1
|
Garbett K, Tosun B, Lopez JM, Smith CM, Honkanen K, Sando RC. Synaptic Gα12/13 signaling establishes hippocampal PV inhibitory circuits. Proc Natl Acad Sci U S A 2024; 121:e2407828121. [PMID: 39693341 PMCID: PMC11670215 DOI: 10.1073/pnas.2407828121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Combinatorial networks of cell adhesion molecules and cell surface receptors drive fundamental aspects of neural circuit establishment and function. However, the intracellular signals orchestrated by these cell surface complexes remain less understood. Here, we report that the Gα12/13 pathway lies downstream of several GPCRs with critical synaptic functions. Impairment of the Gα12/13 pathway in postnatal hippocampal neurons diminishes inhibitory inputs without altering neuronal morphology or excitatory transmission. Gα12/13 signaling in hippocampal CA1 neurons in vivo selectively regulates PV interneuron synaptic connectivity, supporting an inhibitory synapse subtype-specific function of this pathway. Our studies establish Gα12/13 as a signaling node that shapes inhibitory hippocampal circuitry.
Collapse
Affiliation(s)
- Krassimira Garbett
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Baris Tosun
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Jaybree M. Lopez
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Cassandra M. Smith
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Kelly Honkanen
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| | - Richard C. Sando
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
2
|
Bui KC, Kamiyama D. Adjacent Neuronal Fascicle Guides Motoneuron 24 Dendritic Branching and Axonal Routing Decisions through Dscam1 Signaling. eNeuro 2024; 11:ENEURO.0130-24.2024. [PMID: 39349058 PMCID: PMC11495862 DOI: 10.1523/eneuro.0130-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 10/02/2024] Open
Abstract
The formation and precise positioning of axons and dendrites are crucial for the development of neural circuits. Although juxtacrine signaling via cell-cell contact is known to influence these processes, the specific structures and mechanisms regulating neuronal process positioning within the central nervous system (CNS) remain to be fully identified. Our study investigates motoneuron 24 (MN24) in the Drosophila embryonic CNS, which is characterized by a complex yet stereotyped axon projection pattern, known as "axonal routing." In this motoneuron, the primary dendritic branches project laterally toward the midline, specifically emerging at the sites where axons turn. We observed that Scp2-positive neurons contribute to the lateral fascicle structure in the ventral nerve cord (VNC) near MN24 dendrites. Notably, the knockout of the Down syndrome cell adhesion molecule (Dscam1) results in the loss of dendrites and disruption of proper axonal routing in MN24, while not affecting the formation of the fascicle structure. Through cell-type specific knockdown and rescue experiments of Dscam1, we have determined that the interaction between MN24 and Scp2-positive fascicle, mediated by Dscam1, promotes the development of both dendrites and axonal routing. Our findings demonstrate that the holistic configuration of neuronal structures, such as axons and dendrites, within single motoneurons can be governed by local contact with the adjacent neuron fascicle, a novel reference structure for neural circuitry wiring.
Collapse
Affiliation(s)
- Kathy Clara Bui
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30605
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30605
| |
Collapse
|
3
|
Bui KC, Kamiyama D. Adjacent Neuronal Fascicle Guides Motoneuron 24 Dendritic Branching and Axonal Routing Decisions through Dscam1 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588591. [PMID: 38645010 PMCID: PMC11030417 DOI: 10.1101/2024.04.08.588591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The formation and precise positioning of axons and dendrites are crucial for the development of neural circuits. Although juxtracrine signaling via cell-cell contact is known to influence these processes, the specific structures and mechanisms regulating neuronal process positioning within the central nervous system (CNS) remain to be fully identified. Our study investigates motoneuron 24 (MN24) in the Drosophila embryonic CNS, which is characterized by a complex yet stereotyped axon projection pattern, known as 'axonal routing.' In this motoneuron, the primary dendritic branches project laterally toward the midline, specifically emerging at the sites where axons turn. We observed that Scp2-positive neurons contribute to the lateral fascicle structure in the ventral nerve cord (VNC) near MN24 dendrites. Notably, the knockout of the Down syndrome cell adhesion molecule (dscam1) results in the loss of dendrites and disruption of proper axonal routing in MN24, while not affecting the formation of the fascicle structure. Through cell-type specific knockdown and rescue experiments of dscam1, we have determined that the interaction between MN24 and Scp2-positive fascicle, mediated by Dscam1, promotes the development of both dendrites and axonal routing. Our findings demonstrate that the holistic configuration of neuronal structures, such as axons and dendrites, within single motoneurons can be governed by local contact with the adjacent neuron fascicle, a novel reference structure for neural circuitry wiring.
Collapse
Affiliation(s)
- Kathy Clara Bui
- Department of Cellular Biology, University of Georgia, Athens, GA 30605, USA
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
4
|
Huang H, Majumder T, Khot B, Suriyaarachchi H, Yang T, Shao Q, Tirukovalluru S, Liu G. The role of microtubule-associated protein tau in netrin-1 attractive signaling. J Cell Sci 2024; 137:jcs261244. [PMID: 38197773 PMCID: PMC10906489 DOI: 10.1242/jcs.261244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Direct binding of netrin receptors with dynamic microtubules (MTs) in the neuronal growth cone plays an important role in netrin-mediated axon guidance. However, how netrin-1 (NTN1) regulates MT dynamics in axon turning remains a major unanswered question. Here, we show that the coupling of netrin-1 receptor DCC with tau (MAPT)-regulated MTs is involved in netrin-1-promoted axon attraction. Tau directly interacts with DCC and partially overlaps with DCC in the growth cone of primary neurons. Netrin-1 induces this interaction and the colocalization of DCC and tau in the growth cone. The netrin-1-induced interaction of tau with DCC relies on MT dynamics and TUBB3, a highly dynamic β-tubulin isotype in developing neurons. Netrin-1 increased cosedimentation of DCC with tau and TUBB3 in MTs, and knockdown of either tau or TUBB3 mutually blocked this effect. Downregulation of endogenous tau levels by tau shRNAs inhibited netrin-1-induced axon outgrowth, branching and commissural axon attraction in vitro, and led to defects in spinal commissural axon projection in vivo. These findings suggest that tau is a key MT-associated protein coupling DCC with MT dynamics in netrin-1-promoted axon attraction.
Collapse
Affiliation(s)
- Huai Huang
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Tanushree Majumder
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Bhakti Khot
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Harindi Suriyaarachchi
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Tao Yang
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Qiangqiang Shao
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Shraddha Tirukovalluru
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
5
|
Shimizu M, Shiraishi N, Tada S, Sasaki T, Beck G, Nagano S, Kinoshita M, Sumi H, Sugimoto T, Ishida Y, Koda T, Ishikura T, Sugiyama Y, Kihara K, Kanakura M, Nakajima T, Takeda S, Takahashi MP, Yamashita T, Okuno T, Mochizuki H. RGMa collapses the neuronal actin barrier against disease-implicated protein and exacerbates ALS. SCIENCE ADVANCES 2023; 9:eadg3193. [PMID: 37992159 PMCID: PMC10665002 DOI: 10.1126/sciadv.adg3193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Repulsive guidance molecule A (RGMa) was originally identified as a neuronal growth cone-collapsing factor. Previous reports have demonstrated the multifunctional roles of RGMa mediated by neogenin1. However, the pathogenic involvement of RGMa in amyotrophic lateral sclerosis (ALS) remains unclear. Here, we demonstrated that RGMa concentration was elevated in the cerebrospinal fluid of both patients with ALS and transgenic mice overexpressing the mutant human superoxide dismutase1 (mSOD1 mice). Treatment with humanized anti-RGMa monoclonal antibody ameliorated the clinical symptoms in mSOD1 mice. Histochemical analysis revealed that the anti-RGMa antibody significantly decreased mutant SOD1 protein accumulation in the motor neurons of mSOD1 mice via inhibition of actin depolymerization. In vitro analysis revealed that the anti-RGMa antibody inhibited the cellular uptake of the mutant SOD1 protein, presumably by reinforcing the neuronal actin barrier. Collectively, these data suggest that RGMa leads to the collapse of the neuronal actin barrier and promotes aberrant protein deposition, resulting in exacerbation of the ALS pathology.
Collapse
Affiliation(s)
- Mikito Shimizu
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoru Tada
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Clinical Research, National Hospital Organization Osaka-Minami Medical Center, Kawachinagano, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Goichi Beck
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurotherapeutics, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisae Sumi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Tomoyuki Sugimoto
- Graduate School of Data Science, Shiga University, Hikone, Shiga, Japan
| | - Yoko Ishida
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teruyuki Ishikura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keigo Kihara
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Minami Kanakura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuneo Nakajima
- Department of Geriatric and General Medicine, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka, Japan
| | - Masanori P. Takahashi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
6
|
Chakraborty C, Nissen I, Vincent CA, Hägglund AC, Hörnblad A, Remeseiro S. Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma orchestrates gene expression underlying neurogliomal synaptic communication. Nat Commun 2023; 14:6446. [PMID: 37833281 PMCID: PMC10576091 DOI: 10.1038/s41467-023-41919-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Chromatin organization controls transcription by modulating 3D-interactions between enhancers and promoters in the nucleus. Alterations in epigenetic states and 3D-chromatin organization result in gene expression changes contributing to cancer. Here, we map the promoter-enhancer interactome and regulatory landscape of glioblastoma, the most aggressive primary brain tumour. Our data reveals profound rewiring of promoter-enhancer interactions, chromatin accessibility and redistribution of histone marks in glioblastoma. This leads to loss of long-range regulatory interactions and overall activation of promoters, which orchestrate changes in the expression of genes associated to glutamatergic synapses, axon guidance, axonogenesis and chromatin remodelling. SMAD3 and PITX1 emerge as major transcription factors controlling genes related to synapse organization and axon guidance. Inhibition of SMAD3 and neuronal activity stimulation cooperate to promote proliferation of glioblastoma cells in co-culture with glutamatergic neurons, and in mice bearing patient-derived xenografts. Our findings provide mechanistic insight into the regulatory networks that mediate neurogliomal synaptic communication.
Collapse
Affiliation(s)
- Chaitali Chakraborty
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Itzel Nissen
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Craig A Vincent
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Anna-Carin Hägglund
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|
7
|
Mahmud A, Avramescu RG, Niu Z, Flores C. Awakening the dormant: Role of axonal guidance cues in stress-induced reorganization of the adult prefrontal cortex leading to depression-like behavior. Front Neural Circuits 2023; 17:1113023. [PMID: 37035502 PMCID: PMC10079902 DOI: 10.3389/fncir.2023.1113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic and disabling disorder affecting roughly 280 million people worldwide. While multiple brain areas have been implicated, dysfunction of prefrontal cortex (PFC) circuitry has been consistently documented in MDD, as well as in animal models for stress-induced depression-like behavioral states. During brain development, axonal guidance cues organize neuronal wiring by directing axonal pathfinding and arborization, dendritic growth, and synapse formation. Guidance cue systems continue to be expressed in the adult brain and are emerging as important mediators of synaptic plasticity and fine-tuning of mature neural networks. Dysregulation or interference of guidance cues has been linked to depression-like behavioral abnormalities in rodents and MDD in humans. In this review, we focus on the emerging role of guidance cues in stress-induced changes in adult prefrontal cortex circuitry and in precipitating depression-like behaviors. We discuss how modulating axonal guidance cue systems could be a novel approach for precision medicine and the treatment of depression.
Collapse
Affiliation(s)
- Ashraf Mahmud
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Psychiatry, Neurology, and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Kim Y, Yang E, Kim H. Impaired prepulse inhibition in mice with IRSp53 deletion in modulatory neurotransmitter neurons including dopamine, acetylcholine, oxytocin, and serotonin. Biochem Biophys Res Commun 2022; 586:114-120. [PMID: 34839189 DOI: 10.1016/j.bbrc.2021.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/13/2021] [Indexed: 11/27/2022]
Abstract
Prepulse inhibition (PPI) is a neurophysiological finding that is decreased in schizophrenia patients and has been used in pathophysiology studies of schizophrenia and the development of antipsychotic drugs. PPI is affected by several drugs including amphetamine, ketamine, and nicotinic agents, and it is reported that several brain regions and modulatory neurotransmitters are involved in PPI. Here we showed that mice with IRSp53 deletion in each dopaminergic, cholinergic, oxytocinergic, and serotoninergic modulatory neurons showed a decrease in PPI. Other than PPI, there were no other behavioral changes among IRSp53 deletion mice. Through this study, we could reconfirm that dysfunction of each modulatory neuron such as dopamine, acetylcholine, oxytocin, and serotonin can result in PPI impairment, and it should be considered that PPI could be broadly affected by changes in one of a certain kind of modulatory neurons.
Collapse
Affiliation(s)
- Yangsik Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Center for Synaptic Brain Dysfunction, Institute for Basic Science, Daejeon, South Korea; Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea.
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
9
|
Li J, Conrad C, Mills TW, Berg NK, Kim B, Ruan W, Lee JW, Zhang X, Yuan X, Eltzschig HK. PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. J Exp Med 2021; 218:212023. [PMID: 33891683 PMCID: PMC8077173 DOI: 10.1084/jem.20210008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
Previous studies implicated the neuronal guidance molecule netrin-1 in attenuating myocardial ischemia-reperfusion injury. However, the tissue-specific sources and receptor signaling events remain elusive. Neutrophils are among the first cells responding to an ischemic insult and can be associated with tissue injury or rescue. We found netrin-1 levels were elevated in the blood of patients with myocardial infarction, as well as in mice exposed to myocardial ischemia-reperfusion. Selectively increased infarct sizes and troponin levels were found in Ntn1loxP/loxP Lyz2 Cre+ mice, but not in mice with conditional netrin-1 deletion in other tissue compartments. In vivo studies using neutrophil depletion identified neutrophils as the main source for elevated blood netrin-1 during myocardial injury. Finally, pharmacologic studies using treatment with recombinant netrin-1 revealed a functional role for purinergic signaling events through the myeloid adenosine A2b receptor in mediating netrin-1-elicited cardioprotection. These findings suggest an autocrine signaling loop with a functional role for neutrophil-derived netrin-1 in attenuating myocardial ischemia-reperfusion injury through myeloid adenosine A2b signaling.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Catharina Conrad
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Tingting W Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Nathaniel K Berg
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Boyun Kim
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Wei Ruan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Second Xiangya Hospital, Central South University, Hunan, China
| | - Jae W Lee
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT
| | - Xu Zhang
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
10
|
García-Guillén IM, Alonso A, Puelles L, Marín F, Aroca P. Multiple Regionalized Genes and Their Putative Networks in the Interpeduncular Nucleus Suggest Complex Mechanisms of Neuron Development and Axon Guidance. Front Neuroanat 2021; 15:643320. [PMID: 33664652 PMCID: PMC7921722 DOI: 10.3389/fnana.2021.643320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
The interpeduncular nucleus (IPN) is a highly conserved limbic structure in the vertebrate brain, located in the isthmus and rhombomere 1. It is formed by various populations that migrate from different sites to the distinct domains within the IPN: the prodromal, rostral interpeduncular, and caudal interpeduncular nuclei. The aim here was to identify genes that are differentially expressed across these domains, characterizing their putative functional roles and interactions. To this end, we screened the 2,038 genes in the Allen Developing Mouse Brain Atlas database expressed at E18.5 and we identified 135 genes expressed within the IPN. The functional analysis of these genes highlighted an overrepresentation of gene families related to neuron development, cell morphogenesis and axon guidance. The interactome analysis within each IPN domain yielded specific networks that mainly involve members of the ephrin/Eph and Cadherin families, transcription factors and molecules related to synaptic neurotransmission. These results bring to light specific mechanisms that might participate in the formation, molecular regionalization, axon guidance and connectivity of the different IPN domains. This genoarchitectonic model of the IPN enables data on gene expression and interactions to be integrated and interpreted, providing a basis for the further study of the connectivity and function of this poorly understood nuclear complex under both normal and pathological conditions.
Collapse
Affiliation(s)
- Isabel M García-Guillén
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
11
|
Leonard CE, Baydyuk M, Stepler MA, Burton DA, Donoghue MJ. EphA7 isoforms differentially regulate cortical dendrite development. PLoS One 2020; 15:e0231561. [PMID: 33275600 PMCID: PMC7717530 DOI: 10.1371/journal.pone.0231561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
The shape of a neuron facilitates its functionality within neural circuits. Dendrites integrate incoming signals from axons, receiving excitatory input onto small protrusions called dendritic spines. Therefore, understanding dendritic growth and development is fundamental for discerning neural function. We previously demonstrated that EphA7 receptor signaling during cortical development impacts dendrites in two ways: EphA7 restricts dendritic growth early and promotes dendritic spine formation later. Here, the molecular basis for this shift in EphA7 function is defined. Expression analyses reveal that EphA7 full-length (EphA7-FL) and truncated (EphA7-T1; lacking kinase domain) isoforms are dynamically expressed in the developing cortex. Peak expression of EphA7-FL overlaps with dendritic elaboration around birth, while highest expression of EphA7-T1 coincides with dendritic spine formation in early postnatal life. Overexpression studies in cultured neurons demonstrate that EphA7-FL inhibits both dendritic growth and spine formation, while EphA7-T1 increases spine density. Furthermore, signaling downstream of EphA7 shifts during development, such that in vivo inhibition of mTOR by rapamycin in EphA7-mutant neurons ameliorates dendritic branching, but not dendritic spine phenotypes. Finally, direct interaction between EphA7-FL and EphA7-T1 is demonstrated in cultured cells, which results in reduction of EphA7-FL phosphorylation. In cortex, both isoforms are colocalized to synaptic fractions and both transcripts are expressed together within individual neurons, supporting a model where EphA7-T1 modulates EphA7-FL repulsive signaling during development. Thus, the divergent functions of EphA7 during cortical dendrite development are explained by the presence of two variants of the receptor.
Collapse
Affiliation(s)
- Carrie E. Leonard
- Department of Biology, Georgetown University, Washington, DC, United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Marissa A. Stepler
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Denver A. Burton
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Maria J. Donoghue
- Department of Biology, Georgetown University, Washington, DC, United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
12
|
Sherchan P, Travis ZD, Tang J, Zhang JH. The potential of Slit2 as a therapeutic target for central nervous system disorders. Expert Opin Ther Targets 2020; 24:805-818. [PMID: 32378435 PMCID: PMC7529836 DOI: 10.1080/14728222.2020.1766445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Slit2 is an extracellular matrix protein that regulates migration of developing axons during central nervous system (CNS) development. Roundabout (Robo) receptors expressed by various cell types in the CNS, mediate intracellular signal transduction pathways for Slit2. Recent studies indicate that Slit2 plays important protective roles in a myriad of processes such as cell migration, immune response, vascular permeability, and angiogenesis in CNS pathologies. Areas covered: This review provides an overview of the diverse functions of Slit2 in CNS disorders and discusses the potential of Slit2 as a therapeutic target. We reviewed preclinical studies reporting the role of Slit2 in various CNS disease models, transgenic animal research, and rodent models that utilized Slit2 as a therapy. Expert opinion: Slit2 exerts a wide array of beneficial effects ranging from anti-migration, blood-brain barrier (BBB) protection, inhibition of peripheral immune cell infiltration, and anti-apoptosis in various disease models. However, a dual role of Slit2 in endothelial permeability has been observed in transgenic animals. Further research on Slit2 will be crucial including key issues such as effects of transgenic overexpression versus exogenous Slit2, function of Slit2 dependent on cellular expression of Robo receptors and the underlying pathology for potential clinical translation.
Collapse
Affiliation(s)
- Prativa Sherchan
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Zachary D. Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA and Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
13
|
Das S, Ramakrishna S, Kim KS. Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders. Mol Cells 2020; 43:203-214. [PMID: 32133826 PMCID: PMC7103888 DOI: 10.14348/molcells.2020.2289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity,axonal growth, and proper function of the nervous system.Moreover, mutations or downregulation of certain DUBshave been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Kaur H, Xu N, Doycheva DM, Malaguit J, Tang J, Zhang JH. Recombinant Slit2 attenuates neuronal apoptosis via the Robo1-srGAP1 pathway in a rat model of neonatal HIE. Neuropharmacology 2019; 158:107727. [PMID: 31356825 PMCID: PMC6745244 DOI: 10.1016/j.neuropharm.2019.107727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
Apoptosis following hypoxic-ischemic injury to the brain plays a major role in neuronal cell death. The neonatal brain is more susceptible to injury as the cortical neurons are immature and there are lower levels of antioxidants. Slit2, an extracellular matrix protein, has been shown to be neuroprotective in various models of neurological diseases. However, there is no information about the role of Slit2 in neonatal hypoxia-ischemia. In this study, we evaluated the effect of Slit2 and its receptor Robo1 in a rat model with neonatal HIE. 10-day old rat pups were used to create the neonatal HIE model. The right common carotid artery was ligated followed by 2.5 h of hypoxia. Recombinant Slit2 was administered intranasally 1 h post HI, recombinant Robo1 was used as a decoy receptor and administered intranasally 1h before HI and srGAP1-siRNA was administered intracerebroventricularly 24 h before HI. Brain infarct area measurement, short-term and long-term neurological function tests, Western blot, immunofluorescence staining, Fluoro-Jade C staining, Nissl staining and TUNEL staining were the assessments done following drug administration. Recombinant Slit2 administration reduced neuronal apoptosis and neurological deficits after neonatal HIE which were reversed by co-administration of recombinant Robo1 and srGAP1-siRNA administration. Recombinant Slit2 showed improved outcomes possibly via the robo1-srGAP1 pathway which mediated the inhibition of RhoA. In this study, the results suggest that Slit2 may help in attenuation of apoptosis and could be a therapeutic agent for treatment of neonatal hypoxic ischemic encephalopathy.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jay Malaguit
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA; Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
15
|
Kinoshita-Kawada M, Hasegawa H, Hongu T, Yanagi S, Kanaho Y, Masai I, Mishima T, Chen X, Tsuboi Y, Rao Y, Yuasa-Kawada J, Wu JY. Explant Culture of the Embryonic Mouse Spinal Cord and Gene Transfer by ex vivo Electroporation. Bio Protoc 2019; 9:e3373. [PMID: 33654869 DOI: 10.21769/bioprotoc.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 11/02/2022] Open
Abstract
Developing axons change responsiveness to guidance cues during the journey to synapse with target cells. Axon crossing at the ventral midline serves as a model for studying how axons accomplish such a switch in their response. Although primary neuron culture has been a versatile technique for elucidating various developmental mechanisms, many in vivo characteristics of neurons, such as long axon-extending abilities and axonal compartments, are not thoroughly preserved. In explant cultures, such properties of differentiated neurons and tissue architecture are maintained. To examine how the midline repellent Slit regulated the distribution of the Robo receptor in spinal cord commissural axons upon midline crossing and whether Robo trafficking machinery was a determinant of midline crossing, novel explant culture systems were developed. We have combined an "open-book" spinal cord explant method with that devised for flat-mount retinae. Here we present our protocol for explant culture of embryonic mouse spinal cords, which allows flexible manipulation of experimental conditions, immunostaining of extending axons and quantitative analysis of individual axons. In addition, we present a modified method that combines ex vivo electroporation and "closed-book" spinal cord explant culture. These culture systems provide new platforms for detailed analysis of axon guidance, by adapting gene knockdown, knockout and genome editing.
Collapse
Affiliation(s)
- Mariko Kinoshita-Kawada
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Department of Neurology, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiroshi Hasegawa
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Takayasu Mishima
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Xiaoping Chen
- Department of Neurology, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yi Rao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Junichi Yuasa-Kawada
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Department of Neurology, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
| | - Jane Y Wu
- Department of Neurology, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
16
|
Jin Y, Lee JU, Chung E, Yang K, Kim J, Kim JW, Lee JS, Cho AN, Oh T, Lee JH, Cho SW, Cheon J. Magnetic Control of Axon Navigation in Reprogrammed Neurons. NANO LETTERS 2019; 19:6517-6523. [PMID: 31461289 DOI: 10.1021/acs.nanolett.9b02756] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While neural cell transplantation represents a promising therapy for neurodegenerative diseases, the formation of functional networks of transplanted cells with host neurons constitutes one of the challenging steps. Here, we introduce a magnetic guidance methodology that controls neurite growth signaling via magnetic nanoparticles (MNPs) conjugated with antibodies targeting the deleted in colorectal cancer (DCC) receptor (DCC-MNPs). Activation of the DCC receptors by clusterization and subsequent axonal growth of the induced neuronal (iN) cells was performed in a spatially controlled manner. In addition to the directionality of the magnetically controlled axon projection, axonal growth of the iN cells assisted the formation of functional connections with pre-existing primary neurons. Our results suggest magnetic guidance as a strategy for improving neuronal connectivity by spatially guiding the axonal projections of transplanted neural cells for synaptic interactions with the host tissue.
Collapse
Affiliation(s)
- Yoonhee Jin
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jung-Uk Lee
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| | - Eunna Chung
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jin Kim
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Ji-Wook Kim
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Taekyu Oh
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute , Yonsei University , Seoul 03722 , Republic of Korea
| | - Seung-Woo Cho
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute , Yonsei University , Seoul 03722 , Republic of Korea
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute , Yonsei University , Seoul 03722 , Republic of Korea
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| |
Collapse
|
17
|
Gujar MR, Stricker AM, Lundquist EA. RHO-1 and the Rho GEF RHGF-1 interact with UNC-6/Netrin signaling to regulate growth cone protrusion and microtubule organization in Caenorhabditis elegans. PLoS Genet 2019; 15:e1007960. [PMID: 31233487 PMCID: PMC6611649 DOI: 10.1371/journal.pgen.1007960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/05/2019] [Accepted: 05/31/2019] [Indexed: 01/02/2023] Open
Abstract
UNC-6/Netrin is a conserved axon guidance cue that directs growth cone migrations in the dorsal-ventral axis of C. elegans and in the vertebrate spinal cord. UNC-6/Netrin is expressed in ventral cells, and growth cones migrate ventrally toward or dorsally away from UNC-6/Netrin. Recent studies of growth cone behavior during outgrowth in vivo in C. elegans have led to a polarity/protrusion model in directed growth cone migration away from UNC-6/Netrin. In this model, UNC-6/Netrin first polarizes the growth cone via the UNC-5 receptor, leading to dorsally biased protrusion and F-actin accumulation. UNC-6/Netrin then regulates protrusion based on this polarity. The receptor UNC-40/DCC drives protrusion dorsally, away from the UNC-6/Netrin source, and the UNC-5 receptor inhibits protrusion ventrally, near the UNC-6/Netrin source, resulting in dorsal migration. UNC-5 inhibits protrusion in part by excluding microtubules from the growth cone, which are pro-protrusive. Here we report that the RHO-1/RhoA GTPase and its activator GEF RHGF-1 inhibit growth cone protrusion and MT accumulation in growth cones, similar to UNC-5. However, growth cone polarity of protrusion and F-actin were unaffected by RHO-1 and RHGF-1. Thus, RHO-1 signaling acts specifically as a negative regulator of protrusion and MT accumulation, and not polarity. Genetic interactions are consistent with RHO-1 and RHGF-1 acting with UNC-5, as well as with a parallel pathway, to regulate protrusion. The cytoskeletal interacting molecule UNC-33/CRMP was required for RHO-1 activity to inhibit MT accumulation, suggesting that UNC-33/CRMP might act downstream of RHO-1. In sum, these studies describe a new role of RHO-1 and RHGF-1 in regulation of growth cone protrusion by UNC-6/Netrin.
Collapse
Affiliation(s)
- Mahekta R. Gujar
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
| | - Aubrie M. Stricker
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
| | - Erik A. Lundquist
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
- * E-mail:
| |
Collapse
|
18
|
Shao Q, Yang T, Huang H, Majumder T, Khot BA, Khouzani MM, Alarmanazi F, Gore YK, Liu G. Disease-associated mutations in human TUBB3 disturb netrin repulsive signaling. PLoS One 2019; 14:e0218811. [PMID: 31226147 PMCID: PMC6588280 DOI: 10.1371/journal.pone.0218811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/10/2019] [Indexed: 11/28/2022] Open
Abstract
Missense mutations in the human TUBB3 gene cause a variety of neurological disorders associated with defects in axon guidance and neuronal migration, but the underlying molecular mechanisms are not well understood. Recent studies have shown that direct coupling of dynamic TUBB3 in microtubules with netrin receptors is required for netrin-1-mediated axon guidance, and the interaction of netrin-1 repulsive receptor UNC5C with TUBB3 is involved in netrin-1 mediated axonal repulsion. Here, we report that TUBB3 mutations perturb netrin-1/UNC5C repulsive signaling in the developing nervous system. Among twelve mutants reported in previous studies, five of them show significantly reduced interaction with UNC5C in comparison to the wild-type TUBB3. TUBB3 mutants R262C and R62Q exhibit decreased subcellular colocalization with UNC5C in the peripheral area of the growth cone of primary mouse neurons. Netrin-1 reduces the colocalization of UNC5C with wild-type TUBB3, but not TUBB3 mutants R262C or R62Q, in the growth cone. Results from the in vitro cosedimentation assay indicate that netrin-1 inhibits cosedimentation of UNC5C with polymerized microtubules in primary mouse neurons expressing the wild-type TUBB3, but not R262C or R62Q. Expression of either R262C or R62Q not only blocks netrin-1-induced growth cone collapse and axonal repulsion of primary EGL cells in vitro, but also results in axon projections defects of chicken dorsal root ganglion neurons in ovo. Our study reveals that human TUBB3 mutations specifically perturb netrin-1/UNC5C-mediated repulsion.
Collapse
Affiliation(s)
- Qiangqiang Shao
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Tao Yang
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Huai Huang
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Tanushree Majumder
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Bhakti Ajit Khot
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | | | - Farrah Alarmanazi
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Yasmin K. Gore
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
19
|
Rink S, Bendella H, Akkin SM, Manthou M, Grosheva M, Angelov DN. Experimental Studies on Facial Nerve Regeneration. Anat Rec (Hoboken) 2019; 302:1287-1303. [DOI: 10.1002/ar.24123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/09/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral MedicineUniversity of Cologne Cologne Germany
| | - Habib Bendella
- Department of NeurosurgeryUniversity of Witten/Herdecke, Cologne Merheim Medical Center (CMMC) Cologne Germany
| | - Salih Murat Akkin
- Department of Anatomy, School of MedicineSANKO University Gaziantep Turkey
| | - Marilena Manthou
- Department of Histology and EmbryologyAristotle University Thessaloniki Thessaloniki Greece
| | - Maria Grosheva
- Department of Oto‐Rhino‐LaryngologyUniversity of Cologne Cologne Germany
| | | |
Collapse
|
20
|
Kinoshita-Kawada M, Hasegawa H, Hongu T, Yanagi S, Kanaho Y, Masai I, Mishima T, Chen X, Tsuboi Y, Rao Y, Yuasa-Kawada J, Wu JY. A crucial role for Arf6 in the response of commissural axons to Slit. Development 2019; 146:dev172106. [PMID: 30674481 PMCID: PMC6382006 DOI: 10.1242/dev.172106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
A switch in the response of commissural axons to the repellent Slit is crucial for ensuring that they cross the ventral midline only once. However, the underlying mechanisms remain to be elucidated. We have found that both endocytosis and recycling of Robo1 receptor are crucial for modulating Slit sensitivity in vertebrate commissural axons. Robo1 endocytosis and its recycling back to the cell surface maintained the stability of axonal Robo1 during Slit stimulation. We identified Arf6 guanosine triphosphatase and its activators, cytohesins, as previously unknown components in Slit-Robo1 signalling in vertebrate commissural neurons. Slit-Robo1 signalling activated Arf6. The Arf6-deficient mice exhibited marked defects in commissural axon midline crossing. Our data showed that a Robo1 endocytosis-triggered and Arf6-mediated positive-feedback strengthens the Slit response in commissural axons upon their midline crossing. Furthermore, the cytohesin-Arf6 pathways modulated this self-enhancement of the Slit response before and after midline crossing, resulting in a switch that reinforced robust regulation of axon midline crossing. Our study provides insights into endocytic trafficking-mediated mechanisms for spatiotemporally controlled axonal responses and uncovers new players in the midline switch in Slit responsiveness of commissural axons.
Collapse
Affiliation(s)
- Mariko Kinoshita-Kawada
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Department of Neurology, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hiroshi Hasegawa
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Takayasu Mishima
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Xiaoping Chen
- Department of Neurology, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yi Rao
- State Key Laboratory of Biomembrane and Membrane Biology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences, Beijing 100871, China
| | - Junichi Yuasa-Kawada
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Department of Neurology, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582, Japan
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Jane Y Wu
- Department of Neurology, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Abstract
Neuronal connectivity in the cortex is determined by the laminar positioning of neurons. An important determinant of laminar positioning is likely to be the control of leading process behavior during migration, maintaining their tips directed toward the pia. In this study, we provide evidence that pial bone morphogenetic protein (Bmp) signaling regulates cortical neuronal migration during cortical layer formation. Specific disruption of pial Bmp ligands impaired the positioning of early-born neurons in the deep layer; further, cell-autonomous inhibition of Smad4, a core nuclear factor mediating Bmp signaling, in the cortical radial glial cells or postmitotic cortical neurons also produced neuronal migration defects that blurred the cortical layers. We found that leading processes were abnormal and that this was accompanied by excess dephosphorylated cofilin-1, an actin-severing protein, in Smad4 mutant neurons. This suggested that regulation of cofilin-1 might transduce Bmp signaling in the migrating neurons. Ectopic expression of a phosphorylation-defective form of cofilin-1 in the late-born wild-type neurons led them to stall in the deep layer, similar to the Smad4 mutant neurons. Expression of a phosphomimetic variant of cofilin-1 in the Smad4 mutant neurons rescued the migration defects. This suggests that cofilin-1 activity underlies Bmp-mediated cortical neuronal migration. This study shows that cofilin-1 mediates pial Bmp signaling during the positioning of cortical neurons and the formation of cortical layers.
Collapse
Affiliation(s)
- Youngshik Choe
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Korea Brain Research Institute, Dong-gu, Daegu, Korea
| | - Samuel J Pleasure
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Department of Neuroscience, University of California, San Francisco, San Francisco, CA, USA.,Department of Developmental Stem Cell Biology, University of California, San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Razetti A, Medioni C, Malandain G, Besse F, Descombes X. A stochastic framework to model axon interactions within growing neuronal populations. PLoS Comput Biol 2018; 14:e1006627. [PMID: 30507939 PMCID: PMC6292646 DOI: 10.1371/journal.pcbi.1006627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/13/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The confined and crowded environment of developing brains imposes spatial constraints on neuronal cells that have evolved individual and collective strategies to optimize their growth. These include organizing neurons into populations extending their axons to common target territories. How individual axons interact with each other within such populations to optimize innervation is currently unclear and difficult to analyze experimentally in vivo. Here, we developed a stochastic model of 3D axon growth that takes into account spatial environmental constraints, physical interactions between neighboring axons, and branch formation. This general, predictive and robust model, when fed with parameters estimated on real neurons from the Drosophila brain, enabled the study of the mechanistic principles underlying the growth of axonal populations. First, it provided a novel explanation for the diversity of growth and branching patterns observed in vivo within populations of genetically identical neurons. Second, it uncovered that axon branching could be a strategy optimizing the overall growth of axons competing with others in contexts of high axonal density. The flexibility of this framework will make it possible to investigate the rules underlying axon growth and regeneration in the context of various neuronal populations. Understanding how neuronal cells establish complex circuits with specific functions within a developing brain is a major current challenge. Over the last past years, enormous progress has been done to precisely resolve brain anatomy and to dissect the mechanisms controlling the establishment of precise neuronal networks. However, due to the extreme complexity of the brain, it is still experimentally difficult to investigate in vivo how neurons interact with each other and with their physical environments to innervate target territories during development. Here, we have developed a framework that integrates a dynamic 3D mathematical model of single axonal growth with parameters estimated from neurons grown in vivo and simulations of entire populations of growing axons. The emergent properties of our model enable the study of the mechanistic principles underlying the growth of axonal population in developing brains. Specifically, our results highlight the impact of mechanical interactions on both individual and collective axon growth, and uncover how branching regulate this process.
Collapse
|
23
|
Xu Z, Fang P, Xu B, Lu Y, Xiong J, Gao F, Wang X, Fan J, Shi P. High-throughput three-dimensional chemotactic assays reveal steepness-dependent complexity in neuronal sensation to molecular gradients. Nat Commun 2018; 9:4745. [PMID: 30420609 PMCID: PMC6232128 DOI: 10.1038/s41467-018-07186-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/19/2018] [Indexed: 01/28/2023] Open
Abstract
Many cellular programs of neural development are under combinatorial regulation by different chemoattractive or chemorepulsive factors. Here, we describe a microfluidic platform that utilizes well-controlled three-dimensional (3D) diffusion to generate molecular gradients of varied steepness in a large array of hydrogel cylinders, allowing high-throughput 3D chemotactic assays for mechanistic dissection of steepness-dependent neuronal chemotaxis. Using this platform, we examine neuronal sensitivity to the steepness of gradient composed of netrin-1, nerve growth factor, or semaphorin3A (Sema3A) proteins, and reveal dramatic diversity and complexity in the associated chemotactic regulation of neuronal development. Particularly for Sema3A, we find that serine/threonine kinase-11 and glycogen synthase kinase-3 signaling pathways are differentially involved in steepness-dependent chemotactic regulation of coordinated neurite repellence and neuronal migration. These results provide insights to the critical role of gradient steepness in neuronal chemotaxis, and also prove the technique as an expandable platform for studying other chemoresponsive cellular systems.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, 999077, China
| | - Peilin Fang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, 999077, China
| | - Bingzhe Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, 999077, China
| | - Yufeng Lu
- Department of Material Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, 999077, China
| | - Jinghui Xiong
- Department of Material Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, 999077, China
| | - Feng Gao
- Department of Biomedical Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Xin Wang
- Department of Biomedical Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, 518000, Shenzhen, China
| | - Jun Fan
- Department of Material Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, 999077, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, 999077, China.
- Shenzhen Research Institute, City University of Hong Kong, 518000, Shenzhen, China.
| |
Collapse
|
24
|
Yang T, Huang H, Shao Q, Yee S, Majumder T, Liu G. miR-92 Suppresses Robo1 Translation to Modulate Slit Sensitivity in Commissural Axon Guidance. Cell Rep 2018; 24:2694-2708.e6. [PMID: 30184503 DOI: 10.1016/j.celrep.2018.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023] Open
Abstract
Temporospatial regulation of guidance signaling is essential for axon outgrowth and pathfinding in the developing nervous system. Regulation of Robo1 levels in commissural neurons modulates Slit sensitivity facilitating proper axon guidance. The mechanisms underlying this regulation in the vertebrate nervous system are not well understood. Here, we report that miR-92, a highly conserved microRNA (miRNA), regulates chicken Robo1 expression in commissural neurons by binding to the 3' untranslated region (3' UTR) of Robo1 mRNA. miR-92 and Robo1 are differentially expressed in the developing spinal cord. miR-92 interacts with the Robo1 3'UTR to cause translational repression, but not mRNA degradation. Disruption of the miR-92/Robo1 3' UTR interaction induces premature responsiveness to Slit2 repulsion of precrossing commissural axons (CAs) in vitro and causes CA projection defects in vivo. These results indicate that miR-92 represses Robo1 expression thereby regulating Slit sensitivity to control CA projection and midline crossing.
Collapse
Affiliation(s)
- Tao Yang
- Department of Biological Sciences, University of Toledo, M.S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Huai Huang
- Department of Biological Sciences, University of Toledo, M.S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Qiangqiang Shao
- Department of Biological Sciences, University of Toledo, M.S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Shirley Yee
- Department of Biological Sciences, University of Toledo, M.S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Tanushree Majumder
- Department of Biological Sciences, University of Toledo, M.S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, M.S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA.
| |
Collapse
|
25
|
Control of neurite growth and guidance by an inhibitory cell-body signal. PLoS Comput Biol 2018; 14:e1006218. [PMID: 29927943 PMCID: PMC6013027 DOI: 10.1371/journal.pcbi.1006218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/21/2018] [Indexed: 11/19/2022] Open
Abstract
The development of a functional nervous system requires tight control of neurite growth and guidance by extracellular chemical cues. Neurite growth is astonishingly sensitive to shallow concentration gradients, but a widely observed feature of both growth and guidance regulation, with important consequences for development and regeneration, is that both are only elicited over the same relatively narrow range of concentrations. Here we show that all these phenomena can be explained within one theoretical framework. We first test long-standing explanations for the suppression of the trophic effects of nerve growth factor at high concentrations, and find they are contradicted by experiment. Instead we propose a new hypothesis involving inhibitory signalling among the cell bodies, and then extend this hypothesis to show how both growth and guidance can be understood in terms of a common underlying signalling mechanism. This new model for the first time unifies several key features of neurite growth regulation, quantitatively explains many aspects of experimental data, and makes new predictions about unknown details of developmental signalling.
Collapse
|
26
|
Slit2-Robo2 signaling modulates the fibrogenic activity and migration of hepatic stellate cells. Life Sci 2018; 203:39-47. [PMID: 29660433 DOI: 10.1016/j.lfs.2018.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/28/2018] [Accepted: 04/12/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIM Slit/Robo signaling was originally identified as a repulsive guidance cue in regulating axon branching and neuronal migration. Hepatic stellate cells (HSCs) are the key fibrogenic cells in the liver, which are migratory when activated, and express neural crest markers. The aim of the present study was to investigate the functional significance of Slit/Robo signaling in liver fibrogenesis and in HSCs. KEY FINDINGS By transcriptomic analysis it was found that axon guidance signaling pathways were significantly upregulated in both diethylnitrosamine (DEN) and thioacetamide (TAA)-induced experimental liver fibrosis. The up-regulation of the ligand Slit2 and membrane receptor Robo2 genes within this pathway was further validated in TAA-induced fibrotic livers. By immunofluorescence staining, Robo2 was localized in fibrotic septa of fibrotic liver and on the surface of HSCs. By Western blot analysis, recombinant Slit2 (rSlit2) was found to promote fibrogenic protein expression in JS1 cells, an immortalized mouse HSC line, while activating PI3K/Akt signaling pathway. This effect was abrogated by LY294002, a PI3K/Akt pathway inhibitor. In addition, rSlit2 stimulation markedly inhibited JS1 cells migration in transwell migration assays, which was abrogated by small interfering RNA (siRNA) knockdown of Robo2 in the cells. SIGNIFICANCE The present study provides evidence that Slit2/Robo2 signaling mediates the pathogenesis of hepatic fibrogenesis and regulates HSCs biology, thus providing potential markers for HSCs, and therapeutic and diagnostic target toward liver fibrosis.
Collapse
|
27
|
Huang H, Yang T, Shao Q, Majumder T, Mell K, Liu G. Human TUBB3 Mutations Disrupt Netrin Attractive Signaling. Neuroscience 2018; 374:155-171. [PMID: 29382549 DOI: 10.1016/j.neuroscience.2018.01.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Heterozygous missense mutations in human TUBB3 gene result in a spectrum of brain malformations associated with defects in axon guidance, neuronal migration and differentiation. However, the molecular mechanisms underlying mutation-related axon guidance abnormalities are unclear. Recent studies have shown that netrin-1, a canonical guidance cue, induced the interaction of TUBB3 with the netrin receptor deleted in colorectal cancer (DCC). Furthermore, TUBB3 is required for netrin-1-induced axon outgrowth, branching and pathfinding. Here, we provide evidence that TUBB3 mutations impair netrin/DCC signaling in the developing nervous system. The interaction of DCC with most TUBB3 mutants (eight out of twelve) is significantly reduced compared to the wild-type TUBB3. TUBB3 mutants R262C and A302V exhibit decreased subcellular colocalization with DCC in the growth cones of primary neurons. Netrin-1 increases the interaction of endogenous DCC with wild-type human TUBB3, but not R262C or A302V, in primary neurons. Netrin-1 also increases co-sedimentation of DCC with polymerized microtubules (MTs) in primary neurons expressing the wild-type TUBB3, but not R262C or A302V. Expression of either R262C or A302V not only suppresses netrin-1-induced neurite outgrowth, branching and attraction in vitro, but also causes defects in spinal cord commissural axon (CA) projection and pathfinding in ovo. Our study reveals that missense TUBB3 mutations specifically disrupt netrin/DCC-mediated attractive signaling.
Collapse
Affiliation(s)
- Huai Huang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Tao Yang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Qiangqiang Shao
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Tanushree Majumder
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Kristopher Mell
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA.
| |
Collapse
|
28
|
Zhang M, Zhou Q, Luo Y, Nguyen T, Rosenblatt MI, Guaiquil VH. Semaphorin3A induces nerve regeneration in the adult cornea-a switch from its repulsive role in development. PLoS One 2018; 13:e0191962. [PMID: 29370308 PMCID: PMC5785010 DOI: 10.1371/journal.pone.0191962] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
The peripheral sensory nerves that innervate the cornea can be easily damaged by trauma, surgery, infection or diabetes. Several growth factors and axon guidance molecules, such as Semaphorin3A (Sema3A) are upregulated upon cornea injury. Nerves can regenerate after injury but do not recover their original density and patterning. Sema3A is a well known axon guidance and growth cone repellent protein during development, however its role in adult cornea nerve regeneration remains undetermined. Here we investigated the neuro-regenerative potential of Sema3A on adult peripheral nervous system neurons such as those that innervate the cornea. First, we examined the gene expression profile of the Semaphorin class 3 family members and found that all are expressed in the cornea. However, upon cornea injury there is a fast increase in Sema3A expression. We then corroborated that Sema3A totally abolished the growth promoting effect of nerve growth factor (NGF) on embryonic neurons and observed signs of growth cone collapse and axonal retraction after 30 min of Sema3A addition. However, in adult isolated trigeminal ganglia or dorsal root ganglia neurons, Sema3A did not inhibited the NGF-induced neuronal growth. Furthermore, adult neurons treated with Sema3A alone produced similar neuronal growth to cells treated with NGF and the length of the neurites and branching was comparable between both treatments. These effects were replicated in vivo, where thy1-YFP neurofluorescent mice subjected to cornea epithelium debridement and receiving intrastromal pellet implantation containing Sema3A showed increased corneal nerve regeneration than those receiving pellets with vehicle. In adult PNS neurons, Sema3A is a potent inducer of neuronal growth in vitro and cornea nerve regeneration in vivo. Our data indicates a functional switch for the role of Sema3A in PNS neurons where the well-described repulsive role during development changes to a growth promoting effect during adulthood. The high expression of Sema3A in the normal and injured adult corneas could be related to its role as a growth factor.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Brafman D, Willert K. Wnt/β-catenin signaling during early vertebrate neural development. Dev Neurobiol 2017; 77:1239-1259. [PMID: 28799266 DOI: 10.1002/dneu.22517] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The vertebrate central nervous system (CNS) is comprised of vast number of distinct cell types arranged in a highly organized manner. This high degree of complexity is achieved by cellular communication, including direct cell-cell contact, cell-matrix interactions, and cell-growth factor signaling. Among the several developmental signals controlling the development of the CNS, Wnt proteins have emerged as particularly critical and, hence, have captivated the attention of many researchers. With Wnts' evolutionarily conserved function as primordial symmetry breaking signals, these proteins and their downstream effects are responsible for simultaneously establishing cellular diversity and tissue organization. With their expansive repertoire of secreted agonists and antagonists, cell surface receptors, signaling cascades and downstream biological effects, Wnts are ideally suited to control the complex processes underlying vertebrate neural development. In this review, we will describe the mechanisms by which Wnts exert their potent effects on cells and tissues and highlight the many roles of Wnt signaling during neural development, starting from the initial induction of the neural plate, the subsequent patterning along the embryonic axes, to the intricately organized structure of the CNS. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1239-1259, 2017.
Collapse
Affiliation(s)
- David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287
| | - Karl Willert
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, 92093-0695
| |
Collapse
|
30
|
Uncoupling of UNC5C with Polymerized TUBB3 in Microtubules Mediates Netrin-1 Repulsion. J Neurosci 2017; 37:5620-5633. [PMID: 28483977 DOI: 10.1523/jneurosci.2617-16.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 11/21/2022] Open
Abstract
Modulation of microtubule (MT) dynamics is a key event of cytoskeleton remodeling in the growth cone (GC) during axon outgrowth and pathfinding. Our previous studies have shown that the direct interaction of netrin receptor DCC and DSCAM with polymerized TUBB3, a neuron-specific MT subunit in the brain, is required for netrin-1-mediated axon outgrowth, branching, and attraction. Here, we show that uncoupling of polymerized TUBB3 with netrin-1-repulsive receptor UNC5C is involved in netrin-1-mediated axonal repulsion. TUBB3 directly interacted with UNC5C and partially colocalized with UNC5C in the peripheral area of the GC of primary neurons from the cerebellar external granule layer of P2 mouse pups of both sexes. Netrin-1 reduced this interaction as well as the colocalization of UNC5C and TUBB3 in the GC. Results from the in vitro cosedimentation assay indicated that UNC5C interacted with polymerized TUBB3 in MTs and netrin-1 decreased this interaction. Knockdown of either TUBB3 or UNC5C blocked netrin-1-promoted axon repulsion in vitro and caused defects in axon projection of DRG toward the spinal cord in vivo Furthermore, live-cell imaging of end-binding protein 3 tagged with EGFP (EB3-GFP) in primary external granule layer cells showed that netrin-1 differentially increased MT dynamics in the GC with more MT growth in the distal than the proximal region of the GC during repulsion, and knockdown of either UNC5C or TUBB3 abolished the netrin-1 effect. Together, these data indicate that the disengagement of UNC5C with polymerized TUBB3 plays an essential role in netrin-1/UNC5C-mediated axon repulsion.SIGNIFICANCE STATEMENT Proper regulation of microtubule (MT) dynamics in the growth cone plays an important role in axon guidance. However, whether guidance cues modulate MT dynamics directly or indirectly is unclear. Here, we report that dissociation of UNC5C and polymerized TUBB3, the highly dynamic β-tubulin isoform in neurons, is essential for netrin-1/UNC5C-promoted axon repulsion. These results not only provide a working model of direct modulation of MTs by guidance cues in growth cone navigation but also help us to understand molecular mechanisms underlying developmental brain disorders associated with TUBB3 mutations.
Collapse
|
31
|
Ulc A, Gottschling C, Schäfer I, Wegrzyn D, van Leeuwen S, Luft V, Reinhard J, Faissner A. Involvement of the guanine nucleotide exchange factor Vav3 in central nervous system development and plasticity. Biol Chem 2017; 398:663-675. [DOI: 10.1515/hsz-2016-0275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Small GTP-hydrolyzing enzymes (GTPases) of the RhoA family play manifold roles in cell biology and are regulated by upstream guanine nucleotide exchange factors (GEFs). Herein, we focus on the GEFs of the Vav subfamily. Vav1 was originally described as a proto-oncogene of the hematopoietic lineage. The GEFs Vav2 and Vav3 are more broadly expressed in various tissues. In particular, the GEF Vav3 may play important roles in the developing nervous system during the differentiation of neural stem cells into the major lineages, namely neurons, oligodendrocytes and astrocytes. We discuss its putative regulatory roles for progenitor differentiation in the developing retina, polarization of neurons and formation of synapses, migration of oligodendrocyte progenitors and establishment of myelin sheaths. We propose that Vav3 mediates the response of various neural cell types to environmental cues.
Collapse
|
32
|
Mulligan KA, Cheyette BNR. Neurodevelopmental Perspectives on Wnt Signaling in Psychiatry. MOLECULAR NEUROPSYCHIATRY 2017; 2:219-246. [PMID: 28277568 DOI: 10.1159/000453266] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that Wnt signaling is relevant to pathophysiology of diverse mental illnesses including schizophrenia, bipolar disorder, and autism spectrum disorder. In the 35 years since Wnt ligands were first described, animal studies have richly explored how downstream Wnt signaling pathways affect an array of neurodevelopmental processes and how their disruption can lead to both neurological and behavioral phenotypes. Recently, human induced pluripotent stem cell (hiPSC) models have begun to contribute to this literature while pushing it in increasingly translational directions. Simultaneously, large-scale human genomic studies are providing evidence that sequence variation in Wnt signal pathway genes contributes to pathogenesis in several psychiatric disorders. This article reviews neurodevelopmental and postneurodevelopmental functions of Wnt signaling, highlighting mechanisms, whereby its disruption might contribute to psychiatric illness, and then reviews the most reliable recent genetic evidence supporting that mutations in Wnt pathway genes contribute to psychiatric illness. We are proponents of the notion that studies in animal and hiPSC models informed by the human genetic data combined with the deep knowledge base and tool kits generated over the last several decades of basic neurodevelopmental research will yield near-term tangible advances in neuropsychiatry.
Collapse
Affiliation(s)
- Kimberly A Mulligan
- Department of Biological Sciences, California State University, Sacramento, CA, USA
| | - Benjamin N R Cheyette
- Department of Psychiatry, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
Marko TA, Shamsan GA, Edwards EN, Hazelton PE, Rathe SK, Cornax I, Overn PR, Varshney J, Diessner BJ, Moriarity BS, O'Sullivan MG, Odde DJ, Largaespada DA. Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma. Sci Rep 2016; 6:39059. [PMID: 27966608 PMCID: PMC5155223 DOI: 10.1038/srep39059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/16/2016] [Indexed: 11/15/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, with metastatic disease responsible for most treatment failure and patient death. A forward genetic screen utilizing Sleeping Beauty mutagenesis in mice previously identified potential genetic drivers of osteosarcoma metastasis, including Slit-Robo GTPase-Activating Protein 2 (Srgap2). This study evaluates the potential role of SRGAP2 in metastases-associated properties of osteosarcoma cell lines through Srgap2 knockout via the CRISPR/Cas9 nuclease system and conditional overexpression in the murine osteosarcoma cell lines K12 and K7M2. Proliferation, migration, and anchorage independent growth were evaluated. RNA sequencing and immunohistochemistry of human osteosarcoma tissue samples were used to further evaluate the potential role of the Slit-Robo pathway in osteosarcoma. The effects of Srgap2 expression modulation in the murine OS cell lines support the hypothesis that SRGAP2 may have a role as a suppressor of metastases in osteosarcoma. Additionally, SRGAP2 and other genes in the Slit-Robo pathway have altered transcript levels in a subset of mouse and human osteosarcoma, and SRGAP2 protein expression is reduced or absent in a subset of primary tumor samples. SRGAP2 and other axon guidance proteins likely play a role in osteosarcoma metastasis, with loss of SRGAP2 potentially contributing to a more aggressive phenotype.
Collapse
Affiliation(s)
- Tracy A Marko
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering University of Minnesota, Minneapolis, MN, USA
| | | | - Paige E Hazelton
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | - Susan K Rathe
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | - Ingrid Cornax
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA
| | - Paula R Overn
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA
| | - Jyotika Varshney
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | | | - Branden S Moriarity
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - M Gerard O'Sullivan
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA.,College of Veterinary Medicine, Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David J Odde
- Department of Biomedical Engineering University of Minnesota, Minneapolis, MN, USA
| | - David A Largaespada
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
34
|
Fan X, Yang H, Kumar S, Tumelty KE, Pisarek-Horowitz A, Rasouly HM, Sharma R, Chan S, Tyminski E, Shamashkin M, Belghasem M, Henderson JM, Coyle AJ, Salant DJ, Berasi SP, Lu W. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight 2016; 1:e86934. [PMID: 27882344 DOI: 10.1172/jci.insight.86934] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss.
Collapse
Affiliation(s)
- Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Hongying Yang
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Sudhir Kumar
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Kathleen E Tumelty
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Anna Pisarek-Horowitz
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Richa Sharma
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Stefanie Chan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Edyta Tyminski
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Michael Shamashkin
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Anthony J Coyle
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - David J Salant
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Stephen P Berasi
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Yu Y, Liu M, Ng TT, Huang F, Nie Y, Wang R, Yao ZP, Li Z, Xia J. PDZ-Reactive Peptide Activates Ephrin-B Reverse Signaling and Inhibits Neuronal Chemotaxis. ACS Chem Biol 2016; 11:149-58. [PMID: 26524220 DOI: 10.1021/acschembio.5b00889] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Intracellular reactions on nonenzymatic proteins that activate cellular signals are rarely found. We report one example here that a designed peptide derivative undergoes a nucleophilic reaction specifically with a cytosolic PDZ protein inside cells. This reaction led to the activation of ephrin-B reverse signaling, which subsequently inhibited SDF-1 induced neuronal chemotaxis of human neuroblastoma cells and mouse cerebellar granule neurons. Our work provides direct evidence that PDZ-RGS3 bridges ephrin-B reverse signaling and SDF-1 induced G protein signaling for the first time.
Collapse
Affiliation(s)
- Yongsheng Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Miao Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz Tsun Ng
- Food Safety and Technology Research Centre, State Key Laboratory
of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong SAR, China
| | - Feng Huang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yunyu Nie
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhong-Ping Yao
- Food Safety and Technology Research Centre, State Key Laboratory
of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong SAR, China
| | - Zigang Li
- Laboratory of Chemical
Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
36
|
Sherchan P, Huang L, Wang Y, Akyol O, Tang J, Zhang JH. Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model. Neurobiol Dis 2016; 85:164-173. [PMID: 26550694 PMCID: PMC4688150 DOI: 10.1016/j.nbd.2015.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Peripheral immune cell infiltration to the brain tissue at the perisurgical site can promote neuroinflammation after surgical brain injury (SBI). Slit2, an extracellular matrix protein, has been reported to reduce leukocyte migration. This study evaluated the effect of recombinant Slit2 and the role of its receptor roundabout1 (Robo1) and its downstream mediator Slit-Robo GTPase activating protein 1 (srGAP1)-Cdc42 on peripheral immune cell infiltration after SBI in a rat model. METHODS One hundred and fifty-three adult male Sprague-Dawley rats (280-350 g) were used. Partial resection of right frontal lobe was performed to induce SBI. Slit2 siRNA was administered by intracerebroventricular injection 24h before SBI. Recombinant Slit2 was injected intraperitoneally 1h before SBI. Recombinant Robo1 used as a decoy receptor was co-administered with recombinant Slit2. srGAP1 siRNA was administered by intracerebroventricular injection 24h before SBI. Post-assessments included brain water content measurement, neurological tests, ELISA, Western blot, immunohistochemistry, and Cdc42 activity assay. RESULTS Endogenous Slit2 was increased after SBI. Robo1 was expressed by peripheral immune cells. Endogenous Slit2 knockdown worsened brain edema after SBI. Recombinant Slit2 administration reduced brain edema, neurological deficits, and pro-inflammatory cytokines after SBI. Recombinant Slit2 reduced peripheral immune cell markers cluster of differentiation 45 (CD45) and myeloperoxidase (MPO), as well as Cdc42 activity in the perisurgical brain tissue which was reversed by recombinant Robo1 co-administration and srGAP1 siRNA. CONCLUSIONS Recombinant Slit2 improved outcomes by reducing neuroinflammation after SBI, possibly by decreasing peripheral immune cell infiltration to the perisurgical site through Robo1-srGAP1 mediated inhibition of Cdc42 activity. These results suggest that Slit2 may be beneficial to reduce SBI-induced neuroinflammation.
Collapse
Affiliation(s)
- Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A.; Department of Anesthesiology, Loma Linda University, CA 92354, U.S.A
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A.; Department of Anesthesiology, Loma Linda University, CA 92354, U.S.A.; Department of Neurosurgery, Loma Linda University, CA 92354, U.S.A..
| |
Collapse
|
37
|
DeGeer J, Kaplan A, Mattar P, Morabito M, Stochaj U, Kennedy TE, Debant A, Cayouette M, Fournier AE, Lamarche-Vane N. Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1. J Cell Biol 2015; 210:817-32. [PMID: 26323693 PMCID: PMC4555821 DOI: 10.1083/jcb.201505084] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1-induced axon outgrowth and guidance. Here, we identify the molecular chaperone heat shock cognate protein 70 (Hsc70) as a novel Trio regulator. Hsc70 dynamically associated with the N-terminal region and Rac1 GEF domain of Trio. Whereas Hsc70 expression supported Trio-dependent Rac1 activation, adenosine triphosphatase-deficient Hsc70 (D10N) abrogated Trio Rac1 GEF activity and netrin-1-induced Rac1 activation. Hsc70 was required for netrin-1-mediated axon growth and attraction in vitro, whereas Hsc70 activity supported callosal projections and radial neuronal migration in the embryonic neocortex. These findings demonstrate that Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.
Collapse
Affiliation(s)
- Jonathan DeGeer
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Andrew Kaplan
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Morgane Morabito
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Timothy E Kennedy
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Anne Debant
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, UMR5237, University of Montpellier, Montpellier 34293, France
| | - Michel Cayouette
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada Department of Medicine, Université de Montréal, Montreal, Quubec H3T 1J4, Canada
| | - Alyson E Fournier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Nathalie Lamarche-Vane
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
38
|
Li J, Xing H, Jiang G, Su Z, Wu Y, Zhang Y, Guo S. Increased Expression of Rac1 in Epilepsy Patients and Animal Models. Neurochem Res 2015; 41:836-43. [PMID: 26603293 DOI: 10.1007/s11064-015-1759-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022]
Abstract
The mechanisms of epilepsy remain incompletely understood. Rac1 (ras-related C3 botulinum toxin substrate 1) belongs to the Rho family of small GTPases. Rac1 play important roles in cytoskeleton rearrangement and neuronal synaptic plasticity, which had also been implicated in epilepsy. However, little is known regarding the expression of Rac1 in the epileptic brain or whether Rac1-targeted interventions affect the progression of epilepsy. The aim of this study was to investigate the expression profile of Rac1 in brain tissues from patients suffering from temporal lobe epilepsy (TLE) and experimental epileptic rats and determine the possible role of Rac1 in epilepsy. We demonstrated that the expression of Rac1 is significantly increased in TLE patients and in lithium-pilocarpine epilepsy model animals compared to the corresponding controls. Rac1 inhibitor NSC23766 reduced the severity of status epilepticus during the acute stage in a lithium-pilocarpine animal model. Consistent with these results, the latent period of a PTZ kindling animal model also increased. Our results demonstrated that the increased expression of Rac1 may contribute to pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China.
| | - Hongxia Xing
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical University, Nanchong, 637000, Sichuan Province, China
| | - Zhou Su
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Yuqing Wu
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Yi Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Shuangxi Guo
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| |
Collapse
|
39
|
Füllgrabe A, Joost S, Are A, Jacob T, Sivan U, Haegebarth A, Linnarsson S, Simons BD, Clevers H, Toftgård R, Kasper M. Dynamics of Lgr6⁺ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis. Stem Cell Reports 2015; 5:843-855. [PMID: 26607954 PMCID: PMC4649262 DOI: 10.1016/j.stemcr.2015.09.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023] Open
Abstract
The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6⁺ -expressing basal cells in the HF isthmus, SG, and IFE.We show that these Lgr6⁺ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6⁺ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6⁺ and Lgr6⁺ cells did not reveal a distinct Lgr6⁺ -associated gene expression signature, raising the question of whether Lgr6⁺ expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6⁺ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments.
Collapse
Affiliation(s)
- Anja Füllgrabe
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Simon Joost
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Alexandra Are
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Tina Jacob
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Unnikrishnan Sivan
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Andrea Haegebarth
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Sten Linnarsson
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Hans Clevers
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Rune Toftgård
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Maria Kasper
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden.
| |
Collapse
|
40
|
Huang H, Shao Q, Qu C, Yang T, Dwyer T, Liu G. Coordinated interaction of Down syndrome cell adhesion molecule and deleted in colorectal cancer with dynamic TUBB3 mediates Netrin-1-induced axon branching. Neuroscience 2015; 293:109-22. [PMID: 25754961 DOI: 10.1016/j.neuroscience.2015.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Modulation of actin and microtubule (MT) dynamics in neurons is implicated in guidance cue-dependent axon outgrowth, branching and pathfinding. Although the role of MTs in axon guidance has been well known, how extracellular guidance signals engage MT behavior in axon branching remains unclear. Previously, we have shown that TUBB3, the most dynamic β-tubulin isoform in neurons, directly binds to deleted in colorectal cancer (DCC) to regulate MT dynamics in Netrin-1-mediated axon guidance. Here, we report that TUBB3 directly interacted with another Netrin-1 receptor Down syndrome cell adhesion molecule (DSCAM) and Netrin-1 increased this interaction in primary neurons. MT dynamics were required for Netrin-1-promoted association of DSCAM with TUBB3. Knockdown of either DSCAM or DCC or addition of a function blocking anti-DCC antibody mutually blocked Netrin-1-induced interactions, suggesting that DSCAM interdependently coordinated with DCC in Netrin-1-induced binding to TUBB3. Both DSCAM and DCC were partially colocalized with TUBB3 in the axon branch and the axon branching point of primary neurons and Netrin-1 increased these colocalizations. Netrin-1 induced the interaction of endogenous DSCAM with polymerized TUBB3 in primary neurons and Src family kinases (SFKs) were required for regulating this binding. Knockdown of DSCAM only, DCC only or both was sufficient to block Netrin-1-induced axon branching of E15 mouse cortical neurons. Knocking down TUBB3 inhibited Netrin-1 induced axon branching as well. These results suggest that DSCAM collaborates with DCC to regulate MT dynamics via direct binding to dynamic TUBB3 in Netrin-1-induced axon branching.
Collapse
Affiliation(s)
- H Huang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Q Shao
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - C Qu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - T Yang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - T Dwyer
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - G Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
| |
Collapse
|
41
|
Li W, Tang QY, Jadhav AD, Narang A, Qian WX, Shi P, Pang SW. Large-scale topographical screen for investigation of physical neural-guidance cues. Sci Rep 2015; 5:8644. [PMID: 25728549 DOI: 10.1038/srep08644] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/29/2015] [Indexed: 12/23/2022] Open
Abstract
A combinatorial approach was used to present primary neurons with a large library of topographical features in the form of micropatterned substrate for high-throughput screening of physical neural-guidance cues that can effectively promote different aspects of neuronal development, including axon and dendritic outgrowth. Notably, the neuronal-guidance capability of specific features was automatically identified using a customized image processing software, thus significantly increasing the screening throughput with minimal subjective bias. Our results indicate that the anisotropic topographies promote axonal and in some cases dendritic extension relative to the isotropic topographies, while dendritic branching showed preference to plain substrates over the microscale features. The results from this work can be readily applied towards engineering novel biomaterials with precise surface topography that can serve as guidance conduits for neuro-regenerative applications. This novel topographical screening strategy combined with the automated processing capability can also be used for high-throughput screening of chemical or genetic regulatory factors in primary neurons.
Collapse
Affiliation(s)
- Wei Li
- 1] Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qing Yuan Tang
- 1] Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Amol D Jadhav
- 1] Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ankit Narang
- 1] Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Wei Xian Qian
- 1] Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China [3] School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Peng Shi
- 1] Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China [3] Shenzhen Research Institute, City University of Hong Kong Shenzhen, Guangdong, China
| | - Stella W Pang
- 1] Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
42
|
Deming PB, Campbell SL, Stone JB, Rivard RL, Mercier AL, Howe AK. Anchoring of protein kinase A by ERM (ezrin-radixin-moesin) proteins is required for proper netrin signaling through DCC (deleted in colorectal cancer). J Biol Chem 2015; 290:5783-96. [PMID: 25575591 DOI: 10.1074/jbc.m114.628644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Netrin-1, acting through its principal receptor DCC (deleted in colorectal cancer), serves as an axon guidance cue during neural development and also contributes to vascular morphogenesis, epithelial migration, and the pathogenesis of some tumors. Several lines of evidence suggest that netrin-DCC signaling can regulate and be regulated by the cAMP-dependent protein kinase, PKA, although the molecular details of this relationship are poorly understood. Specificity in PKA signaling is often achieved through differential subcellular localization of the enzyme by interaction with protein kinase A anchoring proteins (AKAPs). Here, we show that AKAP function is required for DCC-mediated activation of PKA and phosphorylation of cytoskeletal regulatory proteins of the Mena/VASP (vasodilator-stimulated phosphoprotein) family. Moreover, we show that DCC and PKA physically interact and that this association is mediated by the ezrin-radixin-moesin (ERM) family of plasma membrane-actin cytoskeleton cross-linking proteins. Silencing of ERM protein expression inhibits DCC-PKA interaction, DCC-mediated PKA activation, and phosphorylation of Mena/VASP proteins as well as growth cone morphology and neurite outgrowth. Finally, although expression of wild-type radixin partially rescued growth cone morphology and tropism toward netrin in ERM-knockdown cells, expression of an AKAP-deficient mutant of radixin did not fully rescue growth cone morphology and switched netrin tropism from attraction to repulsion. These data support a model in which ERM-mediated anchoring of PKA activity to DCC is required for proper netrin/DCC-mediated signaling.
Collapse
Affiliation(s)
- Paula B Deming
- From the Department of Medical Laboratory and Radiation Sciences, the University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington Vermont 05405 and
| | - Shirley L Campbell
- the University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington Vermont 05405 and Department of Pharmacology, and the Department of Pharmacology, Université de Montréal, Montréal, Quebec H3C3J7 Canada
| | | | | | | | - Alan K Howe
- the University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington Vermont 05405 and Department of Pharmacology, and
| |
Collapse
|
43
|
Cellular expression profile of RhoA in rats with spinal cord injury. ACTA ACUST UNITED AC 2014; 34:657-662. [DOI: 10.1007/s11596-014-1333-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/25/2014] [Indexed: 10/24/2022]
|
44
|
Kupari J, Airaksinen MS. Different requirements for GFRα2-signaling in three populations of cutaneous sensory neurons. PLoS One 2014; 9:e104764. [PMID: 25111710 PMCID: PMC4128720 DOI: 10.1371/journal.pone.0104764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023] Open
Abstract
Many primary sensory neurons in mouse dorsal root ganglia (DRG) express one or several GFRα’s, the ligand-binding receptors of the GDNF family, and their common signaling receptor Ret. GFRα2, the principal receptor for neurturin, is expressed in most of the small nonpeptidergic DRG neurons, but also in some large DRG neurons that start to express Ret earlier. Previously, GFRα2 has been shown to be crucial for the soma size of small nonpeptidergic nociceptors and for their target innervation of glabrous epidermis. However, little is known about this receptor in other Ret-expressing DRG neuron populations. Here we have investigated two populations of Ret-positive low-threshold mechanoreceptors that innervate different types of hair follicles on mouse back skin: the small C-LTMRs and the large Aβ-LTMRs. Using GFRα2-KO mice and immunohistochemistry we found that, similar to the nonpeptidergic nociceptors, GFRα2 controls the cell size but not the survival of both C-LTMRs and Aβ-LTMRs. In contrast to the nonpeptidergic neurons, GFRα2 is not required for the target innervation of C-LTMRs and Aβ-LTMRs in the back skin. These results suggest that different factors drive target innervation in these three populations of neurons. In addition, the observation that the large Ret-positive DRG neurons lack GFRα2 immunoreactivity in mature animals suggests that these neurons switch their GFRα signaling pathways during postnatal development.
Collapse
Affiliation(s)
- Jussi Kupari
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Matti S. Airaksinen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
45
|
Liu G, Dwyer T. Microtubule dynamics in axon guidance. Neurosci Bull 2014; 30:569-83. [PMID: 24968808 DOI: 10.1007/s12264-014-1444-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/10/2014] [Indexed: 12/18/2022] Open
Abstract
Precise modulation of the cytoskeleton is involved in a variety of cellular processes including cell division, migration, polarity, and adhesion. In developing post-mitotic neurons, extracellular guidance cues not only trigger signaling cascades that act at a distance to indirectly regulate microtubule distribution, and assembly and disassembly in the growth cone, but also directly modulate microtubule stability and dynamics through coupling of guidance receptors with microtubules to control growth-cone turning. Microtubule-associated proteins including classical microtubule-associated proteins and microtubule plus-end tracking proteins are required for modulating microtubule dynamics to influence growth-cone steering. Multiple key signaling components, such as calcium, small GTPases, glycogen synthase kinase-3β, and c-Jun N-terminal kinase, link upstream signal cascades to microtubule stability and dynamics in the growth cone to control axon outgrowth and projection. Understanding the functions and regulation of microtubule dynamics in the growth cone provides new insights into the molecular mechanisms of axon guidance.
Collapse
Affiliation(s)
- Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA,
| | | |
Collapse
|
46
|
Srinivasan P, Zervantonakis IK, Kothapalli CR. Synergistic effects of 3D ECM and chemogradients on neurite outgrowth and guidance: a simple modeling and microfluidic framework. PLoS One 2014; 9:e99640. [PMID: 24914812 PMCID: PMC4051856 DOI: 10.1371/journal.pone.0099640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/17/2014] [Indexed: 12/29/2022] Open
Abstract
During nervous system development, numerous cues within the extracellular matrix microenvironment (ECM) guide the growing neurites along specific pathways to reach their intended targets. Neurite motility is controlled by extracellular signal sensing through the growth cone at the neurite tip, including chemoattractive and repulsive cues. However, it is difficult to regenerate and restore neurite tracts, lost or degraded due to an injury or disease, in the adult central nervous system. Thus, it is important to evaluate the dynamic interplay between ECM and the concentration gradients of these cues, which would elicit robust neuritogenesis. Such information is critical in understanding the processes involved in developmental biology, and in developing high-fidelity neurite regenerative strategies post-injury, and in drug discovery and targeted therapeutics for neurodegenerative conditions. Here, we quantitatively investigated this relationship using a combination of mathematical modeling and in vitro experiments, and determined the synergistic role of guidance cues and ECM on neurite outgrowth and turning. Using a biomimetic microfluidic system, we have shown that cortical neurite outgrowth and turning under chemogradients (IGF-1 or BDNF) within 3D scaffolds is highly regulated by the source concentration of the guidance cue and the physical characteristics of the scaffold. A mechanistic-driven partial differential equation model of neurite outgrowth has been proposed, which could also be used prospectively as a predictive tool. The parameters for the chemotaxis term in the model are determined from the experimental data using our microfluidic assay. Resulting model simulations demonstrate how neurite outgrowth was critically influenced by the experimental variables, which was further supported by experimental data on cell-surface-receptor expressions. The model results are in excellent agreement with the experimental findings. This integrated approach represents a framework for further elucidation of biological mechanisms underlying neuronal responses of specialized cell types, during various stages of development, and under healthy or diseased conditions.
Collapse
Affiliation(s)
- Parthasarathy Srinivasan
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, United States of America
| | - Ioannis K. Zervantonakis
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chandrasekhar R. Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Wang Y, Wang J, Li BH, Qu H, Luo CL, Shu DM. An association between genetic variation in the roundabout, axon guidance receptor, homolog 2 gene and immunity traits in chickens. Poult Sci 2014; 93:31-8. [PMID: 24570420 DOI: 10.3382/ps.2013-03512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roundabout, axon guidance receptor, homolog 2 (ROBO2) gene is one member of the roundabout (ROBO) family, which belongs to the immunoglobulin superfamily. The ROBO molecules are known to function in axon guidance and cell migration and are involved in SLIT/ROBO signaling. In this study, we obtained the full-length cDNA sequence of the chicken ROBO2 gene. Sequence analysis indicated that 3 SNP (1418G > A, 1421C > A and 2462T > C) exist in exons 5 and 12 of the ROBO2 gene. Genotyping results revealed that the allele frequency of SNP 1421C > A was similar in all tested breeds, but the allele frequencies of the other 2 SNP were different between White Leghorn and Chinese indigenous chickens. Allele G of 1418G > A and allele T of 2462T > C predominated in the Chinese indigenous breed, whereas alleles A and C predominated in the White Leghorn breed. Association analyses revealed that birds with the GG genotype of SNP 1418G > A or the TT genotype of SNP 2462T > C had significantly higher antibody responses to Newcastle disease virus (NDV_S/P; P < 0.01) than carriers of the A allele (GA and AA) or the C allele (TC), respectively. Real-time PCR further revealed that ROBO2 expression in the spleens of the birds with higher antibody responses (GG and TT genotypes at SNP 1418 and 2462, respectively) was significantly higher than in the spleens of birds with the AA and AG genotypes at SNP 1418 or the TC genotype at SNP 2462 (P < 0.01). The results demonstrated that genetic variation at the ROBO2 gene plays a key role in the immune response to Newcastle disease virus, and SNP 1418G > A and 2462T > C can be used as genetic markers for the selection of chickens with stronger immune responses to Newcastle disease virus.
Collapse
Affiliation(s)
- Y Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; and State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
48
|
Tillo M, Schwarz Q, Ruhrberg C. Mouse hindbrain ex vivo culture to study facial branchiomotor neuron migration. J Vis Exp 2014. [PMID: 24686480 PMCID: PMC4032788 DOI: 10.3791/51397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Embryonic neurons are born in the ventricular zone of the brain, but subsequently migrate to new destinations to reach appropriate targets. Deciphering the molecular signals that cooperatively guide neuronal migration in the embryonic brain is therefore important to understand how the complex neural networks form which later support postnatal life. Facial branchiomotor (FBM) neurons in the mouse embryo hindbrain migrate from rhombomere (r) 4 caudally to form the paired facial nuclei in the r6-derived region of the hindbrain. Here we provide a detailed protocol for wholemount ex vivo culture of mouse embryo hindbrains suitable to investigate the signaling pathways that regulate FBM migration. In this method, hindbrains of E11.5 mouse embryos are dissected and cultured in an open book preparation on cell culture inserts for 24 hr. During this time, FBM neurons migrate caudally towards r6 and can be exposed to function-blocking antibodies and small molecules in the culture media or heparin beads loaded with recombinant proteins to examine roles for signaling pathways implicated in guiding neuronal migration.
Collapse
Affiliation(s)
- Miguel Tillo
- UCL Institute of Ophthalmology, University College London
| | - Quenten Schwarz
- UCL Institute of Ophthalmology, University College London; Department of Human Immunology, Centre for Cancer Biology, South Australia
| | | |
Collapse
|
49
|
Kwon HB, Fukuhara S, Asakawa K, Ando K, Kashiwada T, Kawakami K, Hibi M, Kwon YG, Kim KW, Alitalo K, Mochizuki N. The parallel growth of motoneuron axons with the dorsal aorta depends on Vegfc/Vegfr3 signaling in zebrafish. Development 2013; 140:4081-90. [PMID: 24046321 PMCID: PMC3913045 DOI: 10.1242/dev.091702] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blood vessels and neurons grow often side by side. However, the molecular and cellular mechanisms underlying their parallel development remain unclear. Here, we report that a subpopulation of secondary motoneurons extends axons ventrally outside of the neural tubes and rostrocaudally as a fascicle beneath the dorsal aorta (DA) in zebrafish. We tried to clarify the mechanism by which these motoneuron axons grow beneath the DA and found that Vegfc in the DA and Vegfr3 in the motoneurons were essential for the axon growth. Forced expression of either Vegfc in arteries or Vegfr3 in motoneurons resulted in enhanced axon growth of motoneurons over the DA. Both vegfr3 morphants and vegfc morphants lost the alignment of motoneuron axons with DA. In addition, forced expression of two mutant forms of Vegfr3 in motoneurons, potentially trapping endogenous Vegfc, resulted in failure of growth of motoneuron axons beneath the DA. Finally, a vegfr3 mutant fish lacked the motoneuron axons beneath the DA. Collectively, Vegfc from the preformed DA guides the axon growth of secondary motoneurons.
Collapse
Affiliation(s)
- Hyouk-Bum Kwon
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang C, Jin Y, Ziemba KS, Fletcher AM, Ghosh B, Truit E, Yurek DM, Smith GM. Long distance directional growth of dopaminergic axons along pathways of netrin-1 and GDNF. Exp Neurol 2013; 250:156-64. [PMID: 24099728 DOI: 10.1016/j.expneurol.2013.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 12/20/2022]
Abstract
Different experimental and clinical strategies have been used to promote survival of transplanted embryonic ventral mesencephalic (VM) neurons. However, few studies have focused on the long-distance growth of dopaminergic axons from VM transplants. The aim of this study is to identify some of the growth and guidance factors that support directed long-distance growth of dopaminergic axons from VM transplants. Lentivirus encoding either glial cell line-derived neurotrophic factor (GDNF) or netrin-1, or a combination of lenti-GDNF with either lenti-GDNF family receptor α1 (GFRα-1) or lenti-netrin-1 was injected to form a gradient along the corpus callosum. Two weeks later, a piece of embryonic day 14 VM tissue was transplanted into the corpus callosum adjacent to the low end of the gradient. Results showed that tyrosine hydroxylase (TH(+)) axons grew a very short distance from the VM transplants in control groups, with few axons reaching the midline. In GDNF or netrin-1 expressing groups, more TH(+) axons grew out of transplants and reached the midline. Pathways co-expressing GDNF with either GFRα-1 or netrin-1 showed significantly increased axonal outgrowth. Interestingly, only the GDNF/netrin-1 combination resulted in the majority of axons reaching the distal target (80%), whereas along the GDNF/GFRα-1 pathway only 20% of the axons leaving the transplant reached the distal target. This technique of long-distance axon guidance may prove to be a useful strategy in reconstructing damaged neuronal circuits, such as the nigrostriatal pathway in Parkinson's disease.
Collapse
Affiliation(s)
- C Zhang
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|