1
|
Cui Y, Ma X, Wei J, Chen C, Shakir N, Guirram H, Dai Z, Anderson T, Ferguson D, Qiu S. MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits. Neural Regen Res 2025; 20:1431-1444. [PMID: 39075910 PMCID: PMC11624886 DOI: 10.4103/nrr.nrr-d-23-01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 04/20/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00026/figure1/v/2024-07-28T173839Z/r/image-tiff Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration, however, few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function. We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis. To investigate whether enhancing MET in adult cortex has synapse regenerating potential, we created a knockin mouse line, in which the human MET gene expression and signaling can be turned on in adult (10-12 months) cortical neurons through doxycycline-containing chow. We found that similar to the developing brain, turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons. These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses. Prolonged MET signaling resulted in an increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-D-aspartate (AMPA/NMDA) receptor current ratio, indicative of enhanced synaptic function and connectivity. Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain. These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
Collapse
Affiliation(s)
- Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Chang Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Neha Shakir
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hitesch Guirram
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Zhiyu Dai
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Trent Anderson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
2
|
Perovic M, Pavlovic D, Palmer Z, Udo MSB, Citadin CT, Rodgers KM, Wu CYC, Zhang Q, Lin HW, Tesic V. Modulation of GABAergic system as a therapeutic option in stroke. Exp Neurol 2025; 384:115050. [PMID: 39522803 DOI: 10.1016/j.expneurol.2024.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Stroke is one of the leading causes of death and permanent adult disability worldwide. Despite the improvements in reducing the rate and mortality, the societal burden and costs of treatment associated with stroke management are increasing. Most of the therapeutic approaches directly targeting ischemic injury have failed to reduce short- and long-term morbidity and mortality and more effective therapeutic strategies are still needed to promote post-stroke functional recovery. Decades of stroke research have been focused on hyperexcitability and glutamate-induced excitotoxicity in the acute phase of ischemia and their relation to motor deficits. Recent advances in understanding the pathophysiology of stroke have been made with several lines of evidence suggesting that changes in the neurotransmission of the major inhibitory system via γ-Aminobutyric acid (GABA) play a particularly important role in functional recovery and deserve further attention. The present review provides an overview of how GABAergic neurotransmission changes correlate with stroke recovery and outlines GABAergic system modulators with special emphasis on neurosteroids that have been shown to affect stroke pathogenesis or plasticity or to protect against cognitive decline. Supporting evidence from both animal and human clinical studies is presented and the potential for GABA signaling-targeted therapies for stroke is discussed to translate this concept to human neural repair therapies. Age and sex are considered crucial parameters related to the pathophysiology of stroke and important factors in the development of therapeutic pharmacological strategies. Future work is needed to deepen our knowledge of the neurochemical changes after stroke, extend the conceptual framework, and allow for the development of more effective interventions that include the modulation of the inhibitory system.
Collapse
Affiliation(s)
- Milka Perovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Damjan Pavlovic
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Zoe Palmer
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Mariana S B Udo
- Department of Neurology, University of Texas Houston Health Science Center, TX, USA
| | - Cristiane T Citadin
- Department of Neurology, University of Texas Houston Health Science Center, TX, USA
| | - Krista M Rodgers
- Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Celeste Yin-Chien Wu
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Neurology, University of Texas Houston Health Science Center, TX, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA.
| |
Collapse
|
3
|
Margolis ET, Gabard-Durnam LJ. Prenatal influences on postnatal neuroplasticity: Integrating DOHaD and sensitive/critical period frameworks to understand biological embedding in early development. INFANCY 2025; 30:e12588. [PMID: 38449347 DOI: 10.1111/infa.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Early environments can have significant and lasting effects on brain, body, and behavior across the lifecourse. Here, we address current research efforts to understand how experiences impact neurodevelopment with a new perspective integrating two well-known conceptual frameworks - the Developmental Origins of Health and Disease (DOHaD) and sensitive/critical period frameworks. Specifically, we consider how prenatal experiences characterized in the DOHaD model impact two key neurobiological mechanisms of sensitive/critical periods for adapting to and learning from the postnatal environment. We draw from both animal and human research to summarize the current state of knowledge on how particular prenatal substance exposures (psychoactive substances and heavy metals) and nutritional profiles (protein-energy malnutrition and iron deficiency) each differentially impact brain circuits' excitation/GABAergic inhibition balance and myelination. Finally, we highlight new research directions that emerge from this integrated framework, including testing how prenatal environments alter sensitive/critical period timing and learning and identifying potential promotional/buffering prenatal exposures to impact postnatal sensitive/critical periods. We hope this integrative framework considering prenatal influences on postnatal neuroplasticity will stimulate new research to understand how early environments have lasting consequences on our brains, behavior, and health.
Collapse
Affiliation(s)
- Emma T Margolis
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Panneton R, Ostroff WL, Bhullar N, Netto M. Plasticity in older infants' perception of phonetic contrasts: The role of selective attention in context. INFANCY 2025; 30:e12620. [PMID: 39192613 DOI: 10.1111/infa.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Developmental plasticity refers to conditions and circumstances that increase phenotypic variability. In infancy, plasticity expands and contracts depending on domains of functioning, developmental history, and timing. In terms of language processing, infants attend to and discriminate both native and non-native phonetic contrasts, but selectively attune to their native phonemes by the end of the first postnatal year. However, relevant studies have excluded factors regarded as promoters of attention such as infant-directed (ID) speech, synchronous multimodal presentations, and female speakers. Here we investigated whether English-learning 11-month-olds would discriminate a non-native phonetic contrast while manipulating these factors. Results showed significant discrimination of the non-native contrast, regardless of speech register, provided that they were presented by a dynamic female speaker. Interestingly, when a static object or a dynamic male ID speaker replaced the female, no significant discrimination was found. These results show infants to be capable of discriminating non-native phonetic contrasts in an enhanced context at an age when they have been characterized as not being able to do so. Synchronized, multimodal information from female speakers allowed infants to perceive difficult non-native phonemes, highlighting the importance of an ecologically valid context for studying speech perception and language learning in early development.
Collapse
Affiliation(s)
- Robin Panneton
- Department of Psychology, Virginia Tech, Blacksburg, Virginia, USA
| | - Wendy L Ostroff
- Hutchins School of Interdisciplinary Studies, Sonoma State University, Rohnert Park, California, USA
| | | | - Madeline Netto
- Department of Psychology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Brandt JP, Ackerman SD. Astrocyte regulation of critical period plasticity across neural circuits. Curr Opin Neurobiol 2024; 90:102948. [PMID: 39709647 DOI: 10.1016/j.conb.2024.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Critical periods are brief windows of heightened neural circuit plasticity that allow circuits to permanently reset their structure and function to facilitate robust organismal behavior. Understanding the cellular and molecular mechanisms that instruct critical period timing is of broad clinical interest, as altered developmental plasticity is linked to multiple neurodevelopmental disorders. While intrinsic, neuronal mechanisms shape both neural circuit remodeling and critical period timing, recent data indicate that signaling from astrocytes and surrounding glia can both promote and limit critical period plasticity. In this short review, we discuss recent breakthroughs in our understanding of astrocytes in critical period plasticity and highlight pioneering work in Drosophila.
Collapse
Affiliation(s)
- Jacob P Brandt
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Brain Immunology and Glia Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sarah D Ackerman
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Brain Immunology and Glia Center, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
6
|
Min R, Qin Y, Kerst S, Saiepour MH, van Lier M, Levelt CN. Inhibitory maturation and ocular dominance plasticity in mouse visual cortex require astrocyte CB1 receptors. iScience 2024; 27:111410. [PMID: 39687028 PMCID: PMC11647246 DOI: 10.1016/j.isci.2024.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/02/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Endocannabinoids, signaling through the cannabinoid CB1 receptor (CB1R), regulate several forms of neuronal plasticity. CB1Rs in the developing primary visual cortex (V1) play a key role in the maturation of inhibitory circuits. Although CB1Rs were originally thought to reside mainly on presynaptic axon terminals, several studies have highlighted an unexpected role for astrocytic CB1Rs in endocannabinoid mediated plasticity. Here, we investigate the impact of cell-type-specific removal of CB1Rs from interneurons or astrocytes on development of inhibitory synapses and network plasticity in mouse V1. We show that removing CB1Rs from astrocytes interferes with maturation of inhibitory synaptic transmission. In addition, it strongly reduces ocular dominance (OD) plasticity during the critical period. In contrast, removing interneuron CB1Rs leaves these processes intact. Our results reveal an unexpected role of astrocytic CB1Rs in critical period plasticity in V1 and highlight the involvement of glial cells in plasticity and synaptic maturation of sensory circuits.
Collapse
Affiliation(s)
- Rogier Min
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yi Qin
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Sven Kerst
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M. Hadi Saiepour
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Mariska van Lier
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Christiaan N. Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Zhang X, Wu M, Cheng L, Cao W, Liu Z, Yang SB, Kim MS. Fast-spiking parvalbumin-positive interneurons: new perspectives of treatment and future challenges in dementia. Mol Psychiatry 2024:10.1038/s41380-024-02756-6. [PMID: 39695324 DOI: 10.1038/s41380-024-02756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Central nervous system parvalbumin-positive interneurons (PV-INs) are crucial and highly vulnerable to various stressors. They also play a significant role in the pathological processes of many neuropsychiatric diseases, especially those associated with cognitive impairment, such as Alzheimer's disease (AD), vascular dementia (VD), Lewy body dementia, and schizophrenia. Although accumulating evidence suggests that the loss of PV-INs is associated with memory impairment in dementia, the precise molecular mechanisms remain elusive. In this review, we delve into the current evidence regarding the physiological properties of PV-INs and summarize the latest insights into how their loss contributes to cognitive decline in dementia, particularly focusing on AD and VD. Additionally, we discuss the influence of PV-INs on brain development, the variations in their characteristics across different types of dementia, and how their loss affects the etiology and progression of cognitive impairments. Ultimately, our goal is to provide a comprehensive overview of PV-INs and to consider their potential as novel therapeutic targets in dementia treatment.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wa Cao
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Ziying Liu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Seung-Bum Yang
- Department of Paramedicine, Wonkwang Health Science University, Iksan, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
8
|
Haikonen J, Szrinivasan R, Ojanen S, Rhee JK, Ryazantseva M, Sulku J, Zumaraite G, Lauri SE. GluK1 kainate receptors are necessary for functional maturation of parvalbumin interneurons regulating amygdala circuit function. Mol Psychiatry 2024; 29:3752-3768. [PMID: 38942774 PMCID: PMC11609095 DOI: 10.1038/s41380-024-02641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Parvalbumin expressing interneurons (PV INs) are key players in the local inhibitory circuits and their developmental maturation coincides with the onset of adult-type network dynamics in the brain. Glutamatergic signaling regulates emergence of the unique PV IN phenotype, yet the receptor mechanisms involved are not fully understood. Here we show that GluK1 subunit containing kainate receptors (KARs) are necessary for development and maintenance of the neurochemical and functional properties of PV INs in the lateral and basal amygdala (BLA). Ablation of GluK1 expression specifically from PV INs resulted in low parvalbumin expression and loss of characteristic high firing rate throughout development. In addition, we observed reduced spontaneous excitatory synaptic activity at adult GluK1 lacking PV INs. Intriguingly, inactivation of GluK1 expression in adult PV INs was sufficient to abolish their high firing rate and to reduce PV expression levels, suggesting a role for GluK1 in dynamic regulation of PV IN maturation state. The PV IN dysfunction in the absence of GluK1 perturbed the balance between evoked excitatory vs. inhibitory synaptic inputs and long-term potentiation (LTP) in LA principal neurons, and resulted in aberrant development of the resting-state functional connectivity between mPFC and BLA. Behaviorally, the absence of GluK1 from PV INs associated with hyperactivity and increased fear of novelty. These results indicate a critical role for GluK1 KARs in regulation of PV IN function across development and suggest GluK1 as a potential therapeutic target for pathologies involving PV IN malfunction.
Collapse
Affiliation(s)
- Joni Haikonen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Rakenduvadhana Szrinivasan
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Simo Ojanen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Jun Kyu Rhee
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Ryazantseva
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Janne Sulku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gabija Zumaraite
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Chen Y, Jiang C, Yan B, Zhang J. Engrailed1 in Parvalbumin-Positive Neurons Regulates Eye-Specific Retinogeniculate Segregation and Visual Function. J Neurosci Res 2024; 102:e70007. [PMID: 39704330 DOI: 10.1002/jnr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/31/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Homeobox transcription factor Engrailed1 (En1) is expressed in the ectoderm and mediates the establishment of retinotectal topography, but its role in eye-specific retinogeniculate segregation and visual function remains unclear. Parvalbumin (PV) neurons, which are widely distributed in the visual pathway, play a crucial role in visual development and function. In this study, we conditionally knocked out En1 gene in PV neurons and found an expansion of the ipsilateral eye projection, while no significant effects were observed in the contralateral eye projection. Additionally, we observed a decrease in the number of PV neurons in PV-Cre:En1fl/fl mice, accompanied by an increased level of cleaved caspase-3 in PV neurons. Furthermore, the genetic ablation of PV neurons in the retina through intraocular AAV-DIO-Caspase3 injection in PV-Cre mice was sufficient to disrupt retinogeniculate segregation. Finally, we observed that PV-Cre:En1fl/fl mice exhibited enhanced visual depth perception in the visual cliff test. These results demonstrate that En1 in PV neurons participates in eye-specific retinogeniculate segregation through cell survival and regulates binocular vision.
Collapse
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Lu MQ, Shi ZG, Shang J, Gao L, Gao L, Gao WJ. ChangPu YuJin Tang improves Tourette disorder symptoms by modulating amino acid neurotransmitters in IDPN model rats. Metab Brain Dis 2024; 39:1543-1558. [PMID: 39312065 DOI: 10.1007/s11011-024-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/09/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Changpu Yujin Tang(CPYJT), a Chinese herbal compound, is an effective therapeutic strategy for pediatric patients with Tourette disorder (TD). Therefore, this work aims to investigate the therapeutic mechanisms of CPYJT. METHODS Behavioral and cellular ultrastructural evaluation of the therapeutic effects of CPYJT in TD model rats. Colorimetric methods, reverse transcription‑quantitative PCR, and Western Blot were used to measure the altered levels of GLU, GABA, and the levels of VGLUT1, GLUD1, GABRA3, and GAD65 in the cortex, striatum, and thalamus of the TD model rats after 7, 14, 21, and 28 days of CPYJT administration. RESULTS CPYJT significantly reduced stereotypic behavior and motor behavior scores in TD model rats. CPYJT ameliorates myelin structural damage in TD model rat neuronal cells. CPYJT decreased GLU content, elevated GABA content, decreased GLUD1 and VGLUT1 levels, and elevated GAD65 and GABRA3 levels in TD model rats' cortex, striatum, and thalamus. CPYJT has different regulatory time points in the cortex, striatum, and thalamus for critical factors of amino acid-based neurotransmission. CONCLUSION CPYJT protects behavioral and structural damage of neuronal cells in multiple brain regions in TD model rats.
Collapse
Affiliation(s)
- Man-Qi Lu
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, shanghai, 200000, China
| | - Zheng-Gang Shi
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China.
| | - Jing Shang
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
| | - Lü Gao
- Shanxi University Of Chinese Medicine Third Clinical Medical College Pediatric Teaching and Research Department, Taiyuan, 140100, Shanxi, China
| | - Lei Gao
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
| | - Wei-Jiao Gao
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
| |
Collapse
|
11
|
McKeon SD, Perica MI, Calabro FJ, Foran W, Hetherington H, Moon CH, Luna B. Prefrontal excitation/inhibition balance supports adolescent enhancements in circuit signal to noise ratio. Prog Neurobiol 2024; 243:102695. [PMID: 39622336 DOI: 10.1016/j.pneurobio.2024.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
The development and refinement of neuronal circuitry allow for stabilized and efficient neural recruitment, supporting adult-like behavioral performance. During adolescence, the maturation of PFC is proposed to be a critical period (CP) for executive function, driven by a break in balance between glutamatergic excitation and GABAergic inhibition (E/I) neurotransmission. During CPs, cortical circuitry fine-tunes to improve information processing and reliable responses to stimuli, shifting from spontaneous to evoked activity, enhancing the SNR, and promoting neural synchronization. Harnessing 7 T MR spectroscopy and EEG in a longitudinal cohort (N = 164, ages 10-32 years, 283 neuroimaging sessions), we outline associations between age-related changes in glutamate and GABA neurotransmitters and EEG measures of cortical SNR. We find developmental decreases in spontaneous activity and increases in cortical SNR during our auditory steady state task using 40 Hz stimuli. Decreases in spontaneous activity were associated with glutamate levels in DLPFC, while increases in cortical SNR were associated with more balanced Glu and GABA levels. These changes were associated with improvements in working memory performance. This study provides evidence of CP plasticity in the human PFC during adolescence, leading to stabilized circuitry that allows for the optimal recruitment and integration of multisensory input, resulting in improved executive function.
Collapse
Affiliation(s)
- Shane D McKeon
- Department of Bioengineering, University of Pittsburgh, PA, USA; The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA.
| | - Maria I Perica
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, PA, USA
| | - Finnegan J Calabro
- Department of Bioengineering, University of Pittsburgh, PA, USA; The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Hoby Hetherington
- Resonance Research Incorporated, Billerica, MA, USA; Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, PA, USA
| | - Beatriz Luna
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Michael C, Gard AM, Tillem S, Hardi FA, Dunn EC, Smith ADAC, McLoyd VC, Brooks-Gunn J, Mitchell C, Monk CS, Hyde LW. Developmental Timing of Associations Among Parenting, Brain Architecture, and Mental Health. JAMA Pediatr 2024; 178:1326-1336. [PMID: 39466276 PMCID: PMC11581745 DOI: 10.1001/jamapediatrics.2024.4376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 10/29/2024]
Abstract
Importance Parenting is associated with brain development and long-term health outcomes, although whether these associations depend on the developmental timing of exposure remains understudied. Identifying these sensitive periods can inform when and how parenting is associated with neurodevelopment and risk for mental illness. Objective To characterize how harsh and warm parenting during early, middle, and late childhood are associated with brain architecture during adolescence and, in turn, psychiatric symptoms in early adulthood during the COVID-19 pandemic. Design, Setting, and Participants This population-based, 21-year observational, longitudinal birth cohort study of low-income youths and families from Detroit, Michigan; Toledo, Ohio; and Chicago, Illinois, used data from the Future of Families and Child Well-being Study. Data were collected from February 1998 to June 2021. Analyses were conducted from May to October 2023. Exposures Parent-reported harsh parenting (psychological aggression or physical aggression) and observer-rated warm parenting (responsiveness) at ages 3, 5, and 9 years. Main Outcomes and Measures The primary outcomes were brainwide (segregation, integration, and small-worldness), circuit (prefrontal cortex [PFC]-amygdala connectivity), and regional (betweenness centrality of amygdala and PFC) architecture at age 15 years, determined using functional magnetic resonance imaging, and youth-reported anxiety and depression symptoms at age 21 years. The structured life-course modeling approach was used to disentangle timing-dependent from cumulative associations between parenting and brain architecture. Results A total of 173 youths (mean [SD] age, 15.88 [0.53] years; 95 female [55%]) were included. Parental psychological aggression during early childhood was positively associated with brainwide segregation (β = 0.30; 95% CI, 0.14 to 0.45) and small-worldness (β = 0.17; 95% CI, 0.03 to 0.28), whereas parental psychological aggression during late childhood was negatively associated with PFC-amygdala connectivity (β = -0.37; 95% CI, -0.55 to -0.12). Warm parenting during middle childhood was positively associated with amygdala centrality (β = 0.23; 95% CI, 0.06 to 0.38) and negatively associated with PFC centrality (β = -0.18; 95% CI, -0.31 to -0.03). Warmer parenting during middle childhood was associated with reduced anxiety (β = -0.05; 95% CI -0.10 to -0.01) and depression (β = -0.05; 95% CI -0.10 to -0.003) during early adulthood via greater adolescent amygdala centrality. Conclusions and Relevance Neural associations with harsh parenting were widespread across the brain in early childhood but localized in late childhood. Neural associations with warm parenting were localized in middle childhood and, in turn, were associated with mental health during future stress. These developmentally contingent associations can inform the type and timing of interventions.
Collapse
Affiliation(s)
| | - Arianna M. Gard
- Department of Psychology, University of Maryland, College Park
| | - Scott Tillem
- Department of Psychology, University of Michigan, Ann Arbor
| | - Felicia A. Hardi
- Department of Psychology, University of Michigan, Ann Arbor
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Erin C. Dunn
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Department of Sociology, College of Liberal Arts, Purdue University, West Lafayette, Indiana
| | - Andrew D. A. C. Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, United Kingdom
| | | | - Jeanne Brooks-Gunn
- Teachers College, Columbia University, New York, New York
- College of Physicians and Surgeons, Columbia University, New York, New York
| | - Colter Mitchell
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor
- Population Studies Center of the Institute for Social Research, University of Michigan, Ann Arbor
| | - Christopher S. Monk
- Department of Psychology, University of Michigan, Ann Arbor
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor
| | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann Arbor
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor
| |
Collapse
|
13
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
14
|
Petro NM, Picci G, Webert LK, Schantell M, Son JJ, Ward TW, McDonald KM, Livermore CL, Killanin AD, Rice DL, Ende GC, Coutant AT, Steiner EL, Wilson TW. Interactive effects of social media use and puberty on resting-state cortical activity and mental health symptoms. Dev Cogn Neurosci 2024; 71:101479. [PMID: 39608108 PMCID: PMC11636332 DOI: 10.1016/j.dcn.2024.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Adolescence is a period of profound biopsychosocial development, with pubertally-driven neural reorganization as social demands increase in peer contexts. The explosive increase in social media access has fundamentally changed peer interactions among youth, creating an urgent need to understand its impact on neurobiological development and mental health. Extant literature indicates that using social media promotes social comparison and feedback seeking (SCFS) behaviors in youth, which portend increased risk for mental health disorders, but little is known about its impact on neurobiological development. We assessed social media behaviors, mental health symptoms, and spontaneous cortical activity using magnetoencephalography (MEG) in 80 typically developing youth (8-16 years) and tested how self-reported pubertal stage moderates their relationship. More mature adolescents who engaged in more SCFS showed weaker fusiform/parahippocampal alpha and medial prefrontal beta activity, and increased symptoms of anxiety and attention problems. Engaging in SCFS on social media during adolescence may thus relate to developmental differences in brain regions that undergo considerable development during puberty. These results are consistent with works indicating altered neurodevelopmental trajectories within association cortices surrounding the onset of many mental health disorders. Importantly, later pubertal stages may be most sensitive to the detrimental effects of social media use.
Collapse
Affiliation(s)
- Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| | - Lauren K Webert
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Kellen M McDonald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Cooper L Livermore
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grace C Ende
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Erica L Steiner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
15
|
Wang C, Yang H, Chen S, Wang C, Chen X. Early and late place cells during postnatal development of the hippocampus. Nat Commun 2024; 15:10075. [PMID: 39572591 PMCID: PMC11582796 DOI: 10.1038/s41467-024-54320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
A proportion of hippocampal CA1 neurons function as place cells from the onset of navigation, which are referred to as early place cells. It is not clear whether this subset of neurons is predisposed to become place cells during early stages, or if all neurons have this potential. Here, we longitudinally imaged the activity of CA1 neurons in developing male rats during navigation with both one-photon and two-photon microscopy. Our results suggested that a largely consistent population of cells functioned as early place cells, demonstrating higher spatial coding abilities across environments and a tendency to form more synchronous cell assemblies. Early place cells were present in both deep and superficial layers of CA1. Cells in the deep layer exhibited greater synchrony than those in the superficial layer during early ages. These results support the theory that an initial cognitive map is primarily shaped by a predetermined set of hippocampal cells.
Collapse
Affiliation(s)
- Chenyue Wang
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongjiang Yang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shijie Chen
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cheng Wang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaojing Chen
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Mallick A, Tan HL, Epstein JM, Jing Ng CM, Cook OM, Gaudry Q, Dacks AM. Serotonin acts through multiple cellular targets during an olfactory critical period. iScience 2024; 27:111083. [PMID: 39524339 PMCID: PMC11550141 DOI: 10.1016/j.isci.2024.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/11/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Serotonin (5-HT) modulates early development during critical periods when experience drives heightened levels of plasticity in neurons. Here, we investigate the cellular mechanisms by which 5-HT modulates critical period plasticity (CPP) in the olfactory system of Drosophila. We first demonstrate that 5-HT is necessary for experience-dependent structural plasticity in response to chronic CO2 exposure and can re-open the critical period long after it normally closes. Knocking down 5-HT7 receptors in a subset of GABAergic local interneurons was sufficient to block CPP, as was knocking down GABA receptors expressed by CO2-sensing olfactory sensory neurons (OSNs). Furthermore, direct modulation of OSNs via 5-HT2B receptors in CO2-sensing OSNs and autoreceptor expression by serotonergic neurons was also required for CPP. Thus, 5-HT targets individual neuron types in the olfactory system via distinct receptors to enable sensory driven plasticity.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Hua Leonhard Tan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | - Oliver Mason Cook
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Andrew M. Dacks
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Pennington KR, Debs L, Chung S, Bava J, Garin CM, Vale FL, Bick SK, Englot DJ, Terry AV, Constantinidis C, Blake DT. Basal forebrain activation improves working memory in senescent monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582925. [PMID: 39574741 PMCID: PMC11580932 DOI: 10.1101/2024.03.01.582925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Brain aging contributes to cognitive decline and risk of dementia. Degeneration of the basal forebrain cholinergic system parallels these changes in aging, Alzheimer's dementia, Parkinson's dementia, and Lewy body dementia, and thus is a common element linked to executive function across the lifespan and in disease states. Here, we tested the potential of one-hour daily intermittent basal forebrain stimulation to improve cognition in senescent monkeys, and its mechanisms of action. Stimulation in five animals improved working memory duration in 8-12 weeks across all animals, with peak improvements observed in the first four weeks. In an ensuing three month period without stimulation, improvements were retained. With additional stimulation, performance remained above baseline throughout the 15 months of the study. Studies with a cholinesterase inhibitor produced inconsistent improvements in behavior. One of five animals improved significantly. Manipulating the stimulation pattern demonstrated selectivity for both stimulation and recovery period duration. Brain stimulation led to acute increases in cerebrospinal levels of tissue plasminogen activator, which is an activating element for two brain neurotrophins, Nerve Growth Factor (NGF) and Brain-Derived Growth Factor (BDNF). Stimulation also led to improved glucose utilization in stimulated hemispheres relative to contralateral. Glucose utilization also consistently declines with aging and some dementias. Together, these findings suggest that intermittent stimulation of the nucleus basalis of Meynert improves executive function and reverses some aspects of brain aging.
Collapse
Affiliation(s)
- Kendyl R Pennington
- Dept Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Luca Debs
- Dept Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Sophia Chung
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235
| | - Janki Bava
- Dept Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Clément M Garin
- Dept Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Fernando L Vale
- Dept Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Sarah K Bick
- Dept Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Dept Neurosurgery, Vanderbilt University, Nashville TN
| | - Dario J Englot
- Dept Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Dept Neurosurgery, Vanderbilt University, Nashville TN
| | - Alvin V Terry
- Dept Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Christos Constantinidis
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235
- Dept Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Dept Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David T Blake
- Dept Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
18
|
Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology 2024; 50:124-136. [PMID: 39103496 PMCID: PMC11525577 DOI: 10.1038/s41386-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
19
|
Joseph HM, Santosa H, Fisher N, Huppert T, Morgan JK. Greater Frontoparietal Connectivity During Task Engagement Among Toddlers With Parent-Reported Inattention. Dev Psychobiol 2024; 66:e22546. [PMID: 39236228 PMCID: PMC11463914 DOI: 10.1002/dev.22546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with lifelong impairments. ADHD-related behaviors have been observed as early as toddlerhood for children who later develop ADHD. Children with ADHD have disrupted connectivity in neural circuitry involved in executive control of attention, including the prefrontal cortex (PFC) and dorsal attention network (DAN). It is not known if these alterations in connectivity can be identified before the onset of ADHD. Children (N = 51) 1.5-3 years old were assessed using functional near-infrared spectroscopy while engaging with a book. The relation between mother-reported ADHD-related behaviors and neural connectivity, computed using robust innovation-based correlation, was examined. Task engagement was high across the sample and unrelated to ADHD-related behaviors. Observed attention was associated with greater connectivity between the right lateral PFC and the right temporal parietal junction (TPJ). Children with greater ADHD-related behaviors had greater frontoparietal connectivity, particularly between the PFC bilaterally and the right TPJ. Toddlers at risk for developing ADHD may require increased frontoparietal connectivity to sustain attention. Future work is needed to examine early interventions that enhance developing attention and their effect on neural connectivity between the PFC and attention networks.
Collapse
Affiliation(s)
- Heather M. Joseph
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | - Hendrik Santosa
- University of Pittsburgh, Department of Radiology, Pittsburgh, PA
| | - Nadiyah Fisher
- University of Pittsburgh, Department of Neuroscience, Pittsburgh, PA
| | - Theodore Huppert
- University of Pittsburgh School of Medicine, Department of Electrical and Computer Engineering, Pittsburgh, PA
| | - Judith K. Morgan
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
- University of Pittsburgh, Department of Psychology, Pittsburgh, PA
| |
Collapse
|
20
|
Parmar P, Spahic H, Lechner C, St Pierre M, Carlin K, Nugent M, Chavez-Valdez R. Neonatal hypoxia-ischemia alters the events governing the hippocampal critical period of postnatal synaptic plasticity leading to deficits in working memory in mice. Neurobiol Dis 2024; 202:106722. [PMID: 39486775 PMCID: PMC11646096 DOI: 10.1016/j.nbd.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Postnatal critical periods of synaptic plasticity (CPsp) are characterized by profound neural network refinement, which is shaped by synaptic activity and sculpted by maturation of the GABAergic network. Even after therapeutic hypothermia (TH), neonatal hypoxia-ischemia (HI) impairs two triggers for the initiation of the CPsp in the hippocampus: i) PSA-NCAM developmental decline and ii) parvalbumin (PV) + interneuron (IN) maturation. Thus, we investigated whether neonatal HI despite TH disturbs other events governing the onset, consolidation and closure of the postnatal CPsp in the hippocampus. We induced cerebral HI in P10 C57BL6 mice with right carotid ligation and 45 m of hypoxia (FiO2 = 0.08), followed by normothermia (36 °C, NT) or TH (31 °C) for 4 h with anesthesia-exposed shams as controls. ELISA, immunoblotting and immunohistochemistry were performed at 24 h (P11), 5 days (P15), 8 days (P18) and 30 days (P40) after HI injury. We specifically assessed: i) BDNF levels and TrkB activation, controlling the CPsp, ii) Otx2 and NPTX2 immunoreactivity (IR), engaging CPsp onset and iii) NogoR1, Lynx1 IR, PNN formation and myelination (MBP) mediating CPsp closure. Pups aged to P40 also received a battery of tests assessing working memory. Here, we documented deficits in hippocampal BDNF levels and TrkB activation at P18 in response to neonatal HI even with TH. Neonatal HI impaired in the CA1 the developmental increase in PV, Otx2, and NPTX2 between P11 and P18, the colocalization of Otx2 and PV at P18 and P40, the accumulation of NPTX2 in PV+ dendrites at P18 and P40, and the expression of NogoR at P40. Furthermore, neonatal HI decreased BDNF and impaired PNN development and myelination (MBP) at P40. Most of these abnormalities were insensitive to TH and correlated with memory deficits. Neonatal HI appears to disrupt many of the molecular and structural events initiating and consolidating the postnatal hippocampal CPsp, perhaps due to the early and delayed deficits in TrkB activation leading to memory deficits.
Collapse
Affiliation(s)
- Pritika Parmar
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Harisa Spahic
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Lechner
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mark St Pierre
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michael Nugent
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA; Neuroscience Intensive Care Nursery Program, Johns Hopkins University- School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Saha R, Wüstner LS, Chakraborty D, Anunu R, Mandel S, Hazra JD, Kriebel M, Volkmer H, Kaphzan H, Richter-Levin G. Intra-BLA alteration of interneurons' modulation of activity in rats, reveals a dissociation between effects on anxiety symptoms and extinction learning. Neurobiol Stress 2024; 33:100681. [PMID: 39512628 PMCID: PMC11541825 DOI: 10.1016/j.ynstr.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
The basolateral amygdala (BLA) is a dynamic brain region involved in emotional experiences and subject to long-term plasticity. The BLA also modulates activity, plasticity, and related behaviors associated with other brain regions, including the mPFC and hippocampus. Accordingly, intra-BLA plasticity can be expected to alter both BLA-dependent behaviors and behaviors mediated by other brain regions. Lasting intra-BLA plasticity may be considered a form of metaplasticity, since it will affect subsequent plasticity and response to challenges later on. Activity within the BLA is tightly modulated by GABAergic interneurons, and thus inducing lasting alteration of GABAergic modulation of principal neurons may have an impactful metaplastic effect on BLA functioning. Previously, we demonstrated that intra-BLA knockdown (KD) of neurofascin (NF) reduced GABAergic synapses exclusively at the axon initial segment (AIS). Here, by reducing the expression of the tyrosine kinase receptor ephrin A7 (EphA7), we selectively impaired the modulatory function of a different subpopulation of interneurons, specifically targeting the soma and proximal dendrites of principal neurons. This perturbation induced an expected reduction in the spontaneous inhibitory synaptic input and an increase in the excitatory spontaneous synaptic activity, most probably due to the reduction of inhibitory tone. Moreover, this increased synaptic activity was followed by a reduction in intrinsic excitability. While intra-BLA NF-KD resulted in impaired extinction learning, without increased symptoms of anxiety, intra-BLA reduction of EphA7 expression resulted in increased symptoms of anxiety, as measured in the elevated plus maze, but without affecting fear conditioning or extinction learning. These results confirm the role of the BLA and intra-BLA metaplasticity in stress-induced increased anxiety symptoms and in impaired fear extinction learning but reveals a difference in intra-BLA mechanisms involved. The results also confirm the contribution of GABAergic interneurons to these effects but indicate selective roles for different subpopulations of intra-BLA interneurons.
Collapse
Affiliation(s)
- Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Lisa-Sophie Wüstner
- Dept. Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Darpan Chakraborty
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Rachel Anunu
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Silvia Mandel
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Joyeeta Dutta Hazra
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Martin Kriebel
- Dept. Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Hansjuergen Volkmer
- Dept. Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Psychology Department, University of Haifa, 3498838, Haifa, Israel
| |
Collapse
|
22
|
Liu L, Li T, Chang J, Xia X, Ju J. Microglia inversely regulate the level of perineuronal nets with the treatment of lipopolysaccharide and valproic acid. Neurosci Lett 2024; 842:137992. [PMID: 39304021 DOI: 10.1016/j.neulet.2024.137992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Perineuronal nets (PNNs) are extracellular matrix which mostly surround the inhibitory neurons. They are changed in several brain diseases, such as autism spectrum disorder, but the mechanism of PNNs degradation is still unclear. In this study, we investigated the role of microglial cells in regulating PNNs levels. Specifically, 1 day or 3 days after a single dose of lipopolysaccharide (LPS, 0.25 mg/kg) increased the density of microglia and further reduced the density of PNNs in both hippocampus CA1 and visual cortex. Minocycline, an inhibitor of microglia activation, took effect time-dependently. Minocycline for 7 days before a single LPS injection (0.25 mg/kg) inhibited microglia increase and PNNs loss, but minocycline for 3 days did not work. Finally, in a valproic acid (VPA)-treated autism mouse model, microglia were reduced while PNNs+ cells were increased in both hippocampus CA1 and visual cortex. In summary, the microglia are involved in the balanced level of PNNs, while in the autism model, the altered level of PNNs might be due to the microglia hypofunction.
Collapse
Affiliation(s)
- Luping Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tianxiang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jinlong Chang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dali University, Dali 671003, China
| | - Xiaojiao Xia
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jun Ju
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China; Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
23
|
Labonte AK, Camacho MC, Moser J, Koirala S, Laumann TO, Marek S, Fair D, Sylvester CM. Precision Functional Mapping to Advance Developmental Psychiatry Research. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100370. [PMID: 39309212 PMCID: PMC11416589 DOI: 10.1016/j.bpsgos.2024.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Many psychiatric conditions have their roots in early development. Individual differences in prenatal brain function (which is influenced by a combination of genetic risk and the prenatal environment) likely interact with individual differences in postnatal experience, resulting in substantial variation in brain functional organization and development in infancy. Neuroimaging has been a powerful tool for understanding typical and atypical brain function and holds promise for uncovering the neurodevelopmental basis of psychiatric illness; however, its clinical utility has been relatively limited thus far. A substantial challenge in this endeavor is the traditional approach of averaging brain data across groups despite individuals varying in their brain organization, which likely obscures important clinically relevant individual variation. Precision functional mapping (PFM) is a neuroimaging technique that allows the capture of individual-specific and highly reliable functional brain properties. Here, we discuss how PFM, through its focus on individuals, has provided novel insights for understanding brain organization across the life span and its promise in elucidating the neural basis of psychiatric disorders. We first summarize the extant literature on PFM in normative populations, followed by its limited utilization in studying psychiatric conditions in adults. We conclude by discussing the potential for infant PFM in advancing developmental precision psychiatry applications, given that many psychiatric disorders start during early infancy and are associated with changes in individual-specific functional neuroanatomy. By exploring the intersection of PFM, development, and psychiatric research, this article underscores the importance of individualized approaches in unraveling the complexities of brain function and improving clinical outcomes across development.
Collapse
Affiliation(s)
- Alyssa K. Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, Missouri
| | - M. Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Timothy O. Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Damien Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Chad M. Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
24
|
Alsuradi H, Hong J, Mazi H, Eid M. Neuro-motor controlled wearable augmentations: current research and emerging trends. Front Neurorobot 2024; 18:1443010. [PMID: 39544848 PMCID: PMC11560910 DOI: 10.3389/fnbot.2024.1443010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Wearable augmentations (WAs) designed for movement and manipulation, such as exoskeletons and supernumerary robotic limbs, are used to enhance the physical abilities of healthy individuals and substitute or restore lost functionality for impaired individuals. Non-invasive neuro-motor (NM) technologies, including electroencephalography (EEG) and sufrace electromyography (sEMG), promise direct and intuitive communication between the brain and the WA. After presenting a historical perspective, this review proposes a conceptual model for NM-controlled WAs, analyzes key design aspects, such as hardware design, mounting methods, control paradigms, and sensory feedback, that have direct implications on the user experience, and in the long term, on the embodiment of WAs. The literature is surveyed and categorized into three main areas: hand WAs, upper body WAs, and lower body WAs. The review concludes by highlighting the primary findings, challenges, and trends in NM-controlled WAs. This review motivates researchers and practitioners to further explore and evaluate the development of WAs, ensuring a better quality of life.
Collapse
Affiliation(s)
- Haneen Alsuradi
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Joseph Hong
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Helin Mazi
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamad Eid
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Leier HC, Foden AJ, Jindal DA, Wilkov AJ, Costello PVDL, Vanderzalm PJ, Coutinho-Budd JC, Tabuchi M, Broihier HT. Glia control experience-dependent plasticity in an olfactory critical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602232. [PMID: 39005309 PMCID: PMC11245089 DOI: 10.1101/2024.07.05.602232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia shape antennal lobe development in young adults, leading us to ask if glia also drive experience-dependent plasticity during this period. Here we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first two days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post-synaptic activity. Crucially, pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased following early-life odor exposure. The highly conserved engulfment receptor Draper is required for this critical period plasticity as ensheathing glia upregulate Draper, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Loss of Draper fully suppresses the morphological and physiological consequences of critical period odor exposure, arguing that phagocytic glia engulf intact synaptic terminals. These data demonstrate experience-dependent pruning of synapses and argue that Drosophila olfactory circuitry is a powerful model for defining the function of glia in critical period plasticity.
Collapse
Affiliation(s)
- Hans C Leier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Alexander J Foden
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Darren A Jindal
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Abigail J Wilkov
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | | | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, United States
| | - Jaeda C Coutinho-Budd
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| |
Collapse
|
26
|
Winter-Hjelm N, Sikorski P, Sandvig A, Sandvig I. Engineered cortical microcircuits for investigations of neuroplasticity. LAB ON A CHIP 2024; 24:4974-4988. [PMID: 39264326 DOI: 10.1039/d4lc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent advances in neural engineering have opened new ways to investigate the impact of topology on neural network function. Leveraging microfluidic technologies, it is possible to establish modular circuit motifs that promote both segregation and integration of information processing in the engineered neural networks, similar to those observed in vivo. However, the impact of the underlying topologies on network dynamics and response to pathological perturbation remains largely unresolved. In this work, we demonstrate the utilization of microfluidic platforms with 12 interconnected nodes to structure modular, cortical engineered neural networks. By implementing geometrical constraints inspired by a Tesla valve within the connecting microtunnels, we additionally exert control over the direction of axonal outgrowth between the nodes. Interfacing these platforms with nanoporous microelectrode arrays reveals that the resulting laminar cortical networks exhibit pronounced segregated and integrated functional dynamics across layers, mirroring key elements of the feedforward, hierarchical information processing observed in the neocortex. The multi-nodal configuration also facilitates selective perturbation of individual nodes within the networks. To illustrate this, we induced hypoxia, a key factor in the pathogenesis of various neurological disorders, in well-connected nodes within the networks. Our findings demonstrate that such perturbations induce ablation of information flow across the hypoxic node, while enabling the study of plasticity and information processing adaptations in neighboring nodes and neural communication pathways. In summary, our presented model system recapitulates fundamental attributes of the microcircuit organization of neocortical neural networks, rendering it highly pertinent for preclinical neuroscience research. This model system holds promise for yielding new insights into the development, topological organization, and neuroplasticity mechanisms of the neocortex across the micro- and mesoscale level, in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| | - Pawel Sikorski
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| |
Collapse
|
27
|
Kim HW, Kim JH, Chung US, Kim JI, Shim SH, Park TW, Lee MS, Hwang JW, Park EJ, Hwang SK, Joung YS. AST-001 versus placebo for social communication in children with autism spectrum disorder: A randomized clinical trial. Psychiatry Clin Neurosci 2024. [PMID: 39425256 DOI: 10.1111/pcn.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
AIM This study examined the efficacy of AST-001 for the core symptoms of autism spectrum disorder (ASD) in children. METHODS This phase 2 clinical trial consisted of a 12-week placebo-controlled main study, a 12-week extension, and a 12-week follow-up in children aged 2 to 11 years with ASD. The participants were randomized in a 1:1:1 ratio to a high-dose, low-dose, or placebo-to-high-dose control group during the main study. The placebo-to-high-dose control group received placebo during the main study and high-dose AST-001 during the extension. The a priori primary outcome was the mean change in the Adaptive Behavior Composite (ABC) score of the Korean Vineland Adaptive Behavior Scales II (K-VABS-II) from baseline to week 12. RESULTS Among 151 enrolled participants, 144 completed the main study, 140 completed the extension, and 135 completed the follow-up. The mean K-VABS-II ABC score at the 12th week compared with baseline was significantly increased in the high-dose group (P = 0.042) compared with the placebo-to-high-dose control group. The mean CGI-S scores were significantly decreased at the 12th week in the high-dose (P = 0.046) and low-dose (P = 0.017) groups compared with the placebo-to-high-dose control group. During the extension, the K-VABS-II ABC and CGI-S scores of the placebo-to-high-dose control group changed rapidly after administration of high-dose AST-001 and caught up with those of the high-dose group at the 24th week. AST-001 was well tolerated with no safety concern. The most common adverse drug reaction was diarrhea. CONCLUSIONS Our results provide preliminary evidence for the efficacy of AST-001 for the core symptoms of ASD.
Collapse
Affiliation(s)
- Hyo-Won Kim
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ji-Hoon Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, Pusan, South Korea
| | - Un Sun Chung
- Department of Psychiatry, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, South Korea
| | - Se-Hoon Shim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Soon Chun Hyang University Cheonan Hospital, Cheonan, South Korea
| | - Tae Won Park
- Department of Psychiatry, Jeonbuk National University College of Medicine, Jeonju, South Korea
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Jun-Won Hwang
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Jin Park
- Department of Psychiatry, Inje university, Ilsan Paik Hospital, Goyang, South Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yoo-Sook Joung
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
28
|
Butrus S, Monday HR, Yoo CJ, Feldman DE, Shekhar K. Molecular states underlying neuronal cell type development and plasticity in the whisker cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617106. [PMID: 39416021 PMCID: PMC11482765 DOI: 10.1101/2024.10.07.617106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mouse whisker somatosensory cortex (wS1) is a major model system to study the experience-dependent plasticity of cortical neuron physiology, morphology, and sensory coding. However, the role of sensory experience in regulating neuronal cell type development and gene expression in wS1 remains poorly understood. We assembled and annotated a transcriptomic atlas of wS1 during postnatal development comprising 45 molecularly distinct neuronal types that can be grouped into eight excitatory and four inhibitory neuron subclasses. Using this atlas, we examined the influence of whisker experience from postnatal day (P) 12, the onset of active whisking, to P22, on the maturation of molecularly distinct cell types. During this developmental period, when whisker experience was normal, ~250 genes were regulated in a neuronal subclass-specific fashion. At the resolution of neuronal types, we found that only the composition of layer (L) 2/3 glutamatergic neuronal types, but not other neuronal types, changed substantially between P12 and P22. These compositional changes resemble those observed previously in the primary visual cortex (V1), and the temporal gene expression changes were also highly conserved between the two regions. In contrast to V1, however, cell type maturation in wS1 is not substantially dependent on sensory experience, as 10-day full-face whisker deprivation did not influence the transcriptomic identity and composition of L2/3 neuronal types. A one-day competitive whisker deprivation protocol also did not affect cell type identity but induced moderate changes in plasticity-related gene expression. Thus, developmental maturation of cell types is similar in V1 and wS1, but sensory deprivation minimally affects cell type development in wS1.
Collapse
Affiliation(s)
- Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hannah R. Monday
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J. Yoo
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E. Feldman
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology; Vision Sciences and Optometry; University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
29
|
Faust TE, Devlin BA, Farhy-Tselnicker I, Ferro A, Postolache M, Xin W. Glial Control of Cortical Neuronal Circuit Maturation and Plasticity. J Neurosci 2024; 44:e1208242024. [PMID: 39358028 PMCID: PMC11450532 DOI: 10.1523/jneurosci.1208-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024] Open
Abstract
The brain is a highly adaptable organ that is molded by experience throughout life. Although the field of neuroscience has historically focused on intrinsic neuronal mechanisms of plasticity, there is growing evidence that multiple glial populations regulate the timing and extent of neuronal plasticity, particularly over the course of development. This review highlights recent discoveries on the role of glial cells in the establishment of cortical circuits and the regulation of experience-dependent neuronal plasticity during critical periods of neurodevelopment. These studies provide strong evidence that neuronal circuit maturation and plasticity are non-cell autonomous processes that require both glial-neuronal and glial-glial cross talk to proceed. We conclude by discussing open questions that will continue to guide research in this nascent field.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
| | | | - Austin Ferro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Maggie Postolache
- Brain Immunology & Glia Center, Washington University School of Medicine, St. Louis, Missouri 63110
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Wendy Xin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
30
|
Bourne JA, Cichy RM, Kiorpes L, Morrone MC, Arcaro MJ, Nielsen KJ. Development of Higher-Level Vision: A Network Perspective. J Neurosci 2024; 44:e1291242024. [PMID: 39358020 PMCID: PMC11450542 DOI: 10.1523/jneurosci.1291-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Most studies on the development of the visual system have focused on the mechanisms shaping early visual stages up to the level of primary visual cortex (V1). Much less is known about the development of the stages after V1 that handle the higher visual functions fundamental to everyday life. The standard model for the maturation of these areas is that it occurs sequentially, according to the positions of areas in the adult hierarchy. Yet, the existing literature reviewed here paints a different picture, one in which the adult configuration emerges through a sequence of unique network configurations that are not mere partial versions of the adult hierarchy. In addition to studying higher visual development per se to fill major gaps in knowledge, it will be crucial to adopt a network-level perspective in future investigations to unravel normal developmental mechanisms, identify vulnerabilities to developmental disorders, and eventually devise treatments for these disorders.
Collapse
Affiliation(s)
- James A Bourne
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, Maryland 20814
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Einstein Center for Neurosciences Berlin, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, New York 10003
| | - Maria Concetta Morrone
- IRCCS Fondazione Stella Maris, Pisa 56128, Italy
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Michael J Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kristina J Nielsen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
31
|
Alcaide J, Gramuntell Y, Klimczak P, Bueno-Fernandez C, Garcia-Verellen E, Guicciardini C, Sandi C, Castillo-Gómez E, Crespo C, Perez-Rando M, Nacher J. Long term effects of peripubertal stress on the thalamic reticular nucleus of female and male mice. Neurobiol Dis 2024; 200:106642. [PMID: 39173845 DOI: 10.1016/j.nbd.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Erica Garcia-Verellen
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Chiara Guicciardini
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
32
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
33
|
Miller VK, Broadie K. Experience-dependent serotonergic signaling in glia regulates targeted synapse elimination. PLoS Biol 2024; 22:e3002822. [PMID: 39352884 PMCID: PMC11444420 DOI: 10.1371/journal.pbio.3002822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
The optimization of brain circuit connectivity based on initial environmental input occurs during critical periods characterized by sensory experience-dependent, temporally restricted, and transiently reversible synapse elimination. This precise, targeted synaptic pruning mechanism is mediated by glial phagocytosis. Serotonin signaling has prominent, foundational roles in the brain, but functions in glia, or in experience-dependent brain circuit synaptic connectivity remodeling, have been relatively unknown. Here, we discover that serotonergic signaling between glia is essential for olfactory experience-dependent synaptic glomerulus pruning restricted to a well-defined Drosophila critical period. We find that experience-dependent serotonin signaling is restricted to the critical period, with both (1) serotonin production and (2) 5-HT2A receptors specifically in glia, but not neurons, absolutely required for targeted synaptic glomerulus pruning. We discover that glial 5-HT2A receptor signaling limits the experience-dependent synaptic connectivity pruning in the critical period and that conditional reexpression of 5-HT2A receptors within adult glia reestablishes "critical period-like" experience-dependent synaptic glomerulus pruning at maturity. These results reveal an essential requirement for glial serotonergic signaling mediated by 5-HT2A receptors for experience-dependent synapse elimination.
Collapse
Affiliation(s)
- Vanessa Kay Miller
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
34
|
Goto T, Tsurugizawa T, Komaki Y, Takashima I, Iwaki S, Kunori N. Clemastine enhances exercise-induced motor improvement in hypoxic ischemic rats. Brain Res 2024; 1846:149257. [PMID: 39362477 DOI: 10.1016/j.brainres.2024.149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Neonatal hypoxic ischemia (HI) occurs owing to reduced cerebral oxygen levels and perfusion during the perinatal period. Brain injury after HI triggers neurological manifestations such as motor impairment, and the improvement of impaired brain function remains challenging. Recent studies suggest that cortical myelination plays a role in motor learning, but its involvement in motor improvement after HI injury is not well understood. This study aimed to investigate the impact of myelination on motor improvement following neonatal HI injury. We employed a modified Rice-Vannucci model; the right common carotid artery of postnatal day 7 (P7) Wistar rats was isolated and divided, and the rats were then exposed to hypoxic condition (90 min, 8 % O2). A total of 101 rats (66 males) were divided into four groups: trained-HI (n = 38), trained-Sham (n = 16), untrained-HI (n = 31), and untrained-Sham (n = 16). The trained groups underwent rotarod-based exercise training from P22 to P41 (3 days per week). Structural analysis using magnetic resonance imaging and immunohistochemistry (n = 6 per group) revealed increased fractional anisotropy and myelin density in the primary somatosensory cortex of the trained-HI group. We further evaluated the effect of myelination promotion on rotarod performance by administering clemastine, a myelination-promoting drug, via daily intraperitoneal injections. Clemastine did not enhance motor improvement in untrained-HI rats. However, clemastine-administered trained-HI rats (n = 7) exhibited significantly improved motor performance compared to both saline-administered trained-HI rats (n = 11) and clemastine-administered untrained-HI rats (n = 7). These findings suggest that myelination may be a key mechanism in motor improvement after HI injury and that combining exercise training with clemastine administration could be an effective therapeutic strategy for motor improvement following HI injury.
Collapse
Affiliation(s)
- Taichi Goto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Research Fellow of Japan Society for the Promotion of Science (DC2), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuji Komaki
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Department of Information, Artificial Intelligence and Data Science, Daiichi Institute of Technology, 7-7-4 Ueno, Taito-ku, Tokyo 110-0005, Japan
| | - Sunao Iwaki
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nobuo Kunori
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
35
|
Akbaritabar A, Rubin BP. The evolution of plasticity in the neuroscientific literature during the second half of the twentieth century to the present. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2024; 33:397-418. [PMID: 39120966 DOI: 10.1080/0964704x.2024.2371783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
In the neurosciences, concepts play an important role in the conception and direction of research. Among the theoretical notions and direction of research, plasticity stands out because of the multiple ways in which scientists use it to describe and interpret how the nervous system changes and adapts to different requirements. The occurrence of different conceptualizations of plasticity in the scientific literature during the second half of the twentieth century and up to the present was investigated using bibliometric methods. Throughout the period analyzed, synaptic plasticity has remained the dominant conceptualization of plasticity. However, scientists have continued to introduce novel plasticity concepts reflecting the scientific advances they have made in understanding the dynamic nature of the nervous system. The conceptual evolution of plasticity documents that the view of the adult nervous system as immutable has been replaced by an understanding of the nervous system as capable of lifelong change and adaptation.
Collapse
Affiliation(s)
- Aliakbar Akbaritabar
- Laboratory of Digital and Computational Demography, Max Planck Institute for Demographic Research (MPIDR), Rostock, Germany
| | | |
Collapse
|
36
|
Santos-Silva T, Souza BK, Colodete DAE, Campos LR, Lima TSA, Guimarães FS, Gomes FV. Differential Impact of Adolescent or Adult Stress on Behavior and Cortical Parvalbumin Interneurons and Perineuronal Nets in Male and Female Mice. Int J Neuropsychopharmacol 2024; 27:pyae042. [PMID: 39276147 PMCID: PMC11639180 DOI: 10.1093/ijnp/pyae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Stress has become a common public health concern, contributing to the rising prevalence of psychiatric disorders. Understanding the impact of stress considering critical variables, such as age, sex, and individual differences, is of the utmost importance for developing effective intervention strategies. METHODS Stress effects (daily footshocks for 10 days) during adolescence (postnatal day [PND] 31-40) and adulthood (PND 65-74) were investigated on behavioral outcomes and parvalbumin (PV)-expressing GABAergic interneurons and their associated perineuronal nets (PNNs) in the prefrontal cortex of male and female mice 5 weeks post stress. RESULTS In adulthood, adolescent stress induced behavioral alterations in male mice, including anxiety-like behaviors, social deficits, cognitive impairments, and altered dopamine system responsivity. Applying integrated behavioral z-score analysis, we identified sex-specific differences in response to adolescent stress, with males displaying greater vulnerability than females. Furthermore, adolescent-stressed male mice showed decreased PV+ and PNN+ cell numbers and PV+/PNN+ colocalization, while in females, adolescent stress reduced prefrontal PV+/PNN+ colocalization in the prefrontal cortex. Further analysis identified distinct behavioral clusters, with certain females demonstrating resilience to adolescent stress-induced deficits in sociability and PV+ cell number. Adult stress in male and female mice did not cause long-lasting changes in behavior and PV+ and PNN+ cell number. CONCLUSION Our findings indicate that the timing of stress, sex, and individual variabilities seem to be determinants for the development of behavioral changes associated with psychiatric disorders, particularly in male mice during adolescence.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Beatriz Kinchin Souza
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Débora Akemi Endo Colodete
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lara Ramos Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thaís Santos Almeida Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
37
|
Lev-Ram V, Lemieux SP, Deerinck TJ, Bushong EA, Perez AJ, Pritchard DR, Toyama BH, Park SKR, McClatchy DB, Savas JN, Whitney M, Adams SR, Ellisman MH, Yates J, Tsien RY. Do Perineuronal Nets Stabilize the Engram of a Synaptic Circuit? Cells 2024; 13:1627. [PMID: 39404392 PMCID: PMC11476018 DOI: 10.3390/cells13191627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024] Open
Abstract
Perineuronal nets (PNNs), a specialized form of extra cellular matrix (ECM), surround numerous neurons in the CNS and allow synaptic connectivity through holes in its structure. We hypothesize that PNNs serve as gatekeepers that guard and protect synaptic territory and thus may stabilize an engram circuit. We present high-resolution and 3D EM images of PNN-engulfed neurons in mice brains, showing that synapses occupy the PNN holes and that invasion of other cellular components is rare. PNN constituents in mice brains are long-lived and can be eroded faster in an enriched environment, while synaptic proteins have a high turnover rate. Preventing PNN erosion by using pharmacological inhibition of PNN-modifying proteases or matrix metalloproteases 9 (MMP9) knockout mice allowed normal fear memory acquisition but diminished long-term memory stabilization, supporting the above hypothesis.
Collapse
Affiliation(s)
- Varda Lev-Ram
- Department of Pharmacology, University of California San Diego, CA 92093, USA
| | | | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex J Perez
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Denise R Pritchard
- Department of Pharmacology, University of California San Diego, CA 92093, USA
| | - Brandon H Toyama
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sung Kyu R Park
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey N Savas
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Michael Whitney
- Department of Pharmacology, University of California San Diego, CA 92093, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, CA 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093, USA
- Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - John Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roger Y Tsien
- Department of Pharmacology, University of California San Diego, CA 92093, USA
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Xia W, Liu Y, Lu J, Cheung HH, Meng Q, Huang B. RNA methylation in neurodevelopment and related diseases. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39344412 DOI: 10.3724/abbs.2024159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Biological development and genetic information transfer are governed by genetic, epigenetic, transcriptional, and posttranscriptional mechanisms. RNA methylation, the attachment of methyl (-CH 3) groups to RNA molecules, is a posttranscriptional modification that has gained increasing attention in recent years because of its role in RNA epitranscriptomics. RNA modifications (RMs) influence various aspects of RNA metabolism and are involved in the regulation of diverse biological processes and diseases. Neural cell types emerge at specific stages of brain development, and recent studies have revealed that neurodevelopment, aging, and disease are tightly linked to transcriptome dysregulation. In this review, we discuss the roles of N6-methyladenine (m6A) and 5-methylcytidine (m5C) RNA modifications in neurodevelopment, physiological functions, and related diseases.
Collapse
Affiliation(s)
- Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou), Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou), Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou), Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Hoi-Hung Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou), Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou), Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| |
Collapse
|
39
|
Tooley UA, Latham A, Kenley JK, Alexopoulos D, Smyser TA, Nielsen AN, Gorham L, Warner BB, Shimony JS, Neil JJ, Luby JL, Barch DM, Rogers CE, Smyser CD. Prenatal environment is associated with the pace of cortical network development over the first three years of life. Nat Commun 2024; 15:7932. [PMID: 39256419 PMCID: PMC11387486 DOI: 10.1038/s41467-024-52242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Environmental influences on brain structure and function during early development have been well-characterized, but whether early environments are associated with the pace of brain development is not clear. In pre-registered analyses, we use flexible non-linear models to test the theory that prenatal disadvantage is associated with differences in trajectories of intrinsic brain network development from birth to three years (n = 261). Prenatal disadvantage was assessed using a latent factor of socioeconomic disadvantage that included measures of mother's income-to-needs ratio, educational attainment, area deprivation index, insurance status, and nutrition. We find that prenatal disadvantage is associated with developmental increases in cortical network segregation, with neonates and toddlers with greater exposure to prenatal disadvantage showing a steeper increase in cortical network segregation with age, consistent with accelerated network development. Associations between prenatal disadvantage and cortical network segregation occur at the local scale and conform to a sensorimotor-association hierarchy of cortical organization. Disadvantage-associated differences in cortical network segregation are associated with language abilities at two years, such that lower segregation is associated with improved language abilities. These results shed light on associations between the early environment and trajectories of cortical development.
Collapse
Affiliation(s)
- Ursula A Tooley
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Aidan Latham
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Tara A Smyser
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa Gorham
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua S Shimony
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan L Luby
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
40
|
Drigas A, Sideraki A. Brain Neuroplasticity Leveraging Virtual Reality and Brain-Computer Interface Technologies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5725. [PMID: 39275636 PMCID: PMC11397861 DOI: 10.3390/s24175725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
This study explores neuroplasticity through the use of virtual reality (VR) and brain-computer interfaces (BCIs). Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections in response to learning, experience, and injury. VR offers a controlled environment to manipulate sensory inputs, while BCIs facilitate real-time monitoring and modulation of neural activity. By combining VR and BCI, researchers can stimulate specific brain regions, trigger neurochemical changes, and influence cognitive functions such as memory, perception, and motor skills. Key findings indicate that VR and BCI interventions are promising for rehabilitation therapies, treatment of phobias and anxiety disorders, and cognitive enhancement. Personalized VR experiences, adapted based on BCI feedback, enhance the efficacy of these interventions. This study underscores the potential for integrating VR and BCI technologies to understand and harness neuroplasticity for cognitive and therapeutic applications. The researchers utilized the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method to conduct a comprehensive and systematic review of the existing literature on neuroplasticity, VR, and BCI. This involved identifying relevant studies through database searches, screening for eligibility, and assessing the quality of the included studies. Data extraction focused on the effects of VR and BCI on neuroplasticity and cognitive functions. The PRISMA method ensured a rigorous and transparent approach to synthesizing evidence, allowing the researchers to draw robust conclusions about the potential of VR and BCI technologies in promoting neuroplasticity and cognitive enhancement.
Collapse
Affiliation(s)
- Athanasios Drigas
- Net Media Lab & Mind & Brain R&D, Institute of Informatics & Telecommunications, National Centre of Scientific Research ‘Demokritos’, 15341 Athens, Greece
| | - Angeliki Sideraki
- Department of Secondary Education, Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
41
|
Cheng TW, Mills KL, Pfeifer JH. Revisiting adolescence as a sensitive period for sociocultural processing. Neurosci Biobehav Rev 2024; 164:105820. [PMID: 39032845 PMCID: PMC11407824 DOI: 10.1016/j.neubiorev.2024.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Waves of research and public discourse have characterized adolescence as periods of developmental risk and opportunity. Underlying this discussion is the recognition that adolescence is a period of major biological and social transition when experience may have an outsized effect on development. This article updates and expands upon prior work suggesting that adolescence may be a sensitive period for sociocultural processing specifically. By integrating evidence from developmental psychology and neuroscience, we identify how trajectories of social and neurobiological development may relate to adolescents' ability to adapt to and learn from their social environments. However, we also highlight gaps in the literature, including challenges in attributing developmental change to adolescent experiences. We discuss the importance of better understanding variability in biology (e.g., pubertal development) and cultural environments, as well as distinguishing between sensitive periods and periods of heightened sensitivity. Finally, we look toward future directions and translational implications of this research.
Collapse
Affiliation(s)
- Theresa W Cheng
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA; Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA 02138, USA.
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA.
| | - Jennifer H Pfeifer
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA.
| |
Collapse
|
42
|
Martin-Burgos B, McPherson TS, Hammonds R, Gao R, Muotri AR, Voytek B. Development of neuronal timescales in human cortical organoids and rat hippocampus dissociated cultures. J Neurophysiol 2024; 132:757-764. [PMID: 39015071 PMCID: PMC11427036 DOI: 10.1152/jn.00135.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
To support complex cognition, neuronal circuits must integrate information across multiple temporal scales, ranging from milliseconds to decades. Neuronal timescales describe the duration over which activity within a network persists, posing a putative explanatory mechanism for how information might be integrated over multiple temporal scales. Little is known about how timescales develop in human neural circuits or other model systems, limiting insight into how the functional dynamics necessary for cognition emerge. In our work, we show that neuronal timescales develop in a nonlinear fashion in human cortical organoids, which is partially replicated in dissociated rat hippocampus cultures. We use spectral parameterization of spiking activity to extract an estimate of neuronal timescale that is unbiased by coevolving oscillations. Cortical organoid timescales begin to increase around month 6 postdifferentiation. In rodent hippocampal dissociated cultures, we see that timescales decrease from in vitro days 13-23 before stabilizing. We speculate that cortical organoid development over the duration studied here reflects an earlier stage of a generalized developmental timeline in contrast to the rodent hippocampal cultures, potentially accounting for differences in timescale developmental trajectories. The fluctuation of timescales might be an important developmental feature that reflects the changing complexity and information capacity in developing neuronal circuits.NEW & NOTEWORTHY Neuronal timescales describe the persistence of activity within a network of neurons. Timescales were found to fluctuate with development in two model systems. In cortical organoids timescales increased, peaked, and then decreased throughout development; in rat hippocampal dissociated cultures timescales decreased over development. These distinct developmental models overlap to highlight a critical window in which timescales lengthen and contract, potentially indexing changes in the information capacity of neuronal systems.
Collapse
Affiliation(s)
- Blanca Martin-Burgos
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States
| | - Trevor Supan McPherson
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States
| | - Ryan Hammonds
- Department of Cognitive Science, University of California, San Diego, La Jolla, California, United States
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California, United States
| | - Richard Gao
- Department of Cognitive Science, University of California, San Diego, La Jolla, California, United States
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, California, United States
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Bradley Voytek
- Department of Cognitive Science, University of California, San Diego, La Jolla, California, United States
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California, United States
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
43
|
Colodete DA, Grace AA, Guimarães FS, Gomes FV. Degradation of Perineuronal Nets in the Ventral Hippocampus of Adult Rats Recreates an Adolescent-Like Phenotype of Stress Susceptibility. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100338. [PMID: 39099729 PMCID: PMC11295568 DOI: 10.1016/j.bpsgos.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 08/06/2024] Open
Abstract
Background Psychiatric disorders often emerge during late adolescence/early adulthood, a period with increased susceptibility to socioenvironmental factors that coincides with incomplete parvalbumin interneuron (PVI) development. Stress during this period causes functional loss of PVIs in the ventral hippocampus (vHip), which has been associated with dopamine system overdrive. This vulnerability persists until the appearance of perineuronal nets (PNNs) around PVIs. We assessed the long-lasting effects of adolescent or adult stress on behavior, ventral tegmental area dopamine neuron activity, and the number of PVIs and their associated PNNs in the vHip. Additionally, we tested whether PNN removal in the vHip of adult rats, proposed to reset PVIs to a juvenile-like state, would recreate an adolescent-like phenotype of stress susceptibility. Methods Male rats underwent a 10-day stress protocol during adolescence or adulthood. Three to 4 weeks poststress, we evaluated behaviors related to anxiety, sociability, and cognition, ventral tegmental area dopamine neuron activity, and the number of PV+ and PNN+ cells in the vHip. Furthermore, adult animals received intra-vHip infusion of ChABC (chondroitinase ABC) to degrade PNNs before undergoing stress. Results Unlike adult stress, adolescent stress induced anxiety responses, reduced sociability, cognitive deficits, ventral tegmental area dopamine system overdrive, and decreased PV+ and PNN+ cells in the vHip. However, intra-vHip ChABC infusion caused the adult stress to produce changes similar to the ones observed after adolescent stress. Conclusions Our findings underscore adolescence as a period of heightened vulnerability to the long-lasting impact of stress and highlight the protective role of PNNs against stress-induced damage in PVIs.
Collapse
Affiliation(s)
- Débora A.E. Colodete
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Xin W, Kaneko M, Roth RH, Zhang A, Nocera S, Ding JB, Stryker MP, Chan JR. Oligodendrocytes and myelin limit neuronal plasticity in visual cortex. Nature 2024; 633:856-863. [PMID: 39169185 PMCID: PMC11424474 DOI: 10.1038/s41586-024-07853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Developmental myelination is a protracted process in the mammalian brain1. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age2-4. We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity5. During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity.
Collapse
Affiliation(s)
- Wendy Xin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Megumi Kaneko
- Department of Physiology, Kavli Institute for Fundamental Neuroscience and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Richard H Roth
- Departments of Neurosurgery and Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Albert Zhang
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Sonia Nocera
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jun B Ding
- Departments of Neurosurgery and Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael P Stryker
- Department of Physiology, Kavli Institute for Fundamental Neuroscience and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jonah R Chan
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
45
|
Collins JM, Keane JM, Deady C, Khashan AS, McCarthy FP, O'Keeffe GW, Clarke G, Cryan JF, Caputi V, O'Mahony SM. Prenatal stress impacts foetal neurodevelopment: Temporal windows of gestational vulnerability. Neurosci Biobehav Rev 2024; 164:105793. [PMID: 38971516 DOI: 10.1016/j.neubiorev.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Prenatal maternal stressors ranging in severity from everyday occurrences/hassles to the experience of traumatic events negatively impact neurodevelopment, increasing the risk for the onset of psychopathology in the offspring. Notably, the timing of prenatal stress exposure plays a critical role in determining the nature and severity of subsequent neurodevelopmental outcomes. In this review, we evaluate the empirical evidence regarding temporal windows of heightened vulnerability to prenatal stress with respect to motor, cognitive, language, and behavioural development in both human and animal studies. We also explore potential temporal windows whereby several mechanisms may mediate prenatal stress-induced neurodevelopmental effects, namely, excessive hypothalamic-pituitary-adrenal axis activity, altered serotonin signalling and sympathetic-adrenal-medullary system, changes in placental function, immune system dysregulation, and alterations of the gut microbiota. While broadly defined developmental windows are apparent for specific psychopathological outcomes, inconsistencies arise when more complex cognitive and behavioural outcomes are considered. Novel approaches to track molecular markers reflective of the underlying aetiologies throughout gestation to identify tractable biomolecular signatures corresponding to critical vulnerability periods are urgently required.
Collapse
Affiliation(s)
- James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - James M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Fergus P McCarthy
- The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | |
Collapse
|
46
|
O’Donnell P. Neurobiological Underpinnings of Adolescent Susceptibility to Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100364. [PMID: 39713127 PMCID: PMC11662265 DOI: 10.1016/j.bpsgos.2024.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 12/24/2024] Open
|
47
|
Dai M, Li J, Hao X, Li N, Zheng M, He M, Gu Y. High Magnesium Promotes the Recovery of Binocular Vision from Amblyopia via TRPM7. Neurosci Bull 2024; 40:1245-1260. [PMID: 38833201 PMCID: PMC11365890 DOI: 10.1007/s12264-024-01242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/06/2024] [Indexed: 06/06/2024] Open
Abstract
Abnormal visual experience during the critical period can cause deficits in visual function, such as amblyopia. High magnesium (Mg2+) supplementary can restore ocular dominance (OD) plasticity, which promotes the recovery of amblyopic eye acuity in adults. However, it remains unsolved whether Mg2+ could recover binocular vision in amblyopic adults and what the molecular mechanism is for the recovery. We found that in addition to the recovery of OD plasticity, binocular integration can be restored under the treatment of high Mg2+ in amblyopic mice. Behaviorally, Mg2+-treated amblyopic mice showed better depth perception. Moreover, the effect of high Mg2+ can be suppressed with transient receptor potential melastatin-like 7 (TRPM7) knockdown. Collectively, our results demonstrate that high Mg2+ could restore binocular visual functions from amblyopia. TRPM7 is required for the restoration of plasticity in the visual cortex after high Mg2+ treatment, which can provide possible clinical applications for future research and treatment of amblyopia.
Collapse
Affiliation(s)
- Menghan Dai
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiangwen Hao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Na Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Mingfang Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Heim F, Mendoza E, Koparkar A, Vallentin D. Disinhibition enables vocal repertoire expansion after a critical period. Nat Commun 2024; 15:7565. [PMID: 39217170 PMCID: PMC11365960 DOI: 10.1038/s41467-024-51818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The efficiency of motor skill acquisition is age-dependent, making it increasingly challenging to learn complex manoeuvres later in life. Zebra finches, for instance, acquire a complex vocal motor programme during a developmental critical period after which the learned song is essentially impervious to modification. Although inhibitory interneurons are implicated in critical period closure, it is unclear whether manipulating them can reopen heightened motor plasticity windows. Using pharmacology and a cell-type specific optogenetic approach, we manipulated inhibitory neuron activity in a premotor area of adult zebra finches beyond their critical period. When exposed to auditory stimulation in the form of novel songs, manipulated birds added new vocal syllables to their stable song sequence. By lifting inhibition in a premotor area during sensory experience, we reintroduced vocal plasticity, promoting an expansion of the syllable repertoire without compromising pre-existing song production. Our findings provide insights into motor skill learning capacities, offer potential for motor recovery after injury, and suggest avenues for treating neurodevelopmental disorders involving inhibitory dysfunctions.
Collapse
Affiliation(s)
- Fabian Heim
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Ezequiel Mendoza
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Avani Koparkar
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Indian Institute of Science Education and Research (IISER), Pune, India
- Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
49
|
Chater TE, Eggl MF, Goda Y, Tchumatchenko T. Competitive processes shape multi-synapse plasticity along dendritic segments. Nat Commun 2024; 15:7572. [PMID: 39217140 PMCID: PMC11365941 DOI: 10.1038/s41467-024-51919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neurons receive thousands of inputs onto their dendritic arbour, where individual synapses undergo activity-dependent plasticity. Long-lasting changes in postsynaptic strengths correlate with changes in spine head volume. The magnitude and direction of such structural plasticity - potentiation (sLTP) and depression (sLTD) - depend upon the number and spatial distribution of stimulated synapses. However, how neurons allocate resources to implement synaptic strength changes across space and time amongst neighbouring synapses remains unclear. Here we combined experimental and modelling approaches to explore the elementary processes underlying multi-spine plasticity. We used glutamate uncaging to induce sLTP at varying number of synapses sharing the same dendritic branch, and we built a model incorporating a dual role Ca2+-dependent component that induces spine growth or shrinkage. Our results suggest that competition among spines for molecular resources is a key driver of multi-spine plasticity and that spatial distance between simultaneously stimulated spines impacts the resulting spine dynamics.
Collapse
Affiliation(s)
- Thomas E Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Maximilian F Eggl
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- Institute of Neuroscience, CSIC-UMH, Alicante, Spain
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan.
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
50
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. Cell Rep 2024; 43:114612. [PMID: 39110592 PMCID: PMC11396660 DOI: 10.1016/j.celrep.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Atypical sensory processing is common in autism, but how neural coding is disrupted in sensory cortex is unclear. We evaluate whisker touch coding in L2/3 of somatosensory cortex (S1) in Cntnap2-/- mice, which have reduced inhibition. This classically predicts excess pyramidal cell spiking, but this remains controversial, and other deficits may dominate. We find that c-fos expression is elevated in S1 of Cntnap2-/- mice under spontaneous activity conditions but is comparable to that of control mice after whisker stimulation, suggesting normal sensory-evoked spike rates. GCaMP8m imaging from L2/3 pyramidal cells shows no excess whisker responsiveness, but it does show multiple signs of degraded somatotopic coding. This includes broadened whisker-tuning curves, a blurred whisker map, and blunted whisker point representations. These disruptions are greater in noisy than in sparse sensory conditions. Tuning instability across days is also substantially elevated in Cntnap2-/-. Thus, Cntnap2-/- mice show no excess sensory-evoked activity, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|