liu
- Department of Pathology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yongheng Shi
- Department of Pathology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jin Li
- Department of Ophthalmology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
43
|
Panahi Y, Ghanei M, Hassani S, Sahebkar A. TGF-β and Th17 cells related injuries in patients with sulfur mustard exposure. J Cell Physiol 2017; 233:3037-3047. [DOI: 10.1002/jcp.26077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Saeed Hassani
- Department of Hematology; School of Allied Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
44
|
Xu W, Larbi A. Markers of T Cell Senescence in Humans. Int J Mol Sci 2017; 18:E1742. [PMID: 28796199 PMCID: PMC5578132 DOI: 10.3390/ijms18081742] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022] Open
Abstract
Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as "immunosenescence" can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers.
Collapse
Affiliation(s)
- Weili Xu
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Anis Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- Department of Microbiology, National University of Singapore, Singapore 117597, Singapore.
- Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
- Faculty of Sciences, University ElManar, Tunis 1068, Tunisia.
| |
Collapse
|
45
|
Dai H, He F, Tsokos GC, Kyttaris VC. IL-23 Limits the Production of IL-2 and Promotes Autoimmunity in Lupus. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28646040 DOI: 10.4049/jimmunol.1700418] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The IL-23/IL-17 pathway is important in multiple autoimmune diseases, but its effect on lupus pathology remains unclear, with opposing trials in murine models of the disease. In this study, we show a disease activity-related upregulation of serum IL-23 and IL-23 receptor in patients with systemic lupus erythematosus (SLE) as compared with healthy controls. When added in SLE T cell in vitro cultures, IL-23 induced IL-17 and limited IL-2 production, whereas T follicular helper and double negative (DN) T cells significantly expanded. To further dissect the role of IL-23 in the expression of autoimmunity and related pathology, we generated IL-23 receptor-deficient MRL.lpr mice. These IL-23R-/-MRL.lpr mice displayed attenuated lupus nephritis with a striking decrease in the accumulation of DN T cells in the kidneys and secondary lymphoid organs. Moreover, T cells from IL-23R-/-MRL.lpr mice produced increased amounts of IL-2 and reduced amounts of IL-17 compared with T cells from wild type animals. In vitro IL-23 treatment promoted IL-17 production and downregulated IL-2 production. The IL-23R-/-MRL.lpr had fewer T follicular helper cells, B cells, and plasma cells, leading to decreased production of anti-dsDNA Abs. Our results show that IL-23 accounts for the main aspects of human and murine lupus including the expansion of DN T cells, decreased IL-2, and increased IL-17 production. We propose that blockade of IL-23 should have a therapeutic value in patients with SLE.
Collapse
Affiliation(s)
- Hong Dai
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02215, MA
| | - Fan He
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02215, MA
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02215, MA
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02215, MA
| |
Collapse
|
46
|
de Graav GN, Hesselink DA, Dieterich M, Kraaijeveld R, Verschoor W, Roelen DL, Litjens NHR, Chong AS, Weimar W, Baan CC. Belatacept Does Not Inhibit Follicular T Cell-Dependent B-Cell Differentiation in Kidney Transplantation. Front Immunol 2017; 8:641. [PMID: 28620390 PMCID: PMC5450507 DOI: 10.3389/fimmu.2017.00641] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Humoral alloreactivity has been recognized as a common cause of kidney transplant dysfunction. B-cell activation, differentiation, and antibody production are dependent on IL-21+CXCR5+follicular T-helper (Tfh) cells. Here, we studied whether belatacept, an inhibitor of the costimulatory CD28-CD80/86-pathway, interrupts the crosstalk between Tfh- and B-cells more efficiently than the calcineurin inhibitor tacrolimus. The suppressive effects of belatacept and tacrolimus on donor antigen-driven Tfh-B-cell interaction were functionally studied in peripheral blood mononuclear cells from 40 kidney transplant patients randomized to a belatacept- or tacrolimus-based immunosuppressive regimen. No significant differences in uncultured cells or donor antigen-stimulated cells were found between belatacept- and tacrolimus-treated patients in the CXCR5+Tfh cell generation and activation (upregulation of PD-1). Belatacept and tacrolimus in vitro minimally inhibited Tfh-cell generation (by ~6-7%) and partially prevented Tfh-cell activation (by ~30-50%). The proportion of IL-21+-activated Tfh-cells was partially decreased by in vitro addition of belatacept or tacrolimus (by ~60%). Baseline expressions and proportions of activated CD86+ B-cells, plasmablasts, and transitional B-cells after donor antigen stimulation did not differ between belatacept- and tacrolimus-treated patients. Donor antigen-driven CD86 upregulation on memory B-cells was not fully prevented by adding belatacept in vitro (~35%), even in supratherapeutic doses. In contrast to tacrolimus, belatacept failed to inhibit donor antigen-driven plasmablast formation (~50% inhibition vs. no inhibition, respectively, p < 0.0001). In summary, donor antigen-driven Tfh-B-cell crosstalk is similar in cells obtained from belatacept- and tacrolimus-treated patients. Belatacept is, however, less potent in vitro than tacrolimus in inhibiting Tfh-cell-dependent plasmablast formation.
Collapse
Affiliation(s)
- Gretchen N de Graav
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Wenda Verschoor
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Nicolle H R Litjens
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, United States
| | - Willem Weimar
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
47
|
de Leur K, Dor FJMF, Dieterich M, van der Laan LJW, Hendriks RW, Baan CC. IL-21 Receptor Antagonist Inhibits Differentiation of B Cells toward Plasmablasts upon Alloantigen Stimulation. Front Immunol 2017; 8:306. [PMID: 28373876 PMCID: PMC5357809 DOI: 10.3389/fimmu.2017.00306] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/03/2017] [Indexed: 12/04/2022] Open
Abstract
Interaction between T follicular helper (Tfh) cells and B cells is complex and involves various pathways, including the production of IL-21 by the Tfh cells. Secretion of IL-21 results in B cell differentiation toward immunoglobulin-producing plasmablasts. In patients after kidney transplantation, the formation of alloantibodies produced by donor antigen-activated B cells are a major cause of organ failure. In this allogeneic response, the role of IL-21-producing Tfh cells that regulate B cell differentiation is unknown. Here, we tested, in an alloantigen-driven setting, whether Tfh cell help signals control B cell differentiation with its dependency on IL-21. Pre-transplantation patient PBMCs were sorted into pure CD4posCXCR5pos Tfh cells and CD19posCD27pos memory B cells and stimulated with donor antigen in the presence or absence of an IL-21 receptor (IL-21R) antagonist (αIL-21R). Donor antigen stimulation initiated expression of the activation markers inducible co-stimulator (ICOS) and programmed death 1 (PD-1) on Tfh cells and a shift toward a mixed Tfh2 and Tfh17 phenotype. The memory B cells underwent class switch recombination and differentiated toward IgM- and IgG-producing plasmablasts. In the presence of αIL-21R, a dose-dependent inhibition of STAT3 phosphorylation was measured in both T and B cells. Blockade of the IL-21R did not have an effect on PD-1 and ICOS expression on Tfh cells but significantly inhibited B cell differentiation. The proportion of plasmablasts decreased by 78% in the presence of αIL-21R. Moreover, secreted IgM and IgG2 levels were significantly lower in the presence of αIL-21R. In conclusion, our results demonstrate that IL-21 produced by alloantigen-activated Tfh cells controls B cell differentiation toward antibody producing plasmablasts. The IL-21R might, therefore, be a useful target in organ transplantation to prevent antigen-driven immune responses leading to graft failure.
Collapse
Affiliation(s)
- Kitty de Leur
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands; Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Frank J M F Dor
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center , Rotterdam , Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Erasmus MC, University Medical Center , Rotterdam , Netherlands
| | - Luc J W van der Laan
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center , Rotterdam , Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center , Rotterdam , Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus MC, University Medical Center , Rotterdam , Netherlands
| |
Collapse
|
48
|
Pérez-Toledo M, Valero-Pacheco N, Pastelin-Palacios R, Gil-Cruz C, Perez-Shibayama C, Moreno-Eutimio MA, Becker I, Pérez-Tapia SM, Arriaga-Pizano L, Cunningham AF, Isibasi A, Bonifaz LC, López-Macías C. Salmonella Typhi Porins OmpC and OmpF Are Potent Adjuvants for T-Dependent and T-Independent Antigens. Front Immunol 2017; 8:230. [PMID: 28337196 PMCID: PMC5344031 DOI: 10.3389/fimmu.2017.00230] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023] Open
Abstract
Several microbial components, such as bacterial DNA and flagellin, have been used as experimental vaccine adjuvants because of their inherent capacity to efficiently activate innate immune responses. Likewise, our previous work has shown that the major Salmonella Typhi (S. Typhi) outer membrane proteins OmpC and OmpF (porins) are highly immunogenic protective antigens that efficiently stimulate innate and adaptive immune responses in the absence of exogenous adjuvants. Moreover, S. Typhi porins induce the expression of costimulatory molecules on antigen-presenting cells through toll-like receptor canonical signaling pathways. However, the potential of major S. Typhi porins to be used as vaccine adjuvants remains unknown. Here, we evaluated the adjuvant properties of S. Typhi porins against a range of experimental and clinically relevant antigens. Co-immunization of S. Typhi porins with ovalbumin (OVA), an otherwise poorly immunogenic antigen, enhanced anti-OVA IgG titers, antibody class switching, and affinity maturation. This adjuvant effect was dependent on CD4+ T-cell cooperation and was associated with an increase in IFN-γ, IL-17A, and IL-2 production by OVA-specific CD4+ T cells. Furthermore, co-immunization of S. Typhi porins with an inactivated H1N1 2009 pandemic influenza virus experimental vaccine elicited higher hemagglutinating anti-influenza IgG titers, antibody class switching, and affinity maturation. Unexpectedly, co-administration of S. Typhi porins with purified, unconjugated Vi capsular polysaccharide vaccine (Vi CPS)—a T-independent antigen—induced higher IgG antibody titers and class switching. Together, our results suggest that S. Typhi porins OmpC and OmpF are versatile vaccine adjuvants, which could be used to enhance T-cell immune responses toward a Th1/Th17 profile, while improving antibody responses to otherwise poorly immunogenic T-dependent and T-independent antigens.
Collapse
Affiliation(s)
- Marisol Pérez-Toledo
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute, Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nuriban Valero-Pacheco
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute, Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen , St. Gallen , Switzerland
| | | | - Mario A Moreno-Eutimio
- Immunity and Inflammation Research Unit, Hospital Juárez de México, Ministry of Health , Mexico City , Mexico
| | - Ingeborg Becker
- Facultad de Medicina, Departamento de Medicina Experimental, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Sonia Mayra Pérez-Tapia
- Unit of R&D in Bioprocesses (UDIBI), Department of Immunology, National School of Biological Sciences, National Polytechnic Institute , Mexico City , Mexico
| | - Lourdes Arriaga-Pizano
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute , Mexico City , Mexico
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| | - Armando Isibasi
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute , Mexico City , Mexico
| | - Laura C Bonifaz
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute , Mexico City , Mexico
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute, Mexico City, Mexico; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Muraro E, Merlo A, Martorelli D, Cangemi M, Dalla Santa S, Dolcetti R, Rosato A. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:197. [PMID: 28289418 PMCID: PMC5327441 DOI: 10.3389/fimmu.2017.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | | | - Riccardo Dolcetti
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| |
Collapse
|
50
|
Yang J, Lin X, Pan Y, Wang J, Chen P, Huang H, Xue HH, Gao J, Zhong XP. Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. eLife 2016; 5. [PMID: 27690224 PMCID: PMC5063587 DOI: 10.7554/elife.17936] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
T follicular helper (Tfh) cells play critical roles for germinal center responses and effective humoral immunity. We report here that mTOR in CD4 T cells is essential for Tfh differentiation. In Mtorf/f-Cd4Cre mice, both constitutive and inducible Tfh differentiation is severely impaired, leading to defective germinal center B cell formation and antibody production. Moreover, both mTORC1 and mTORC2 contribute to Tfh and GC B cell development but may do so via distinct mechanisms. mTORC1 mainly promotes CD4 T cell proliferation to reach the cell divisions necessary for Tfh differentiation, while Rictor/mTORC2 regulates Tfh differentiation by promoting Akt activation and TCF1 expression without grossly influencing T cell proliferation. Together, our results reveal crucial but distinct roles for mTORC1 and mTORC2 in CD4 T cells during Tfh differentiation and germinal center responses. DOI:http://dx.doi.org/10.7554/eLife.17936.001
Collapse
Affiliation(s)
- Jialong Yang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States
| | - Xingguang Lin
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States
| | - Yun Pan
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States
| | - Jinli Wang
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Pengcheng Chen
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hongxiang Huang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa, United States
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ping Zhong
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States.,Department of Immunology, Duke University Medical Center, Durham, United States.,Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, United States
| |
Collapse
|