1
|
He W, Shi L, Yue Z, Zhao K, Wang X, Wang K, Jing X, Bi S, Deng T, Zhao X, Tian X, Ma X, Chen Y, Yuan F, Wang S. Activation of glutamatergic neurons in the organum vasculosum of the lamina terminalis induces thirst-driven sniffing. Cell Rep 2025; 44:115254. [PMID: 39893636 DOI: 10.1016/j.celrep.2025.115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Sniffing is a specialized respiratory behavior that enables rodents to localize and track objects in their environment. The organum vasculosum of the lamina terminalis (OVLT) is critically involved in the regulation of thirst and water intake, yet its role in controlling thirst-driven exploratory sniffing behaviors remains unclear. This study demonstrates that hypertonic stimulation significantly increases sniffing and activates OVLT glutamatergic (OVLTGlut) neurons. Photostimulation of both OVLTGlut neurons and their axon terminals within the paraventricular nucleus of the hypothalamus (PVN) induces robust sniffing. Furthermore, ablation of PVN neurons projecting to the preBötzinger complex not only reduces the sniffing time induced by photostimulation of OVLTGlut neurons projecting to the PVN but also prolongs the drinking latency. These findings identify the OVLTGlut-PVN-preBötzinger complex circuit as a pivotal regulator of thirst-driven sniffing, providing insights into the neural mechanisms underlying thirst and exploratory behavior.
Collapse
Affiliation(s)
- Wei He
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Luo Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ziteng Yue
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ke Zhao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyi Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Kailin Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyi Jing
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Shangyu Bi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xue Zhao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaochen Tian
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangchen Ma
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yongqiang Chen
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.
| |
Collapse
|
2
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Dopaminergic signaling to ventral striatum neurons initiates sniffing behavior. Nat Commun 2025; 16:336. [PMID: 39747223 PMCID: PMC11696867 DOI: 10.1038/s41467-024-55644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum in mice is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 dopamine receptor-expressing neurons are coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
Affiliation(s)
- Natalie L Johnson
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Anamaria Cotelo-Larrea
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Umit M Akkaya
- Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Zihao Zhang
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Marie A Gadziola
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Adrienn G Varga
- Department of Neuroscience, Breathing Research and Therapeutics Center, McKnight Brain Institute; University of Florida College of Medicine, Gainesville, FL, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
3
|
Thunell E, Francis G, Dal Bò E, Schaefer M, Lundström JN, Arshamian A. Nasal inhalation does not improve memory of visual repetitions. Psychophysiology 2024; 61:e14609. [PMID: 38747502 DOI: 10.1111/psyp.14609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 10/15/2024]
Abstract
Several studies suggest that breathing entrains neural oscillations and thereby improves visual detection and memory performance during nasal inhalation. However, the evidence for this association is mixed, with some studies finding no, minor, or opposite effects. Here, we tested whether nasal breathing phase influences memory of repeated images presented in a rapid serial visual presentation (RSVP) task. The RSVP task is ideal for studying the effects of respiratory-entrained oscillations on visual memory because it engages critical aspects of sensory encoding that depend on oscillatory activity, such as fast processing of natural images, repetition detection, memory encoding, and retrieval. It also enables the presentation of a large number of stimuli during each phase of the breathing cycle. In two separate experiments (n = 72 and n = 142, respectively) where participants were explicitly asked to breathe through their nose, we found that nasal breathing phase at target presentation did not significantly affect memory performance. An exploratory analysis in the first experiment suggested a potential benefit for targets appearing approximately 1 s after inhalation. However, this finding was not replicated in the pre-registered second experiment with a larger sample. Thus, in two large sample experiments, we found no measurable impact of breathing phase on memory performance in the RSVP task. These results suggest that the natural breathing cycle does not have a significant impact on memory for repeated images and raise doubts about the idea that visual memory is broadly affected by the breathing phase.
Collapse
Affiliation(s)
- Evelina Thunell
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gregory Francis
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Elisa Dal Bò
- Department of General Psychology, University of Padua, Padua, Italy
| | - Martin Schaefer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Stockholm University Brain Imaging Centre, Stockholm University, Stockholm, Sweden
| | - Artin Arshamian
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Sniffing can be initiated by dopamine's actions on ventral striatum neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581052. [PMID: 39229099 PMCID: PMC11370338 DOI: 10.1101/2024.02.19.581052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The neuromodulatory systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 receptor-expressing neurons in the ventral striatum are also coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
|
5
|
Barbieri R, Töpfer FM, Soch J, Bogler C, Sprekeler H, Haynes JD. Encoding of continuous perceptual choices in human early visual cortex. Front Hum Neurosci 2023; 17:1277539. [PMID: 38021249 PMCID: PMC10679739 DOI: 10.3389/fnhum.2023.1277539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Research on the neural mechanisms of perceptual decision-making has typically focused on simple categorical choices, say between two alternative motion directions. Studies on such discrete alternatives have often suggested that choices are encoded either in a motor-based or in an abstract, categorical format in regions beyond sensory cortex. Methods In this study, we used motion stimuli that could vary anywhere between 0° and 360° to assess how the brain encodes choices for features that span the full sensory continuum. We employed a combination of neuroimaging and encoding models based on Gaussian process regression to assess how either stimuli or choices were encoded in brain responses. Results We found that single-voxel tuning patterns could be used to reconstruct the trial-by-trial physical direction of motion as well as the participants' continuous choices. Importantly, these continuous choice signals were primarily observed in early visual areas. The tuning properties in this region generalized between choice encoding and stimulus encoding, even for reports that reflected pure guessing. Discussion We found only little information related to the decision outcome in regions beyond visual cortex, such as parietal cortex, possibly because our task did not involve differential motor preparation. This could suggest that decisions for continuous stimuli take can place already in sensory brain regions, potentially using similar mechanisms to the sensory recruitment in visual working memory.
Collapse
Affiliation(s)
- Riccardo Barbieri
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Felix M. Töpfer
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Joram Soch
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Carsten Bogler
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Henning Sprekeler
- Department for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin School of Mind and Brain and Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Kim SJ, Affan RO, Frostig H, Scott BB, Alexander AS. Advances in cellular resolution microscopy for brain imaging in rats. NEUROPHOTONICS 2023; 10:044304. [PMID: 38076724 PMCID: PMC10704261 DOI: 10.1117/1.nph.10.4.044304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 02/12/2024]
Abstract
Rats are used in neuroscience research because of their physiological similarities with humans and accessibility as model organisms, trainability, and behavioral repertoire. In particular, rats perform a wide range of sophisticated social, cognitive, motor, and learning behaviors within the contexts of both naturalistic and laboratory environments. Further progress in neuroscience can be facilitated by using advanced imaging methods to measure the complex neural and physiological processes during behavior in rats. However, compared with the mouse, the rat nervous system offers a set of challenges, such as larger brain size, decreased neuron density, and difficulty with head restraint. Here, we review recent advances in in vivo imaging techniques in rats with a special focus on open-source solutions for calcium imaging. Finally, we provide suggestions for both users and developers of in vivo imaging systems for rats.
Collapse
Affiliation(s)
- Su Jin Kim
- Johns Hopkins University, Department of Psychological and Brain Sciences, Baltimore, Maryland, United States
| | - Rifqi O. Affan
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
- Boston University, Graduate Program in Neuroscience, Boston, Massachusetts, United States
| | - Hadas Frostig
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
| | - Benjamin B. Scott
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center and Photonics Center, Boston, Massachusetts, United States
| | - Andrew S. Alexander
- University of California Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| |
Collapse
|
7
|
Monroe DC, Berry NT, Fino PC, Rhea CK. A Dynamical Systems Approach to Characterizing Brain-Body Interactions during Movement: Challenges, Interpretations, and Recommendations. SENSORS (BASEL, SWITZERLAND) 2023; 23:6296. [PMID: 37514591 PMCID: PMC10385586 DOI: 10.3390/s23146296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Brain-body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of 'brain' activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a fundamental challenge to the use of BBIs for answering basic and applied research questions in neuroimaging and neurorehabilitation. Thus, this review is written as a tutorial to address both limitations for those interested in studying BBIs through a dynamical systems lens. First, we outline current best practices for acquiring, interpreting, and cleaning scalp-measured electroencephalography (EEG) acquired during whole-body movement. Second, we discuss historical and current theories for modeling EEG and kinematic data as dynamical systems. Third, we provide worked examples from both canonical model systems and from empirical EEG and kinematic data collected from two subjects during an overground walking task.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nathaniel T Berry
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
- Under Armour, Inc., Innovation, Baltimore, MD 21230, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher K Rhea
- College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
8
|
Cansler HL, in ’t Zandt EE, Carlson KS, Khan WT, Ma M, Wesson DW. Organization and engagement of a prefrontal-olfactory network during olfactory selective attention. Cereb Cortex 2023; 33:1504-1526. [PMID: 35511680 PMCID: PMC9930634 DOI: 10.1093/cercor/bhac153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Sensory perception is profoundly shaped by attention. Attending to an odor strongly regulates if and how it is perceived - yet the brain systems involved in this process are unknown. Here we report integration of the medial prefrontal cortex (mPFC), a collection of brain regions integral to attention, with the olfactory system in the context of selective attention to odors. METHODS First, we used tracing methods to establish the tubular striatum (TuS, also known as the olfactory tubercle) as the primary olfactory region to receive direct mPFC input in rats. Next, we recorded (i) local field potentials from the olfactory bulb (OB), mPFC, and TuS, or (ii) sniffing, while rats completed an olfactory selective attention task. RESULTS Gamma power and coupling of gamma oscillations with theta phase were consistently high as rats flexibly switched their attention to odors. Beta and theta synchrony between mPFC and olfactory regions were elevated as rats switched their attention to odors. Finally, we found that sniffing was consistent despite shifting attentional demands, suggesting that the mPFC-OB theta coherence is independent of changes in active sampling. CONCLUSIONS Together, these findings begin to define an olfactory attention network wherein mPFC activity, as well as that within olfactory regions, are coordinated based upon attentional states.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Estelle E in ’t Zandt
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Kaitlin S Carlson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Waseh T Khan
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 110 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, United States
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| |
Collapse
|
9
|
Mafi F, Tang MF, Afarinesh MR, Ghasemian S, Sheibani V, Arabzadeh E. Temporal order judgment of multisensory stimuli in rat and human. Front Behav Neurosci 2023; 16:1070452. [PMID: 36710957 PMCID: PMC9879721 DOI: 10.3389/fnbeh.2022.1070452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
We do not fully understand the resolution at which temporal information is processed by different species. Here we employed a temporal order judgment (TOJ) task in rats and humans to test the temporal precision with which these species can detect the order of presentation of simple stimuli across two modalities of vision and audition. Both species reported the order of audiovisual stimuli when they were presented from a central location at a range of stimulus onset asynchronies (SOA)s. While both species could reliably distinguish the temporal order of stimuli based on their sensory content (i.e., the modality label), rats outperformed humans at short SOAs (less than 100 ms) whereas humans outperformed rats at long SOAs (greater than 100 ms). Moreover, rats produced faster responses compared to humans. The reaction time data further revealed key differences in decision process across the two species: at longer SOAs, reaction times increased in rats but decreased in humans. Finally, drift-diffusion modeling allowed us to isolate the contribution of various parameters including evidence accumulation rates, lapse and bias to the sensory decision. Consistent with the psychophysical findings, the model revealed higher temporal sensitivity and a higher lapse rate in rats compared to humans. These findings suggest that these species applied different strategies for making perceptual decisions in the context of a multimodal TOJ task.
Collapse
Affiliation(s)
- Fatemeh Mafi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Matthew F. Tang
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sadegh Ghasemian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Arabzadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
10
|
Chae H, Banerjee A, Dussauze M, Albeanu DF. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron 2022; 110:3970-3985.e7. [PMID: 36174573 PMCID: PMC9742324 DOI: 10.1016/j.neuron.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Elucidating the neural circuits supporting odor identification remains an open challenge. Here, we analyze the contribution of the two output cell types of the mouse olfactory bulb (mitral and tufted cells) to decode odor identity and concentration and its dependence on top-down feedback from their respective major cortical targets: piriform cortex versus anterior olfactory nucleus. We find that tufted cells substantially outperform mitral cells in decoding both odor identity and intensity. Cortical feedback selectively regulates the activity of its dominant bulb projection cell type and implements different computations. Piriform feedback specifically restructures mitral responses, whereas feedback from the anterior olfactory nucleus preferentially controls the gain of tufted representations without altering their odor tuning. Our results identify distinct functional loops involving the mitral and tufted cells and their cortical targets. We suggest that in addition to the canonical mitral-to-piriform pathway, tufted cells and their target regions are ideally positioned to compute odor identity.
Collapse
Affiliation(s)
- Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Arkarup Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Marie Dussauze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA.
| |
Collapse
|
11
|
Treviño M, Medina-Coss Y León R, Lezama E. Response Time Distributions and the Accumulation of Visual Evidence in Freely Moving Mice. Neuroscience 2022; 501:25-41. [PMID: 35995337 DOI: 10.1016/j.neuroscience.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Response time (RT) distributions are histograms of the observed RTs for discriminative choices, comprising a rich source of empirical information to study perceptual processes. The drift-diffusion model (DDM), a mathematical formulation predicting decision tasks, reproduces the RT distributions, contributing to our understanding of these processes from a theoretical perspective. Notably, although the mouse is a popular model system for studying brain function and behavior, little is known about mouse perceptual RT distributions, and their description from an information-accumulation perspective. We combined an automated visual discrimination task with pharmacological micro-infusions of targeted brain regions to acquire thousands of responses from freely-moving adult mice. Both choices and escape latencies showed a strong dependency on stimulus discriminability. By applying a DDM fit to our experimental data, we found that the rate of incoming evidence (drift rate) increased with stimulus contrast but was reversibly impaired when inactivating the primary visual cortex (V1). Other brain regions involved in the decision-making process, the posterior parietal cortex (PPC) and the frontal orienting fields (FOF), also influenced relevant parameters from the DDM. The large number of empirical observations that we collected for this study allowed us to achieve accurate convergence for the model fit. Therefore, changes in the experimental conditions were mirrored by changes in model parameters, suggesting the participation of relevant brain areas in the decision-making process. This approach could help interpret future studies involving attention, discrimination, and learning in adult mice.
Collapse
Affiliation(s)
- Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Ricardo Medina-Coss Y León
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Simmons Cancer Institute at Southern Illinois University, USA
| | - Elí Lezama
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
12
|
Xue C, Kramer LE, Cohen MR. Dynamic task-belief is an integral part of decision-making. Neuron 2022; 110:2503-2511.e3. [PMID: 35700735 PMCID: PMC9357195 DOI: 10.1016/j.neuron.2022.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
Natural decisions involve two seemingly separable processes: inferring the relevant task (task-belief) and performing the believed-relevant task. The assumed separability has led to the traditional practice of studying task-switching and perceptual decision-making individually. Here, we used a novel paradigm to manipulate and measure macaque monkeys' task-belief and demonstrated inextricable neuronal links between flexible task-belief and perceptual decision-making. We showed that in animals, but not in artificial networks that performed as well or better than the animals, stronger task-belief is associated with better perception. Correspondingly, recordings from neuronal populations in cortical areas 7a and V1 revealed that stronger task-belief is associated with better discriminability of the believed-relevant, but not the believed-irrelevant, feature. Perception also impacts belief updating; noise fluctuations in V1 help explain how task-belief is updated. Our results demonstrate that complex tasks and multi-area recordings can reveal fundamentally new principles of how biology affects behavior in health and disease.
Collapse
Affiliation(s)
- Cheng Xue
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Lily E Kramer
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marlene R Cohen
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
13
|
Pérez-Parra JE, Rojas-Líbano D. Drift-diffusion cognitive models: description, applications and perspectives ( Modelos cognitivos de deriva-difusión: descripción, aplicaciones y perspectivas). STUDIES IN PSYCHOLOGY 2022. [DOI: 10.1080/02109395.2022.2056802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
You 游文愷 WK, Mysore SP. Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice. eNeuro 2022; 9:ENEURO.0161-21.2022. [PMID: 35228308 DOI: 10.1101/2020.02.20.958652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 05/25/2023] Open
Abstract
The temporal dynamics of perceptual decisions offer a key window into the cognitive processes contributing to decision-making. Investigating perceptual dynamics in a genetically tractable animal model can facilitate the subsequent unpacking of the underlying neural mechanisms. Here, we investigated the time course as well as fundamental psychophysical constants governing visual perceptual decision-making in freely behaving mice. We did so by analyzing response accuracy against reaction time (RT), i.e., conditional accuracy, in a series of two-alternative forced choice (2-AFC) orientation discrimination tasks in which we varied target size, luminance, duration, and presence of a foil. Our results quantified two distinct stages in the time course of mouse visual decision-making: a "sensory encoding" stage in which conditional accuracy exhibits a classic trade-off with response speed, and a subsequent "short-term memory (STM)-dependent" stage in which conditional accuracy exhibits a classic asymptotic decay following stimulus offset. We estimated the duration of visual sensory encoding as 200-320 ms across tasks, the lower bound of the duration of STM as ∼1700 ms, and the briefest duration of visual stimulus input that is informative as ≤50 ms. Separately, by varying stimulus onset delay, we demonstrated that the conditional accuracy function (CAF) and RT distribution can be independently modulated, and found that the duration for which mice naturally withhold from responding is a quantitative metric of impulsivity. Taken together, our results establish a quantitative foundation for investigating the neural circuit bases of visual decision dynamics in mice.
Collapse
Affiliation(s)
- Wen-Kai You 游文愷
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
15
|
Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice. eNeuro 2022; 9:ENEURO.0161-21.2022. [PMID: 35228308 PMCID: PMC8925649 DOI: 10.1523/eneuro.0161-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
The temporal dynamics of perceptual decisions offer a key window into the cognitive processes contributing to decision-making. Investigating perceptual dynamics in a genetically tractable animal model can facilitate the subsequent unpacking of the underlying neural mechanisms. Here, we investigated the time course as well as fundamental psychophysical constants governing visual perceptual decision-making in freely behaving mice. We did so by analyzing response accuracy against reaction time (RT), i.e., conditional accuracy, in a series of two-alternative forced choice (2-AFC) orientation discrimination tasks in which we varied target size, luminance, duration, and presence of a foil. Our results quantified two distinct stages in the time course of mouse visual decision-making: a “sensory encoding” stage in which conditional accuracy exhibits a classic trade-off with response speed, and a subsequent “short-term memory (STM)-dependent” stage in which conditional accuracy exhibits a classic asymptotic decay following stimulus offset. We estimated the duration of visual sensory encoding as 200–320 ms across tasks, the lower bound of the duration of STM as ∼1700 ms, and the briefest duration of visual stimulus input that is informative as ≤50 ms. Separately, by varying stimulus onset delay, we demonstrated that the conditional accuracy function (CAF) and RT distribution can be independently modulated, and found that the duration for which mice naturally withhold from responding is a quantitative metric of impulsivity. Taken together, our results establish a quantitative foundation for investigating the neural circuit bases of visual decision dynamics in mice.
Collapse
|
16
|
Smell-induced gamma oscillations in human olfactory cortex are required for accurate perception of odor identity. PLoS Biol 2022; 20:e3001509. [PMID: 34986157 PMCID: PMC8765613 DOI: 10.1371/journal.pbio.3001509] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/18/2022] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli. Intracranial recordings from human olfactory cortex reveal a characteristic spectrotemporal response to odors, including theta, beta and gamma oscillations, and show that high-frequency responses are critical for accurate perception of odors.
Collapse
|
17
|
Krauhausen I, Koutsouras DA, Melianas A, Keene ST, Lieberth K, Ledanseur H, Sheelamanthula R, Giovannitti A, Torricelli F, Mcculloch I, Blom PWM, Salleo A, van de Burgt Y, Gkoupidenis P. Organic neuromorphic electronics for sensorimotor integration and learning in robotics. SCIENCE ADVANCES 2021; 7:eabl5068. [PMID: 34890232 PMCID: PMC8664264 DOI: 10.1126/sciadv.abl5068] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the robot is exposed to external environmental stimuli, visuomotor associations are formed on the adaptable neuromorphic circuit. With this on-chip sensorimotor integration, the robot learns to follow a path to the exit of a maze, while being guided by visually indicated paths. The ease of processability of organic neuromorphic electronics and their unconventional form factors, in combination with education-purpose robotics, showcase a promising approach of an affordable, versatile, and readily accessible platform for exploring, designing, and evaluating behavioral intelligence through decentralized sensorimotor integration.
Collapse
Affiliation(s)
- Imke Krauhausen
- Max Planck Institute for Polymer Research, Mainz, Germany
- Microsystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Armantas Melianas
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Exponent, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - Scott T. Keene
- Department of Engineering, University of Cambridge, Cambridge, UK
| | | | | | - Rajendar Sheelamanthula
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy
| | - Iain Mcculloch
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Corresponding author. (A.S.); (Y.v.d.B); (P.G.)
| | - Yoeri van de Burgt
- Microsystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Corresponding author. (A.S.); (Y.v.d.B); (P.G.)
| | - Paschalis Gkoupidenis
- Max Planck Institute for Polymer Research, Mainz, Germany
- Corresponding author. (A.S.); (Y.v.d.B); (P.G.)
| |
Collapse
|
18
|
Ernst UA, Chen X, Bohnenkamp L, Galashan FO, Wegener D. Dynamic divisive normalization circuits explain and predict change detection in monkey area MT. PLoS Comput Biol 2021; 17:e1009595. [PMID: 34767547 PMCID: PMC8612546 DOI: 10.1371/journal.pcbi.1009595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/24/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Sudden changes in visual scenes often indicate important events for behavior. For their quick and reliable detection, the brain must be capable to process these changes as independently as possible from its current activation state. In motion-selective area MT, neurons respond to instantaneous speed changes with pronounced transients, often far exceeding the expected response as derived from their speed tuning profile. We here show that this complex, non-linear behavior emerges from the combined temporal dynamics of excitation and divisive inhibition, and provide a comprehensive mathematical analysis. A central prediction derived from this investigation is that attention increases the steepness of the transient response irrespective of the activation state prior to a stimulus change, and irrespective of the sign of the change (i.e. irrespective of whether the stimulus is accelerating or decelerating). Extracellular recordings of attention-dependent representation of both speed increments and decrements confirmed this prediction and suggest that improved change detection derives from basic computations in a canonical cortical circuitry.
Collapse
Affiliation(s)
- Udo A. Ernst
- Computational Neurophysics Lab, Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| | - Xiao Chen
- Computational Neurophysics Lab, Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| | - Lisa Bohnenkamp
- Computational Neurophysics Lab, Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| | | | - Detlef Wegener
- Brain Research Institute, University of Bremen, Bremen, Germany
| |
Collapse
|
19
|
Nikbakht N, Diamond ME. Conserved visual capacity of rats under red light. eLife 2021; 10:66429. [PMID: 34282724 PMCID: PMC8360654 DOI: 10.7554/elife.66429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
Recent studies examine the behavioral capacities of rats and mice with and without visual input, and the neuronal mechanisms underlying such capacities. These animals are assumed to be functionally blind under red light, an assumption that might originate in the fact that they are dichromats who possess ultraviolet and green cones, but not red cones. But the inability to see red as a color does not necessarily rule out form vision based on red light absorption. We measured Long-Evans rats’ capacity for visual form discrimination under red light of various wavelength bands. Upon viewing a black and white grating, they had to distinguish between two categories of orientation: horizontal and vertical. Psychometric curves plotting judged orientation versus angle demonstrate the conserved visual capacity of rats under red light. Investigations aiming to explore rodent physiological and behavioral functions in the absence of visual input should not assume red-light blindness.
Collapse
Affiliation(s)
- Nader Nikbakht
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Mathew E Diamond
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
20
|
Auschra S, Holubec V. Density and polarization of active Brownian particles in curved activity landscapes. Phys Rev E 2021; 103:062604. [PMID: 34271717 DOI: 10.1103/physreve.103.062604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 11/07/2022]
Abstract
Suspensions of motile active particles with space-dependent activity form characteristic polarization and density patterns. Recent single-particle studies for planar activity landscapes identified several quantities associated with emergent density-polarization patterns that are solely determined by bulk variables. Naive thermodynamic intuition suggests that these results might hold for arbitrary activity landscapes mediating bulk regions, and thus could be used as benchmarks for simulations and theories. However, the considered system operates in a nonequilibrium steady state and we prove by construction that the quantities in question lose their simple form for curved activity landscapes. Specifically, we provide a detailed analytical study of polarization and density profiles induced by radially symmetric activity steps, and of the total polarization for the case of a general radially symmetric activity landscape. While the qualitative picture is similar to the planar case, all the investigated variables depend not only on bulk variables but also comprise geometry-induced contributions. We verified that all our analytical results agree with exact numerical calculations.
Collapse
Affiliation(s)
- Sven Auschra
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Viktor Holubec
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany.,Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| |
Collapse
|
21
|
Luckett CR, Pellegrino R, Heatherly M, Alfaro Martinez K, Dein M, Munafo PJ. Discrimination of Complex Odor Mixtures: A Study Using Wine Aroma Models. Chem Senses 2020; 46:6043126. [PMID: 33347541 DOI: 10.1093/chemse/bjaa079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There are key unanswered questions when it comes to multicomponent odor discrimination. This study was designed to assess discrimination of odorant mixtures that elicit a singular percept. We collected data to address the following two questions: (1) What odor features do humans notice when attempting to discriminate between subtly different odor mixtures? (2) Are odor mixtures easier to discriminate when an odorant is added, compared with when a component is removed? Using modern aroma chemistry techniques, an odor mixture resembling a generic white wine was constructed. This wine odor mixture was modified using a series of three esters which are commonly found in white wines that vary in chain length and branching. Participants performed a sequence of discrimination tasks for the addition/subtraction of modifiers to the base wine at different concentrations. Only one of the esters (ethyl propanoate) led to a discriminable odor mixture. As concentration of the modifying odorant was increased, discrimination of odor mixtures was first reported because of changes in odor mixture familiarity and then intensity. We found similar sensitivity to changes in odor mixtures regardless whether the modifying compound was added or subtracted, suggesting that perceptual stability of odor mixtures is equally dependent on both imputing missing information (pattern completion) and disregarding extraneous information.
Collapse
Affiliation(s)
- Curtis R Luckett
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Robert Pellegrino
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | | | - Katherine Alfaro Martinez
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.,Department of Food Science, Zamorano University, Francisco Morazán, Tegucigalpa, Honduras, C.A
| | - Melissa Dein
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - P John Munafo
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
22
|
Bhattacharjee AS, Konakamchi S, Turaev D, Vincis R, Nunes D, Dingankar AA, Spors H, Carleton A, Kuner T, Abraham NM. Similarity and Strength of Glomerular Odor Representations Define a Neural Metric of Sniff-Invariant Discrimination Time. Cell Rep 2020; 28:2966-2978.e5. [PMID: 31509755 PMCID: PMC7115995 DOI: 10.1016/j.celrep.2019.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/01/2022] Open
Abstract
The olfactory environment is first represented by glomerular activity patterns in the olfactory bulb. It remains unclear how these representations intersect with sampling behavior to account for the time required to discriminate odors. Using different chemical classes, we investigate glomerular representations and sniffing behavior during olfactory decision-making. Mice rapidly discriminate odorants and learn to increase sniffing frequency at a fixed latency after trial initiation, independent of odor identity. Relative to the increase in sniffing frequency, monomolecular odorants are discriminated within 10-40 ms, while binary mixtures require an additional 60-70 ms. Intrinsic imaging of glomerular activity in anesthetized and awake mice reveals that Euclidean distance between activity patterns and the time needed for discriminations are anti-correlated. Therefore, the similarity of glomerular patterns and their activation strengths, rather than sampling behavior, define the extent of neuronal processing required for odor discrimination, establishing a neural metric to predict olfactory discrimination time.
Collapse
Affiliation(s)
| | - Sasank Konakamchi
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Dmitrij Turaev
- WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; Department of Molecular Neurogenetics, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Roberto Vincis
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland
| | - Daniel Nunes
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| | - Atharva A Dingankar
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Hartwig Spors
- WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; Department of Molecular Neurogenetics, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany; WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nixon M Abraham
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India; Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany; WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland.
| |
Collapse
|
23
|
Byrne AJ. Analog Resonance Computation: A New Model for Human Cognition. Front Psychol 2020; 11:2080. [PMID: 33013530 PMCID: PMC7509107 DOI: 10.3389/fpsyg.2020.02080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022] Open
Abstract
Early models of human cognition appeared to posit the brain as a collection of discrete digital computing modules with specific data processing functions. More recent theories such as the Hierarchically Mechanistic Mind characterize the brain as a massive hierarchy of interconnected and adaptive circuits whose primary aim is to reduce entropy. However, studies in high workload/stress situations show that human behavior is often error prone and seemingly irrational. Rather than regarding such behavior to be uncharacteristic, this paper suggest that such "atypical" behavior provides the best information on which to base theories of human cognition. Rather than using a digital paradigm, human cognition should be seen as an analog computer based on resonating circuits whose primary driver is to constantly extract information from the massively complex and rapidly changing world around us to construct an internal model of reality that allows us to rapidly respond to the threats and opportunities.
Collapse
Affiliation(s)
- Aidan J. Byrne
- Consultant Anaesthetist, Swansea Bay University Health Board, Honorary Professor, Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
24
|
Reisert J, Golden GJ, Dibattista M, Gelperin A. Dynamics of odor sampling strategies in mice. PLoS One 2020; 15:e0237756. [PMID: 32797072 PMCID: PMC7428156 DOI: 10.1371/journal.pone.0237756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
Mammalian olfactory receptor neurons in the nasal cavity are stimulated by odorants carried by the inhaled air and their activation is therefore tied to and driven by the breathing or sniffing frequency. Sniffing frequency can be deliberately modulated to alter how odorants stimulate olfactory receptor neurons, giving the animal control over the frequency of odorant exposure to potentially aid odorant detection and discrimination. We monitored sniffing behaviors and odorant discrimination ability of freely-moving mice while they sampled either decreasing concentrations of target odorants or sampled a fixed target odorant concentration in the presence of a background of increasing odorant concentrations, using a Go-NoGo behavioral paradigm. This allowed us to ask how mice alter their odorant sampling duration and sampling (sniffing) frequency depending on the demands of the task and its difficulty. Mice showed an anticipatory increase in sniffing rate prior to odorant exposure and chose to sample for longer durations when exposed to odorants as compared to the solvent control odorant. Similarly, mice also took more odorant sampling sniffs when exposed to target odorants compared to the solvent control odorant. In general, odorant sampling strategies became more similar the more difficult the task was, e.g. the lower the target odorant concentration or the lower the target odorant contrast relative to the background odorant, suggesting that sniffing patterns are not preset, but are dynamically modulated by the particular task and its difficulty.
Collapse
Affiliation(s)
- Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Glen J. Golden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari “A. Moro”, Bari, Italy
| | - Alan Gelperin
- Department of Neuroscience, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
25
|
Differential Impacts of Repeated Sampling on Odor Representations by Genetically-Defined Mitral and Tufted Cell Subpopulations in the Mouse Olfactory Bulb. J Neurosci 2020; 40:6177-6188. [PMID: 32601245 DOI: 10.1523/jneurosci.0258-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Sniffing, the active control of breathing beyond passive respiration, is used by mammals to modulate olfactory sampling. Sniffing allows animals to make odor-guided decisions within ∼200 ms, but animals routinely engage in bouts of high-frequency sniffing spanning several seconds; the impact of such repeated odorant sampling on odor representations remains unclear. We investigated this question in the mouse olfactory bulb (OB), where mitral and tufted cells (MTCs) form parallel output streams of odor information processing. To test the impact of repeated odorant sampling on MTC responses, we used two-photon imaging in anesthetized male and female mice to record activation of MTCs while precisely varying inhalation frequency. A combination of genetic targeting and viral expression of GCaMP6 reporters allowed us to access mitral cell (MC) and superficial tufted cell (sTC) subpopulations separately. We found that repeated odorant sampling differentially affected responses in MCs and sTCs, with MCs showing more diversity than sTCs over the same time period. Impacts of repeated sampling among MCs included both increases and decreases in excitation, as well as changes in response polarity. Response patterns across simultaneously-imaged MCs reformatted over time, with representations of different odorants becoming more distinct. Individual MCs responded differentially to changes in inhalation frequency, whereas sTC responses were more uniform over time and across frequency. Our results support the idea that MCs and TCs comprise functionally distinct pathways for odor information processing, and suggest that the reformatting of MC odor representations by high-frequency sniffing may serve to enhance the discrimination of similar odors.SIGNIFICANCE STATEMENT Repeated sampling of odorants during high-frequency respiration (sniffing) is a hallmark of active odorant sampling by mammals; however, the adaptive function of this behavior remains unclear. We found distinct effects of repeated sampling on odor representations carried by the two main output channels from the mouse olfactory bulb (OB), mitral and tufted cells (MTCs). Mitral cells (MCs) showed more diverse changes in response patterns over time as compared with tufted cells (TCs), leading to odorant representations that were more distinct after repeated sampling. These results support the idea that MTCs contribute different aspects to encoding odor information, and they indicate that MCs (but not TCs) may play a primary role in the modulation of olfactory processing by sampling behavior.
Collapse
|
26
|
The impact of learning on perceptual decisions and its implication for speed-accuracy tradeoffs. Nat Commun 2020; 11:2757. [PMID: 32488065 PMCID: PMC7265464 DOI: 10.1038/s41467-020-16196-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
In standard models of perceptual decision-making, noisy sensory evidence is considered to be the primary source of choice errors and the accumulation of evidence needed to overcome this noise gives rise to speed-accuracy tradeoffs. Here, we investigated how the history of recent choices and their outcomes interact with these processes using a combination of theory and experiment. We found that the speed and accuracy of performance of rats on olfactory decision tasks could be best explained by a Bayesian model that combines reinforcement-based learning with accumulation of uncertain sensory evidence. This model predicted the specific pattern of trial history effects that were found in the data. The results suggest that learning is a critical factor contributing to speed-accuracy tradeoffs in decision-making, and that task history effects are not simply biases but rather the signatures of an optimal learning strategy. Here, the authors show that rats’ performance on olfactory decision tasks is best explained by a Bayesian model that combines reinforcement-based learning with accumulation of uncertain sensory evidence. The results suggest that learning is a critical factor contributing to speed-accuracy tradeoffs.
Collapse
|
27
|
Lim K, Wang W, Merfeld DM. Frontal scalp potentials foretell perceptual choice confidence. J Neurophysiol 2020; 123:1566-1577. [PMID: 32208896 DOI: 10.1152/jn.00290.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When making decisions, people naturally ask two implicit questions: how soon can I make a decision, and how certain am I? In perception, people's confidence (how certain?) shows a nonmonotonic relationship with response time (how soon?), such that choice confidence can either increase or decrease with response time. Although a frontoparietal network has been implicated as a neural substrate that binds choice confidence and action (e.g., response time), the dynamic interplay between choice behaviors within such a network has not been clarified. Here, we show that frontal event-related potentials (ERPs) reflect choice confidence before a decision. Specifically, we report a second positive peak of the stimulus-locked frontal ERP at ~500 ms that scales with confidence but not stimulus level, whereas the centroparietal ERP amplitude covaries inversely with response time. This frontal ERP component occurs before the response, which helps explain the inverse relationship between choice confidence and response time (i.e., higher confidence for shorter response time) when choice accuracy is emphasized over speed. Our findings provide the first early neural representation of confidence, consistent with the temporal precedence for its causal role in the current decision-making task: "I decided earlier because I am confident."NEW & NOTEWORTHY We report novel neural correlates of predecisional choice confidence in frontal scalp potential in humans. In conjunction with the centroparietal choice-action event-related potential component, this new frontal choice confidence component further elucidates the dynamics of the frontoparietal decision-making neural circuitry.
Collapse
Affiliation(s)
- Koeun Lim
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Wei Wang
- Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Otolaryngology, The Ohio State University Medical College, Columbus, Ohio
| |
Collapse
|
28
|
Ryan JD, Shen K, Liu Z. The intersection between the oculomotor and hippocampal memory systems: empirical developments and clinical implications. Ann N Y Acad Sci 2020; 1464:115-141. [PMID: 31617589 PMCID: PMC7154681 DOI: 10.1111/nyas.14256] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/29/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Decades of cognitive neuroscience research has shown that where we look is intimately connected to what we remember. In this article, we review findings from human and nonhuman animals, using behavioral, neuropsychological, neuroimaging, and computational modeling methods, to show that the oculomotor and hippocampal memory systems interact in a reciprocal manner, on a moment-to-moment basis, mediated by a vast structural and functional network. Visual exploration serves to efficiently gather information from the environment for the purpose of creating new memories, updating existing memories, and reconstructing the rich, vivid details from memory. Conversely, memory increases the efficiency of visual exploration. We call for models of oculomotor control to consider the influence of the hippocampal memory system on the cognitive control of eye movements, and for models of hippocampal and broader medial temporal lobe function to consider the influence of the oculomotor system on the development and expression of memory. We describe eye movement-based applications for the detection of neurodegeneration and delivery of therapeutic interventions for mental health disorders for which the hippocampus is implicated and memory dysfunctions are at the forefront.
Collapse
Affiliation(s)
- Jennifer D. Ryan
- Rotman Research InstituteBaycrestTorontoOntarioCanada
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Kelly Shen
- Rotman Research InstituteBaycrestTorontoOntarioCanada
| | - Zhong‐Xu Liu
- Department of Behavioral SciencesUniversity of Michigan‐DearbornDearbornMichigan
| |
Collapse
|
29
|
Barrett JM, Raineri Tapies MG, Shepherd GMG. Manual dexterity of mice during food-handling involves the thumb and a set of fast basic movements. PLoS One 2020; 15:e0226774. [PMID: 31940368 PMCID: PMC6961851 DOI: 10.1371/journal.pone.0226774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
The small first digit (D1) of the mouse's hand resembles a volar pad, but its thumb-like anatomy suggests ethological importance for manipulating small objects. To explore this possibility, we recorded high-speed close-up video of mice eating seeds and other food items. Analyses of ethograms and automated tracking with DeepLabCut revealed multiple distinct microstructural features of food-handling. First, we found that mice indeed made extensive use of D1 for dexterous manipulations. In particular, mice used D1 to hold food with either of two grip types: a pincer-type grasp, or a "thumb-hold" grip, pressing with D1 from the side. Thumb-holding was preferentially used for handling smaller items, with the smallest items held between the two D1s alone. Second, we observed that mice cycled rapidly between two postural modes while feeding, with the hands positioned either at the mouth (oromanual phase) or resting below (holding phase). Third, we identified two highly stereotyped D1-related movements during feeding, including an extraordinarily fast (~20 ms) "regrip" maneuver, and a fast (~100 ms) "sniff" maneuver. Lastly, in addition to these characteristic simpler movements and postures, we also observed highly complex movements, including rapid D1-assisted rotations of food items and dexterous simultaneous double-gripping of two food fragments. Manipulation behaviors were generally conserved for different food types, and for head-fixed mice. Wild squirrels displayed a similar repertoire of D1-related movements. Our results define, for the mouse, a set of kinematic building-blocks of manual dexterity, and reveal an outsized role for D1 in these actions.
Collapse
Affiliation(s)
- John M. Barrett
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Martinna G. Raineri Tapies
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gordon M. G. Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
30
|
Pardo-Vazquez JL, Castiñeiras-de Saa JR, Valente M, Damião I, Costa T, Vicente MI, Mendonça AG, Mainen ZF, Renart A. The mechanistic foundation of Weber's law. Nat Neurosci 2019; 22:1493-1502. [PMID: 31406366 DOI: 10.1038/s41593-019-0439-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/28/2019] [Indexed: 11/09/2022]
Abstract
Although Weber's law is the most firmly established regularity in sensation, no principled way has been identified to choose between its many proposed explanations. We investigated Weber's law by training rats to discriminate the relative intensity of sounds at the two ears at various absolute levels. These experiments revealed the existence of a psychophysical regularity, which we term time-intensity equivalence in discrimination (TIED), describing how reaction times change as a function of absolute level. The TIED enables the mathematical specification of the computational basis of Weber's law, placing strict requirements on how stimulus intensity is encoded in the stochastic activity of sensory neurons and revealing that discriminative choices must be based on bounded exact accumulation of evidence. We further demonstrate that this mechanism is not only necessary for the TIED to hold but is also sufficient to provide a virtually complete quantitative description of the behavior of the rats.
Collapse
Affiliation(s)
- Jose L Pardo-Vazquez
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal. .,Neuroscience and Motor Control Group, University of A Coruña, A Coruña, Spain.
| | | | - Mafalda Valente
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Iris Damião
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Tiago Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - M Inês Vicente
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - André G Mendonça
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alfonso Renart
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
31
|
Carland MA, Thura D, Cisek P. The Urge to Decide and Act: Implications for Brain Function and Dysfunction. Neuroscientist 2019; 25:491-511. [DOI: 10.1177/1073858419841553] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Humans and other animals are motivated to act so as to maximize their subjective reward rate. Here, we propose that reward rate maximization is accomplished by adjusting a context-dependent “urgency signal,” which influences both the commitment to a developing action choice and the vigor with which the ensuing action is performed. We review behavioral and neurophysiological data suggesting that urgency is controlled by projections from the basal ganglia to cerebral cortical regions, influencing neural activity related to decision making as well as activity related to action execution. We also review evidence suggesting that different individuals possess specific policies for adjusting their urgency signal to particular contextual variables, such that urgency constitutes an individual trait which jointly influences a wide range of behavioral measures commonly related to the overall quality and hastiness of one’s decisions and actions. Consequently, we argue that a central mechanism for reward rate maximization provides a potential link between personality traits such as impulsivity, as well as some of the motivation-related symptomology of clinical disorders such as depression and Parkinson’s disease.
Collapse
Affiliation(s)
- Matthew A. Carland
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - David Thura
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - Paul Cisek
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Retronasal Habituation: Characterization and Impact on Flavor Perception Using Time-Intensity. CHEMOSENS PERCEPT 2018. [DOI: 10.1007/s12078-018-9254-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Saccadic inhibition interrupts ongoing oculomotor activity to enable the rapid deployment of alternate movement plans. Sci Rep 2018; 8:14163. [PMID: 30242249 PMCID: PMC6155112 DOI: 10.1038/s41598-018-32224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
Diverse psychophysical and neurophysiological results show that oculomotor networks are continuously active, such that plans for making the next eye movement are always ongoing. So, when new visual information arrives unexpectedly, how are those plans affected? At what point can the new information start guiding an eye movement, and how? Here, based on modeling and simulation results, we make two observations that are relevant to these questions. First, we note that many experiments, including those investigating the phenomenon known as "saccadic inhibition", are consistent with the idea that sudden-onset stimuli briefly interrupt the gradual rise in neural activity associated with the preparation of an impending saccade. And second, we show that this stimulus-driven interruption is functionally adaptive, but only if perception is fast. In that case, putting on hold an ongoing saccade plan toward location A allows the oculomotor system to initiate a concurrent, alternative plan toward location B (where a stimulus just appeared), deliberate (briefly) on the priority of each target, and determine which plan should continue. Based on physiological data, we estimate that the advantage of this strategy, relative to one in which any plan once initiated must be completed, is of several tens of milliseconds per saccade.
Collapse
|
34
|
Williams AH, Kim TH, Wang F, Vyas S, Ryu SI, Shenoy KV, Schnitzer M, Kolda TG, Ganguli S. Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis. Neuron 2018; 98:1099-1115.e8. [PMID: 29887338 DOI: 10.1016/j.neuron.2018.05.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/18/2018] [Accepted: 05/08/2018] [Indexed: 01/19/2023]
Abstract
Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning.
Collapse
Affiliation(s)
- Alex H Williams
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA.
| | - Tony Hyun Kim
- Electrical Engineering Department, Stanford University, Stanford, CA 94305, USA
| | - Forea Wang
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Saurabh Vyas
- Electrical Engineering Department, Stanford University, Stanford, CA 94305, USA; Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Stephen I Ryu
- Electrical Engineering Department, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Krishna V Shenoy
- Electrical Engineering Department, Stanford University, Stanford, CA 94305, USA; Bioengineering Department, Stanford University, Stanford, CA 94305, USA; Neurobiology Department, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark Schnitzer
- Applied Physics Department, Stanford University, Stanford, CA 94305, USA; Biology Department, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | | | - Surya Ganguli
- Applied Physics Department, Stanford University, Stanford, CA 94305, USA; Neurobiology Department, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Pinto L, Koay SA, Engelhard B, Yoon AM, Deverett B, Thiberge SY, Witten IB, Tank DW, Brody CD. An Accumulation-of-Evidence Task Using Visual Pulses for Mice Navigating in Virtual Reality. Front Behav Neurosci 2018; 12:36. [PMID: 29559900 PMCID: PMC5845651 DOI: 10.3389/fnbeh.2018.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 11/13/2022] Open
Abstract
The gradual accumulation of sensory evidence is a crucial component of perceptual decision making, but its neural mechanisms are still poorly understood. Given the wide availability of genetic and optical tools for mice, they can be useful model organisms for the study of these phenomena; however, behavioral tools are largely lacking. Here, we describe a new evidence-accumulation task for head-fixed mice navigating in a virtual reality (VR) environment. As they navigate down the stem of a virtual T-maze, they see brief pulses of visual evidence on either side, and retrieve a reward on the arm with the highest number of pulses. The pulses occur randomly with Poisson statistics, yielding a diverse yet well-controlled stimulus set, making the data conducive to a variety of computational approaches. A large number of mice of different genotypes were able to learn and consistently perform the task, at levels similar to rats in analogous tasks. They are sensitive to side differences of a single pulse, and their memory of the cues is stable over time. Moreover, using non-parametric as well as modeling approaches, we show that the mice indeed accumulate evidence: they use multiple pulses of evidence from throughout the cue region of the maze to make their decision, albeit with a small overweighting of earlier cues, and their performance is affected by the magnitude but not the duration of evidence. Additionally, analysis of the mice's running patterns revealed that trajectories are fairly stereotyped yet modulated by the amount of sensory evidence, suggesting that the navigational component of this task may provide a continuous readout correlated to the underlying cognitive variables. Our task, which can be readily integrated with state-of-the-art techniques, is thus a valuable tool to study the circuit mechanisms and dynamics underlying perceptual decision making, particularly under more complex behavioral contexts.
Collapse
Affiliation(s)
- Lucas Pinto
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Sue A Koay
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Alice M Yoon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Ben Deverett
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States.,Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Stephan Y Thiberge
- Bezos Center for Neural Dynamics, Princeton University, Princeton, NJ, United States
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States.,Department of Psychology, Princeton University, Princeton, NJ, United States
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States.,Bezos Center for Neural Dynamics, Princeton University, Princeton, NJ, United States.,Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States.,Department of Molecular Biology, Princeton University, Princeton, NJ, United States.,Howard Hughes Medical Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
36
|
Abstract
Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.
Collapse
Affiliation(s)
- Dominik Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
37
|
Rivalan M, Winter Y, Nachev V. Principles of Economic Rationality in Mice. Sci Rep 2017; 7:17441. [PMID: 29234113 PMCID: PMC5727109 DOI: 10.1038/s41598-017-17747-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022] Open
Abstract
Humans and non-human animals frequently violate principles of economic rationality, such as transitivity, independence of irrelevant alternatives, and regularity. The conditions that lead to these violations are not completely understood. Here we report a study on mice tested in automated home-cage setups using rewards of drinking water. Rewards differed in one of two dimensions, volume or probability. Our results suggest that mouse choice conforms to the principles of economic rationality for options that differ along a single reward dimension. A psychometric analysis of mouse choices further revealed that mice responded more strongly to differences in probability than to differences in volume, despite equivalence in return rates. This study also demonstrates the synergistic effect between the principles of economic rationality and psychophysics in making quantitative predictions about choices of healthy laboratory mice. This opens up new possibilities for the analyses of multi-dimensional choice and the use of mice with cognitive impairments that may violate economic rationality.
Collapse
Affiliation(s)
- Marion Rivalan
- Department of Biology, Humboldt University, Philippstr. 13, Berlin, 10099, Germany
| | - York Winter
- Department of Biology, Humboldt University, Philippstr. 13, Berlin, 10099, Germany.
| | - Vladislav Nachev
- Department of Biology, Humboldt University, Philippstr. 13, Berlin, 10099, Germany.
| |
Collapse
|
38
|
Neural Signature of Value-Based Sensorimotor Prioritization in Humans. J Neurosci 2017; 37:10725-10737. [PMID: 28982706 DOI: 10.1523/jneurosci.1164-17.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022] Open
Abstract
In situations in which impending sensory events demand fast action choices, we must be ready to prioritize higher-value courses of action to avoid missed opportunities. When such a situation first presents itself, stimulus-action contingencies and their relative value must be encoded to establish a value-biased state of preparation for an impending sensorimotor decision. Here, we sought to identify neurophysiological signatures of such processes in the human brain (both female and male). We devised a task requiring fast action choices based on the discrimination of a simple visual cue in which the differently valued sensory alternatives were presented 750-800 ms before as peripheral "targets" that specified the stimulus-action mapping for the upcoming decision. In response to the targets, we identified a discrete, transient, spatially selective signal in the event-related potential (ERP), which scaled with relative value and strongly predicted the degree of behavioral bias in the upcoming decision both across and within subjects. This signal is not compatible with any hitherto known ERP signature of spatial selection and also bears novel distinctions with respect to characterizations of value-sensitive, spatially selective activity found in sensorimotor areas of nonhuman primates. Specifically, a series of follow-up experiments revealed that the signal was reliably invoked regardless of response laterality, response modality, sensory feature, and reward valence. It was absent, however, when the response deadline was relaxed and the strategic need for biasing removed. Therefore, more than passively representing value or salience, the signal appears to play a versatile and active role in adaptive sensorimotor prioritization.SIGNIFICANCE STATEMENT In many situations such as fast-moving sports, we must be ready to act fast in response to sensory events and, in our preparation, prioritize courses of action that lead to greater rewards. Although behavioral effects of value biases in sensorimotor decision making have been widely studied, little is known about the neural processes that set these biases in place beforehand. Here, we report the discovery of a transient, spatially selective neural signal in humans that encodes the relative value of competing decision alternatives and strongly predicts behavioral value biases in decisions made ∼500 ms later. Follow-up manipulations of value differential, reward valence, response modality, sensory features, and time constraints establish that the signal reflects an active, feature- and effector-general preparatory mechanism for value-based prioritization.
Collapse
|
39
|
Stochastic feeding dynamics arise from the need for information and energy. Proc Natl Acad Sci U S A 2017; 114:9261-9266. [PMID: 28802256 DOI: 10.1073/pnas.1703958114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals regulate their food intake in response to the available level of food. Recent observations of feeding dynamics in small animals showed feeding patterns of bursts and pauses, but their function is unknown. Here, we present a data-driven decision-theoretical model of feeding in Caenorhabditis elegans Our central assumption is that food intake serves a dual purpose: to gather information about the external food level and to ingest food when the conditions are good. The model recapitulates experimentally observed feeding patterns. It naturally implements trade-offs between speed versus accuracy and exploration versus exploitation in responding to a dynamic environment. We find that the model predicts three distinct regimes in responding to a dynamical environment, with a transition region where animals respond stochastically to periodic signals. This stochastic response accounts for previously unexplained experimental data.
Collapse
|
40
|
Pellegrino R, Sinding C, de Wijk RA, Hummel T. Habituation and adaptation to odors in humans. Physiol Behav 2017; 177:13-19. [PMID: 28408237 DOI: 10.1016/j.physbeh.2017.04.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/28/2017] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
Abstract
Habituation, or decreased behavioral response, to odors is created by repeated exposure and several detailed characteristics, whereas adaptation relates to the neural processes that constitute this decrease in a behavioral response. As with all senses, the olfactory system continually encounters an enormous variety of odorants which is why mechanisms must exist to segment them and respond to changes. Although most olfactory habitation studies have focused on animal models, this non-systematic review provides an overview of olfactory habituation and adaptation in humans, and techniques that have been used to measure them. Thus far, psychophysics in combination with modern techniques of neural measurement indicate that habituation to odors, or decrease of intensity, is relatively fast with adaptation occurring more quickly at higher cerebral processes than peripheral adaptation. Similarly, it has been demonstrated that many of the characteristics of habitation apply to human olfaction; yet, evidence for some characteristics such as potentiation of habituation or habituation of dishabituation need more support. Additionally, standard experimental designs should be used to minimize variance across studies, and more research is needed to define peripheral-cerebral feedback loops involved in decreased responsiveness to environmental stimuli.
Collapse
Affiliation(s)
- R Pellegrino
- Interdisciplinary Center on Smell & Taste, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - C Sinding
- Interdisciplinary Center on Smell & Taste, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Centre des Sciences du Goût et de l'Alimentation, CNRS, UMR 6265, INRA, UMR 1324, Université de Bourgogne, Dijon, France
| | - R A de Wijk
- Wageningen Food & Biobased Research, Wageningen, The Netherlands
| | - T Hummel
- Interdisciplinary Center on Smell & Taste, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
41
|
Tanner N, Jensen G, Ferrera VP, Terrace HS. Inferential Learning of Serial Order of Perceptual Categories by Rhesus Monkeys ( Macaca mulatta). J Neurosci 2017; 37:6268-6276. [PMID: 28546309 PMCID: PMC5490063 DOI: 10.1523/jneurosci.0263-17.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 11/21/2022] Open
Abstract
Category learning in animals is typically trained explicitly, in most instances by varying the exemplars of a single category in a matching-to-sample task. Here, we show that male rhesus macaques can learn categories by a transitive inference paradigm in which novel exemplars of five categories were presented throughout training. Instead of requiring decisions about a constant set of repetitively presented stimuli, we studied the macaque's ability to determine the relative order of multiple exemplars of particular stimuli that were rarely repeated. Ordinal decisions generalized both to novel stimuli and, as a consequence, to novel pairings. Thus, we showed that rhesus monkeys could learn to categorize on the basis of implied ordinal position, without prior matching-to-sample training, and that they could then make inferences about category order. Our results challenge the plausibility of association models of category learning and broaden the scope of the transitive inference paradigm.SIGNIFICANCE STATEMENT The cognitive abilities of nonhuman animals are of enduring interest to scientists and the general public because they blur the dividing line between human and nonhuman intelligence. Categorization and sequence learning are highly abstract cognitive abilities each in their own right. This study is the first to provide evidence that visual categories can be ordered serially by macaque monkeys using a behavioral paradigm that provides no explicit feedback about category or serial order. These results strongly challenge accounts of learning based on stimulus-response associations.
Collapse
Affiliation(s)
| | - Greg Jensen
- Department of Neuroscience,
- Department of Psychology, and
| | - Vincent P Ferrera
- Department of Neuroscience
- Department of Psychiatry, Columbia University, New York, New York 10027
| | - Herbert S Terrace
- Department of Psychology, and
- Department of Psychiatry, Columbia University, New York, New York 10027
| |
Collapse
|
42
|
Saha D, Sun W, Li C, Nizampatnam S, Padovano W, Chen Z, Chen A, Altan E, Lo R, Barbour DL, Raman B. Engaging and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus. Nat Commun 2017; 8:15413. [PMID: 28534502 PMCID: PMC5457525 DOI: 10.1038/ncomms15413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 03/21/2017] [Indexed: 11/09/2022] Open
Abstract
Even simple sensory stimuli evoke neural responses that are dynamic and complex. Are the temporally patterned neural activities important for controlling the behavioral output? Here, we investigated this issue. Our results reveal that in the insect antennal lobe, due to circuit interactions, distinct neural ensembles are activated during and immediately following the termination of every odorant. Such non-overlapping response patterns are not observed even when the stimulus intensity or identities were changed. In addition, we find that ON and OFF ensemble neural activities differ in their ability to recruit recurrent inhibition, entrain field-potential oscillations and more importantly in their relevance to behaviour (initiate versus reset conditioned responses). Notably, we find that a strikingly similar strategy is also used for encoding sound onsets and offsets in the marmoset auditory cortex. In sum, our results suggest a general approach where recurrent inhibition is associated with stimulus ‘recognition' and ‘derecognition'. Sensory stimuli evoke temporally dynamic responses. Here the authors report that responses to odour onset and offset are orthogonally represented in the locust antennal lobe, differentially entrain oscillations, and propose a model in which they are necessary for initiation and termination of behaviour.
Collapse
Affiliation(s)
- Debajit Saha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Wensheng Sun
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Chao Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Srinath Nizampatnam
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - William Padovano
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Zhengdao Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Alex Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Ege Altan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Ray Lo
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Dennis L Barbour
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
43
|
Esquivelzeta Rabell J, Mutlu K, Noutel J, Martin Del Olmo P, Haesler S. Spontaneous Rapid Odor Source Localization Behavior Requires Interhemispheric Communication. Curr Biol 2017; 27:1542-1548.e4. [PMID: 28502658 DOI: 10.1016/j.cub.2017.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/14/2017] [Accepted: 04/14/2017] [Indexed: 12/14/2022]
Abstract
Navigation, finding food sources, and avoiding danger critically depend on the identification and spatial localization of airborne chemicals. When monitoring the olfactory environment, rodents spontaneously engage in active olfactory sampling behavior, also referred to as exploratory sniffing [1]. Exploratory sniffing is characterized by stereotypical high-frequency respiration, which is also reliably evoked by novel odorant stimuli [2, 3]. To study novelty-induced exploratory sniffing, we developed a novel, non-contact method for measuring respiration by infrared (IR) thermography in a behavioral paradigm in which novel and familiar stimuli are presented to head-restrained mice. We validated the method by simultaneously performing nasal pressure measurements, a commonly used invasive approach [2, 4], and confirmed highly reliable detection of inhalation onsets. We further discovered that mice actively orient their nostrils toward novel, previously unexperienced, smells. In line with the remarkable speed of olfactory processing reported previously [3, 5, 6], we find that mice initiate their response already within the first sniff after odor onset. Moreover, transecting the anterior commissure (AC) disrupted orienting, indicating that the orienting response requires interhemispheric transfer of information. This suggests that mice compare odorant information obtained from the two bilaterally symmetric nostrils to locate the source of the novel odorant. We further demonstrate that asymmetric activation of the anterior olfactory nucleus (AON) is both necessary and sufficient for eliciting orienting responses. These findings support the view that the AON plays an important role in the internostril difference comparison underlying rapid odor source localization.
Collapse
Affiliation(s)
- José Esquivelzeta Rabell
- Neuroelectronics Research Flanders, 3001 Leuven, Belgium; Department of Neurosciences, KU Leuven, 3001 Leuven, Belgium
| | - Kadir Mutlu
- Neuroelectronics Research Flanders, 3001 Leuven, Belgium; Department of Neurosciences, KU Leuven, 3001 Leuven, Belgium
| | - João Noutel
- Neuroelectronics Research Flanders, 3001 Leuven, Belgium; VIB, 3001 Leuven, Belgium
| | | | - Sebastian Haesler
- Neuroelectronics Research Flanders, 3001 Leuven, Belgium; Department of Neurosciences, KU Leuven, 3001 Leuven, Belgium; VIB, 3001 Leuven, Belgium; Imec, 3001 Leuven, Belgium.
| |
Collapse
|
44
|
Wolfe B, Dobres J, Kosovicheva A, Rosenholtz R, Reimer B. Age-related differences in the legibility of degraded text. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2017; 1:22. [PMID: 28180173 PMCID: PMC5256463 DOI: 10.1186/s41235-016-0023-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/26/2016] [Indexed: 11/10/2022]
Abstract
Aging-related changes in the visual system diminish the capacity to perceive the world with the ease and fidelity younger adults are accustomed to. Among many consequences of this, older adults find that text that they could once read easily proves difficult to read, even with sufficient acuity correction. Building on previous work examining visual factors in legibility, we examine potential causes for these age-related effects in the absence of other ocular pathology. We asked participants to discriminate words from non-words in a lexical decision task. The stimuli participants viewed were either blurred or presented in a noise field to simulate, respectively, decreased sensitivity to fine detail (loss of acuity) and detuning of visually selective neurons. We then use the differences in performance between older and younger participants to suggest how older participants’ performance could be approximated to facilitate maximally usable designs.
Collapse
Affiliation(s)
- Benjamin Wolfe
- AgeLab, Massachusetts Institute of Technology, 77 Massachusetts Ave, E40-278, Cambridge, MA 02139 USA
| | - Jonathan Dobres
- AgeLab, Massachusetts Institute of Technology, 77 Massachusetts Ave, E40-278, Cambridge, MA 02139 USA
| | - Anna Kosovicheva
- Department of Psychology, Northeastern University, 360 Huntington Ave, Boston, MA 02115 USA
| | - Ruth Rosenholtz
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave, 32-D532, Cambridge, MA 02139 USA
| | - Bryan Reimer
- AgeLab, Massachusetts Institute of Technology, 77 Massachusetts Ave, E40-278, Cambridge, MA 02139 USA
| |
Collapse
|
45
|
Perceptual Decision Making in Rodents, Monkeys, and Humans. Neuron 2017; 93:15-31. [DOI: 10.1016/j.neuron.2016.12.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022]
|
46
|
Abstract
Social signals are identified through processing in sensory systems to trigger appropriate behavioral responses. Social signals are received primarily in most mammals through the olfactory system. Individuals are recognized based on their unique blend of odorants. Such individual recognition is critical to distinguish familiar conspecifics from intruders and to recognize offspring. Social signals can also trigger stereotyped responses like mating behaviors. Specific sensory pathways for individual recognition and eliciting stereotyped responses have been identified both in the early olfactory system and its connected cortices. Oxytocin is emerging as a major state modulator of sensory processing with distinct functions in early and higher olfactory brain regions. The brain state induced through Oxytocin influences social perception. Oxytocin acting on different brain regions can promote either exploration and recognition towards same- or other-sex conspecifics, or association learning. Region-specific deletion of Oxytocin receptors suffices to disrupt these behaviors. Together, these recent insights highlight that Oxytocin's function in social behaviors cannot be understood without considering its actions on sensory processing.
Collapse
|
47
|
DiLeo A, Wright KM, McDannald MA. Subsecond fear discrimination in rats: adult impairment in adolescent heavy alcohol drinkers. ACTA ACUST UNITED AC 2016; 23:618-622. [PMID: 27918281 PMCID: PMC5066601 DOI: 10.1101/lm.043257.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
Discriminating safety from danger must be accurate and rapid. Yet, the rapidity with which fear discrimination emerges remains unknown. Rapid fear discrimination in adulthood may be susceptible to impairment by adolescent heavy alcohol drinking, which increases incidence of anxiety disorders. Rats were given voluntary, adolescent alcohol access, and heavy drinkers were identified. In adulthood, rapid fear discrimination of safety, uncertainty, and danger cues was assessed. Normal rats, but not heavy drinkers, showed discriminative fear <1 sec following cue onset. This provides the first demonstration of subsecond fear discrimination and its adult impairment in adolescent heavy alcohol drinkers.
Collapse
Affiliation(s)
- Alyssa DiLeo
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Kristina M Wright
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Michael A McDannald
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
48
|
Dobres J, Chahine N, Reimer B, Gould D, Mehler B, Coughlin JF. Utilising psychophysical techniques to investigate the effects of age, typeface design, size and display polarity on glance legibility. ERGONOMICS 2016; 59:1377-1391. [PMID: 26727912 PMCID: PMC5213401 DOI: 10.1080/00140139.2015.1137637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/26/2015] [Indexed: 05/04/2023]
Abstract
Psychophysical research on text legibility has historically investigated factors such as size, colour and contrast, but there has been relatively little direct empirical evaluation of typographic design itself, particularly in the emerging context of glance reading. In the present study, participants performed a lexical decision task controlled by an adaptive staircase method. Two typefaces, a 'humanist' and 'square grotesque' style, were tested. Study I examined positive and negative polarities, while Study II examined two text sizes. Stimulus duration thresholds were sensitive to differences between typefaces, polarities and sizes. Typeface also interacted significantly with age, particularly for conditions with higher legibility thresholds. These results are consistent with previous research assessing the impact of the same typefaces on interface demand in a simulated driving environment. This simplified methodology of assessing legibility differences can be adapted to investigate a wide array of questions relevant to typographic and interface designs. Practitioner Summary: A method is described for rapidly investigating relative legibility of different typographical features. Results indicate that during glance-like reading induced by the psychophysical technique and under the lighting conditions considered, humanist-style type is significantly more legible than a square grotesque style, and that black-on-white text is significantly more legible than white-on-black.
Collapse
Affiliation(s)
- Jonathan Dobres
- Massachusetts Institute of Technology AgeLab, New England University Transportation Center, Cambridge, MA, USA
| | | | - Bryan Reimer
- Massachusetts Institute of Technology AgeLab, New England University Transportation Center, Cambridge, MA, USA
| | | | - Bruce Mehler
- Massachusetts Institute of Technology AgeLab, New England University Transportation Center, Cambridge, MA, USA
| | - Joseph F. Coughlin
- Massachusetts Institute of Technology AgeLab, New England University Transportation Center, Cambridge, MA, USA
| |
Collapse
|
49
|
Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse. Neural Plast 2016; 2016:9124986. [PMID: 27747107 PMCID: PMC5056313 DOI: 10.1155/2016/9124986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts ("single-sniff paradigm") can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and "single-sniff paradigm"-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.
Collapse
|
50
|
Reinel CP, Schuster S. Archerfish fast-start decisions can take an additional variable into account. ACTA ACUST UNITED AC 2016; 219:2844-2855. [PMID: 27436137 DOI: 10.1242/jeb.136812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/29/2016] [Indexed: 11/20/2022]
Abstract
The analysis of saccadic decision-making tasks with two or four alternatives has shown what appears to be a general hallmark of decision-making: adding more alternatives decreases speed and accuracy. In their everyday lives, however, animals often select among many more than two options and under heavy constraints on speed and accuracy. Here we analyse a rapid decision made by hunting archerfish. As in the classical saccadic tasks, the fish must first estimate sensory information: based on an estimate of horizontal speed, azimuthal direction and initial height of falling prey, the fish must quickly select a suitable fast-start to arrive at the right place at the right time. Our results suggest that the fast-start decisions of archerfish are surprisingly robust with respect to adding a further decision-relevant variable. We show that the fish can appropriately account for vertical speed as an independent further variable - but the need to do so does not affect speed or accuracy of the decisions. Our findings suggest novel ways by which rapid and yet complex decisions could be balanced against increasing complexity.
Collapse
Affiliation(s)
- Caroline P Reinel
- Department of Animal Physiology, University of Bayreuth, Bayreuth 95440, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|