1
|
Pinzón Martín S, Mecinović J. Selenalysine as a Chemical Tool for Probing Histone Post-Translational Modifications. Bioconjug Chem 2025. [PMID: 40040526 DOI: 10.1021/acs.bioconjchem.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Post-translational modifications (PTMs) on histones play a crucial role in determining the structure and function of chromatin, thereby regulating the eukaryotic gene expression. Histone lysine methylation and acetylation are among the most widespread and biomedically important PTMs, with new chemical tools for their examination in high demand. Here, we report the first use of γ-selenalysine as an efficient lysine mimic for enzymatic methylation, acetylation, and deacetylation reactions catalyzed by histone lysine methyltransferases, acetyltransferases, and a deacetylase. We also show that easily accessible selenocysteine and cysteine residues can undergo chemo- and site-selective alkylation reactions to generate both unmodified and modified γ-selenalysine and related γ-thialysine residues in histone peptides. This dual-modification strategy enables the site-specific incorporation of two distinct functionalities into peptides, mimicking lysine post-translational modifications commonly found on histones. Our research presents a novel approach in which selenocysteine serves as a unique handle for the chemoselective introduction of selenalysine, along with its methylated and acetylated analogues. These tools are designed to facilitate the study of epigenetic proteins that are important for human health and disease.
Collapse
Affiliation(s)
- Sandra Pinzón Martín
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
2
|
Qureshi Z, Altaf F, Jamil A, Siddique R. Unlocking the Mysteries of Breast Cancer: The Role of Epigenetics in Diagnosis, Treatment, and Beyond. Am J Clin Oncol 2025:00000421-990000000-00264. [PMID: 40025834 DOI: 10.1097/coc.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Breast cancer is an intricate and varied disease exhibiting a range of molecular subgroups and clinical consequences. Epigenetic alterations have become essential players in the pathophysiology of breast cancer because they control gene expression without changing the DNA sequence. This review provides a comprehensive overview of epigenetics' diagnostic, prognostic, and therapeutic implications in breast cancer. This review aims to present a comprehensive study of the function of epigenetics in breast cancer, emphasizing current developments and potential avenues for future research. METHODS A narrative review methodology involved an extensive literature search and selection to gather relevant studies and trial data. PubMed, Embase, and Web of Science databases were searched using relevant keywords such as "epigenetics," "breast cancer," "DNA methylation," "histone modification," "noncoding RNA," and "linical trials." Relevant studies and clinical trial data were selected and synthesized to summarize the topic comprehensively. RESULTS The review synthesizes critical findings from current research, underscoring the pivotal role of epigenetic mechanisms in breast cancer initiation, progression, and therapeutic response. It highlights the potential of epigenetic biomarkers for diagnosis and prognosis and the promise of epigenetic-targeted therapies in breast cancer management. Furthermore, the review outlines future directions for research, emphasizing the importance of elucidating the dynamic interplay between epigenetic alterations and tumor microenvironments in shaping breast cancer phenotypes. CONCLUSIONS Epigenetic modifications influence breast cancer progression, diagnosis, and therapy. Emerging biomarkers and targeted treatments hold promise, but further research is essential to refine their clinical application and improve personalized cancer management strategies.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, Mount Sinai
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre
| | | |
Collapse
|
3
|
Suraweera A, O'Byrne KJ, Richard DJ. Epigenetic drugs in cancer therapy. Cancer Metastasis Rev 2025; 44:37. [PMID: 40011240 DOI: 10.1007/s10555-025-10253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Genetic and epigenetic modifications of DNA are involved in cancer initiation and progression. Epigenetic modifications change chromatin structure and DNA accessibility and thus affect DNA replication, DNA repair and transcription. Epigenetic modifications are reversible and include DNA methylation, histone acetylation and histone methylation. DNA methylation is catalysed by DNA methyltransferases, histone acetylation and deacetylation are catalysed by histone acetylases and deacetylases, while histone methylation is catalysed by histone methyltransferases. Epigenetic modifications are dysregulated in several cancers, making them cancer therapeutic targets. Epigenetic drugs (epi-drugs) which are inhibitors of epigenetic modifications and include DNA methyltransferase inhibitors (DNMTi), histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi) and bromodomain and extra-terminal motif protein inhibitors (BETi), have demonstrated clinical success as anti-cancer agents. Furthermore, the combination of epi-drugs with standard chemotherapeutic agents has demonstrated promising anti-cancer effects in pre-clinical and clinical settings. In this review, we discuss the role of epi-drugs in cancer therapy and explore their current and future use in combination with other anti-cancer agents used in the clinic. We further highlight the side effects and limitations of epi-drugs. We additionally discuss novel delivery methods and novel tumour epigenetic biomarkers for the screening, diagnosis and development of personalised cancer treatments, in order to reduce off-target toxicity and improve the specificity and anti-tumour efficacy of epi-drugs.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Kenneth J O'Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
4
|
Uguen M, Shell DJ, Silva M, Deng Y, Li F, Szewczyk MM, Yang K, Zhao Y, Stashko MA, Norris-Drouin JL, Waybright JM, Beldar S, Rectenwald JM, Mordant AL, Webb TS, Herring LE, Arrowsmith CH, Ackloo S, Gygi SP, McGinty RK, Barsyte-Lovejoy D, Liu P, Halabelian L, James LI, Pearce KH, Frye SV. Potent and selective SETDB1 covalent negative allosteric modulator reduces methyltransferase activity in cells. Nat Commun 2025; 16:1905. [PMID: 39994194 PMCID: PMC11850789 DOI: 10.1038/s41467-025-57005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
A promising drug target, SETDB1, is a dual methyl-lysine (Kme) reader and methyltransferase implicated in cancer and neurodegenerative disease progression. To help understand the role of the triple Tudor domain (3TD) of SETDB1, its Kme reader, we first identify a low micromolar potency small molecule ligand, UNC6535, which occupies simultaneously both the TD2 and TD3 reader binding sites. Further optimization leads to the discovery of UNC10013, a covalent 3TD ligand targeting Cys385 of SETDB1. UNC10013 is potent with a kinact/KI of 1.0 × 106 M-1s-1 and demonstrates proteome-wide selectivity. In cells, negative allosteric modulation of SETDB1-mediated Akt methylation occurs after treatment with UNC10013. Therefore, UNC10013 is a potent, selective, and cell-active covalent ligand for the 3TD of SETDB1, demonstrating negative allosteric modulator properties and making it a promising tool to study the biological role of SETDB1 in disease progression.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Devan J Shell
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Yu Deng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Ka Yang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yani Zhao
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Stashko
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline L Norris-Drouin
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jarod M Waybright
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Design Therapeutics, Carlsbad, CA, USA
| | | | - Justin M Rectenwald
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie L Mordant
- UNC Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas S Webb
- UNC Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Robert K McGinty
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Shen F, Zeng L, Gao Y. DOT1L in neural development and neurological and psychotic disorders. Neurochem Int 2025; 185:105955. [PMID: 39993657 DOI: 10.1016/j.neuint.2025.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Disruptor of Telomeric Silencing 1-Like (DOT1L) is the sole methyltransferase in mammals responsible for catalyzing the mono-, di-, and trimethylation of histone H3 at lysine 79 (H3K79), a modification crucial for various cellular processes, including gene transcription, cell cycle regulation, DNA repair, and development. Recent studies have increasingly linked DOT1L to the nervous system, where it plays a vital role in neurodevelopment and neuronal function. It has been shown to regulate the proliferation and differentiation of neural progenitor cells, promote neuronal maturation, and influence synaptic function, all of which are essential for proper neural circuit formation and brain function. Moreover, dysregulation of DOT1L has been associated with several neurological disorders, highlighting its potential role in disease pathology. Abnormal expression or activity of DOT1L has been implicated in cognitive deficits and neurodegenerative diseases, underscoring the enzyme's significance in both the development and maintenance of the nervous system. This review synthesizes recent findings on DOT1L's role in the nervous system, emphasizing its importance in neurodevelopment and exploring its potential as a therapeutic target for treating neurological disorders.
Collapse
Affiliation(s)
- Feiyan Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China; College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| | - Yanpan Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
7
|
Most MM, Boll LB, Gödtel P, Pianowski ZL, Lewandowski B. Glucose-derived receptors for photo-controlled binding of amino acid esters in water. Commun Chem 2025; 8:50. [PMID: 39972110 PMCID: PMC11840139 DOI: 10.1038/s42004-025-01445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Selective receptors of amino acids in aqueous media are highly sought after as they may enable the creation of novel diagnostic and sensing tools. Photoswitchable receptors are particularly attractive for such purposes as their response and selectivity towards bioanalytes can be modulated using light. Herein we report glucose-based photoswitchable receptors of amino-acid methyl esters and biogenic amines in water. The tetra-ortho-fluoroazobenzene unit in the receptors structure allows to control the distance between their binding sites using light. The Z-isomers of both receptors, having these sites in closer proximity, bind lysine, ornithine and arginine esters significantly stronger compared to E-isomers, where the binding sites are further apart.
Collapse
Affiliation(s)
- Mario M Most
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Linus B Boll
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Peter Gödtel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems IBCS-FMS, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany.
| | - Bartosz Lewandowski
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.
| |
Collapse
|
8
|
Najia MA, Jha DK, Zhang C, Laurent B, Kubaczka C, Markel A, Li C, Morris V, Tompkins A, Hensch L, Qin Y, Chapuy B, Huang YC, Morse M, Marunde MR, Vaidya A, Gillespie ZB, Howard SA, North TE, Dominguez D, Keogh MC, Schlaeger TM, Shi Y, Li H, Shipp MM, Blainey PC, Daley GQ. Heterochromatin fidelity is a therapeutic vulnerability in lymphoma and other human cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635709. [PMID: 39975048 PMCID: PMC11838449 DOI: 10.1101/2025.01.31.635709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genes involved in the regulation of chromatin structure are frequently disrupted in cancer, contributing to an aberrant transcriptome and phenotypic plasticity. Yet, therapeutics targeting mutant forms of chromatin-modifying enzymes have yielded only modest clinical utility, underscoring the difficulty of targeting the epigenomic underpinnings of aberrant gene regulatory networks. Here, we sought to identify novel epigenetic vulnerabilities in diffuse large B-cell lymphoma (DLBCL). Through phenotypic screens and biochemical analysis, we demonstrated that inhibition of the H3K9 demethylases KDM4A and KDM4C elicits potent, subtype-agnostic cytotoxicity by antagonizing transcriptional networks associated with B-cell identity and epigenetically rewiring heterochromatin. KDM4 demethylases associated with the KRAB zinc finger ZNF587, and their enzymatic inhibition led to DNA replication stress and DNA damage-einduced cGAS-STING activation. Broad surveys of transcriptional data from patients also revealed KDM4 family dysregulation in several other cancer types. To explore this potential therapeutic avenue, we performed high-throughput small molecule screens with H3K9me3 nucleosome substrates and identified novel KDM4 demethylase inhibitors. AI-guided protein-ligand binding predictions suggested diverse modes of action for various small molecule hits. Our findings underscore the relevance of targeting fundamental transcriptional and epigenetic mechanisms for anti-cancer therapy.
Collapse
Affiliation(s)
- Mohamad Ali Najia
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Deepak K. Jha
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Cheng Zhang
- Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55902, USA
| | - Benoit Laurent
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Caroline Kubaczka
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Arianna Markel
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Christopher Li
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Vivian Morris
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Allison Tompkins
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Luca Hensch
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Yue Qin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bjoern Chapuy
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Charité, University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Yu-Chung Huang
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Michael Morse
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | | | | | | | | | - Trista E. North
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Thorsten M. Schlaeger
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA, 02115, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hu Li
- Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55902, USA
| | - Margaret M. Shipp
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Paul C. Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - George Q. Daley
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
9
|
González-Novo R, Armesto M, González-Murillo Á, Dreger M, Hurlstone AFL, Benito A, Samaniego R, Ramírez M, Redondo-Muñoz J. Dual effect of targeting LSD1 on the invasiveness and the mechanical response of acute lymphoblastic leukemia cells. Biomed Pharmacother 2025; 183:117830. [PMID: 39818101 DOI: 10.1016/j.biopha.2025.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Epigenetic alterations are hallmarks of cancer, with histone modifiers playing critical roles in gene transcription, DNA homeostasis, and other nuclear functions. Lysine-specific demethylase 1 (LSD1), a key regulator of H3K4 methylation, has emerged as a promising pharmacological target in cancer treatment, including leukemia. Acute lymphoblastic leukemia (ALL), the most common pediatric cancer, remains a significant therapeutic challenge due to limited understanding of how epigenetic therapy impacts leukemia dissemination. In this study, we demonstrate that targeting LSD1 enhances the invasive capacity of ALL cells, inducing an elongated, invasive phenotype and increasing nuclear deformability. Using a 3D matrix model, LSD1 inhibition promoted ALL cell invasion without significantly affecting the cell cycle progression or apoptosis under the tested conditions. Interestingly, LSD1 targeting reduced ALL cell spreading and tissue colonization in vivo, suggesting differential effects depending on the cellular context. Our findings indicate that LSD1 inhibition impairs chemotactic responses and transendothelial migration, key processes for extravasation and in vivo invasiveness. These results reveal a dual role for LSD1 in leukemia cell migration: promoting invasiveness in 3D environments while reducing extravasation and chemotaxis in vivo. This dual effect underscores the importance of cellular context in determining therapeutic outcomes and the development of strategies targeting specific stages of leukemia dissemination.
Collapse
Affiliation(s)
- Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Marina Armesto
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - África González-Murillo
- Oncohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Marcel Dreger
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Adam F L Hurlstone
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology, The University of Manchester, Manchester, UK
| | - Ana Benito
- Hospital Universitario Niño Jesús, Madrid, Spain
| | - Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Manuel Ramírez
- Oncohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
10
|
Inoue S, Yoshimoto S, Hori K. A new target of multiple lysine methylation in bacteria. J Bacteriol 2025; 207:e0032524. [PMID: 39660925 PMCID: PMC11784438 DOI: 10.1128/jb.00325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The methylation of ε-amino groups in protein lysine residues is an important posttranslational modification in eukaryotes. This modification plays a pivotal role in the regulation of diverse biological processes, including epigenetics, transcriptional control, and cellular signaling. Recent research has begun to reveal the potential role of methylation in modulating bacterial immune evasion and adherence to host cells. In this study, we analyzed the cell surface proteins of the toluene-degrading bacterium Acinetobacter sp. Tol 5 by label-free liquid chromatography‒mass spectrometry and found multiple lysine methylation in its trimeric autotransporter adhesin (TAA), AtaA. Over 130 lysine residues of AtaA, consisting of 3,630 amino acids and containing 234 lysine residues, were methylated. We identified that the outer membrane protein lysine methyltransferase (OM PKMT) of Tol 5, KmtA, specifically methylates the lysine residues of AtaA. In the KmtA-deficient mutant, most lysine methylations on AtaA were absent, indicating that KmtA is responsible for the methylation of multiple lysine residues throughout AtaA. Bioinformatic analysis revealed that the OM PKMT genes were widely distributed among Gram-negative bacteria, including pathogens with TAAs that promote infectivity, such as Burkholderia mallei and Haemophilus influenzae. Although KmtA has sequence similarities to the OM PKMTs of Rickettsia involved in infectivity, KmtA-like PKMTs formed a distinct cluster from those of the Rickettsia type according to the clustering analysis, suggesting that they are new types of OM PKMTs. Furthermore, the deletion of Tol 5 KmtA led to an increase in AtaA on the cell surface and enhanced bacterial adhesion, resulting in slower growth. IMPORTANCE Lysine methylation has been underexplored in prokaryotes, and information on it is limited to some pathogens. Our finding is the second case of multiple lysine methylation of bacterial outer membrane (OM) proteins, following that of OmpB of Rickettsia. The newly found target of methylation, AtaA, a trimeric autotransporter adhesin family protein of Acinetobacter sp. Tol 5 isolated from activated sludge, extends our understanding of OM protein methylation to non-pathogenic environmental strains. The newly identified enzyme KmtA shows higher specificity than rickettsial lysin methylases, protein lysine methyltransferases, and methylates more lysine residues of the target, which raises interest in the mechanism underlying its biological specificity. The widespread presence of KmtA-like PKMTs throughout Gram-negative bacteria suggests that lysine methylation functions more extensively in bacterial physiology than previously recognized.
Collapse
Affiliation(s)
- Shori Inoue
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Bilmez Y, Talibova G, Tire B, Ozturk S. Histone lysine methyltransferases and their specific methylation marks show significant changes in mouse testes from young to older ages. Biogerontology 2025; 26:42. [PMID: 39832035 PMCID: PMC11753314 DOI: 10.1007/s10522-025-10187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Spermatogenesis is finely regulated by histone methylation, which is crucial for regulating gene expression and chromatin remodeling. Functional studies have demonstrated that the histone lysine methyltransferases (KMTs) SETD1B, CFP1, SETDB1, G9A, and SETD2 play pivotal roles in spermatogenesis through establishing the key histone methylation marks, H3K4me3, H3K9me2, H3K9me3, and H3K36me3, respectively. This study aimed to evaluate the spatiotemporal expression of these KMTs and methylation marks as well as senescence-associated β-galactosidase (β-GAL), transcriptional activity, and apoptosis rates in mouse testes during biological aging. In accordance with these purposes, the following groups of Balb/C mice were created: young (1- and 2-week-old), prepubertal (3- and 4-week-old), pubertal (5- and 6-week-old), postpubertal (16-, 18-, and 20-week-old), and aged (48-, 50-, and 52-week-old). The β-GAL staining gradually increased from the young to the aged groups (P < 0.01). The SETD1B, G9A, SETDB1, and SETD2 protein levels increased in spermatogonia, early and pachytene spermatocytes, and Sertoli cells of the aged group (P < 0.05). In contrast, CFP1 protein level decreased in spermatogonia, pachytene spermatocytes, round spermatids, and Sertoli cells towards the older ages (P < 0.05). Moreover, H3K4me3, H3K9me2, H3K9me3, and H3K36me3 levels increased in the aged group (P < 0.05). There was also a significant reduction in apoptosis rates in seminiferous tubules of the pubertal, postpubertal, and aged groups (P < 0.01). Consequently, accumulation of histone methylation marks due to increased expression of KMTs in spermatogenic and Sertoli cells during testicular aging may alter chromatin reprogramming and gene expression, contributing to age-related fertility loss.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye.
| |
Collapse
|
12
|
Ohta S, Ohzeki JI, Sato N, Tanizawa H, Chung CL, Noma KI, Masumoto H. Novel role of zinc-finger protein 518 in heterochromatin formation on α-satellite DNA. Nucleic Acids Res 2025; 53:gkae1162. [PMID: 39673523 PMCID: PMC11754734 DOI: 10.1093/nar/gkae1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024] Open
Abstract
Aneuploidy is caused by chromosomal missegregation and is frequently observed in cancers and hematological diseases. Therefore, it is important to understand the molecular mechanisms underlying chromosomal segregation. The centromere's intricate structure is crucial for proper chromosome segregation, with heterochromatin at the pericentromeric α-satellites playing a key role. However, the mechanism targeting heterochromatin to pericentromeres remains elusive. This study identifies a novel mechanism involving two homologous zinc-finger proteins ZNF518A and ZNF518B in human pericentric heterochromatin formation. Our investigation demonstrated that ZNF518s localize to the centromere via centromere protein B (CENP-B). Moreover, ZNF518s interact with heterochromatin protein 1 (HP1) and H3K9 methyltransferase G9A, recruiting the heterochromatin components to pericentromeres. We found that centromeric histone H3K9 trimethylation was diminished in the absence of ZNF518s when another H3K9 methyltransferase, SUV39H1, was depleted. In somatic cells, the ZNF518s-G9a axis is not the principal pathway for heterochromatin formation but plays a supplementary role. Furthermore, ZNF518s are involved in histone H3K9 trimethylation at ectopic sites, indicating their broad role in heterochromatin establishment. Consequently, we propose that ZNF518s participate in the mechanism underlying heterochromatin establishment at pericentromeres. Our findings shed light on the novel mechanism underlying pericentromeric heterochromatin formation, highlighting the central role of ZNF518 in this process.
Collapse
Affiliation(s)
- Shinya Ohta
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
- Chromosome Engineering Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Nobuko Sato
- Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Hideki Tanizawa
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Claire Yik-Lok Chung
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Ken-Ichi Noma
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| |
Collapse
|
13
|
Jourdain C, Eichstädt B, Schubert D. A Method for Characterizing Protein-Histone Peptide Interactions In Vitro. Methods Mol Biol 2025; 2873:167-184. [PMID: 39576602 DOI: 10.1007/978-1-0716-4228-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Histone posttranslational modifications (PTMs) contribute to transcriptional regulation and generate in combination a "histone code," which is largely conserved among organismal kingdoms. By binding to specific PTMs, histone reader proteins act as molecular interpreters of the histone code. These proteins play a crucial role in gene regulation and chromatin structure by recruiting other proteins to the chromatin or blocking histone-modifying enzymes from accessing chromatin. Revealing the specificity of histone readers is, therefore, fundamental to understanding their function in gene regulation. Here, we describe a protocol to identify the binding specificity of histone readers to PTMs using histone peptide arrays and in vitro pull-down assays.
Collapse
Affiliation(s)
- Claire Jourdain
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | | | - Daniel Schubert
- Institute for Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Yang Q, Wei S, Qiu C, Han C, Du Z, Wu N. KDM1A epigenetically enhances RAD51 expression to suppress the STING-associated anti-tumor immunity in esophageal squamous cell carcinoma. Cell Death Dis 2024; 15:882. [PMID: 39638799 PMCID: PMC11621790 DOI: 10.1038/s41419-024-07275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Histone lysine demethylase LSD1, also known as KDM1A, has been found to regulate multiple cancer hallmarks since it was first identified in 2004. Recently, it has emerged as a promising target for stimulating anti-tumor immunity, specifically boosting T cell activity. However, it remains unclear whether and how it remodels the tumor microenvironment to drive oncogenic processes in esophageal squamous cell carcinoma (ESCC). In this study, protein levels in ESCC tissues were evaluated by immunostaining of tissue microarrays. Cell growth was assessed by colony formation assays in vitro and subcutaneous xenograft models in vivo. High-throughput transcriptomics and spatial immune proteomics were performed using bulk RNA sequencing and digital spatial profiling techniques, respectively. Epigenetic regulation of RAD51 by methylated histone proteins was analyzed using chromatin immunoprecipitated quantitative PCR assays. Finally, our clinical data indicate that KDM1A precisely predicts the overall survival of patients with early-stage ESCC. Inhibition of KDM1A blocked the growth of ESCC cells in vitro and in vivo. Mechanistically, our transcriptomics and spatial immune proteomics data, together with rescue assays, demonstrated that KDM1A specifically removes methyl residues from the histone protein H3K9me2, a transcription repressive marker, thus reducing its enrichment at the promoter of RAD51 to epigenetically reactivate its transcription. Additionally, it significantly inhibits the expression of NF-κB signaling-dependent proinflammatory genes IL-6 and IL-1B through RAD51, thus blocking the STING-associated anti-tumor immunity in stromal tumor-infiltrating lymphocytes (sTIL). Overall, our findings not only indicate that KDM1A is a promising target for ESCC patients at early stages but also provide novel mechanistic insights into its spatial regulation of STING-associated anti-tumor immunity in sTILs to drive the oncogenic processes in ESCC. The translation of these findings will ultimately guide more appropriate combinations of spatial immunotherapies with KDM1A inhibitors to improve the overall survival of specific subgroups in ESCC.
Collapse
Affiliation(s)
- Qingyuan Yang
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi, China
| | - Cen Qiu
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjie Han
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Hua Shan Hospital of Fudan University, Shanghai, China
| | - Ning Wu
- Department of Cardiothoracic Surgery, Hua Shan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Dutta S, Kumar V, Barua A, Vasudevan M. Investigating the differential structural organization and gene expression regulatory networks of lamin A Ig fold domain mutants of muscular dystrophy. Biochem J 2024; 481:1803-1827. [PMID: 39509247 DOI: 10.1042/bcj20240474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Lamins form a proteinaceous meshwork as a major structural component of the nucleus. Lamins, along with their interactors, act as determinants for chromatin organization throughout the nucleus. The major dominant missense mutations responsible for autosomal dominant forms of muscular dystrophies reside in the Ig fold domain of lamin A. However, how lamin A contributes to the distribution of heterochromatin and balances euchromatin, and how it relocates epigenetic marks to shape chromatin states, remains poorly defined, making it difficult to draw conclusions about the prognosis of lamin A-mediated muscular dystrophies. In the first part of this report, we identified the in vitro organization of full-length lamin A proteins due to two well-documented Ig LMNA mutations, R453W and W514R. We further demonstrated that both lamin A/C mutant cells predominantly expressed nucleoplasmic aggregates. Labeling specific markers of epigenetics allowed correlation of lamin A mutations with epigenetic mechanisms. In addition to manipulating epigenetic mechanisms, our proteomic studies traced diverse expressions of transcription regulators, RNA synthesis and processing proteins, protein translation components, and posttranslational modifications. These data suggest severe perturbations in targeting other proteins to the nucleus.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| | - Vikas Kumar
- UMass Chan Medical School, Mass Spectrometry Facility, 222 Maple Avenue, Shrewsbury, MA 01545, U.S.A
| | - Arnab Barua
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Madavan Vasudevan
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| |
Collapse
|
16
|
Li Y, Guo X, Yao H, Zhang Z, Zhao H. Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation. Epigenetics Chromatin 2024; 17:37. [PMID: 39623487 PMCID: PMC11613947 DOI: 10.1186/s13072-024-00563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xinwei Guo
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Yao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
17
|
Yan S, Lu T, Yang H, Ma L, Zhang Y, Li D. Decreased histone H3K9 dimethylation in synergy with DNA demethylation of Spi-1 binding site contributes to ADAMTS-5 expression in articular cartilage of osteoarthritis mice. J Cell Physiol 2024; 239:e31444. [PMID: 39318150 DOI: 10.1002/jcp.31444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Osteoarthritis (OA) is defined by articular cartilage degeneration, synovial membrane inflammation, and abnormal bone remodeling. Recent study has discovered that OA development is linked to an aberrant epigenetic modification of OA-related genes. Our previous research showed that DNA demethylation in ADAMTS-5 promoter region had a substantial impact on ADAMTS-5 expression in the mouse OA model. This process facilitated the binding of Spi-1 to ADAMTS-5 promoter. While alterations in histone methylation have been documented during embryonic development and cancer development, there is a paucity of data on the change in OA pathogenesis. Even no data have been reported on the role of histone modifications in ADAMTS-5 activation in OA. Following our previous study on the role of DNA methylation, we aimed to examine the contribution of histone H3K9 dimethylation in ADAMTS-5 activation in OA. Additionally, we aimed to elucidate the molecular mechanisms underlying the cooperative interaction between DNA methylation and histone H3K9 dimethylation. The potential for anti-OA intervention therapy which is based on modulating histone H3K9 dimethylation is also explored. We demonstrated that a reduction in histone H3K9 dimethylation, along with DNA demethylation of the Spi-1 binding site, had a role in ADAMTS-5 activation in the articular cartilage of OA mice. Significantly, the conditional deletion of histone demethylase to be identified as lysine-specific demethylase 1 (LSD1) in articular cartilage could alleviate the degenerative features of OA mice. Our study demonstrates the direct impact of histone H3K9 dimethylation on gene expression, which in turn contributes to OA development. This research enhances our understanding of the underlying causes of OA.
Collapse
Affiliation(s)
- Shuaichen Yan
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Tongxin Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Huapu Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Liang Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Deqiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| |
Collapse
|
18
|
Zuo DD, Sun HT, Yang L, Shang FHZ, Guo DL. Identification of grape H3K27 methyltransferase genes and their expression profiles during grape fruit ripening. Mol Biol Rep 2024; 52:21. [PMID: 39601900 DOI: 10.1007/s11033-024-10117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND H2O2 treatment can accelerate grape ripening and mediate changes in histone methylation levels. Histone methylation, as an epigenetic modification, is involved in regulating the expression of genes related to fruit ripening, including H3K27ac, H3K4me1, H3K27me3 and H3K4me3. Among them, H3K27me3 methylation is generally negatively regulated in development, and H3K27 methyltransferase can participate in the development process of fruit by regulate the level of H3K27me3. The H3K27 methyltransferase members in grapes are not yet clear, and a better understanding of their functions contributes to regulating fruit development. METHODS AND RESULTS By analyzing the conserved domains of the grape genome, three H3K27 methyltransferases were identified and named as VvH3K27-1, VvH3K27-2 and VvH3K27-3, respectively. Further analysis included their conserved domains, gene structure, phylogenetic relationship, protein physicochemical properties, chromosome localization, subcellular localization, and cis-acting elements in the promoter region. It is worth noting that all H3K27 methyltransferase genes have a highly conserved SET domain. VvH3K27-2 was localized in the nucleus and H2O2 treatment resulted in a decrease in the expression of these genes. CONCLUSION Three H3K27 methyltransferase genes were identified in grape, which are down-regulated during berry development, and their expression is inhibited by H2O2 treatment. Thus, H3K27 methyltransferase genes are involved in the regulation of fruit development.
Collapse
Affiliation(s)
- Ding-Ding Zuo
- College of Agronomy/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hao-Ting Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Lu Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Fang-Hui-Zi Shang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
19
|
Zhu R, Ni J, Ren J, Li D, Xu J, Yu X, Ma YJ, Kou L. Transcriptomic era of cancers in females: new epigenetic perspectives and therapeutic prospects. Front Oncol 2024; 14:1464125. [PMID: 39605897 PMCID: PMC11598703 DOI: 10.3389/fonc.2024.1464125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
In the era of transcriptomics, the role of epigenetics in the study of cancers in females has gained increasing recognition. This article explores the impact of epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNA, on cancers in females, including breast, cervical, and ovarian cancers (1). Our findings suggest that these epigenetic markers not only influence tumor onset, progression, and metastasis but also present novel targets for therapeutic intervention. Detailed analyses of DNA methylation patterns have revealed aberrant events in cancer cells, particularly promoter region hypermethylation, which may lead to silencing of tumor suppressor genes. Furthermore, we examined the complex roles of histone modifications and long non-coding RNAs in regulating the expression of cancer-related genes, thereby providing a scientific basis for developing targeted epigenetic therapies. Our research emphasizes the importance of understanding the functions and mechanisms of epigenetics in cancers in females to develop effective treatment strategies. Future therapeutic approaches may include drugs targeting specific epigenetic markers, which could not only improve therapeutic outcomes but also enhance patient survival and quality of life. Through these efforts, we aim to offer new perspectives and hope for the prevention, diagnosis, and treatment of cancers in females.
Collapse
Affiliation(s)
- Runhe Zhu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Ni
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayin Ren
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongye Li
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Xu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinru Yu
- The Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Luan Kou
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
20
|
Lacen A, Lee HT. Tracing the Chromatin: From 3C to Live-Cell Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:659-682. [PMID: 39483638 PMCID: PMC11523001 DOI: 10.1021/cbmi.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 11/03/2024]
Abstract
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| | - Hui-Ting Lee
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
21
|
Yan L, Zheng M, Fan M, Yao R, Zou K, Feng S, Wu M. A Chemoselective Enrichment Strategy for In-Depth Coverage of the Methyllysine Proteome. Angew Chem Int Ed Engl 2024; 63:e202408564. [PMID: 39011605 DOI: 10.1002/anie.202408564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Proteomics is a powerful method to comprehensively understand cellular posttranslational modifications (PTMs). Owing to low abundance, tryptic peptides with PTMs are usually enriched for enhanced coverage by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Affinity chromatography for phosphoproteomes by metal-oxide and pan-specific antibodies for lysine acetylome allow identification of tens of thousands of modification sites. Lysine methylation is a significant PTM; however, only hundreds of methylation sites were identified by available approaches. Herein we report an aryl diazonium based chemoselective strategy that enables enrichment of monomethyllysine (Kme1) peptides through covalent bonds with extraordinary sensitivity. We identified more than 10000 Kme1 peptides from diverse cell lines and mouse tissues, which implied a wide lysine methylation impact on cellular processes. Furthermore, we found a significant amount of methyl marks that were not S-adenosyl methionine (SAM)-dependent by isotope labeling experiments.
Collapse
Affiliation(s)
- Lufeng Yan
- Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang Province, China
| | - Manqian Zheng
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Mingzhu Fan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Rui Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang Province, China
| | - Kun Zou
- Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
22
|
Uguen M, Shell DJ, Silva M, Deng Y, Li F, Szewczyk MM, Yang K, Zhao Y, Stashko MA, Norris-Drouin JL, Waybright JM, Beldar S, Rectenwald JM, Mordant AL, Webb TS, Herring LE, Arrowsmith CH, Ackloo S, Gygi SP, McGinty RK, Barsyte-Lovejoy D, Liu P, Halabelian L, James LI, Pearce KH, Frye SV. Potent and Selective SETDB1 Covalent Negative Allosteric Modulator Reduces Methyltransferase Activity in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615363. [PMID: 39386588 PMCID: PMC11463403 DOI: 10.1101/2024.09.27.615363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A promising drug target, SETDB1, is a dual Kme reader and methyltransferase, which has been implicated in cancer and neurodegenerative disease progression. To help understand the role of the triple Tudor domain (3TD) of SETDB1, its Kme reader, we first identified a low micromolar small molecule ligand, UNC6535, which occupies simultaneously both the TD2 and TD3 reader binding sites. Further optimization led to the discovery of UNC10013, the first covalent 3TD ligand targeting Cys385 of SETDB1. UNC10013 is potent with a k inact /K I of 1.0 x 10 6 M -1 s -1 and demonstrated proteome-wide selectivity. In cells, negative allosteric modulation of SETDB1-mediated Akt methylation was observed after treatment with UNC10013. Therefore, UNC10013 is a potent, selective and cell-active covalent ligand for the 3TD of SETDB1, demonstrating negative allosteric modulator properties and making it a promising tool to study the biological role of SETDB1 in disease progression.
Collapse
|
23
|
Louis E, Fu L, Shi YB, Sachs LM. Functions and Mechanism of Thyroid Hormone Receptor Action During Amphibian Development. Endocrinology 2024; 165:bqae137. [PMID: 39397558 PMCID: PMC11497603 DOI: 10.1210/endocr/bqae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Thyroid hormones and their receptors (TRs) play critical roles during vertebrate development. One of the most dramatic developmental processes regulated by thyroid hormones is frog metamorphosis, which mimics the postembryonic (perinatal) period in mammals. Here, we review some of the findings on the developmental functions of thyroid hormones and TRs as well as their associated mechanisms of action obtained from this model system. More than 2 decades ago, a dual function model was proposed for TR in anuran development. During larval development, unliganded receptors recruit corepressors to repress thyroid hormone response genes to prevent premature metamorphic changes. Subsequently, when thyroid hormone levels rise, liganded receptors recruit coactivators to activate thyroid hormone response genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model and have shown that it is applicable to mammalian development as well as to understanding the diverse effects of thyroid hormones in normal physiology and diseases caused by thyroid hormone signaling dysfunction.
Collapse
Affiliation(s)
- Emeric Louis
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, 75231 Paris, France
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Laurent M Sachs
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, 75231 Paris, France
| |
Collapse
|
24
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
25
|
Chen Y, Yang S, Yu T, Zeng T, Wei L, You Y, Tang J, Dang T, Sun H, Zhang Y. KDM4A promotes malignant progression of breast cancer by down-regulating BMP9 inducing consequent enhancement of glutamine metabolism. Cancer Cell Int 2024; 24:322. [PMID: 39300582 DOI: 10.1186/s12935-024-03504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Recent studies have found that histone-modified genes play an increasingly important role in tumor progression. Lysine(K) specific demethylase 4A (KDM4A) is a histone lysine-specific demethylase highly expressed in a variety of malignant tumors, data showed that KDM4A was negatively correlated with the Bone Morphogenetic Protein 9 (BMP9) in breast cancer. And previous experiments have demonstrated that exogenous BMP9 significantly inhibits breast cancer development. MATERIALS AND METHODS We detected the expression of KDM4A in breast cancer and the relationship between KDM4A and BMP9 using real-time quantitative PCR (RT-qPCR) and Western blot, and verified the interaction between KDM4A and BMP9 by ChIP experiments. At the same time, we also detected whether KDM4A had effects on the RNA and protein stability of BMP9 using actinomycin D and cycloheximide. Measurement of alpha-ketoglutarate (α-KG) level by ELISA to observe the effect of BMP9 on glutamine metabolism in breast cancer cells. Nucleoplasmic distribution of KDM4A after exogenous BMP9 treatment in breast cancer cells were observed by immunofluorescence staining and Western blot. A subcutaneous xenograft tumor model in nude mice was used to study the therapeutic effects of exogenous BMP9 and KDM4A inhibitor (JIB-04) in breast cancer. CCK-8, conoly formation, Transwell, wound healing, and immunohistochemistry were used to monitor the growth of tumor and cell function. RESULTS We found that KDM4A was abnormally highly expressed in breast cancer, and silenced BMP9 expression by removing histone methyl groups from the BMP9 gene region. Meanwhile, KDM4A could also reduce the stability of BMP9 protein. BMP9 inhibit glutamine metabolism in breast cancer, resulting in a decrease in its product α-KG, is confirmed by ELISA. Altered nucleoplasmic distribution of KDM4A due to decreased α-KG was confirmed by immunofluorescence staining and Western blot. Animal experiments confirm that the combination of exogenous BMP9 and JIB-04 shows significantly better results in breast cancer. CONCLUSIONS KDM4A silences BMP9 expression by removing histone methyl groups from the BMP9 gene region, leading to further enhancement of glutamine metabolism, which contributes to malignant tumor progression. In addition, using JIB-04 in combination with exogenous BMP9 could inhibit the malignant progression of breast cancer cells and the growth of tumors more significantly.
Collapse
Affiliation(s)
- Yuanxiang Chen
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shiyu Yang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tao Yu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tao Zeng
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lan Wei
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yiqing You
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jiafeng Tang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingting Dang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haoli Sun
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
26
|
Nishigaya Y, Takase S, Sumiya T, Sato T, Niwa H, Sato S, Nakata A, Matsuoka S, Maemoto Y, Hashimoto N, Namie R, Honma T, Umehara T, Shirouzu M, Koyama H, Yoshida M, Ito A, Shirai F. Structure-based development of novel substrate-type G9a inhibitors as epigenetic modulators for sickle cell disease treatment. Bioorg Med Chem Lett 2024; 110:129856. [PMID: 38914346 DOI: 10.1016/j.bmcl.2024.129856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The discovery and development of structurally distinct lysine methyltransferase G9a inhibitors have been the subject of intense research in epigenetics. Structure-based optimization was conducted, starting with the previously reported seed compound 7a and lead to the identification of a highly potent G9a inhibitor, compound 7i (IC50 = 0.024 μM). X-ray crystallography for the ligand-protein interaction and kinetics study, along with surface plasmon resonance (SPR) analysis, revealed that compound 7i interacts with G9a in a unique binding mode. In addition, compound 7i caused attenuation of cellular H3K9me2 levels and induction of γ-globin mRNA expression in HUDEP-2 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Yosuke Nishigaya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan.
| | - Shohei Takase
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tatsunobu Sumiya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Tomohiro Sato
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hideaki Niwa
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shin Sato
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Nakata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Seiji Matsuoka
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Maemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Noriaki Hashimoto
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Ryosuke Namie
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., 1848 Nogi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Umehara
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mikako Shirouzu
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Office of University Professor, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiro Ito
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
27
|
Wang K, Zhang L, Zhang S, Liu Y, Mao J, Liu Z, Xu L, Li K, Wang J, Ma Y, Wang J, Li H, Wang Z, Li G, Cheng H, Ye M. Metabolic labeling based methylome profiling enables functional dissection of histidine methylation in C3H1 zinc fingers. Nat Commun 2024; 15:7459. [PMID: 39198440 PMCID: PMC11358137 DOI: 10.1038/s41467-024-51979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Protein methylation is a functionally important post-translational modification that occurs on diverse amino acid residues. The current proteomics approaches are inefficient to discover the methylation on residues other than Arg and Lys, which hinders the deep understanding of the functional role of rare protein methylation. Herein, we present a methyl-specific metabolic labeling approach for global methylome mapping, which enable the acquisition of methylome dataset covering diverse methylation types. Interestingly, of the identified methylation events, His methylation is found to be preferably occurred in C3H1 zinc fingers (ZFs). These His methylation events are determined to be Nπ specific and catalyzed by CARNMT1. The His methylation is found to stabilize the structure of ZFs. U2AF1 is used as a proof-of-concept to highlight the functional importance of His methylation in ZFs in RNA binding and RNA metabolism. The results of this study enable novel understanding of how protein methylation regulates cellular processes.
Collapse
Grants
- This work was supported, in part, by funds from the China State Key Basic Research Program Grants (2021YFA13026012, 2019YFA0709400, 2022YFA1303300), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB37040401, XDB0570100), the National Natural Science Foundation of China (21804131, 92153302, 21933010, 31925008), the innovation program (DICP I202226) of science and research from the DICP, CAS.
Collapse
Affiliation(s)
- Keyun Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Sirui Zhang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiawei Mao
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Xu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kejia Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianshu Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanni Ma
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayi Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science, Southern University of Science and Technology, Shenzhen, China.
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Hong Cheng
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Yu H, Lesch BJ. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Mol Cell Biol 2024; 44:505-515. [PMID: 39155435 PMCID: PMC11529435 DOI: 10.1080/10985549.2024.2388254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me) is a highly evolutionary conserved chromatin modification associated with active transcription, and its three methylation states-mono, di, and trimethylation-mark distinct regulatory elements. However, whether H3K4me plays functional roles in transcriptional regulation or is merely a by-product of histone methyltransferases recruited to actively transcribed loci is still under debate. Here, we outline the studies that have addressed this question in yeast, Drosophila, and mammalian systems. We review evidence from histone residue mutation, histone modifier manipulation, and epigenetic editing, focusing on the relative roles of H3K4me1 and H3K4me3. We conclude that H3K4me1 and H3K4me3 may have convergent functions in establishing open chromatin and promoting transcriptional activation during cell differentiation.
Collapse
Affiliation(s)
- Haoming Yu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Ju J, Li Y, Ling P, Luo J, Wei W, Yuan W, Wang C, Su J. H3K36 methyltransferase GhKMT3;1a and GhKMT3;2a promote flowering in upland cotton. BMC PLANT BIOLOGY 2024; 24:739. [PMID: 39095699 PMCID: PMC11295449 DOI: 10.1186/s12870-024-05457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The SET domain group (SDG) genes encode histone lysine methyltransferases, which regulate gene transcription by altering chromatin structure and play pivotal roles in plant flowering determination. However, few studies have investigated their role in the regulation of flowering in upland cotton. RESULTS A total of 86 SDG genes were identified through genome-wide analysis in upland cotton (Gossypium hirsutum). These genes were unevenly distributed across 25 chromosomes. Cluster analysis revealed that the 86 GhSDGs were divided into seven main branches. RNA-seq data and qRT‒PCR analysis revealed that lysine methyltransferase 3 (KMT3) genes were expressed at high levels in stamens, pistils and other floral organs. Using virus-induced gene silencing (VIGS), functional characterization of GhKMT3;1a and GhKMT3;2a revealed that, compared with those of the controls, the GhKMT3;1a- and GhKMT3;2a-silenced plants exhibited later budding and flowering and lower plant heightwere shorter. In addition, the expression of flowering-related genes (GhAP1, GhSOC1 and GhFT) significantly decreased and the expression level of GhSVP significantly increased in the GhKMT3;1a- and GhKMT3;2a-silenced plants compared with the control plants. CONCLUSION A total of 86 SDG genes were identified in upland cotton, among which GhKMT3;1a and GhKMT3;2a might regulate flowering by affecting the expression of GhAP1, GhSOC1, GhFT and GhSVP. These findings will provide genetic resources for advanced molecular breeding in the future.
Collapse
Affiliation(s)
- Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenmin Yuan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
30
|
Kofler XV, Grossniklaus U, Schiestl FP, Frachon L. Uncovering genes involved in pollinator-driven mating system shifts and selfing syndrome evolution in Brassica rapa. THE NEW PHYTOLOGIST 2024; 243:1220-1230. [PMID: 38853408 DOI: 10.1111/nph.19880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Shifts in pollinator occurrence and their pollen transport effectiveness drive the evolution of mating systems in flowering plants. Understanding the genomic basis of these changes is essential for predicting the persistence of a species under environmental changes. We investigated the genomic changes in Brassica rapa over nine generations of pollination by hoverflies associated with rapid morphological evolution toward the selfing syndrome. We combined a genotyping-by-sequencing (GBS) approach with a genome-wide association study (GWAS) to identify candidate genes, and assessed their functional role in the observed morphological changes by studying mutations of orthologous genes in the model plant Arabidopsis thaliana. We found 31 candidate genes involved in a wide range of functions from DNA/RNA binding to transport. Our functional assessment of orthologous genes in A. thaliana revealed that two of the identified genes in B. rapa are involved in regulating the size of floral organs. We found a protein kinase superfamily protein involved in petal width, an important trait in plant attractiveness to pollinators. Moreover, we found a histone lysine methyltransferase (HKMT) associated with stamen length. Altogether, our study shows that hoverfly pollination leads to rapid evolution toward the selfing syndrome mediated by polygenic changes.
Collapse
Affiliation(s)
- Xeniya V Kofler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich, University of Basel, Tannenstrasse 1, 8092, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Ueli Grossniklaus
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich, University of Basel, Tannenstrasse 1, 8092, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich, University of Basel, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Léa Frachon
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich, University of Basel, Tannenstrasse 1, 8092, Zürich, Switzerland
| |
Collapse
|
31
|
Zhang S, Lin T, Xiong X, Chen C, Tan P, Wei Q. Targeting histone modifiers in bladder cancer therapy - preclinical and clinical evidence. Nat Rev Urol 2024; 21:495-511. [PMID: 38374198 DOI: 10.1038/s41585-024-00857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Bladder cancer in the most advanced, muscle-invasive stage is lethal, and very limited therapeutic advances have been reported for decades. To date, cisplatin-based chemotherapy remains the first-line therapy for advanced bladder cancer. Late-line options have historically been limited. In the past few years, next-generation sequencing technology has enabled chromatin remodelling gene mutations to be characterized, showing that these alterations are more frequent in urothelial bladder carcinoma than in other cancer types. Histone modifiers have functional roles in tumour progression by modulating the expression of tumour suppressors and oncogenes and, therefore, have been considered as novel drug targets for cancer therapy. The roles of epigenetic reprogramming through histone modifications have been increasingly studied in bladder cancer, and the therapeutic efficacy of targeting those histone modifiers genetically or chemically is being assessed in preclinical studies. Results from preclinical studies in bladder cancer encouraged the investigation of some of these drugs in clinical trials, which yield mixed results. Further understanding of how alterations of histone modification mechanistically contribute to bladder cancer progression, drug resistance and tumour microenvironment remodelling will be required to facilitate clinical application of epigenetic drugs in bladder cancer.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
32
|
Yadav AK, Gupta PK, Singh TR. PMTPred: machine-learning-based prediction of protein methyltransferases using the composition of k-spaced amino acid pairs. Mol Divers 2024; 28:2301-2315. [PMID: 39033257 DOI: 10.1007/s11030-024-10937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Protein methyltransferases (PMTs) are a group of enzymes that help catalyze the transfer of a methyl group to its substrates. These enzymes play an important role in epigenetic regulation and can methylate various substrates with DNA, RNA, protein, and small-molecule secondary metabolites. Dysregulation of methyltransferases is implicated in various human cancers. However, in light of the well-recognized significance of PMTs, reliable and efficient identification methods are essential. In the present work, we propose a machine-learning-based method for the identification of PMTs. Various sequence-based features were calculated, and prediction models were trained using various machine-learning algorithms using a tenfold cross-validation technique. After evaluating each model on the dataset, the SVM-based CKSAAP model achieved the highest prediction accuracy with balanced sensitivity and specificity. Also, this SVM model outperformed deep-learning algorithms for the prediction of PMTs. In addition, cross-database validation was performed to ensure the robustness of the model. Feature importance was assessed using shapley additive explanations (SHAP) values, providing insights into the contributions of different features to the model's predictions. Finally, the SVM-based CKSAAP model was implemented in a standalone tool, PMTPred, due to its consistent performance during independent testing and cross-database evaluation. We believe that PMTPred will be a useful and efficient tool for the identification of PMTs. The PMTPred is freely available for download at https://github.com/ArvindYadav7/PMTPred and http://www.bioinfoindia.org/PMTPred/home.html for research and academic use.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India
| | - Pradeep Kumar Gupta
- Department of Computer Science and Engineering, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India
- School of Computing, Department of Data Science and Engineering, Mohan Babu University, Tirupati- 517102, Andhra Pradesh, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India.
- Centre of Excellence in Healthcare Technologies and Informatics (CHETI), Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India.
| |
Collapse
|
33
|
Liu R, Zhang L, Zhang K. Histone modification in psoriasis: Molecular mechanisms and potential therapeutic targets. Exp Dermatol 2024; 33:e15151. [PMID: 39090854 DOI: 10.1111/exd.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Psoriasis is an immune-mediated, inflammatory disease. Genetic and environmental elements are involved in the nosogenesis of this illness. Epigenetic inheritance serves as the connection between genetic and environmental factors. Histone modification, an epigenetic regulatory mechanism, is implicated in the development of numerous diseases. The basic function of histone modification is to regulate cellular functions by modifying gene expression. Modulation of histone modification, such as regulation of enzymes pertinent to histone modification, can be an alternative approach for treating some diseases, including psoriasis. Herein, we reviewed the regulatory mechanisms and biological effects of histone modifications and their roles in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Ruifeng Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Luyao Zhang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
34
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
35
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
36
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
37
|
Liu B, Li C, Li X, Wang J, Xie W, Woods DP, Li W, Zhu X, Yang S, Dong A, Amasino RM. The H3K4 demethylase JMJ1 is required for proper timing of flowering in Brachypodium distachyon. THE PLANT CELL 2024; 36:2729-2745. [PMID: 38652680 PMCID: PMC11218787 DOI: 10.1093/plcell/koae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Flowering is a key developmental transition in the plant life cycle. In temperate climates, flowering often occurs in response to the perception of seasonal cues such as changes in day-length and temperature. However, the mechanisms that have evolved to control the timing of flowering in temperate grasses are not fully understood. We identified a Brachypodium distachyon mutant whose flowering is delayed under inductive long-day conditions due to a mutation in the JMJ1 gene, which encodes a Jumonji domain-containing protein. JMJ1 is a histone demethylase that mainly demethylates H3K4me2 and H3K4me3 in vitro and in vivo. Analysis of the genome-wide distribution of H3K4me1, H3K4me2, and H3K4me3 in wild-type plants by chromatin immunoprecipitation and sequencing combined with RNA sequencing revealed that H3K4m1 and H3K4me3 are positively associated with gene transcript levels, whereas H3K4me2 is negatively correlated with transcript levels. Furthermore, JMJ1 directly binds to the chromatin of the flowering regulator genes VRN1 and ID1 and affects their transcription by modifying their H3K4me2 and H3K4me3 levels. Genetic analyses indicated that JMJ1 promotes flowering by activating VRN1 expression. Our study reveals a role for JMJ1-mediated chromatin modification in the proper timing of flowering in B. distachyon.
Collapse
Affiliation(s)
- Bing Liu
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Chengzhang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Xiang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Jiachen Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Wenhao Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Daniel P Woods
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Xiaoyu Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Shuoming Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Richard M Amasino
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
38
|
Fan W, Zeng S, Wang X, Wang G, Liao D, Li R, He S, Li W, Huang J, Li X, Liu J, Li N, Hou S. A feedback loop driven by H3K9 lactylation and HDAC2 in endothelial cells regulates VEGF-induced angiogenesis. Genome Biol 2024; 25:165. [PMID: 38918851 PMCID: PMC11197246 DOI: 10.1186/s13059-024-03308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is one of the most powerful proangiogenic factors and plays an important role in multiple diseases. Increased glycolytic rates and lactate accumulation are associated with pathological angiogenesis. RESULTS Here, we show that a feedback loop between H3K9 lactylation (H3K9la) and histone deacetylase 2 (HDAC2) in endothelial cells drives VEGF-induced angiogenesis. We find that the H3K9la levels are upregulated in endothelial cells in response to VEGF stimulation. Pharmacological inhibition of glycolysis decreases H3K9 lactylation and attenuates neovascularization. CUT& Tag analysis reveals that H3K9la is enriched at the promoters of a set of angiogenic genes and promotes their transcription. Interestingly, we find that hyperlactylation of H3K9 inhibits expression of the lactylation eraser HDAC2, whereas overexpression of HDAC2 decreases H3K9 lactylation and suppresses angiogenesis. CONCLUSIONS Collectively, our study illustrates that H3K9la is important for VEGF-induced angiogenesis, and interruption of the H3K9la/HDAC2 feedback loop may represent a novel therapeutic method for treating pathological neovascularization.
Collapse
Affiliation(s)
- Wei Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Shuhao Zeng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Dan Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Siyuan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Jiaxing Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Xingran Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Na Li
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
39
|
Kunoh S, Nakashima H, Nakashima K. Epigenetic Regulation of Neural Stem Cells in Developmental and Adult Stages. EPIGENOMES 2024; 8:22. [PMID: 38920623 PMCID: PMC11203245 DOI: 10.3390/epigenomes8020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The development of the nervous system is regulated by numerous intracellular molecules and cellular signals that interact temporally and spatially with the extracellular microenvironment. The three major cell types in the brain, i.e., neurons and two types of glial cells (astrocytes and oligodendrocytes), are generated from common multipotent neural stem cells (NSCs) throughout life. However, NSCs do not have this multipotentiality from the beginning. During cortical development, NSCs sequentially obtain abilities to differentiate into neurons and glial cells in response to combinations of spatiotemporally modulated cell-intrinsic epigenetic alterations and extrinsic factors. After the completion of brain development, a limited population of NSCs remains in the adult brain and continues to produce neurons (adult neurogenesis), thus contributing to learning and memory. Many biological aspects of brain development and adult neurogenesis are regulated by epigenetic changes via behavioral control of NSCs. Epigenetic dysregulation has also been implicated in the pathogenesis of various brain diseases. Here, we present recent advances in the epigenetic regulation of NSC behavior and its dysregulation in brain disorders.
Collapse
Affiliation(s)
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
40
|
Separovich RJ, Karakatsanis NM, Gao K, Fuh D, Hamey JJ, Wilkins MR. Proline-directed yeast and human MAP kinases phosphorylate the Dot1p/DOT1L histone H3K79 methyltransferase. FEBS J 2024; 291:2590-2614. [PMID: 38270553 DOI: 10.1111/febs.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Disruptor of telomeric silencing 1 (Dot1p) is an exquisitely conserved histone methyltransferase and is the sole enzyme responsible for H3K79 methylation in the budding yeast Saccharomyces cerevisiae. It has been shown to be highly phosphorylated in vivo; however, the upstream kinases that act on Dot1p are almost entirely unknown in yeast and all other eukaryotes. Here, we used in vitro and in vivo kinase discovery approaches to show that mitogen-activated protein kinase HOG1 (Hog1p) is a bona fide kinase of the Dot1p methyltransferase. In vitro kinase assays showed that Hog1p phosphorylates Dot1p at multiple sites, including at several proline-adjacent sites that are consistent with known Hog1p substrate preferences. The activity of Hog1p was specifically enhanced at these proline-adjacent sites on Dot1p upon Hog1p activation by the osmostress-responsive MAP kinase kinase PBS2 (Pbs2p). Genomic deletion of HOG1 reduced phosphorylation at specific sites on Dot1p in vivo, providing further evidence for Hog1p kinase activity on Dot1p in budding yeast cells. Phenotypic analysis of knockout and phosphosite mutant yeast strains revealed the importance of Hog1p-catalysed phosphorylation of Dot1p for cellular responses to ultraviolet-induced DNA damage. In mammalian systems, this kinase-substrate relationship was found to be conserved: human DOT1L (the ortholog of yeast Dot1p) can be phosphorylated by the proline-directed kinase p38β (also known as MAPK11; the ortholog of yeast Hog1p) at multiple sites in vitro. Taken together, our findings establish Hog1p and p38β as newly identified upstream kinases of the Dot1p/DOT1L H3K79 methyltransferase enzymes in eukaryotes.
Collapse
Affiliation(s)
- Ryan J Separovich
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Nicola M Karakatsanis
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Kelley Gao
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - David Fuh
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Joshua J Hamey
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
41
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
42
|
Bayarsaikhan B, Zsidó BZ, Börzsei R, Hetényi C. Efficient Refinement of Complex Structures of Flexible Histone Peptides Using Post-Docking Molecular Dynamics Protocols. Int J Mol Sci 2024; 25:5945. [PMID: 38892133 PMCID: PMC11172440 DOI: 10.3390/ijms25115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Histones are keys to many epigenetic events and their complexes have therapeutic and diagnostic importance. The determination of the structures of histone complexes is fundamental in the design of new drugs. Computational molecular docking is widely used for the prediction of target-ligand complexes. Large, linear peptides like the tail regions of histones are challenging ligands for docking due to their large conformational flexibility, extensive hydration, and weak interactions with the shallow binding pockets of their reader proteins. Thus, fast docking methods often fail to produce complex structures of such peptide ligands at a level appropriate for drug design. To address this challenge, and improve the structural quality of the docked complexes, post-docking refinement has been applied using various molecular dynamics (MD) approaches. However, a final consensus has not been reached on the desired MD refinement protocol. In this present study, MD refinement strategies were systematically explored on a set of problematic complexes of histone peptide ligands with relatively large errors in their docked geometries. Six protocols were compared that differ in their MD simulation parameters. In all cases, pre-MD hydration of the complex interface regions was applied to avoid the unwanted presence of empty cavities. The best-performing protocol achieved a median of 32% improvement over the docked structures in terms of the change in root mean squared deviations from the experimental references. The influence of structural factors and explicit hydration on the performance of post-docking MD refinements are also discussed to help with their implementation in future methods and applications.
Collapse
Affiliation(s)
- Bayartsetseg Bayarsaikhan
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Rita Börzsei
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
- National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
43
|
Thi YVN, Vu TD, Huong NTL, Chu DT. Epigenetic contribution to the relationship between obesity and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:195-213. [PMID: 39179347 DOI: 10.1016/bs.ircmb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Obesity and cancer are two major health issues all around the world due to their elevated prevalence. Several experimental and epidemiological studies have demonstrated the relationship between obesity and cancer, in which obesity is considered a risk factor for cancer development. The ultimate goal of knowing the epigenetic contribution to the relationship between obesity and cancer is to find the method of intervention or treatment of obesity and cancer. Therefore, providing the most general perspective on epigenetic contribution to the relationship between obesity and cancer is necessary. Obesity is closely related to some common cancers that are currently encountered, including breast, esophagus, liver, kidney, uterus, colorectal, pancreatic, and gallbladder. Obesity has a significant impact that increases the risk of cancer deaths and thereby indirectly affects the choice of treatment. It is estimated that about 4-8% of cancer cases are caused by obesity. In particular, the basic mechanism to understand the relationship between cancer is very complicated and has not been fully understood. This work is aimed at summarizing the current knowledge of the role of epigenetic regulation in the relationship between obesity, and potential applications.
Collapse
Affiliation(s)
- Yen-Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | | | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
44
|
Jamali M, Barar E, Shi J. Unveiling the Molecular Landscape of Pancreatic Ductal Adenocarcinoma: Insights into the Role of the COMPASS-like Complex. Int J Mol Sci 2024; 25:5069. [PMID: 38791111 PMCID: PMC11121229 DOI: 10.3390/ijms25105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores the genetic and epigenetic landscape of PDAC, focusing on the role of the COMPASS-like complex in regulating chromatin accessibility and gene expression. Specifically, we delve into the functions of key components such as KDM6A, KMT2D, KMT2C, KMT2A, and KMT2B, highlighting their significance as potential therapeutic targets. Furthermore, we discuss the implications of these findings for developing novel treatment modalities for PDAC.
Collapse
Affiliation(s)
- Marzieh Jamali
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Shah Zaib Saleem R, Schwalm MP, Knapp S. Expanding the ligand spaces for E3 ligases for the design of protein degraders. Bioorg Med Chem 2024; 105:117718. [PMID: 38621319 DOI: 10.1016/j.bmc.2024.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Targeted protein degradation (TPD) has recently emerged as an exciting new drug modality. However, the strategy of developing small molecule-based protein degraders has evolved over the past two decades and has now established molecular tags that are already in clinical use, as well as chimeric molecules, PROteolysis TArgeting Chimeras (PROTACs), based mainly on ligand systems developed for the two E3 ligases CRBN and VHL. The large size of the human E3 ligase family suggests that PROTACs can be developed by targeting a large diversity of E3 ligases, some of which have restricted expression patterns with the potential to design disease- or tissue-specific degraders. Indeed, many new E3 ligands have been published recently, confirming the druggability of E3 ligases. This review summarises recent data on E3 ligases and highlights the challenges in developing these molecules into efficient PROTACs rivalling the established degrader systems.
Collapse
Affiliation(s)
- Rahman Shah Zaib Saleem
- Department of Chemistry & Chemical Engineering, SBA School of Sciences & Engineering, LUMS, Pakistan
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
46
|
Rehman S, Storey KB. Dynamics of epigenetic regulation in Dryophytes versicolor skeletal muscle: Lysine methylation and acetylation involvement in metabolic rate depression. J Therm Biol 2024; 122:103865. [PMID: 38761482 DOI: 10.1016/j.jtherbio.2024.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
For the breadth of the winter, Dryophytes versicolor can survive full body freezing utilizing a phenomenon known as metabolic rate depression (MRD). Epigenetic transcriptional control on gene expression, such as histone methylation and acetylation, can aid in implementing a balance between permissive and restricted chromatin required to endure this stress. As such, this study explores the interplay between histone lysine methyl and acetyl transferases (HKMTs, HATs), as well as the abundance of various acetyl-lysine and methyl-lysine moieties on histone H3 and H4. Results showing that overexpression of transcriptionally repressive marks, and under expression of active ones, suggest a negative effect on overall gene transcription in skeletal muscle tissue.
Collapse
Affiliation(s)
- Saif Rehman
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
47
|
Xu BY, Yu XL, Gao WX, Gao TT, Hu HY, Wu TT, Shen C, Huang XY, Zheng B, Wu YB. RNF187 governs the maintenance of mouse GC-2 cell development by facilitating histone H3 ubiquitination at K57/80. Asian J Androl 2024; 26:272-281. [PMID: 38156805 PMCID: PMC11156453 DOI: 10.4103/aja202368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024] Open
Abstract
RING finger 187 (RNF187), a ubiquitin-ligating (E3) enzyme, plays a crucial role in the proliferation of cancer cells. However, it remains unclear whether RNF187 exhibits comparable functionality in the development of germline cells. To investigate the potential involvement of RNF187 in germ cell development, we conducted interference and overexpression assays using GC-2 cells, a mouse spermatocyte-derived cell line. Our findings reveal that the interaction between RNF187 and histone H3 increases the viability, proliferation, and migratory capacity of GC-2 cells. Moreover, we provide evidence demonstrating that RNF187 interacts with H3 and mediates the ubiquitination of H3 at lysine 57 (K57) or lysine 80 (K80), directly or indirectly resulting in increased cellular transcription. This is a study to report the role of RNF187 in maintaining the development of GC-2 cells by mediating histone H3 ubiquitination, thus highlighting the involvement of the K57 and K80 residues of H3 in the epistatic regulation of gene transcription. These discoveries provide a new theoretical foundation for further comprehensive investigations into the function of RNF187 in the reproductive system.
Collapse
Affiliation(s)
- Bing-Ya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Xiang-Ling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Wen-Xin Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Ting-Ting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Hao-Yue Hu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Tian-Tian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xiao-Yan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yi-Bo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| |
Collapse
|
48
|
Choi J, Lee H. MLL1 histone methyltransferase and UTX histone demethylase functionally cooperate to regulate the expression of NRF2 in response to ROS-induced oxidative stress. Free Radic Biol Med 2024; 217:48-59. [PMID: 38527695 DOI: 10.1016/j.freeradbiomed.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The transcription factor NRF2 plays a pivotal role in maintaining redox and metabolic homeostasis by orchestrating oxidative stress-dependent transcription programs. Despite growing evidence implicating various cellular components in the regulation of NRF2 activity at the posttranslational stage, relatively less is known about the factors dictating the transcriptional activation of NRF2 in response to oxidative stress. In this study, we report the crucial roles of MLL1, an H3K4-specific methyltransferase, and UTX, an H3K27-specific histone demethylase, in the NRF2-dependent transcription program under oxidative stress. We find that the depletion of MLL1 or UTX results in increased susceptibility to oxidative stress, accompanied by higher intracellular ROS and the failed activation of antioxidant genes, including NRF2. In addition, MLL1 and UTX selectively target the NRF2 promoter, and exogenous FLAG-NRF2 expression increases the viability of MLL1-or UTX-depleted cells upon exposure to hydrogen peroxide. RNA-seq analysis demonstrates that depletion of MLL1 or UTX affects the changes in NRF2-dependent transcriptome in response to oxidative stress. Furthermore, ChIP and ChIP-seq analyses find that MLL1 and UTX functionally cooperate to establish a chromatin environment that favors active transcription at the H3K4me3/H3K27me3 bivalent NRF2 promoter in response to ROS-induced oxidative stress. Collectively, these findings provide a molecular mechanism underlying the cellular response to oxidative stress and highlight the importance of the chromatin structure and function in maintaining redox homeostasis.
Collapse
Affiliation(s)
- Janghyun Choi
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, South Korea.
| | - Hansol Lee
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, South Korea.
| |
Collapse
|
49
|
Cai Q, Sahu R, Ueberschlag-Pitiot V, Souali-Crespo S, Charvet C, Silem I, Cottard F, Ye T, Taleb F, Metzger E, Schuele R, Billas IML, Laverny G, Metzger D, Duteil D. LSD1 inhibition circumvents glucocorticoid-induced muscle wasting of male mice. Nat Commun 2024; 15:3563. [PMID: 38670969 PMCID: PMC11053113 DOI: 10.1038/s41467-024-47846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Synthetic glucocorticoids (GC), such as dexamethasone, are extensively used to treat chronic inflammation and autoimmune disorders. However, long-term treatments are limited by various side effects, including muscle atrophy. GC activities are mediated by the glucocorticoid receptor (GR), that regulates target gene expression in various tissues in association with cell-specific co-regulators. Here we show that GR and the lysine-specific demethylase 1 (LSD1) interact in myofibers of male mice, and that LSD1 connects GR-bound enhancers with NRF1-associated promoters to stimulate target gene expression. In addition, we unravel that LSD1 demethylase activity is required for triggering starvation- and dexamethasone-induced skeletal muscle proteolysis in collaboration with GR. Importantly, inhibition of LSD1 circumvents muscle wasting induced by pharmacological levels of dexamethasone, without affecting their anti-inflammatory activities. Thus, our findings provide mechanistic insights into the muscle-specific GC activities, and highlight the therapeutic potential of targeting GR co-regulators to limit corticotherapy-induced side effects.
Collapse
Affiliation(s)
- Qingshuang Cai
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | | | - Sirine Souali-Crespo
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Céline Charvet
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Ilyes Silem
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Félicie Cottard
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Tao Ye
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Fatima Taleb
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, D-79106, Freiburg, Germany
| | - Roland Schuele
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, D-79106, Freiburg, Germany
| | - Isabelle M L Billas
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Gilles Laverny
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Daniel Metzger
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France.
| |
Collapse
|
50
|
Ortega-Alarcon D, Claveria-Gimeno R, Vega S, Kalani L, Jorge-Torres OC, Esteller M, Ausio J, Abian O, Velazquez-Campoy A. Extending MeCP2 interactome: canonical nucleosomal histones interact with MeCP2. Nucleic Acids Res 2024; 52:3636-3653. [PMID: 38321951 DOI: 10.1093/nar/gkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.
Collapse
Affiliation(s)
- David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Olga C Jorge-Torres
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907 l'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|