1
|
Jin W, Gong F, Zhang Y, Wang R, Liu H, Wei Y, Tang K, Jiang Y, Gao J, Sun X. Cytokinin-responsive RhRR1-RhSCL28 transcription factor module positively regulates petal size by promoting cell division in rose. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:381-392. [PMID: 39230685 DOI: 10.1093/jxb/erae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024]
Abstract
Petal size, a crucial trait in the economically important ornamental rose (Rosa hybrida), is synergistically regulated by cell division and cell expansion. Cell division primarily occurs during the early development of petals. However, the molecular mechanism underlying the regulation of petal size is far from clear. In this study, we isolated the transcription factor gene RhSCL28, which is highly expressed at the early stage of rose petal development and is induced by cytokinin. Silencing RhSCL28 resulted in a reduced final petal size and reduced cell number in rose petals. Further analysis showed that RhSCL28 participates in the regulation of cell division by positively regulating the expression of the cyclin genes RhCYCA1;1 and RhCYCB1;2. To explore the potential mechanism for cytokinin-mediated regulation of RhSCL28 expression, we investigated the cytokinin response factor RhRR1 and determined that it positively regulates RhSCL28 expression. Like RhSCL28, silencing RhRR1 also resulted in smaller petals by decreasing cell number. Taken together, these results reveal that the RhRR1-RhSCL28 module positively regulates petal size by promoting cell division in rose.
Collapse
Affiliation(s)
- Weichan Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuanfei Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huwei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yinghao Wei
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kaiyang Tang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Lara-Núñez A, Guerrero-Molina ED, Vargas-Cortez T, Vázquez-Ramos JM. Interplay of CDKs and cyclins with glycolytic regulatory enzymes PFK and PK. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154378. [PMID: 39541719 DOI: 10.1016/j.jplph.2024.154378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In plants, as in all eukaryotes, the cell cycle is regulated by the heterodimer formed by cyclins (Cycs) and cyclin-dependent kinases (CDKs), that phosphorylate serine/threonine residues in target proteins. The extensive involvement of these heterodimers in nuclear cell cycle-related processes has been demonstrated. However, recent findings have linked Cyc-CDK complexes to the regulation of cytosolic processes, including various metabolic pathways, suggesting close coordination between the cell cycle and catabolic/anabolic processes to maintain cellular energy homeostasis. This study extends the analysis of Cyc-CDK complex regulation in maize to two key regulators of glycolysis: phosphofructose kinase (PFK) and pyruvate kinase (PK). Both are cytosolic enzymes, highly regulated positively and negatively by different metabolites, showing a similar activation pattern in their homotetrameric form and low activity when as dimers/monomers. Each enzyme exhibits two putative minimal phosphorylation motives for Cyc-CDKs, conserved in some plant species and in four (PFK) and three (PK) isoforms in maize. This work demonstrates that both enzymes are active with fluctuating levels of activity along maize germination; also, that they associate with different maize Cycs and CDKs as demonstrated by pull-down assays, as well as their in vitro phosphorylation by recombinant CycD;2-CDKA or CycD2;2-CDKB complexes. Additionally, the inhibition of PFK and PK activity following phosphorylation by active Cycs-CDKB complexes obtained by immunoprecipitation from imbibed embryonic axis protein extracts suggests a narrow and negative regulation of glycolysis as the cell cycle progresses. A decreased carbon flow through this pathway is proposed to divert carbon from sugars towards the oxidative pentose phosphate pathway, thereby promoting de novo nucleic acid synthesis precursors to stimulate cell cycle progression.
Collapse
Affiliation(s)
- Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Méxicounam.mx.
| | | | - Teresa Vargas-Cortez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Méxicounam.mx.
| | - Jorge Manuel Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Méxicounam.mx.
| |
Collapse
|
3
|
Wang Y, Chen W, Xing M, Sun J, Wang S, Yang Z, Huang J, Nie Y, Zhao M, Li Y, Guo W, Wang Y, Chen Z, Zhang Q, Hu J, Li Y, Huang K, Zheng X, Zhou L, Zhang L, Cheng Y, Qian Q, Yang Q, Qiao W. Wild rice GL12 synergistically improves grain length and salt tolerance in cultivated rice. Nat Commun 2024; 15:9453. [PMID: 39487109 PMCID: PMC11530696 DOI: 10.1038/s41467-024-53611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
The abounding variations in wild rice provided potential reservoirs of beneficial genes for rice breeding. Maintaining stable and high yields under environmental stresses is a long-standing goal of rice breeding but is challenging due to internal trade-off mechanisms. Here, we report wild rice GL12W improves grain length and salt tolerance in both indica and japonica genetic backgrounds. GL12W alters cell length by regulating grain size related genes including GS2, and positively regulates the salt tolerance related genes, such as NAC5, NCED3, under salt stresses. We find that a G/T variation in GL12 promoter determined its binding to coactivator GIF1 and transcription factor WRKY53. GIF1 promotes GL12W expression in young panicle and WRKY53 represses GL12W expression under salt stresses. The G/T variation also contributes to the divergence of indica and japonica subspecies. Our results provide useful resources for modern rice breeding and shed insights for understanding yield and salt tolerance trade-off mechanism.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenxi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Meng Xing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhuang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingfen Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Yamin Nie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingchao Zhao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Cereal Crop Institute, Hainan Agricultural Academy Sciences, Haikou, China
| | - Yapeng Li
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Cereal Crop Institute, Hainan Agricultural Academy Sciences, Haikou, China
| | - Wenlong Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Yinting Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziyi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoling Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Jiang Hu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- China National Rice Research Institute, Hangzhou, 310006, China
| | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ke Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Leina Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunlian Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- China National Rice Research Institute, Hangzhou, 310006, China.
- Yazhouwan National Laboratory, Sanya, China.
| | - Qingwen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
4
|
Tabur S, Ozmen S, Oney-Birol S. Promoter role of putrescine for molecular and biochemical processes under drought stress in barley. Sci Rep 2024; 14:19202. [PMID: 39160181 PMCID: PMC11333763 DOI: 10.1038/s41598-024-70137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.
Collapse
Affiliation(s)
- Selma Tabur
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Serkan Ozmen
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Signem Oney-Birol
- Department of Moleculer Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey.
| |
Collapse
|
5
|
Li Y, Zhang P, Wang G, Zhao W, Bao Z, Ma F. FvUVI4 inhibits cell division and cell expansion to modulate fruit development in Fragaria vesca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108804. [PMID: 38852237 DOI: 10.1016/j.plaphy.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Fruit development is mainly regulated by cell division and expansion. As a negative regulator of the anaphase-promoting complex/cyclosome, UVI4 plays important roles in plant growth and development via coordinating cell cycle. However, currently there is no report on UVI4's functions in regulating fruit development in strawberry. Here, Fragaria vesca homolog FvUVI4 is identified and localizes in the nucleus. FvUVI4 has high gene expression in roots, leaves, flower, buds and green fruits, and low expression in petiole, stem, white and yellow fruit. Fruit development of F. vesca 'Hawaii4' is regulated by endoreduplication, and the expression of FvUVI4 is negatively correlated with fruit cell size. Overexpression of FvUVI4 inhibits endoreduplication of leaves, flowers and fruits in both Arabidopsis and F. vesca 'Hawaii4', thereby limiting cell expansion and decreasing cell area. Overexpression of FvUVI4 also inhibits mitotic cell cycle leading to decreased cell number, and ultimately affects the growth of leaves, petals and seeds or fruits. Arabidopsis uvi4 mutants obtained via CRISPR-Cas9 technology display opposite growth phenotypes to Arabidopsis and F. vesca 'Hawaii4' overexpression lines, which can be restored by overexpression of FvUVI4 in Arabidopsis uvi4 mutants. In conclusion, our study indicates that FvUVI4 inhibits cell expansion and cell division to modulate receptacle development in woodland strawberry.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ge Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
6
|
Shen H, Luo B, Ding Y, Xiao H, Chen G, Yang Z, Hu Z, Wu T. The YABBY Transcription Factor, SlYABBY2a, Positively Regulates Fruit Septum Development and Ripening in Tomatoes. Int J Mol Sci 2024; 25:5206. [PMID: 38791245 PMCID: PMC11121019 DOI: 10.3390/ijms25105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The tomato fruit is a complex organ and is composed of various structures from the inside out, such as columella, septum, and placenta. However, our understanding of the development and function of these internal structures remains limited. In this study, we identified a plant-specific YABBY protein, SlYABBY2a, in the tomato (Solanum lycopersicum). SlYABBY2a exhibits relatively high expression levels among the nine YABBY genes in tomatoes and shows specific expression in the septum of the fruit. Through the use of a gene-editing technique performed by CRISPR/Cas9, we noticed defects in septum development in the Slyabby2a mutant fruits, leading to the inward concavity of the fruit pericarp and delayed septum ripening. Notably, the expression levels of key genes involved in auxin (SlFZY4, SlFZY5, and SlFZY6) and ethylene (SlACS2) biosynthesis were significantly downregulated in the septum of the Slalkbh10b mutants. Furthermore, the promoter activity of SlYABBY2a was regulated by the ripening regulator, SlTAGL1, in vivo. In summary, these discoveries provide insights into the positive regulation of SlYABBY2a on septum development and ripening and furnish evidence of the coordinated regulation of the auxin and ethylene signaling pathways in the ripening process, which expands our comprehension of septum development in the internal structure of the fruit.
Collapse
Affiliation(s)
- Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Baobing Luo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Yingfeng Ding
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Haojun Xiao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Zhengan Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| |
Collapse
|
7
|
Krasauskas J, Ganie SA, Al-Husari A, Bindschedler L, Spanu P, Ito M, Devoto A. Jasmonates, gibberellins, and powdery mildew modify cell cycle progression and evoke differential spatiotemporal responses along the barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:180-203. [PMID: 37611210 PMCID: PMC10735486 DOI: 10.1093/jxb/erad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.
Collapse
Affiliation(s)
- Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Aroub Al-Husari
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Laurence Bindschedler
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Masaki Ito
- School of Biological Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
8
|
Lee JS. To overcome the limitations of fixed life patterns, plants can generate meristems throughout life. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154097. [PMID: 38006623 DOI: 10.1016/j.jplph.2023.154097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 11/27/2023]
Abstract
The fixed life pattern of plants is the most threatening factor that hinders the survival and reproduction rate of plants. Maximization of reproduction is determined by the survival rate of the organism. If part of a shoot apical meristem or root apical meristem is cut and planted in soil with appropriate nutrients and survival conditions, a cloned plant known as an ramet, may be developed. Therefore, the ability of plants to constantly produce meristems is essential for survival. In addition, meristem stem cells have enabled plants to evolve a wide variety of asexual reproductive systems. When a tree is pruned, at least one or more new meristems are formed in the surrounding area, and those meristems develop into new branches. In other cases, stem cells normally derived from meristems alone exhibit the potential for asexual reproduction through their seed-like roles. Alternatively, some plants can form somatic cells, which are important in various types of asexual reproduction. There are 125 species of plants in the genus of Kalanchoe, which are succulent plants, and most of these species are well known to reproduce asexually through somatic cells. When we cut the stem of a plant, a callus is formed at the end of the cut side. Plant callus is mainly used to develop new plant varieties in tissue culture research. Alternatively, the plant callus is also used as a material for asexual reproduction. Callus can also form if the plant is infected with bacteria such as Agrobacterium tumefaciens. Differentiated cells of a plant can reproduce asexually by acquiring the ability to function as stems through transdifferentiation. These characteristics play important roles in adapting to environmental changes and extending the lifespan of woody plants.
Collapse
Affiliation(s)
- Joon Sang Lee
- Department of Biology Education, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
9
|
Xu H, Bartley L, Libault M, Sundaresan V, Fu H, Russell S. The roles of a novel CDKB/KRP/FB3 cell cycle core complex in rice gametes and initiation of embryogenesis. PLANT REPRODUCTION 2023; 36:301-320. [PMID: 37491485 DOI: 10.1007/s00497-023-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
The cell cycle controls division and proliferation of all eukaryotic cells and is tightly regulated at multiple checkpoints by complexes of core cell cycle proteins. Due to the difficulty in accessing female gametes and zygotes of flowering plants, little is known about the molecular mechanisms underlying embryogenesis initiation despite the crucial importance of this process for seed crops. In this study, we reveal three levels of factors involved in rice zygotic cell cycle control and characterize their functions and regulation. Protein-protein interaction studies, including within zygote cells, and in vitro biochemical analyses delineate a model of the zygotic cell cycle core complex for rice. In this model, CDKB1, a major regulator of plant mitosis, is a cyclin (CYCD5)-dependent kinase; its activity is coordinately inhibited by two cell cycle inhibitors, KRP4 and KRP5; and both KRPs are regulated via F-box protein 3 (FB3)-mediated proteolysis. Supporting their critical roles in controlling the rice zygotic cell cycle, mutations in KRP4, KRP5 and FB3 result in the compromised function of sperm cells and abnormal organization of female germ units, embryo and endosperm, thus significantly reducing seed-set rate. This work helps reveal regulatory mechanisms controlling the zygotic cell cycle toward seed formation in angiosperms.
Collapse
Affiliation(s)
- Hengping Xu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA.
| | - Laura Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | | | - Hong Fu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Scott Russell
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
10
|
Williamson D, Tasker-Brown W, Murray JAH, Jones AR, Band LR. Modelling how plant cell-cycle progression leads to cell size regulation. PLoS Comput Biol 2023; 19:e1011503. [PMID: 37862377 PMCID: PMC10653611 DOI: 10.1371/journal.pcbi.1011503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/16/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2023] Open
Abstract
Populations of cells typically maintain a consistent size, despite cell division rarely being precisely symmetrical. Therefore, cells must possess a mechanism of "size control", whereby the cell volume at birth affects cell-cycle progression. While size control mechanisms have been elucidated in a number of other organisms, it is not yet clear how this mechanism functions in plants. Here, we present a mathematical model of the key interactions in the plant cell cycle. Model simulations reveal that the network of interactions exhibits limit-cycle solutions, with biological switches underpinning both the G1/S and G2/M cell-cycle transitions. Embedding this network model within growing cells, we test hypotheses as to how cell-cycle progression can depend on cell size. We investigate two different mechanisms at both the G1/S and G2/M transitions: (i) differential expression of cell-cycle activator and inhibitor proteins (with synthesis of inhibitor proteins being independent of cell size), and (ii) equal inheritance of inhibitor proteins after cell division. The model demonstrates that both these mechanisms can lead to larger daughter cells progressing through the cell cycle more rapidly, and can thus contribute to cell-size control. To test how these features enable size homeostasis over multiple generations, we then simulated these mechanisms in a cell-population model with multiple rounds of cell division. These simulations suggested that integration of size-control mechanisms at both G1/S and G2/M provides long-term cell-size homeostasis. We concluded that while both size independence and equal inheritance of inhibitor proteins can reduce variations in cell size across individual cell-cycle phases, combining size-control mechanisms at both G1/S and G2/M is essential to maintain size homeostasis over multiple generations. Thus, our study reveals how features of the cell-cycle network enable cell-cycle progression to depend on cell size, and provides a mechanistic understanding of how plant cell populations maintain consistent size over generations.
Collapse
Affiliation(s)
- Daniel Williamson
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - William Tasker-Brown
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - Angharad R. Jones
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - Leah R. Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
11
|
Gu Y, Zhang J, Liu L, Qanmber G, Liu Z, Xing K, Lu L, Liu L, Ma S, Li F, Yang Z. Cell cycle-dependent kinase inhibitor GhKRP6, a direct target of GhBES1.4, participates in BR regulation of cell expansion in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1729-1745. [PMID: 37326240 DOI: 10.1111/tpj.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The steroidal hormone brassinosteroid (BR) has been shown to positively regulate cell expansion in plants. However, the specific mechanism by which BR controls this process has not been fully understood. In this study, RNA-seq and DAP-seq analysis of GhBES1.4 (a core transcription factor in BR signaling) were used to identify a cotton cell cycle-dependent kinase inhibitor called GhKRP6. The study found that GhKRP6 was significantly induced by the BR hormone and that GhBES1.4 directly promoted the expression of GhKRP6 by binding to the CACGTG motif in its promoter region. GhKRP6-silenced cotton plants had smaller leaves with more cells and reduced cell size. Furthermore, endoreduplication was inhibited, which affected cell expansion and ultimately decreased fiber length and seed size in GhKRP6-silenced plants compared with the control. The KEGG enrichment results of control and VIGS-GhKRP6 plants revealed differential expression of genes related to cell wall biosynthesis, MAPK, and plant hormone transduction pathways - all of which are related to cell expansion. Additionally, some cyclin-dependent kinase (CDK) genes were upregulated in the plants with silenced GhKRP6. Our study also found that GhKRP6 could interact directly with a cell cycle-dependent kinase called GhCDKG. Taken together, these results suggest that BR signaling influences cell expansion by directly modulating the expression of cell cycle-dependent kinase inhibitor GhKRP6 via GhBES1.4.
Collapse
Affiliation(s)
- Yu Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110161, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jie Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kun Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Li Liu
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832003, China
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832003, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| |
Collapse
|
12
|
Agrawal R, Singh A, Giri J, Magyar Z, Thakur JK. MEDIATOR SUBUNIT17 is required for transcriptional optimization of root system architecture in Arabidopsis. PLANT PHYSIOLOGY 2023; 192:1548-1568. [PMID: 36852886 PMCID: PMC10231372 DOI: 10.1093/plphys/kiad129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
Sucrose and auxin are well-known determinants of root system architecture (RSA). However, the factors that connect the signaling pathways evoked by these two critical factors during root development are poorly understood. In this study, we report the role of MEDIATOR SUBUNIT17 (MED17) in RSA and its involvement in the transcriptional integration of sugar and auxin signaling pathways in Arabidopsis (Arabidopsis thaliana). Sucrose regulates root meristem activation through the TARGET OF RAPAMYCIN-E2 PROMOTER BINDING FACTOR A (TOR-E2FA) pathway, and auxin regulates lateral root (LR) development through AUXIN RESPONSE FACTOR-LATERAL ORGAN BOUNDARIES DOMAIN (ARF-LBDs). Both sucrose and auxin play a vital role during primary and LR development. However, there is no clarity on how sucrose is involved in the ARF-dependent regulation of auxin-responsive genes. This study establishes MED17 as a nodal point to connect sucrose and auxin signaling. Transcription of MED17 was induced by sucrose in an E2FA/B-dependent manner. Moreover, E2FA/B interacted with MED17, which can aid in the recruitment of the Mediator complex on the target promoters. Interestingly, E2FA/B and MED17 also occupied the promoter of ARF7, but not ARF19, leading to ARF7 expression, which then activates auxin signaling and thus initiates LR development. MED17 also activated cell division in the root meristem by occupying the promoters of cell-cycle genes, thus regulating their transcription. Thus, MED17 plays an important role in relaying the transcriptional signal from sucrose to auxin-responsive and cell-cycle genes to regulate primary and lateral root development, highlighting the role of the Mediator as the transcriptional processor for optimal root system architecture in Arabidopsis.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amrita Singh
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitender Giri
- Plant Nutritional Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Zoltan Magyar
- Molecular Regulation of Plant Development and Adaptation, Institute of Plant Biology, Biological Research Centre, Szeged 6728, Hungary
| | - Jitendra Kumar Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
13
|
Luo L, Xie Y, Yu S, Yang J, Chen S, Yuan X, Guo T, Wang H, Liu Y, Chen C, Xiao W, Chen Z. The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa). THE NEW PHYTOLOGIST 2023; 237:2163-2179. [PMID: 36564987 DOI: 10.1111/nph.18696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Ideal Plant Architecture 1 (IPA1) is a key regulator of plant architecture. However, knowledge of downstream genes applicable for improving rice plant architecture is very limited. We identified the plant architecture regulatory gene NARROW LEAF 11 (NAL11), which encodes a heat-shock protein (HSP) containing a DnaJ domain. A promising rare allele of NAL11 (NAL11-923del-1552 ) positively selected in Aus cultivars was identified; this allele exhibited increased expression and generated relatively few tillers, thick stems, and large panicles, components of the ideal plant architecture (IPA). NAL11 is involved in regulating the cell cycle and cell proliferation. NAL11 loss-of-function mutants present impaired chloroplast development and gibberellin (GA) defects. Biochemical analyses show that IPA1 directly binds to elements in the missing fragment of the NAL11-923del-1552 promoter and negatively regulates NAL11 expression. Genetic analyses support the hypothesis that NAL11 acts downstream of IPA1 to regulate IPA by modulating GA homeostasis, and NAL11 may be an essential complement for IPA1. Our work revealed that avoidance of the inhibition of NAL11-923del-1552 caused by IPA1 represents a positive strategy for rescuing GA defects accompanied by the upregulation of IPA1 in breeding high-yield rice.
Collapse
Affiliation(s)
- Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yuelan Xie
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- Yangjiang Institute of Agricultural Sciences, Yangjiang, 529500, China
| | - Sijia Yu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Sirong Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Yuan
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhu Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chun Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
14
|
Zheng Q, Takei-Hoshi R, Okumura H, Ito M, Kawaguchi K, Otagaki S, Matsumoto S, Luo Z, Zhang Q, Shiratake K. Genome editing of SlMYB3R3, a cell cycle transcription factor gene of tomato, induces elongated fruit shape. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7312-7325. [PMID: 36070755 PMCID: PMC9730800 DOI: 10.1093/jxb/erac352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Fruit shape is an important trait that attracts consumers, and the regulation of genes related to cell division is crucial for shaping multicellular organs. In Arabidopsis, MYB3R transcription factors, which harbor three imperfect repeats in the N-terminus, control organ growth by regulating cell division. However, the function of MYB3Rs in tomato remains unknown. Here, we characterized tomato SlMYB3R3, which was preferentially expressed in flowers and placed in a subclade with two Arabidopsis cell cycle suppressors (MYB3R3/5). slmyb3r3 knockout mutants were generated using the CRISPR/Cas9 system. Morphological observation of the slmyb3r3 mutants showed that fruits that were elongated and occasionally peanut-like in shape were formed, which was caused by significantly increased cell numbers in the longitudinal direction. Transcriptome and yeast one-hybrid assay results suggested that SlMYB3R3 acted as a suppressor of cell-cycle-related genes by binding to the mitosis-specific activator (MSA) motifs in their promoters. Taken together, knock out of the suppressor SlMYB3R3 leads to elongated fruit, which results from the altered cell division pattern at the ovary stage, by regulating cell-cycle-related genes in an MSA-dependent manner. Our results suggest that SlMYB3R3 and its orthologs have the potential to change fruit shape as part of the molecular breeding of fruit crops.
Collapse
Affiliation(s)
- Qingyou Zheng
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rie Takei-Hoshi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitomi Okumura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
15
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
16
|
Intracellular infection by symbiotic bacteria requires the mitotic kinase AURORA1. Proc Natl Acad Sci U S A 2022; 119:e2202606119. [PMID: 36252014 PMCID: PMC9618073 DOI: 10.1073/pnas.2202606119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subcellular events occurring in cells of legume plants as they form transcellular symbiotic-infection structures have been compared with those occurring in premitotic cells. Here, we demonstrate that Aurora kinase 1 (AUR1), a highly conserved mitotic regulator, is required for intracellular infection by rhizobia in Medicago truncatula. AUR1 interacts with microtubule-associated proteins of the TPXL and MAP65 families, which, respectively, activate and are phosphorylated by AUR1, and localizes with them within preinfection structures. MYB3R1, a rhizobia-induced mitotic transcription factor, directly regulates AUR1 through two closely spaced, mitosis-specific activator cis elements. Our data are consistent with a model in which the MYB3R1-AUR1 regulatory module serves to properly orient preinfection structures to direct the transcellular deposition of cell wall material for the growing infection thread, analogous to its role in cell plate formation. Our findings indicate that the eukaryotically conserved MYB3R1-TPXL-AUR1-MAP65 mitotic module was conscripted to support endosymbiotic infection in legumes.
Collapse
|
17
|
de Oliveira PN, da Silva LFC, Eloy NB. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. FRONTIERS IN PLANT SCIENCE 2022; 13:987919. [PMID: 36247602 PMCID: PMC9558237 DOI: 10.3389/fpls.2022.987919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.
Collapse
|
18
|
Shi X, Cui F, Han X, He Y, Zhao L, Zhang N, Zhang H, Zhu H, Liu Z, Ma B, Zheng S, Zhang W, Liu J, Fan X, Si Y, Tian S, Niu J, Wu H, Liu X, Chen Z, Meng D, Wang X, Song L, Sun L, Han J, Zhao H, Ji J, Wang Z, He X, Li R, Chi X, Liang C, Niu B, Xiao J, Li J, Ling HQ. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. MOLECULAR PLANT 2022; 15:1440-1456. [PMID: 35864747 DOI: 10.1016/j.molp.2022.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Studying the regulatory mechanisms that drive nitrogen-use efficiency (NUE) in crops is important for sustainable agriculture and environmental protection. In this study, we generated a high-quality genome assembly for the high-NUE wheat cultivar Kenong 9204 and systematically analyzed genes related to nitrogen uptake and metabolism. By comparative analyses, we found that the high-affinity nitrate transporter gene family had expanded in Triticeae. Further studies showed that subsequent functional differentiation endowed the expanded family members with saline inducibility, providing a genetic basis for improving the adaptability of wheat to nitrogen deficiency in various habitats. To explore the genetic and molecular mechanisms of high NUE, we compared genomic and transcriptomic data from the high-NUE cultivar Kenong 9204 (KN9204) and the low-NUE cultivar Jing 411 and quantified their nitrogen accumulation under high- and low-nitrogen conditions. Compared with Jing 411, KN9204 absorbed significantly more nitrogen at the reproductive stage after shooting and accumulated it in the shoots and seeds. Transcriptome data analysis revealed that nitrogen deficiency clearly suppressed the expression of genes related to cell division in the young spike of Jing 411, whereas this suppression of gene expression was much lower in KN9204. In addition, KN9204 maintained relatively high expression of NPF genes for a longer time than Jing 411 during seed maturity. Physiological and transcriptome data revealed that KN9204 was more tolerant of nitrogen deficiency than Jing 411, especially at the reproductive stage. The high NUE of KN9204 is an integrated effect controlled at different levels. Taken together, our data provide new insights into the molecular mechanisms of NUE and important gene resources for improving wheat cultivars with a higher NUE trait.
Collapse
Affiliation(s)
- Xiaoli Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai 264025, China
| | - Xinyin Han
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin He
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haidong Zhu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhexin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Jiajia Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Xiaoli Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Yaoqi Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuiquan Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuemei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Deyuan Meng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Xiaoyan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Liqiang Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Lijing Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Jie Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Hui Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Jun Ji
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Zhiguo Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Xiaoyu He
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilin Li
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuebin Chi
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Junming Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China.
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Yazhou Bay Seed Laboratory of Hainan Province, Sanya 572019, China.
| |
Collapse
|
19
|
Wang Y, Sun Z, Wang L, Chen L, Ma L, Lv J, Qiao K, Fan S, Ma Q. GhBOP1 as a Key Factor of Ribosomal Biogenesis: Development of Wrinkled Leaves in Upland Cotton. Int J Mol Sci 2022; 23:ijms23179942. [PMID: 36077339 PMCID: PMC9456263 DOI: 10.3390/ijms23179942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Block of proliferation 1 (BOP1) is a key protein that helps in the maturation of ribosomes and promotes the progression of the cell cycle. However, its role in the leaf morphogenesis of cotton remains unknown. Herein, we report and study the function of GhBOP1 isolated from Gossypium hirsutum. The sequence alignment revealed that BOP1 protein was highly conserved among different species. The yeast two-hybrid experiments, bimolecular fluorescence complementation, and luciferase complementation techniques revealed that GhBOP1 interact with GhPES and GhWDR12. Subcellular localization experiments revealed that GhBOP1, GhPES and GhWDR12 were localized at the nucleolus. Suppression of GhBOP1 transcripts resulted in the uneven bending of leaf margins and the presence of young wrinkled leaves by virus-induced gene silencing assay. Abnormal palisade arrangements and the presence of large upper epidermal cells were observed in the paraffin sections of the wrinkled leaves. Meanwhile, a jasmonic acid-related gene, GhOPR3, expression was increased. In addition, a negative effect was exerted on the cell cycle and the downregulation of the auxin-related genes was also observed. These results suggest that GhBOP1 plays a critical role in the development of wrinkled cotton leaves, and the process is potentially modulated through phytohormone signaling.
Collapse
Affiliation(s)
- Yanwen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Long Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Lingling Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Lina Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
- Hainan Yazhou Bay Seed Lab, Sanya 572000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572000, China
- Correspondence: (S.F.); (Q.M.)
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
- Correspondence: (S.F.); (Q.M.)
| |
Collapse
|
20
|
Narasimhan M, Simon R. Spatial range, temporal span, and promiscuity of CLE-RLK signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:906087. [PMID: 36092449 PMCID: PMC9459042 DOI: 10.3389/fpls.2022.906087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling through receptor-like kinases (RLKs) regulates developmental transitions and responses to biotic and abiotic inputs by communicating the physiological state of cells and tissues. CLE peptides have varying signaling ranges, which can be defined as the distance between the source, i.e., the cells or tissue that secrete the peptide, and their destination, i.e., cells or tissue where the RLKs that bind the peptide and/or respond are expressed. Case-by-case analysis substantiates that CLE signaling is predominantly autocrine or paracrine, and rarely endocrine. Furthermore, upon CLE reception, the ensuing signaling responses extend from cellular to tissue, organ and whole organism level as the downstream signal gets amplified. CLE-RLK-mediated effects on tissue proliferation and differentiation, or on subsequent primordia and organ development have been widely studied. However, studying how CLE-RLK regulates different stages of proliferation and differentiation at cellular level can offer additional insights into these processes. Notably, CLE-RLK signaling also mediates diverse non-developmental effects, which are less often observed; however, this could be due to biased experimental approaches. In general, CLEs and RLKs, owing to the sequence or structural similarity, are prone to promiscuous interactions at least under experimental conditions in which they are studied. Importantly, there are regulatory mechanisms that suppress CLE-RLK cross-talk in vivo, thereby eliminating the pressure for co-evolving binding specificity. Alternatively, promiscuity in signaling may also offer evolutionary advantages and enable different CLEs to work in combination to activate or switch off different RLK signaling pathways.
Collapse
Affiliation(s)
- Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
21
|
Matz TW, Wang Y, Kulshreshtha R, Sampathkumar A, Nikoloski Z. Topological properties accurately predict cell division events and organization of shoot apical meristem in Arabidopsis thaliana. Development 2022; 149:276347. [DOI: 10.1242/dev.201024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cell division and the resulting changes to the cell organization affect the shape and functionality of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell division is a key question in developmental biology. Here, we use a network representation of live cell imaging data from shoot apical meristems (SAMs) in Arabidopsis thaliana to predict cell division events and their consequences at the tissue level. We show that a support vector machine classifier based on the SAM network properties is predictive of cell division events, with test accuracy of 76%, which matches that based on cell size alone. Furthermore, we demonstrate that the combination of topological and biological properties, including cell size, perimeter, distance and shared cell wall between cells, can further boost the prediction accuracy of resulting changes in topology triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule-mediated cell-to-cell growth coordination in influencing tissue-level topology. Together, the results from our network-based analysis demonstrate a feedback mechanism between tissue topology and cell division in A. thaliana SAMs.
Collapse
Affiliation(s)
- Timon W. Matz
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam 1 , 14476 Potsdam , Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology 2 , 14476 Potsdam , Germany
| | - Yang Wang
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology 3 , 14476 Potsdam , Germany
| | - Ritika Kulshreshtha
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology 3 , 14476 Potsdam , Germany
| | - Arun Sampathkumar
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology 3 , 14476 Potsdam , Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam 1 , 14476 Potsdam , Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology 2 , 14476 Potsdam , Germany
| |
Collapse
|
22
|
A guiding role of the Arabidopsis circadian clock in cell differentiation revealed by time-series single-cell RNA sequencing. Cell Rep 2022; 40:111059. [PMID: 35830805 DOI: 10.1016/j.celrep.2022.111059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms and progression of cell differentiation are closely coupled in multicellular organisms. However, whether establishment of circadian rhythms regulates cell differentiation or vice versa has not been elucidated due to technical limitations. Here, we exploit high cell fate plasticity of plant cells to perform single-cell RNA sequencing during the entire process of cell differentiation. By analyzing reconstructed actual time series of the differentiation processes at single-cell resolution using a method we developed (PeakMatch), we find that the expression profile of clock genes is changed prior to cell differentiation, including induction of the clock gene LUX ARRYTHMO (LUX). ChIP sequencing analysis reveals that LUX induction in early differentiating cells directly targets genes involved in cell-cycle progression to regulate cell differentiation. Taken together, these results not only reveal a guiding role of the plant circadian clock in cell differentiation but also provide an approach for time-series analysis at single-cell resolution.
Collapse
|
23
|
Li K, Tian H, Tahir MM, Li S, Chen S, Fan L, Liu Z, Mao J, Zhang D. Transcriptome analysis reveals that cytokinins inhibit adventitious root formation through the MdRR12-MdCRF8 module in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111220. [PMID: 35351311 DOI: 10.1016/j.plantsci.2022.111220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Adventitious root (AR) formation is great significance for apple rootstock breeding. Transcriptome analyses were performed with cytokinins (CTKs) signal treatments to analyze the mechanism of AR formation. The results showed that 6-benzyadenine (6-BA) treatment inhibited AR formation. Histological analysis also observed that AR primordium cell formation was significantly suppressed by 6-BA treatment; the ratio of auxin/cytokinins exhibited the lowest values at 1 and 3 day (d) in the 6-BA treatment group. Furthermore, the differentially expressed genes were divided into five categories, including auxin, cytokinins, other hormones, cell cycle, and carbohydrate metabolism pathways. Due to the study of cytokinins signal treatment, it is important to understand the particular module mediated by the cytokinins pathway. The expression level of MdRR12 (a family member of B-type cytokinins-responsive factors) was significantly upregulated at 3 d by 6-BA treatment. Compared to the wild type, the 35S::MdRR12 transgenic tobaccos suppressed AR formation. The promoter sequence of MdCRF8 contains AGATT motif elements that respond to MdRR12. RNA-seq and RT-qPCR assays predicted cytokinins response factor (MdCRF8) to be a downstream gene regulated by MdRR12. The activity of the pro-MdCRF8-GUS promoter was obviously induced by 6-BA treatment and inhibited by lovastatin (Lov) treatment. Yeast one-hybrid, dual-luciferase reporter, and GUS coexpression assays revealed that MdRR12 could directly bind to the MdCRF8 promoter. Additionally, 35S::MdCRF8 transgenic tobaccos also blocked AR growth. Compared to the wild type, 35S::MdRR12 and 35S::MdCRF8 transgenic tobaccos enhanced sensitivity to cytokinins. Thus, we describe that MdRR12 and MdCRF8 function as integrators of cytokinins signals that affect cell cycle- and carbohydrate metabolism-related genes to regulate cell fate transition during AR formation. On the basis of these results, we concluded that the MdRR12-MdCRF8 module is involved in the negative regulation of AR formation in apple rootstock and can potentially be applied in agriculture using genetic approaches.
Collapse
Affiliation(s)
- Ke Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Huiyue Tian
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Shaohuan Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Shiyue Chen
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Li Fan
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Zhimin Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Jiangping Mao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| |
Collapse
|
24
|
Gómez MS, Sheridan ML, Casati P. E2Fb and E2Fa transcription factors independently regulate the DNA damage response after ultraviolet B exposure in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1098-1115. [PMID: 34859915 DOI: 10.1111/tpj.15616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Ultraviolet (UV)B radiation affects plant growth inhibiting cell proliferation. This inhibition is in part controlled by the activity of transcription factors from the E2F family. In particular, the participation of E2Fc and E2Fe in UV-B responses in Arabidopsis plants was previously reported. However, the E2Fa and E2Fb contribution to these processes has still not been investigated. Thus, in this work, we provide evidence that, in Arabidopsis, both E2Fa and E2Fb control leaf size under UV-B conditions without participating in the repair of cyclobutane pyrimidine dimers in the DNA. Nevertheless, in UV-B-exposed seedlings, E2Fa, but not E2Fb, regulates primary root elongation, cell proliferation, and programmed cell death in the meristematic zone. Using e2fa mutants that overexpress E2Fb, we showed that the role of E2Fa in the roots could not be replaced by E2Fb. Finally, our results show that E2Fa and E2Fb differentially regulate the expression of genes that activate the DNA damage response and cell cycle progression, both under conditions without UV-B and after exposure. Overall, we showed that both E2Fa and E2Fb have different and non-redundant roles in developmental and DNA damage responses in Arabidopsis plants exposed to UV-B.
Collapse
Affiliation(s)
- María Sol Gómez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| | - María Luján Sheridan
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| |
Collapse
|
25
|
Boosting Polyamines to Enhance Shoot Regeneration in Potato (Solanum tuberosum L.) Using AgNO3. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Advancements in shoot regeneration systems support biotechnology-based tools used in the genetic improvement of plant crops. This study aims to enhance shoot regeneration in potatoes by boosting polyamine content by adding AgNO3 to the shoot regeneration medium (MS medium supplemented with 30 g L−1 sucrose, 100 mg L−1 myoinositol, and 2.25 BA mg L−1). Five concentrations of AgNO3 (2, 4, 6, 8, and 10 mg L−1) were used in addition to a control. The effect of AgNO3 on regeneration assumed a more or less concentration-dependent bell-shaped curve peaking at 4 mg L−1. Enhancements in shoot regeneration were attributed to the known role of AgNO3 as an ethylene action blocker in addition to improvements in polyamine accumulation without an increase in H2O2 content, lipid peroxidation, or DNA damage. The uncoupling of shoot regeneration and polyamine content recorded at high AgNO3 concentrations can be attributed to the consumption of polyamines to counteract the synchronized oxidative stress manifested by increases in H2O2 content, lipid peroxidation, and DNA damage.
Collapse
|
26
|
Gong P, Bontinck M, Demuynck K, De Block J, Gevaert K, Eeckhout D, Persiau G, Aesaert S, Coussens G, Van Lijsebettens M, Pauwels L, De Jaeger G, Inzé D, Nelissen H. SAMBA controls cell division rate during maize development. PLANT PHYSIOLOGY 2022; 188:411-424. [PMID: 34791456 PMCID: PMC8774815 DOI: 10.1093/plphys/kiab514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/02/2021] [Indexed: 05/10/2023]
Abstract
SAMBA has been identified as a plant-specific regulator of the anaphase-promoting complex/cyclosome (APC/C) that controls unidirectional cell cycle progression in Arabidopsis (Arabidopsis thaliana), but so far its role has not been studied in monocots. Here, we show the association of SAMBA with the APC/C is conserved in maize (Zea mays). Two samba genome edited mutants showed growth defects, such as reduced internode length, shortened upper leaves with erect leaf architecture, and reduced leaf size due to an altered cell division rate and cell expansion, which aggravated with plant age. The two mutants differed in the severity and developmental onset of the phenotypes, because samba-1 represented a knockout allele, while translation re-initiation in samba-3 resulted in a truncated protein that was still able to interact with the APC/C and regulate its function, albeit with altered APC/C activity and efficiency. Our data are consistent with a dosage-dependent role for SAMBA to control developmental processes for which a change in growth rate is pivotal.
Collapse
Affiliation(s)
- Pan Gong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel Bontinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kirin Demuynck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jolien De Block
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Author for communication:
| |
Collapse
|
27
|
Mauxion JP, Chevalier C, Gonzalez N. Complex cellular and molecular events determining fruit size. TRENDS IN PLANT SCIENCE 2021; 26:1023-1038. [PMID: 34158228 DOI: 10.1016/j.tplants.2021.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The understanding of plant organ-size determination represents an important challenge, especially because of the significant role of plants as food and renewable energy sources and the increasing need for plant-derived products. Most of the knowledge on the regulation of organ growth and the molecular network controlling cell division and cell expansion, the main drivers of growth, is derived from arabidopsis. The increasing use of crops such as tomato for research is now bringing essential information on the mechanisms underlying size control in agronomically important organs. This review describes our current knowledge, still very scarce, of the cellular and molecular mechanisms governing tomato fruit size and proposes future research to better understand the regulation of growth in this important crop.
Collapse
Affiliation(s)
- Jean-Philippe Mauxion
- INRAE, Univ. Bordeaux, UMR1332 Biologie du fruit et Pathologie, F33882 Villenave d'Ornon, France
| | - Christian Chevalier
- INRAE, Univ. Bordeaux, UMR1332 Biologie du fruit et Pathologie, F33882 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- INRAE, Univ. Bordeaux, UMR1332 Biologie du fruit et Pathologie, F33882 Villenave d'Ornon, France. @inrae.fr
| |
Collapse
|
28
|
Gentric N, Genschik P, Noir S. Connections between the Cell Cycle and the DNA Damage Response in Plants. Int J Mol Sci 2021; 22:ijms22179558. [PMID: 34502465 PMCID: PMC8431409 DOI: 10.3390/ijms22179558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Due to their sessile lifestyle, plants are especially exposed to various stresses, including genotoxic stress, which results in altered genome integrity. Upon the detection of DNA damage, distinct cellular responses lead to cell cycle arrest and the induction of DNA repair mechanisms. Interestingly, it has been shown that some cell cycle regulators are not only required for meristem activity and plant development but are also key to cope with the occurrence of DNA lesions. In this review, we first summarize some important regulatory steps of the plant cell cycle and present a brief overview of the DNA damage response (DDR) mechanisms. Then, the role played by some cell cycle regulators at the interface between the cell cycle and DNA damage responses is discussed more specifically.
Collapse
|
29
|
Plant CDKs-Driving the Cell Cycle through Climate Change. PLANTS 2021; 10:plants10091804. [PMID: 34579337 PMCID: PMC8468384 DOI: 10.3390/plants10091804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.
Collapse
|
30
|
Coke MC, Mantelin S, Thorpe P, Lilley CJ, Wright KM, Shaw DS, Chande A, Jones JT, Urwin PE. The GpIA7 effector from the potato cyst nematode Globodera pallida targets potato EBP1 and interferes with the plant cell cycle programme. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:erab353. [PMID: 34310681 PMCID: PMC8547150 DOI: 10.1093/jxb/erab353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1 and retinoblastoma related 1, which are downregulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and provide evidence that this may rely, at least in part, on hindering the function of host EBP1.
Collapse
Affiliation(s)
- Mirela C Coke
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Mantelin
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | - Peter Thorpe
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | | | - Kathryn M Wright
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | - Daniel S Shaw
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Adams Chande
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John T Jones
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
31
|
Mahapatra K, Roy S. SOG1 transcription factor promotes the onset of endoreduplication under salinity stress in Arabidopsis. Sci Rep 2021; 11:11659. [PMID: 34079040 PMCID: PMC8172935 DOI: 10.1038/s41598-021-91293-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/20/2021] [Indexed: 01/24/2023] Open
Abstract
As like in mammalian system, the DNA damage responsive cell cycle checkpoint functions play crucial role for maintenance of genome stability in plants through repairing of damages in DNA and induction of programmed cell death or endoreduplication by extensive regulation of progression of cell cycle. ATM and ATR (ATAXIA-TELANGIECTASIA-MUTATED and -RAD3-RELATED) function as sensor kinases and play key role in the transmission of DNA damage signals to the downstream components of cell cycle regulatory network. The plant-specific NAC domain family transcription factor SOG1 (SUPPRESSOR OF GAMMA RESPONSE 1) plays crucial role in transducing signals from both ATM and ATR in presence of double strand breaks (DSBs) in the genome and found to play crucial role in the regulation of key genes involved in cell cycle progression, DNA damage repair, endoreduplication and programmed cell death. Here we report that Arabidopsis exposed to high salinity shows generation of oxidative stress induced DSBs along with the concomitant induction of endoreduplication, displaying increased cell size and DNA ploidy level without any change in chromosome number. These responses were significantly prominent in SOG1 overexpression line than wild-type Arabidopsis, while sog1 mutant lines showed much compromised induction of endoreduplication under salinity stress. We have found that both ATM-SOG1 and ATR-SOG1 pathways are involved in the salinity mediated induction of endoreduplication. SOG1was found to promote G2-M phase arrest in Arabidopsis under salinity stress by downregulating the expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1, and CYCB1;1, while upregulating the expression of WEE1 kinase, CCS52A and E2Fa, which act as important regulators for induction of endoreduplication. Our results suggest that Arabidopsis undergoes endoreduplicative cycle in response to salinity induced DSBs, showcasing an adaptive response in plants under salinity stress.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713 104, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713 104, India.
| |
Collapse
|
32
|
Zheng T, Dai L, Liu Y, Li S, Zheng M, Zhao Z, Qu GZ. Overexpression Populus d-Type Cyclin Gene PsnCYCD1;1 Influences Cell Division and Produces Curved Leaf in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115837. [PMID: 34072501 PMCID: PMC8197873 DOI: 10.3390/ijms22115837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
d-type cyclins (CYCDs) are a special class of cyclins and play extremely important roles in plant growth and development. In the plant kingdom, most of the existing studies on CYCDs have been done on herbaceous plants, with few on perennial woody plants. Here, we identified a Populus d-type cyclin gene, PsnCYCD1;1, which is mainly transcribed in leaf buds and stems. The promoter of PsnCYCD1;1 activated GUS gene expression and transgenic Arabidopsis lines were strongly GUS stained in whole seedlings and mature anthers. Moreover, subcellular localization analysis showed the fluorescence signal of PsnCYCD1;1-GFP fusion protein is present in the nucleus. Furthermore, overexpression of the PsnCYCD1;1 gene in Arabidopsis can promote cell division and lead to small cell generation and cytokinin response, resulting in curved leaves and twisted inflorescence stems. Moreover, the transcriptional levels of endogenous genes, such as ASs, KNATs, EXP10, and PHB, were upregulated by PsnCYCD1;1. Together, our results indicated that PsnCYCD1;1 participates in cell division by cytokinin response, providing new information on controlling plant architecture in woody plants.
Collapse
Affiliation(s)
- Tangchun Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
- National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lijuan Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Yi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Mi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Zhongnan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Guan-Zheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
- Correspondence: ; Tel.: +86-451-8219-2693
| |
Collapse
|
33
|
Considine MJ, Foyer CH. Oxygen and reactive oxygen species-dependent regulation of plant growth and development. PLANT PHYSIOLOGY 2021; 186:79-92. [PMID: 33793863 PMCID: PMC8154071 DOI: 10.1093/plphys/kiaa077] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/29/2020] [Indexed: 05/04/2023]
Abstract
Oxygen and reactive oxygen species (ROS) have been co-opted during evolution into the regulation of plant growth, development, and differentiation. ROS and oxidative signals arising from metabolism or phytohormone-mediated processes control almost every aspect of plant development from seed and bud dormancy, liberation of meristematic cells from the quiescent state, root and shoot growth, and architecture, to flowering and seed production. Moreover, the phytochrome and phytohormone-dependent transmissions of ROS waves are central to the systemic whole plant signaling pathways that integrate root and shoot growth. The sensing of oxygen availability through the PROTEOLYSIS 6 (PRT6) N-degron pathway functions alongside ROS production and signaling but how these pathways interact in developing organs remains poorly understood. Considerable progress has been made in our understanding of the nature of hydrogen peroxide sensors and the role of thiol-dependent signaling networks in the transmission of ROS signals. Reduction/oxidation (redox) changes in the glutathione (GSH) pool, glutaredoxins (GRXs), and thioredoxins (TRXs) are important in the control of growth mediated by phytohormone pathways. Although, it is clear that the redox states of proteins involved in plant growth and development are controlled by the NAD(P)H thioredoxin reductase (NTR)/TRX and reduced GSH/GRX systems of the cytosol, chloroplasts, mitochondria, and nucleus, we have only scratched the surface of this multilayered control and how redox-regulated processes interact with other cell signaling systems.
Collapse
Affiliation(s)
- Michael J Considine
- The School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
- Author for communication:
| |
Collapse
|
34
|
Loudya N, Mishra P, Takahagi K, Uehara-Yamaguchi Y, Inoue K, Bogre L, Mochida K, López-Juez E. Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf. Genome Biol 2021; 22:151. [PMID: 33975629 PMCID: PMC8111775 DOI: 10.1186/s13059-021-02366-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The developmental gradient in monocot leaves has been exploited to uncover leaf developmental gene expression programs and chloroplast biogenesis processes. However, the relationship between the two is barely understood, which limits the value of transcriptome data to understand the process of chloroplast development. RESULTS Taking advantage of the developmental gradient in the bread wheat leaf, we provide a simultaneous quantitative analysis for the development of mesophyll cells and of chloroplasts as a cellular compartment. This allows us to generate the first biologically-informed gene expression map of this leaf, with the entire developmental gradient from meristematic to fully differentiated cells captured. We show that the first phase of plastid development begins with organelle proliferation, which extends well beyond cell proliferation, and continues with the establishment and then the build-up of the plastid genetic machinery. The second phase is marked by the development of photosynthetic chloroplasts which occupy the available cellular space. Using a network reconstruction algorithm, we predict that known chloroplast gene expression regulators are differentially involved across those developmental stages. CONCLUSIONS Our analysis generates both the first wheat leaf transcriptional map and one of the most comprehensive descriptions to date of the developmental history of chloroplasts in higher plants. It reveals functionally distinct plastid and chloroplast development stages, identifies processes occurring in each of them, and highlights our very limited knowledge of the earliest drivers of plastid biogenesis, while providing a basis for their future identification.
Collapse
Affiliation(s)
- Naresh Loudya
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Priyanka Mishra
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Kotaro Takahagi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | | | - Komaki Inoue
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Laszlo Bogre
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Japan.
- RIKEN Baton Zone Program, Tsurumi-ku, Yokohama, Japan.
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
35
|
Lopez L, Fasano C, Perrella G, Facella P. Cryptochromes and the Circadian Clock: The Story of a Very Complex Relationship in a Spinning World. Genes (Basel) 2021; 12:672. [PMID: 33946956 PMCID: PMC8145066 DOI: 10.3390/genes12050672] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023] Open
Abstract
Cryptochromes are flavin-containing blue light photoreceptors, present in most kingdoms, including archaea, bacteria, plants, animals and fungi. They are structurally similar to photolyases, a class of flavoproteins involved in light-dependent repair of UV-damaged DNA. Cryptochromes were first discovered in Arabidopsis thaliana in which they control many light-regulated physiological processes like seed germination, de-etiolation, photoperiodic control of the flowering time, cotyledon opening and expansion, anthocyanin accumulation, chloroplast development and root growth. They also regulate the entrainment of plant circadian clock to the phase of light-dark daily cycles. Here, we review the molecular mechanisms by which plant cryptochromes control the synchronisation of the clock with the environmental light. Furthermore, we summarise the circadian clock-mediated changes in cell cycle regulation and chromatin organisation and, finally, we discuss a putative role for plant cryptochromes in the epigenetic regulation of genes.
Collapse
Affiliation(s)
| | | | | | - Paolo Facella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TERIN-BBC-BBE, Trisaia Research Center, 75026 Rotondella, Matera, Italy; (L.L.); (C.F.); (G.P.)
| |
Collapse
|
36
|
Ando A, Kirkbride RC, Jones DC, Grimwood J, Chen ZJ. LCM and RNA-seq analyses revealed roles of cell cycle and translational regulation and homoeolog expression bias in cotton fiber cell initiation. BMC Genomics 2021; 22:309. [PMID: 33926376 PMCID: PMC8082777 DOI: 10.1186/s12864-021-07579-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/03/2021] [Indexed: 01/21/2023] Open
Abstract
Background Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells. Results Here we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, subfunctionalization of homoeologs was pervasive in fiber and epidermal cells, with expression bias towards 10% more D than A homoeologs of cell cycle related genes and 40–50% more D than A homoeologs of ribosomal protein subunit genes. Key cell cycle regulators were predicted to be epialleles in allotetraploid cotton. MYB-transcription factor genes displayed expression divergence between fibers and ovules. Notably, many phytohormone-related genes were upregulated in ovules and down-regulated in fibers, suggesting spatial-temporal effects on fiber cell development. Conclusions Fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and MYB transcription factors, and homoeolog expression bias of cell cycle and ribosome biosynthesis genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07579-1.
Collapse
Affiliation(s)
- Atsumi Ando
- Department of Molecular Biosciences, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ryan C Kirkbride
- Department of Molecular Biosciences, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Don C Jones
- Agriculture and Environmental Research, Cotton Incorporated, Cary, NC, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
37
|
Yang W, Cortijo S, Korsbo N, Roszak P, Schiessl K, Gurzadyan A, Wightman R, Jönsson H, Meyerowitz E. Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science 2021; 371:1350-1355. [PMID: 33632892 PMCID: PMC8166333 DOI: 10.1126/science.abe2305] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/09/2021] [Indexed: 01/16/2023]
Abstract
Mitogens trigger cell division in animals. In plants, cytokinins, a group of phytohormones derived from adenine, stimulate cell proliferation. Cytokinin signaling is initiated by membrane-associated histidine kinase receptors and transduced through a phosphorelay system. We show that in the Arabidopsis shoot apical meristem (SAM), cytokinin regulates cell division by promoting nuclear shuttling of Myb-domain protein 3R4 (MYB3R4), a transcription factor that activates mitotic gene expression. Newly synthesized MYB3R4 protein resides predominantly in the cytoplasm. At the G2-to-M transition, rapid nuclear accumulation of MYB3R4-consistent with an associated transient peak in cytokinin concentration-feeds a positive feedback loop involving importins and initiates a transcriptional cascade that drives mitosis and cytokinesis. An engineered nuclear-restricted MYB3R4 mimics the cytokinin effects of enhanced cell proliferation and meristem growth.
Collapse
Affiliation(s)
- Weibing Yang
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Niklas Korsbo
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Pawel Roszak
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Katharina Schiessl
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Aram Gurzadyan
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Raymond Wightman
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK. .,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.,Department of Astronomy and Theoretical Physics, Lund University, SE22362 Lund, Sweden
| | - Elliot Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK. .,Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
38
|
SPEECHLESS and MUTE Mediate Feedback Regulation of Signal Transduction during Stomatal Development. PLANTS 2021; 10:plants10030432. [PMID: 33668323 PMCID: PMC7996297 DOI: 10.3390/plants10030432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
Stomatal density, spacing, and patterning greatly influence the efficiency of gas exchange, photosynthesis, and water economy. They are regulated by a complex of extracellular and intracellular factors through the signaling pathways. After binding the extracellular epidermal patterning factor 1 (EPF1) and 2 (EPF2) as ligands, the receptor-ligand complexes activate by phosphorylation through the MAP-kinase cascades, regulating basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, and FAMA. In this review, we summarize the molecular mechanisms and signal transduction pathways running within the transition of the protodermal cell into a pair of guard cells with a space (aperture) between them, called a stoma, comprising asymmetric and symmetric cell divisions and draw several functional models. The feedback mechanisms involving the bHLH factors SPCH and MUTE are not fully recognized yet. We show the feedback mechanisms driven by SPCH and MUTE in the regulation of EPF2 and the ERECTA family. Intersections of the molecular mechanisms for fate determination of stomatal lineage cells with the role of core cell cycle-related genes and stabilization of SPCH and MUTE are also reported.
Collapse
|
39
|
Xue JS, Yao C, Xu QL, Sui CX, Jia XL, Hu WJ, Lv YL, Feng YF, Peng YJ, Shen SY, Yang NY, Lou YX, Yang ZN. Development of the Middle Layer in the Anther of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:634114. [PMID: 33643363 PMCID: PMC7902515 DOI: 10.3389/fpls.2021.634114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/08/2021] [Indexed: 06/01/2023]
Abstract
The middle layer is an essential cell layer of the anther wall located between the endothecium and tapetum in Arabidopsis. Based on sectioning, the middle layer was found to be degraded at stage 7, which led to the separation of the tapetum from the anther wall. Here, we established techniques for live imaging of the anther. We created a marker line with fluorescent proteins expressed in all anther layers to study anther development. Several staining methods were used in the intact anthers to study anther cell morphology. We clarified the initiation, development, and degradation of the middle layer in Arabidopsis. This layer is initiated from both the inner and outer secondary parietal cells at stage 4, stopped cell division at stage 6, and finally degraded at stage 11. The neighboring cell layers, the epidermis, and endothecium continued cell division until stage 10, which led to a thin middle layer. The degradation of the tapetum cell wall at stage 7 lead to its isolation from the anther wall. This work presents fundamental information on the development of the middle layer, which facilitates the further investigation of anther development and plant fertility. These live imaging methods could be useful in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
40
|
Eljebbawi A, Guerrero YDCR, Dunand C, Estevez JM. Highlighting reactive oxygen species as multitaskers in root development. iScience 2021; 24:101978. [PMID: 33490891 PMCID: PMC7808913 DOI: 10.1016/j.isci.2020.101978] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Reactive oxygen species (ROS) are naturally produced by several redox reactions during plant regular metabolism such as photosynthesis and respiration. Due to their chemical properties and high reactivity, ROS were initially described as detrimental for cells during oxidative stress. However, they have been further recognized as key players in numerous developmental and physiological processes throughout the plant life cycle. Recent studies report the important role of ROS as growth regulators during plant root developmental processes such as in meristem maintenance, in root elongation, and in lateral root, root hair, endodermis, and vascular tissue differentiation. All involve multifaceted interplays between steady-state levels of ROS with transcriptional regulators, phytohormones, and nutrients. In this review, we attempt to summarize recent findings about how ROS are involved in multiple stages of plant root development during cell proliferation, elongation, and differentiation.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
41
|
Li J, Zhang Y, Gao Z, Xu X, Wang Y, Lin Y, Ye P, Huang T. Plant U-box E3 ligases PUB25 and PUB26 control organ growth in Arabidopsis. THE NEW PHYTOLOGIST 2021; 229:403-413. [PMID: 32810874 DOI: 10.1111/nph.16885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/09/2020] [Indexed: 05/12/2023]
Abstract
Plant organs often grow into a genetically determined size and shape. How organ growth is finely regulated to achieve a well defined pattern is a fascinating, but largely unresolved, question in plant research. We utilised the Arabidopsis petal to study the genetic control of plant organ growth, and identify two closely related U-box E3 ligases PUB25 and PUB26 as important growth regulators by screening the targets of the petal-specific growth-promoting transcription factor RABBIT EARS (RBE). We showed that PUB25 is directly controlled by RBE in petal development in a spatial- and temporal-specific manner and acts as a major target to mediate RBE's function in petal growth. We also showed that PUB25 and PUB26 repress petal growth by restricting the period of cell proliferation, and their regulation appears to be independent of other plant E3 ligase genes implicated in growth control. PUB25 and PUB26 are among the first U-box E3 ligases shown to function in plant growth control. Furthermore, as they were also found to play a vital role in plant stress responses, PUB25 and PUB26 may act as a key hub to integrate developmental and environmental signals for balancing growth and defence in plants.
Collapse
Affiliation(s)
- Jing Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Yongxia Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Zhong Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Xiumei Xu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yanzhi Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Yaoxi Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Peiming Ye
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| |
Collapse
|
42
|
Shao Y, Yu X, Xu X, Li Y, Yuan W, Xu Y, Mao C, Zhang S, Xu J. The YDA-MKK4/MKK5-MPK3/MPK6 Cascade Functions Downstream of the RGF1-RGI Ligand-Receptor Pair in Regulating Mitotic Activity in Root Apical Meristem. MOLECULAR PLANT 2020; 13:1608-1623. [PMID: 32916336 DOI: 10.1016/j.molp.2020.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 05/26/2023]
Abstract
The mitotic activity of root apical meristem (RAM) is critical to primary root growth and development. Previous studies have identified the roles of ROOT GROWTH FACTOR 1 (RGF1), a peptide ligand, and its receptors, RGF1 INSENSITIVEs (RGIs), a clade of five leucine-rich-repeat receptor-like kinases, in promoting cell division in the RAM, which determines the primary root length. However, the downstream signaling components remain elusive. In this study, we identify a complete mitogen-activated protein kinase (MAPK or MPK) cascade, composed of YDA, MKK4/MKK5, and MPK3/MPK6, that functions downstream of the RGF1-RGI ligand-receptor pair. Similar to the rgi1/2/3/4/5 quintuple mutant, loss-of-function mutants of MPK3 and MPK6, MKK4 and MKK5, or YDA show a short-root phenotype, which is associated with reduced mitotic activity and lower expression of PLETHORA 1 (PLT1)/PLT2 in the RAM. Furthermore, MPK3/MPK6 activation in response to exogenous RGF1 treatment is impaired in the rgi1/2/3/4/5 quintuple, yda single, and mkk4 mkk5 double mutants. Epistatic analyses demonstrated that the expression of constitutively active MKK4, MKK5, or YDA driven by the RGI2 promoter can rescue the short-root phenotype of the rgi1/2/3/4/5 mutant. Taken together, these results suggest that the YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair and upstream of PLT1/PLT2 to modulate the stem cell population and primary root growth in Arabidopsis.
Collapse
Affiliation(s)
- Yiming Shao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinxing Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuwen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenxin Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
43
|
Zhao D, Wang Y, Feng C, Wei Y, Peng X, Guo X, Guo X, Zhai Z, Li J, Shen X, Li T. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:166-183. [PMID: 32031710 DOI: 10.1111/tpj.14717] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Phytohormonal interactions are crucial for plant development. Auxin and cytokinin (CK) both play critical roles in regulating plant growth and development; however, the interaction between these two phytohormones is complex and not fully understood. Here, we isolated a wild apple (Malus sieversii Roem) GRETCHEN HAGEN3 (GH3) gene, MsGH3.5, encoding an indole-3-acetic acid (IAA)-amido synthetase. Overexpression of MsGH3.5 significantly reduced the free IAA content and increased the content of some IAA-amino acid conjugates, and MsGH3.5-overexpressing lines were dwarfed and produced fewer adventitious roots (ARs) than the control. This phenotype is consistent with the role of GH3 in conjugating excess free active IAA to amino acids in auxin homeostasis. Surprisingly, overexpression of MsGH3.5 significantly increased CK concentrations in the whole plant, and altered the expression of genes involved in CK biosynthesis, metabolism and signaling. Furthermore, exogenous CK application induced MsGH3.5 expression through the activity of the CK type-B response regulator, MsRR1a, which mediates the CK primary response. MsRR1a activated MsGH3.5 expression by directly binding to its promoter, linking auxin and CK signaling. Plants overexpressing MsRR1a also displayed fewer ARs, in agreement with the regulation of MsGH3.5 expression by MsRR1a. Taken together, we reveal that MsGH3.5 affects apple growth and development by modulating auxin and CK levels and signaling pathways. These findings provide insight into the interaction between the auxin and CK pathways, and might have substantial implications for efforts to improve apple architecture.
Collapse
Affiliation(s)
- Di Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yantao Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chen Feng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yan Wei
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Peng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiao Guo
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinwei Guo
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zefeng Zhai
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoshuai Shen
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, 102206, China
| |
Collapse
|
44
|
Jin H, Du Z, Zhang Y, Antal J, Xia Z, Wang Y, Gao Y, Zhao X, Han X, Cheng Y, Shen Q, Zhang K, Elder RE, Benko Z, Fenyvuesvolgyi C, Li G, Rebello D, Li J, Bao S, Zhao RY, Wang D. A distinct class of plant and animal viral proteins that disrupt mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. SCIENCE ADVANCES 2020; 6:eaba3418. [PMID: 32426509 PMCID: PMC7220342 DOI: 10.1126/sciadv.aba3418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Many animal viral proteins, e.g., Vpr of HIV-1, disrupt host mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. However, it is unknown whether plant viruses may use this mechanism in their pathogenesis. Here, we report that the 17K protein, encoded by barley yellow dwarf viruses and related poleroviruses, delays G2/M transition and disrupts mitosis in both host (barley) and nonhost (fission yeast, Arabidopsis thaliana, and tobacco) cells through interrupting the function of Wee1-Cdc25-CDKA/Cdc2 via direct protein-protein interactions and alteration of CDKA/Cdc2 phosphorylation. When ectopically expressed, 17K disrupts the mitosis of cultured human cells, and HIV-1 Vpr inhibits plant cell growth. Furthermore, 17K and Vpr share similar secondary structural feature and common amino acid residues required for interacting with plant CDKA. Thus, our work reveals a distinct class of mitosis regulators that are conserved between plant and animal viruses and play active roles in viral pathogenesis.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiqiang Du
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanjing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Judit Antal
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Zongliang Xia
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoge Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanjun Cheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Robert E. Elder
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Zsigmond Benko
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Csaba Fenyvuesvolgyi
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dionne Rebello
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jing Li
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Richard Y. Zhao
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, Institute of Human Virology, and Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
45
|
Vercruysse J, Baekelandt A, Gonzalez N, Inzé D. Molecular networks regulating cell division during Arabidopsis leaf growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2365-2378. [PMID: 31748815 PMCID: PMC7178401 DOI: 10.1093/jxb/erz522] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 05/02/2023]
Abstract
Leaves are the primary organs for photosynthesis, and as such have a pivotal role for plant growth and development. Leaf development is a multifactorial and dynamic process involving many genes that regulate size, shape, and differentiation. The processes that mainly drive leaf development are cell proliferation and cell expansion, and numerous genes have been identified that, when ectopically expressed or down-regulated, increase cell number and/or cell size during leaf growth. Many of the genes regulating cell proliferation are functionally interconnected and can be grouped into regulatory modules. Here, we review our current understanding of six important gene regulatory modules affecting cell proliferation during Arabidopsis leaf growth: ubiquitin receptor DA1-ENHANCER OF DA1 (EOD1), GROWTH REGULATING FACTOR (GRF)-GRF-INTERACTING FACTOR (GIF), SWITCH/SUCROSE NON-FERMENTING (SWI/SNF), gibberellin (GA)-DELLA, KLU, and PEAPOD (PPD). Furthermore, we discuss how post-mitotic cell expansion and these six modules regulating cell proliferation make up the final leaf size.
Collapse
Affiliation(s)
- Jasmien Vercruysse
- Center for Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Alexandra Baekelandt
- Center for Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Nathalie Gonzalez
- INRAE, Université de Bordeaux, UMR1332 Biologie du fruit et Pathologie, INRA Bordeaux Aquitaine, Villenave d’Ornon cedex, France
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Correspondence:
| |
Collapse
|
46
|
Peng S, Sun K, Guo Y, Liu Y, Wang S. Arabidopsis nucleoporin CPR5 controls trichome cell death through the core cell cycle regulator CKI. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:337-345. [PMID: 31692196 DOI: 10.1111/plb.13068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The Arabidopsis trichome is a polyploid epidermal cell resulting from multiple rounds of endocycles. The CYCLIN-DEPENDENT KINASE INHIBITOR (CKI) family proteins are core cell cycle regulators that promote the endocycle. CONSTITUTIVE EXPRESSION OF PR GENES 5 (CPR5) is a plant-specific nucleoporin. It has been found that two Arabidopsis CKI, SIAMESE (SIM) and SIAMESE-RELATED 1 (SMR1), function downstream of CPR5 to activate plant effector-triggered cell death. The sim smr1 double mutants form multicellular and clustered trichomes, while the cpr5 mutants produce dead and branchless trichomes. This study explored roles of the CPR5-CKI signalling pathway in trichome cell cycle transition. To examine the underlying mechanism of how cell cycle transition is regulated in plant trichomes, Trypan blue staining, flow cytometry, scanning electron microscopy (SEM) and nuclear DNA measurement were conducted. The native promoter-driven CKI and GUS fusion reporter showed that both SIM and SMR1 proteins were preferentially expressed in trichomes. The cpr5-induced dead and branchless trichomes were fully suppressed by the sim smr1 double mutant, suggesting that SIM and SMR1 function downstream of CPR5 in trichome development. Flow cytometry analysis showed that as compared to the number of 2C (C = DNA content in a haploid nucleus) cells, the number of 4C cells significantly increased, whereas that of polyploidy cells (8C and 16C) dramatically decreased in the cpr5 mutant. The elevated 4C/2C ratio in the cpr5 mutant is consistent with de-repression of pro-endocycle regulators SIM and SMR1. The polyploidy cells (8C and 16C) may be selectively targeted to cell death, which is therefore attributed to the branchless trichomes in the cpr5 mutant. Nuclear DNA content analysis demonstrated that the nuclear DNA content of trichomes in the cpr5 sim mutant was significantly higher than in the sim mutant, indicating that CPR5 is a negative endocycle regulator in trichomes. This study reveals that the CPR5-CKI signalling pathway controls trichome cell cycle transition and excessive endocycles are required for cell death in plant trichomes.
Collapse
Affiliation(s)
- S Peng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - K Sun
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Y Guo
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Y Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - S Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
47
|
Lundgren MR, Fleming AJ. Cellular perspectives for improving mesophyll conductance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:845-857. [PMID: 31854030 PMCID: PMC7065256 DOI: 10.1111/tpj.14656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/11/2019] [Indexed: 05/04/2023]
Abstract
After entering the leaf, CO2 faces an intricate pathway to the site of photosynthetic fixation embedded within the chloroplasts. The efficiency of CO2 flux is hindered by a number of structural and biochemical barriers which, together, define the ease of flow of the gas within the leaf, termed mesophyll conductance. Previous authors have identified the key elements of this pathway, raising the prospect of engineering the system to improve CO2 flux and, thus, to increase leaf photosynthetic efficiency. In this review, we provide a perspective on the potential for improving the individual elements that contribute to this complex parameter. We lay particular emphasis on generation of the cellular architecture of the leaf which sets the initial boundaries of a number of mesophyll conductance parameters, incorporating an overview of the molecular transport processes which have been proposed as major facilitators of CO2 flux across structural boundaries along the pathway. The review highlights the research areas where future effort might be invested to increase our fundamental understanding of mesophyll conductance and leaf function and, consequently, to enable translation of these findings to improve the efficiency of crop photosynthesis.
Collapse
Affiliation(s)
| | - Andrew J. Fleming
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|
48
|
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. THE PLANT CELL 2019; 31:2868-2887. [PMID: 31562216 DOI: 10.1101/474981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 05/26/2023]
Abstract
Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.
Collapse
Affiliation(s)
- Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
49
|
D'Esposito D, Cappetta E, Andolfo G, Ferriello F, Borgonuovo C, Caruso G, De Natale A, Frusciante L, Ercolano MR. Deciphering the biological processes underlying tomato biomass production and composition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:50-60. [PMID: 31479882 DOI: 10.1016/j.plaphy.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 05/20/2023]
Abstract
The huge amounts of biomass residues, remaining in the field after tomato fruits harvesting, can be utilized to produce bioenergy. A multiple level approach aimed to characterize two Solanum pennellii introgression lines (ILs), with contrasting phenotypes for plant architecture and biomass was carried out. The study of gene expression dynamics, microscopy cell traits and qualitative and quantitative cell wall chemical compounds variation enabled the discovery of key genes and cell processes involved biomass accumulation and composition. Enhanced biomass production observed in IL2-6 line is due to a more effective coordination of chloroplasts and mitochondria energy fluxes. Microscopy analysis revealed a higher number of cells and chloroplasts in leaf epidermis in the high biomass line whilst chemical measurements on the two lines pointed out striking differences in the cell wall composition and organization. Taken together, our findings shed light on the mechanisms underlying the tomato biomass production and processability.
Collapse
Affiliation(s)
- Daniela D'Esposito
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Elisa Cappetta
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Giuseppe Andolfo
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Francesca Ferriello
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Camilla Borgonuovo
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Antonino De Natale
- Department of Biology, University of Naples 'Federico II', Via Cinthia, Monte Sant'Angelo, Building 7, 80126, Naples, Italy.
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| |
Collapse
|
50
|
Arabidopsis NDL-AGB1 modules Play Role in Abiotic Stress and Hormonal Responses Along with Their Specific Functions. Int J Mol Sci 2019; 20:ijms20194736. [PMID: 31554237 PMCID: PMC6801982 DOI: 10.3390/ijms20194736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Arabidopsis N-MYC Downregulated Like Proteins (NDLs) are interacting partners of G-Protein core components. Animal homologs of the gene family N-myc downstream regulated gene (NDRG) has been found to be induced during hypoxia, DNA damage, in presence of reducing agent, increased intracellular calcium level and in response to metal ions like nickel and cobalt, which indicates the involvement of the gene family during stress responses. ArabidopsisNDL gene family contains three homologs NDL1, NDL2 and NDL3 which share up to 75% identity at protein level. Previous studies on NDL proteins involved detailed characterization of the role of NDL1; roles of other two members were also established in root and shoot development using miRNA knockdown approach. Role of entire family in development has been established but specific functions of NDL2 and NDL3 if any are still unknown. Our in-silico analysis of NDLs promoters reveled that all three members share some common and some specific transcription factors (TFs) binding sites, hinting towards their common as well as specific functions. Based on promoter elements characteristics, present study was designed to carry out comparative analysis of the Arabidopsis NDL family during different stages of plant development, under various abiotic stresses and plant hormonal responses, in order to find out their specific and combined roles in plant growth and development. Developmental analysis using GUS fusion revealed specific localization/expression during different stages of development for all three family members. Stress analysis after treatment with various hormonal and abiotic stresses showed stress and tissue-specific differential expression patterns for all three NDL members. All three NDL members were collectively showed role in dehydration stress along with specific responses to various treatments. Their specific expression patterns were affected by presence of interacting partner the Arabidopsis heterotrimeric G-protein β subunit 1 (AGB1). The present study will improve our understanding of the possible molecular mechanisms of action of the independent NDL–AGB1 modules during stress and hormonal responses. These findings also suggest potential use of this knowledge for crop improvement.
Collapse
|