1
|
Rosoff DB, Hamandi AM, Bell AS, Mavromatis LA, Park LM, Jung J, Wagner J, Lohoff FW. Major Psychiatric Disorders, Substance Use Behaviors, and Longevity. JAMA Psychiatry 2024; 81:889-901. [PMID: 38888899 PMCID: PMC11195603 DOI: 10.1001/jamapsychiatry.2024.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 06/20/2024]
Abstract
Importance Observational studies suggest that major psychiatric disorders and substance use behaviors reduce longevity, making it difficult to disentangle their relationships with aging-related outcomes. Objective To evaluate the associations between the genetic liabilities for major psychiatric disorders, substance use behaviors (smoking and alcohol consumption), and longevity. Design, Settings, and Participants This 2-sample mendelian randomization (MR) study assessed associations between psychiatric disorders, substance use behaviors, and longevity using single-variable and multivariable models. Multiomics analyses were performed elucidating transcriptomic underpinnings of the MR associations and identifying potential proteomic therapeutic targets. This study sourced summary-level genome-wide association study (GWAS) data, gene expression, and proteomic data from cohorts of European ancestry. Analyses were performed from May 2022 to November 2023. Exposures Genetic susceptibility for major depression (n = 500 199), bipolar disorder (n = 413 466), schizophrenia (n = 127 906), problematic alcohol use (n = 435 563), weekly alcohol consumption (n = 666 978), and lifetime smoking index (n = 462 690). Main Outcomes and Measures The main outcome encompassed aspects of health span, lifespan, and exceptional longevity. Additional outcomes were epigenetic age acceleration (EAA) clocks. Results Findings from multivariable MR models simultaneously assessing psychiatric disorders and substance use behaviorsm suggest a negative association between smoking and longevity in cohorts of European ancestry (n = 709 709; 431 503 [60.8%] female; β, -0.33; 95% CI, -0.38 to -0.28; P = 4.59 × 10-34) and with increased EAA (n = 34 449; 18 017 [52.3%] female; eg, PhenoAge: β, 1.76; 95% CI, 0.72 to 2.79; P = 8.83 × 10-4). Transcriptomic imputation and colocalization identified 249 genes associated with smoking, including 36 novel genes not captured by the original smoking GWAS. Enriched pathways included chromatin remodeling and telomere assembly and maintenance. The transcriptome-wide signature of smoking was inversely associated with longevity, and estimates of individual smoking-associated genes, eg, XRCC3 and PRMT6, aligned with the smoking-longevity MR analyses, suggesting underlying transcriptomic mediators. Cis-instrument MR prioritized brain proteins associated with smoking behavior, including LY6H (β, 0.02; 95% CI, 0.01 to 0.03; P = 2.37 × 10-6) and RIT2 (β, 0.02; 95% CI, 0.01 to 0.03; P = 1.05 × 10-5), which had favorable adverse-effect profiles across 367 traits evaluated in phenome-wide MR. Conclusions The findings suggest that the genetic liability of smoking, but not of psychiatric disorders, is associated with longevity. Transcriptomic associations offer insights into smoking-related pathways, and identified proteomic targets may inform therapeutic development for smoking cessation strategies.
Collapse
Affiliation(s)
- Daniel B. Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
- Radcliffe Department of Medicine, NIH-Oxford-Cambridge Scholars Program, University of Oxford, United Kingdom
| | - Ali M. Hamandi
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Andrew S. Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Lucas A. Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Lauren M. Park
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Sosa AL, Brucki SMD, Crivelli L, Lopera FJ, Acosta DM, Acosta‐Uribe J, Aguilar D, Aguilar‐Navarro SG, Allegri RF, Bertolucci PHF, Calandri IL, Carrillo MC, Mendez PAC, Cornejo‐Olivas M, Custodio N, Damian A, de Souza LC, Duran‐Aniotz C, García AM, García‐Peña C, Gonzales MM, Grinberg LT, Ibanez AM, Illanes‐Manrique MZ, Jack CR, Leon‐Salas JM, Llibre‐Guerra JJ, Luna‐Muñoz J, Matallana D, Miller BL, Naci L, Parra MA, Pericak‐Vance M, Piña‐Escudero SD, França Resende EDP, Ringman JM, Sevlever G, Slachevsky A, Suemoto CK, Valcour V, Villegas‐Lanau A, Yassuda MS, Mahinrad S, Sexton C. Advancements in dementia research, diagnostics, and care in Latin America: Highlights from the 2023 Alzheimer's Association International conference satellite symposium in Mexico City. Alzheimers Dement 2024; 20:5009-5026. [PMID: 38801124 PMCID: PMC11247679 DOI: 10.1002/alz.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION While Latin America (LatAm) is facing an increasing burden of dementia due to the rapid aging of the population, it remains underrepresented in dementia research, diagnostics, and care. METHODS In 2023, the Alzheimer's Association hosted its eighth satellite symposium in Mexico, highlighting emerging dementia research, priorities, and challenges within LatAm. RESULTS Significant initiatives in the region, including intracountry support, showcased their efforts in fostering national and international collaborations; genetic studies unveiled the unique genetic admixture in LatAm; researchers conducting emerging clinical trials discussed ongoing culturally specific interventions; and the urgent need to harmonize practices and studies, improve diagnosis and care, and use affordable biomarkers in the region was highlighted. DISCUSSION The myriad of topics discussed at the 2023 AAIC satellite symposium highlighted the growing research efforts in LatAm, providing valuable insights into dementia biology, genetics, epidemiology, treatment, and care.
Collapse
|
3
|
Geukens T, Maetens M, Hooper JE, Oesterreich S, Lee AV, Miller L, Atkinson JM, Rosenzweig M, Puhalla S, Thorne H, Devereux L, Bowtell D, Loi S, Bacon ER, Ihle K, Song M, Rodriguez‐Rodriguez L, Welm AL, Gauchay L, Murali R, Chanda P, Karacay A, Naceur‐Lombardelli C, Bridger H, Swanton C, Jamal‐Hanjani M, Kollath L, True L, Morrissey C, Chambers M, Chinnaiyan AM, Wilson A, Mehra R, Reichert Z, Carey LA, Perou CM, Kelly E, Maeda D, Goto A, Kulka J, Székely B, Szasz AM, Tőkés A, Van Den Bogaert W, Floris G, Desmedt C. Research autopsy programmes in oncology: shared experience from 14 centres across the world. J Pathol 2024; 263:150-165. [PMID: 38551513 PMCID: PMC11497336 DOI: 10.1002/path.6271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Accepted: 02/09/2024] [Indexed: 05/12/2024]
Abstract
While there is a great clinical need to understand the biology of metastatic cancer in order to treat it more effectively, research is hampered by limited sample availability. Research autopsy programmes can crucially advance the field through synchronous, extensive, and high-volume sample collection. However, it remains an underused strategy in translational research. Via an extensive questionnaire, we collected information on the study design, enrolment strategy, study conduct, sample and data management, and challenges and opportunities of research autopsy programmes in oncology worldwide. Fourteen programmes participated in this study. Eight programmes operated 24 h/7 days, resulting in a lower median postmortem interval (time between death and start of the autopsy, 4 h) compared with those operating during working hours (9 h). Most programmes (n = 10) succeeded in collecting all samples within a median of 12 h after death. A large number of tumour sites were sampled during each autopsy (median 15.5 per patient). The median number of samples collected per patient was 58, including different processing methods for tumour samples but also non-tumour tissues and liquid biopsies. Unique biological insights derived from these samples included metastatic progression, treatment resistance, disease heterogeneity, tumour dormancy, interactions with the tumour micro-environment, and tumour representation in liquid biopsies. Tumour patient-derived xenograft (PDX) or organoid (PDO) models were additionally established, allowing for drug discovery and treatment sensitivity assays. Apart from the opportunities and achievements, we also present the challenges related with postmortem sample collections and strategies to overcome them, based on the shared experience of these 14 programmes. Through this work, we hope to increase the transparency of postmortem tissue donation, to encourage and aid the creation of new programmes, and to foster collaborations on these unique sample collections. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of OncologyKU LeuvenLeuvenBelgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of OncologyKU LeuvenLeuvenBelgium
| | - Jody E Hooper
- Stanford University School of MedicinePalo AltoCAUSA
| | - Steffi Oesterreich
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Adrian V Lee
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Lori Miller
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Jenny M Atkinson
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Margaret Rosenzweig
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Shannon Puhalla
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Heather Thorne
- Peter MacCallum Cancer CentreMelbourneAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleAustralia
| | - Lisa Devereux
- Peter MacCallum Cancer CentreMelbourneAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleAustralia
| | | | - Sherene Loi
- Peter MacCallum Cancer CentreMelbourneAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleAustralia
| | - Eliza R Bacon
- Center for Precision MedicineCity of Hope National Medical CenterDuarteCAUSA
| | - Kena Ihle
- Center for Precision MedicineCity of Hope National Medical CenterDuarteCAUSA
| | - Mihae Song
- Center for Precision MedicineCity of Hope National Medical CenterDuarteCAUSA
| | | | - Alana L Welm
- University of Utah Huntsman Cancer InstituteSalt Lake CityUTUSA
| | - Lisa Gauchay
- University of Utah Huntsman Cancer InstituteSalt Lake CityUTUSA
| | | | | | - Ali Karacay
- Memorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | - Hayley Bridger
- Cancer Research UK, and UCL Cancer Trials CentreUniversity College LondonLondonUK
| | - Charles Swanton
- Cancer Evolution and Genome Instability LaboratoryThe Francis Crick InstituteLondonUK
- Cancer Research UK Lung Cancer Centre of ExcellenceUCL Cancer InstituteLondonUK
- Department of Medical OncologyUniversity College London HospitalsLondonUK
| | - Mariam Jamal‐Hanjani
- Cancer Research UK Lung Cancer Centre of ExcellenceUCL Cancer InstituteLondonUK
- Department of Medical OncologyUniversity College London HospitalsLondonUK
- Cancer Metastasis LaboratoryUniversity College London Cancer InstituteLondonUK
| | | | | | | | | | | | | | | | | | - Lisa A Carey
- University of North Carolina, Lineberger Comprehensive Cancer CenterChapel HillNCUSA
| | - Charles M Perou
- University of North Carolina, Lineberger Comprehensive Cancer CenterChapel HillNCUSA
| | - Erin Kelly
- University of North Carolina, Lineberger Comprehensive Cancer CenterChapel HillNCUSA
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of MedicineAkita UniversityAkitaJapan
| | - Janina Kulka
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | - Borbála Székely
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
- National Institute of OncologyBudapestHungary
| | - A Marcell Szasz
- Division of Oncology, Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
| | - Anna‐Mária Tőkés
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | | | - Giuseppe Floris
- Department of PathologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of OncologyKU LeuvenLeuvenBelgium
| |
Collapse
|
4
|
Turner MR. We need to talk about brain donation. Pract Neurol 2024; 24:183-184. [PMID: 38499333 DOI: 10.1136/pn-2024-004102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Hade AC, Philips MA, Promet L, Jagomäe T, Hanumantharaju A, Salumäe L, Reimann E, Plaas M, Vasar E, Väli M. A cost-effective and efficient ex vivo, ex situ human whole brain perfusion protocol for immunohistochemistry. J Neurosci Methods 2024; 404:110059. [PMID: 38218387 DOI: 10.1016/j.jneumeth.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Chemical fixation of the brain can be executed through either the immersion method or the perfusion method. Perfusion fixation allows for better preservation of the brain tissue's ultrastructure, as it provides rapid and uniform delivery of the fixative to the tissue. Still, not all facilities have the expertise to perform perfusion fixation, with initial high cost and complexity of perfusion systems as the main factors limiting its widespread usage. NEW METHOD Here we present our low-cost approach of whole brain ex situ perfusion fixation to overcome the aforementioned limitations. Our self-made perfusion system, constructed utilising commercially accessible and affordable medical resources alongside laboratory and everyday items, demonstrates the capability to generate superior histological stainings of brain tissue. The perfused tissue can be stored prior to proceeding with IHC for at least one year. RESULTS Our method yielded high-quality results in histological stainings using both free-floating cryosections and paraffin-embedded tissue sections. The system is fully reusable and complies with the principles of sustainable management. COMPARISON WITH EXISTING METHODS Our whole brain perfusion system has been assembled from simple components and is able to achieve a linear flow with a pressure of 70 mmHg corresponding to the perfusion pressure of the brain. CONCLUSIONS Our ex situ method can be especially useful in research settings where expensive perfusion systems are not affordable or in any field with high time pressure, making it suitable for the field of forensic medicine or pathology in general.
Collapse
Affiliation(s)
- Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Estonian Forensic Science Institute, Tervise 20, Tallinn, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Liisi Promet
- International Max Planck Research School for Neurosciences, University of Göttingen, Göttingen, Germany
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Arpana Hanumantharaju
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liis Salumäe
- Pathology Service, Tartu University Hospital; Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mario Plaas
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Marika Väli
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Estonian Forensic Science Institute, Tervise 20, Tallinn, Estonia
| |
Collapse
|
6
|
Danner B, Gonzalez AD, Corbett WC, Alhneif M, Etemadmoghadam S, Parker-Garza J, Flanagan ME. Brain banking in the United States and Europe: Importance, challenges, and future trends. J Neuropathol Exp Neurol 2024; 83:219-229. [PMID: 38506125 PMCID: PMC10951968 DOI: 10.1093/jnen/nlae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
In recent years, brain banks have become valuable resources for examining the molecular underpinnings of various neurological and psychological disorders including Alzheimer disease and Parkinson disease. However, the availability of brain tissue has significantly declined. Proper collection, preparation, and preservation of postmortem autopsy tissue are essential for optimal downstream brain tissue distribution and experimentation. Collaborations between brain banks through larger networks such as NeuroBioBank with centralized sample request mechanisms promote tissue distribution where brain donations are disproportionately lower. Collaborations between brain banking networks also help to standardize the brain donation and sample preparation processes, ensuring proper distribution and experimentation. Ethical brain donation and thorough processing enhances the responsible conduct of scientific studies. Education and outreach programs that foster collaboration between hospitals, nursing homes, neuropathologists, and other research scientists help to alleviate concerns among potential brain donors. Furthermore, ensuring that biorepositories accurately reflect the true demographics of communities will result in research data that reliably represent populations. Implementing these measures will grant scientists improved access to brain tissue, facilitating a deeper understanding of the neurological diseases that impact millions.
Collapse
Affiliation(s)
- Benjamin Danner
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Angelique D Gonzalez
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - William Cole Corbett
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Mohammad Alhneif
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Shahroo Etemadmoghadam
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Julie Parker-Garza
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Margaret E Flanagan
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
7
|
Regoni M, Valtorta F, Sassone J. Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature. Eur J Neurosci 2024; 59:1079-1098. [PMID: 37667848 DOI: 10.1111/ejn.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival. Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor-interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor-interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Cartas-Cejudo P, Cortés A, Lachén-Montes M, Anaya-Cubero E, Peral E, Ausín K, Díaz-Peña R, Fernández-Irigoyen J, Santamaría E. Mapping the human brain proteome: opportunities, challenges, and clinical potential. Expert Rev Proteomics 2024; 21:55-63. [PMID: 38299555 DOI: 10.1080/14789450.2024.2313073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Due to the segmented functions and complexity of the human brain, the characterization of molecular profiles within specific areas such as brain structures and biofluids is essential to unveil the molecular basis for structure specialization as well as the molecular imbalance associated with neurodegenerative and psychiatric diseases. AREAS COVERED Much of our knowledge about brain functionality derives from neurophysiological, anatomical, and transcriptomic approaches. More recently, laser capture and imaging proteomics, technological and computational developments in LC-MS/MS, as well as antibody/aptamer-based platforms have allowed the generation of novel cellular, spatial, and posttranslational dimensions as well as innovative facets in biomarker validation and druggable target identification. EXPERT OPINION Proteomics is a powerful toolbox to functionally characterize, quantify, and localize the extensive protein catalog of the human brain across physiological and pathological states. Brain function depends on multi-dimensional protein homeostasis, and its elucidation will help us to characterize biological pathways that are essential to properly maintain cognitive functions. In addition, comprehensive human brain pathological proteomes may be the basis in computational drug-repositioning methods as a strategy for unveiling potential new therapies in neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Adriana Cortés
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Elena Anaya-Cubero
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Erika Peral
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Karina Ausín
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ramón Díaz-Peña
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
9
|
Cattaneo C, Urakcheeva I, Giacomini G, Stazi MA, Lana S, Arnofi A, Salemi M, Toccaceli V. Attitude and concerns of healthy individuals regarding post-mortem brain donation. A qualitative study on a nation-wide sample in Italy. BMC Med Ethics 2023; 24:104. [PMID: 38012766 PMCID: PMC10683267 DOI: 10.1186/s12910-023-00980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Collecting post-mortem brain tissue is essential, especially from healthy "control" individuals, to advance knowledge on increasingly common neurological and mental disorders. Yet, healthy individuals, on which this study is focused, are still understudied. The aim of the study was to explore, among healthy potential brain donors and/or donors' relatives, attitude, concerns and opinion about post-mortem brain donation (PMBD). METHODS A convenience sampling of the general population (twins and their non-twin contacts) was adopted. From June 2018 to February 2019, 12 focus groups were conducted in four Italian cities: Milan, Turin, Rome and Naples, stratified according to twin and non-twin status. A qualitative content analysis was performed with both deductive and inductive approaches. Emotional interactions analysis corroborated results. RESULTS One hundred and three individuals (49-91 yrs of age) participated. Female were 60%. Participants had scarse knowledge regarding PMBD. Factors affecting attitude towards donation were: concerns, emotions, and misconceptions about donation and research. Religion, spirituality and secular attitude were implied, as well as trust towards research and medical institutions and a high degree of uncertainty about brain death ascertainment. Family had a very multifaceted central role in decision making. A previous experience with neurodegenerative diseases seems among factors able to favour brain donation. CONCLUSIONS The study sheds light on healthy individuals' attitudes about PMBD. Brain had a special significance for participants, and the ascertainment of brain death was a source of debate and doubt. Our findings emphasise the importance of targeted communication and thorough information to promote this kind of donation, within an ethical framework of conduct. Trust in research and health professionals emerged as an essential factor for a collaborative attitude towards donation and informed decision making in PMBD.
Collapse
Affiliation(s)
- Chiara Cattaneo
- National Centre for Disease Prevention and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | | | - Gianmarco Giacomini
- Centre of Reference for Mental Health and Behavioural Sciences, Istituto Superiore di Sanità, Rome, Italy
- Department of Public Health Sciences, University of Turin, Turin, Italy
| | - Maria Antonietta Stazi
- Centre of Reference for Mental Health and Behavioural Sciences, Istituto Superiore di Sanità, Rome, Italy
| | - Susanna Lana
- National Centre for Disease Prevention and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Arnofi
- Centre of Reference for Mental Health and Behavioural Sciences, Istituto Superiore di Sanità, Rome, Italy
| | - Miriam Salemi
- Centre of Reference for Mental Health and Behavioural Sciences, Istituto Superiore di Sanità, Rome, Italy
| | - Virgilia Toccaceli
- Centre of Reference for Mental Health and Behavioural Sciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
10
|
Samudra N, Lane-Donovan C, VandeVrede L, Boxer AL. Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues. J Clin Invest 2023; 133:e168553. [PMID: 37317972 PMCID: PMC10266783 DOI: 10.1172/jci168553] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Tauopathies are disorders associated with tau protein dysfunction and insoluble tau accumulation in the brain at autopsy. Multiple lines of evidence from human disease, as well as nonclinical translational models, suggest that tau has a central pathologic role in these disorders, historically thought to be primarily related to tau gain of toxic function. However, a number of tau-targeting therapies with various mechanisms of action have shown little promise in clinical trials in different tauopathies. We review what is known about tau biology, genetics, and therapeutic mechanisms that have been tested in clinical trials to date. We discuss possible reasons for failures of these therapies, such as use of imperfect nonclinical models that do not predict human effects for drug development; heterogeneity of human tau pathologies which may lead to variable responses to therapy; and ineffective therapeutic mechanisms, such as targeting of the wrong tau species or protein epitope. Innovative approaches to human clinical trials can help address some of the difficulties that have plagued our field's development of tau-targeting therapies thus far. Despite limited clinical success to date, as we continue to refine our understanding of tau's pathogenic mechanism(s) in different neurodegenerative diseases, we remain optimistic that tau-targeting therapies will eventually play a central role in the treatment of tauopathies.
Collapse
|
11
|
Villarreal J, Kow K, Pham B, Egatz-Gomez A, Sandrin TR, Coleman PD, Ros A. Intracellular Amyloid-β Detection from Human Brain Sections Using a Microfluidic Immunoassay in Tandem with MALDI-MS. Anal Chem 2023; 95:5522-5531. [PMID: 36894164 PMCID: PMC10078609 DOI: 10.1021/acs.analchem.2c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Alzheimer's disease (AD) currently affects more than 30 million people worldwide. The lack of understanding of AD's physiopathology limits the development of therapeutic and diagnostic tools. Soluble amyloid-β peptide (Aβ) oligomers that appear as intermediates along the Aβ aggregation into plaques are considered among the main AD neurotoxic species. Although a wealth of data are available about Aβ from in vitro and animal models, there is little known about intracellular Aβ in human brain cells, mainly due to the lack of technology to assess the intracellular protein content. The elucidation of the Aβ species in specific brain cell subpopulations can provide insight into the role of Aβ in AD and the neurotoxic mechanism involved. Here, we report a microfluidic immunoassay for in situ mass spectrometry analysis of intracellular Aβ species from archived human brain tissue. This approach comprises the selective laser dissection of individual pyramidal cell bodies from tissues, their transfer to the microfluidic platform for sample processing on-chip, and mass spectrometric characterization. As a proof-of-principle, we demonstrate the detection of intracellular Aβ species from as few as 20 human brain cells.
Collapse
Affiliation(s)
- Jorvani
Cruz Villarreal
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Keegan Kow
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Brian Pham
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ana Egatz-Gomez
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Todd R. Sandrin
- School
of Mathematical and Natural Sciences, Arizona
State University, Glendale, Arizona 85306, United States
- Julie
Ann Wrigley Global Futures Laboratory, Arizona
State University, Glendale, Arizona 85306, United States
| | - Paul D. Coleman
- Banner
ASU Neurodegenerative Research Center, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
12
|
Garrison SJ, Mouttham L, Castelhano MG. Banking on the Last Gift: Cornell's Signature Program of Postmortem Tissue Procurement. Biopreserv Biobank 2023; 21:46-55. [PMID: 35930257 PMCID: PMC9963475 DOI: 10.1089/bio.2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-quality, well-annotated, healthy tissue specimens are crucial to the success of basic and translational research, but often difficult to procure. Postmortem (PM) tissue collections provide the opportunity to collect these healthy biospecimens. PM procurement programs led by biobanks can further contribute by providing researchers with rare biospecimens collected with short postmortem intervals (PMI) in controlled environments. To support biomedical and translational research, the Cornell Veterinary Biobank (CVB), an ISO 20387 accredited core resource at the Cornell University College of Veterinary Medicine, has performed PM tissue collections from research and privately owned animals since 2013. The CVB PM collection team, consisting of a board-certified veterinary pathologist, a licensed veterinary technician collection specialist, and a data capture specialist, performs rapid tissue collections during controlled warm necropsies, with an accepted PMI of ≤2 hours and a target PMI of ≤1 hour. A retrospective analysis of PM collections between 2013 and 2020 was completed, consisting of 4077 aliquots of 1582 biospecimens from 69 donors (48 canine, 16 feline, and 5 equine). An average of 22.93 biospecimens per donor were collected (range: 1-49). The average PMI for standard collections was 43.48 ± 2.30 minutes, starting on average 20.81 ± 1.61 minutes after time of death. Thus far, the CVB has a favorable utilization rate, with 414 aliquots (10.15%) from 350 specimens (20.12%) and 45 animals (65.22%) distributed to researchers. The success of the CVB PM tissue biobanking program, collecting high-quality biospecimens with short PMIs, was due to support from veterinary pathologists, the competence of CVB personnel, and the continuous evolution of methods within a quality management system. Improvement of PM tissue collection programs in biobanks, with standardized practices for all processes and specialized personnel, can enhance the quality and increase utilization of its biospecimens and associated data.
Collapse
Affiliation(s)
- Susan J. Garrison
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lara Mouttham
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Marta G. Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Brain Donation Decisions as Disease Specific Behaviors: An Elucidation of the Donation Process in the Context of Essential Tremor. Tremor Other Hyperkinet Mov (N Y) 2022; 12:25. [PMID: 36072893 PMCID: PMC9414733 DOI: 10.5334/tohm.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Brain donation is a challenging process, comprising four sequential stages: (1) the brain donation decision, (2) pre-mortem arrangements and follow up, (3) specimen collection and (4) tissue processing. It is important to understand the factors that are pertinent to each stage. Currently, there is extensive information on factors that involve donor’s personal and cultural backgrounds and how these could affect the process. However, little is known about disease-specific factors that influence the process. The Essential Tremor Centralized Brain Repository was established in 2003, and after nearly 20 years of collecting essential tremor (ET) brain tissue, we are well-positioned to discuss the brain donation process from a disease-specific standpoint. In the current manuscript, we discuss ET disease-specific factors that influence the first two stages of the brain donation process. We center our discussion around three points: (1) factors that influence the patient’s decision to donate, (2) the involvement of next of kin in the donation, and (3) the rationale for enrolling patients prospectively and evaluating them longitudinally before the anatomical gift takes place. This discussion shares our understanding of the background from which our repository operates and may be of value for other brain banks that study similar neurodegenerative diseases.
Collapse
|
14
|
Beger AW, Hauther KA, Dudzik B, Woltjer RL, Wood PL. Human Brain Lipidomics: Investigation of Formalin Fixed Brains. Front Mol Neurosci 2022; 15:835628. [PMID: 35782380 PMCID: PMC9245516 DOI: 10.3389/fnmol.2022.835628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human brain lipidomics have elucidated structural lipids and lipid signal transduction pathways in neurologic diseases. Such studies have traditionally sourced tissue exclusively from brain bank biorepositories, however, limited inventories signal that these facilities may not be able to keep pace with this growing research domain. Formalin fixed, whole body donors willed to academic institutions offer a potential supplemental tissue source, the lipid profiles of which have yet to be described. To determine the potential of these subjects in lipid analysis, the lipid levels of fresh and fixed frontal cortical gray matter of human donors were compared using high resolution electrospray ionization mass spectrometry. Results revealed commensurate levels of specific triacylglycerols, diacylglycerols, hexosyl ceramides, and hydroxy hexosyl ceramides. Baseline levels of these lipid families in human fixed tissue were identified via a broader survey study covering six brain regions: cerebellar gray matter, superior cerebellar peduncle, gray and subcortical white matter of the precentral gyrus, periventricular white matter, and internal capsule. Whole body donors may therefore serve as supplemental tissue sources for lipid analysis in a variety of clinical contexts, including Parkinson's disease, Alzheimer's disease, Lewy body dementia, multiple sclerosis, and Gaucher's disease.
Collapse
Affiliation(s)
- Aaron W. Beger
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Kathleen A. Hauther
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Beatrix Dudzik
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health Science University, Portland, OR, United States
- Portland VA Medical Center, Portland, OR, United States
| | - Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
15
|
Cardy TJA, Jewth‐Ahuja D, Crawford AH. Perceptions and attitudes towards companion animal brain banking in pet owners: A UK pilot study. Vet Rec Open 2022; 9:e36. [PMID: 35663272 PMCID: PMC9142818 DOI: 10.1002/vro2.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Background Detailed analysis of archived brain tissue is fundamental to advancing the understanding of neurological disease. The development of the UK Brain Bank Network (UBBN) has provided an invaluable resource to facilitate such research in the human medical field. Similar resources are needed in veterinary medicine. However, collection and archiving of companion animal brain tissue is a potentially sensitive area for pet owners and veterinary professionals. Methods Using an online survey, we aimed to study pet owners’ perceptions of brain banking. The survey included information on respondents, their views on organ donation, the UBBN and the Royal Veterinary College's Companion Animal Brain Bank (RVC CABB). Results In total 185 respondents were included. The use of brain tissue from pets for research was supported by 87% of respondents, and 66% of respondents felt that they were highly likely or likely to donate their pet's brain tissue to a CABB. Furthermore, 94% felt that more information on tissue banking in companion animals should be readily available. Conclusions We found that the perceptions of companion animal brain banking were positive in our respondents. Open dialogue and clear information provision on the process and benefits of the CABB could enhance awareness and thus facilitate brain donation for translational research.
Collapse
Affiliation(s)
- Thomas J. A. Cardy
- Cave Veterinary Specialists, George's Farm West Buckland Wellington UK
- Clinical Science and Services Royal Veterinary College AL9 7TA, North Mymms, Hatfield Herts UK
| | - Daniel Jewth‐Ahuja
- Clinical Science and Services Royal Veterinary College AL9 7TA, North Mymms, Hatfield Herts UK
| | - Abbe H. Crawford
- Clinical Science and Services Royal Veterinary College AL9 7TA, North Mymms, Hatfield Herts UK
| |
Collapse
|
16
|
Rozowsky JS, Meesters-Ensing JI, Lammers JAS, Belle ML, Nierkens S, Kranendonk MEG, Kester LA, Calkoen FG, van der Lugt J. A Toolkit for Profiling the Immune Landscape of Pediatric Central Nervous System Malignancies. Front Immunol 2022; 13:864423. [PMID: 35464481 PMCID: PMC9022116 DOI: 10.3389/fimmu.2022.864423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The prognosis of pediatric central nervous system (CNS) malignancies remains dismal due to limited treatment options, resulting in high mortality rates and long-term morbidities. Immunotherapies, including checkpoint inhibition, cancer vaccines, engineered T cell therapies, and oncolytic viruses, have promising results in some hematological and solid malignancies, and are being investigated in clinical trials for various high-grade CNS malignancies. However, the role of the tumor immune microenvironment (TIME) in CNS malignancies is mostly unknown for pediatric cases. In order to successfully implement immunotherapies and to eventually predict which patients would benefit from such treatments, in-depth characterization of the TIME at diagnosis and throughout treatment is essential. In this review, we provide an overview of techniques for immune profiling of CNS malignancies, and detail how they can be utilized for different tissue types and studies. These techniques include immunohistochemistry and flow cytometry for quantifying and phenotyping the infiltrating immune cells, bulk and single-cell transcriptomics for describing the implicated immunological pathways, as well as functional assays. Finally, we aim to describe the potential benefits of evaluating other compartments of the immune system implicated by cancer therapies, such as cerebrospinal fluid and blood, and how such liquid biopsies are informative when designing immune monitoring studies. Understanding and uniformly evaluating the TIME and immune landscape of pediatric CNS malignancies will be essential to eventually integrate immunotherapy into clinical practice.
Collapse
Affiliation(s)
| | | | | | - Muriël L. Belle
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | |
Collapse
|
17
|
Padoan CS, Garcia LF, Crespo KC, Longaray VK, Martini M, Contessa JC, Kapczinski F, de Oliveira FH, Goldim JR, Vs Magalhães P. A qualitative study exploring the process of postmortem brain tissue donation after suicide. Sci Rep 2022; 12:4710. [PMID: 35304551 PMCID: PMC8933424 DOI: 10.1038/s41598-022-08729-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Access to postmortem brain tissue can be valuable in refining knowledge on the pathophysiology and genetics of neuropsychiatric disorders. Obtaining postmortem consent for the donation after death by suicide can be difficult, as families may be overwhelmed by a violent and unexpected death. Examining the process of brain donation can inform on how the request can best be conducted. This is a qualitative study with in-depth interviews with forty-one people that were asked to consider brain donation-32 who had consented to donation and 9 who refused it. Data collection and analyses were carried out according to grounded theory. Five key themes emerged from data analysis: the context of the families, the invitation to talk to the research team, the experience with the request protocol, the participants' assessment of the experience, and their participation in the study as an opportunity to heal. The participants indicated that a brain donation request that is respectful and tactful can be made without adding to the family distress brought on by suicide and pondering brain donation was seen as an opportunity to transform the meaning of the death and invest it with a modicum of solace for being able to contribute to research.
Collapse
Affiliation(s)
- Carolina Stopinski Padoan
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Lucas França Garcia
- Graduate Program in Health Promotion, Cesumar University, Maringá, Paraná, Brazil
| | - Kleber Cardoso Crespo
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Vanessa Kenne Longaray
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Murilo Martini
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Júlia Camargo Contessa
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Flávio Kapczinski
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
- St. Joseph's Healthcare Hamilton McMaster University, Hamilton, ON, Canada
| | - Francine Hehn de Oliveira
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Roberto Goldim
- Bioethics Department, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Vs Magalhães
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil.
| |
Collapse
|
18
|
Abstract
Three-dimensional cultures of human neural tissue/organlike structures in vitro can be achieved by mimicking the developmental processes occurring in vivo. Rapid progress in the field of neural organoids has fueled the hope (and hype) for improved understanding of brain development and functions, modeling of neural diseases, discovery of new drugs, and supply of surrogate sources of transplantation. In this short review, we summarize the state-of-the-art applications of this fascinating tool in various research fields and discuss the reality of the technique hoping that the current limitations will soon be overcome by the efforts of ingenious researchers.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
19
|
Griffin CP, Paul CL, Alexander KL, Walker MM, Hondermarck H, Lynam J. Postmortem brain donations vs premortem surgical resections for glioblastoma research: viewing the matter as a whole. Neurooncol Adv 2022; 4:vdab168. [PMID: 35047819 PMCID: PMC8760897 DOI: 10.1093/noajnl/vdab168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There have been limited improvements in diagnosis, treatment, and outcomes of primary brain cancers, including glioblastoma, over the past 10 years. This is largely attributable to persistent deficits in understanding brain tumor biology and pathogenesis due to a lack of high-quality biological research specimens. Traditional, premortem, surgical biopsy samples do not allow full characterization of the spatial and temporal heterogeneity of glioblastoma, nor capture end-stage disease to allow full evaluation of the evolutionary and mutational processes that lead to treatment resistance and recurrence. Furthermore, the necessity of ensuring sufficient viable tissue is available for histopathological diagnosis, while minimizing surgically induced functional deficit, leaves minimal tissue for research purposes and results in formalin fixation of most surgical specimens. Postmortem brain donation programs are rapidly gaining support due to their unique ability to address the limitations associated with surgical tissue sampling. Collecting, processing, and preserving tissue samples intended solely for research provides both a spatial and temporal view of tumor heterogeneity as well as the opportunity to fully characterize end-stage disease from histological and molecular standpoints. This review explores the limitations of traditional sample collection and the opportunities afforded by postmortem brain donations for future neurobiological cancer research.
Collapse
Affiliation(s)
- Cassandra P Griffin
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Biobank: NSW Regional Biospecimen and Research Services, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Christine L Paul
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Priority Research Centre Cancer Research, Innovation and Translation, University of Newcastle, New South Wales, Australia
- Priority Research Centre Health Behaviour, University of Newcastle, New South Wales, Australia
| | - Kimberley L Alexander
- Neurosurgery Department, Chris O’Brien Lifehouse, Camperdown, New South Wales, Australia
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, New South Wales, Australia
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Marjorie M Walker
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Hubert Hondermarck
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - James Lynam
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Medical Oncology, Calvary Mater, Newcastle, New South Wales, Australia
| |
Collapse
|
20
|
Advancing Our Understanding of Brain Disorders: Research Using Postmortem Brain Tissue. Methods Mol Biol 2021. [PMID: 34558012 DOI: 10.1007/978-1-0716-1783-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It is thought that proliferative potential of neural progenitor cells, from postmortem tissue obtained from idiopathic PD patients, present in the substantia nigra (SN) as well as other brain regions can be maintained in vitro. While they might be lacking in factors required for differentiation into mature neurons, their regenerative potential is undeniable and suggestive that progenitor cells are found endogenously in the diseased brain. Adult stem/progenitor cells exist in several regions within the PD brain and are likely a valuable source of progenitor cells for understanding disease course, as well as useful tools for generating potential cellular and pharmacologic therapies. One successful therapy for some PD patients is deep brain stimulation (DBS) and has been used for more than a decade to treat PD; however its mechanism of action remains unknown. Given the close proximity of the electrode trajectory to areas of the brain known as the "germinal niches" and the Parkinsonian brain's regenerative potential, it is possible that DBS influences neural stem cell proliferation locally, as well as distally. A study of banked brain tissue from idiopathic PD patients treated with DBS, compared to 12 control brains without CNS disease, identified a significant increase in the number of proliferating precursor cells in the subventricular zone (SVZ) of the lateral ventricles, the third ventricle, and the tissue surrounding the DBS lead. Our studies with banked human tissues from the aforementioned regions demonstrate the importance of studying brain-banked tissue from germinal niches and DBS perielectrode tissue. We reveal in these studies the presence of proliferative potential in diseased brains as well as an increase in cellular plasticity in the brain as a consequence of DBS.
Collapse
|
21
|
Vöglein J, Kostova I, Arzberger T, Noachtar S, Dieterich M, Herms J, Schmitz P, Ruf V, Windl O, Roeber S, Simons M, Höglinger GU, Danek A, Giese A, Levin J. Seizure prevalence in neurodegenerative diseases-a study of autopsy proven cases. Eur J Neurol 2021; 29:12-18. [PMID: 34472165 DOI: 10.1111/ene.15089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Knowledge about the seizure prevalence in the whole symptomatic course, from disease onset to death, in neurodegenerative diseases (ND) is lacking. Therefore, the aim was to investigate seizure prevalence and associated clinical implications in neuropathologically diagnosed ND. METHODS Clinical records of cases from the Neurobiobank Munich, Germany, were analyzed. Neuropathological diagnoses of the assessed cases included Alzheimer disease (AD), corticobasal degeneration (CBD), frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Seizure prevalence during the whole symptomatic disease phase was assessed and compared amongst ND. Associations between first clinical symptom and seizure prevalence and between seizures and disease duration were examined. RESULTS In all, 454 patients with neuropathologically diagnosed ND and with available and meaningful clinical records were investigated (AD, n = 144; LBD, n = 103; PSP, n = 93; FTLD, n = 53; MSA, n = 36; CBD, n = 25). Seizure prevalence was 31.3% for AD, 20.0% for CBD, 12.6% for LBD, 11.3% for FTLD, 8.3% for MSA and 7.5% for PSP. Seizure prevalence was significantly higher in AD compared to FTLD (p = 0.005), LBD (p = 0.001), MSA (p = 0.005) and PSP (p < 0.001). No other significant differences regarding seizure prevalence were found between the studied ND. Cognitive first symptoms in ND were associated with an increased seizure prevalence (21.1% vs. 11.0% in patients without cognitive first symptoms) and motor first symptoms with a decreased seizure prevalence (10.3% vs. 20.5% in patients without motor first symptoms). Seizures were associated with a longer disease duration in MSA (12.3 vs. 7.0 years in patients without seizures; p = 0.017). CONCLUSIONS Seizures are a clinically relevant comorbidity in ND, particularly in AD. Knowledge of the first clinical symptom in ND may allow for estimation of seizure risk.
Collapse
Affiliation(s)
- Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Irena Kostova
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Department for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Soheyl Noachtar
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peer Schmitz
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Otto Windl
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
22
|
Abstract
China accounts for 17% of the global disease burden attributable to mental, neurological and substance use disorders. As a country undergoing profound societal change, China faces growing challenges to reduce the disease burden caused by psychiatric disorders. In this review, we aim to present an overview of progress in neuroscience research and clinical services for psychiatric disorders in China during the past three decades, analysing contributing factors and potential challenges to the field development. We first review studies in the epidemiological, genetic and neuroimaging fields as examples to illustrate a growing contribution of studies from China to the neuroscience research. Next, we introduce large-scale, open-access imaging genetic cohorts and recently initiated brain banks in China as platforms to study healthy brain functions and brain disorders. Then, we show progress in clinical services, including an integration of hospital and community-based healthcare systems and early intervention schemes. We finally discuss opportunities and existing challenges: achievements in research and clinical services are indispensable to the growing funding investment and continued engagement in international collaborations. The unique aspect of traditional Chinese medicine may provide insights to develop a novel treatment for psychiatric disorders. Yet obstacles still remain to promote research quality and to provide ubiquitous clinical services to vulnerable populations. Taken together, we expect to see a sustained advancement in psychiatric research and healthcare system in China. These achievements will contribute to the global efforts to realize good physical, mental and social well-being for all individuals.
Collapse
|
23
|
Reyes-Pablo AE, Campa-Córdoba BB, Luna-Viramontes NI, Ontiveros-Torres MÁ, Villanueva-Fierro I, Bravo-Muñoz M, Sáenz-Ibarra B, Barbosa O, Guadarrama-Ortíz P, Garcés-Ramírez L, de la Cruz F, Harrington CR, Martínez-Robles S, González-Ballesteros E, Perry G, Pacheco-Herrero M, Luna-Muñoz J. National Dementia BioBank: A Strategy for the Diagnosis and Study of Neurodegenerative Diseases in México. J Alzheimers Dis 2021; 76:853-862. [PMID: 32568191 DOI: 10.3233/jad-191015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We recently developed the National Dementia Biobank in México (BioBanco Nacional de Demencias, BND) as a unit for diagnosis, research, and tissue transfer for research purposes. BND is associated with the Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Mexico. The donation of fluids, brain, and other organs of deceased donors is crucial for understanding the underlying mechanisms of neurodegenerative diseases and for the development of successful treatment. Our laboratory research focuses on 1) analysis of the molecular processing of the proteins involved in those neurodegenerative diseases termed tauopathies and 2) the search for biomarkers for the non-invasive and early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Aldelmo Emmanuel Reyes-Pablo
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México.,Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - B Berenice Campa-Córdoba
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México.,Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Nabil Itzi Luna-Viramontes
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México.,Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | | | | | - Marely Bravo-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México
| | - Bárbara Sáenz-Ibarra
- Depto. de Patología, Facultad de medicina de la Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Oralia Barbosa
- Jefa del Servicio de Anatomía Patológicay Citopatología del Hospital Universitario "Dr. José E. González de la UANL, Nuevo León, México
| | | | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Fidel de la Cruz
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Sandra Martínez-Robles
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México
| | - Erik González-Ballesteros
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México
| | - George Perry
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mar Pacheco-Herrero
- School of Medicine, Faculty of Health Sciences, Pontificia Universidad Catolica Madre y Maestra, Dominican Republic
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México
| |
Collapse
|
24
|
Man's best friend in life and death: scientific perspectives and challenges of dog brain banking. GeroScience 2021; 43:1653-1668. [PMID: 33970413 PMCID: PMC8492856 DOI: 10.1007/s11357-021-00373-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Biobanking refers to the systematic collection, storage, and distribution of pre- or post-mortem biological samples derived from volunteer donors. The demand for high-quality human specimens is clearly demonstrated by the number of newly emerging biobanking facilities and large international collaborative networks. Several animal species are relevant today in medical research; therefore, similar initiatives in comparative physiology could be fruitful. Dogs, in particular, are gaining increasing attention in translational research on complex phenomena, like aging, cancer, and neurodegenerative diseases. Therefore, biobanks gathering and storing dog biological materials together with related data could play a vital role in translational and veterinary research projects. To achieve these aims, a canine biobank should meet the same standards in sample quality and data management as human biobanks and should rely on well-designed collaborative networks between different professionals and dog owners. While efforts to create dog biobanks could face similar financial and technical challenges as their human counterparts, they can widen the spectrum of successful collaborative initiatives towards a better picture of dogs’ physiology, disease, evolution, and translational potential. In this review, we provide an overview about the current state of dog biobanking and introduce the “Canine Brain and Tissue Bank” (CBTB)—a new, large-scale collaborative endeavor in the field.
Collapse
|
25
|
Vöglein J, Kostova I, Arzberger T, Roeber S, Schmitz P, Simons M, Ruf V, Windl O, Herms J, Dieterich M, Danek A, Höglinger GU, Giese A, Levin J. First symptom guides diagnosis and prognosis in neurodegenerative diseases-a retrospective study of autopsy proven cases. Eur J Neurol 2021; 28:1801-1811. [PMID: 33662165 DOI: 10.1111/ene.14800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Clinical diagnostic criteria for neurodegenerative diseases have been framed based on clinical phenomenology. However, systematic knowledge about the first reported clinical symptoms in neurodegenerative diseases is lacking. Therefore, the aim was to determine the prevalence and clinical implications of the first clinical symptom (FS) as assessed by medical history in neuropathologically proven neurodegenerative diseases. METHODS Neuropathological diagnoses from the Neurobiobank Munich, Germany, were matched with clinical records for analyses of the diagnostic and prognostic values of FSs. RESULTS In all, 301 patients with the neuropathological diagnoses Alzheimer disease (AD), progressive supranuclear palsy (PSP), frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD) including the neuropathologically indistinguishable clinical phenotypes Parkinson disease and dementia with Lewy bodies, multiple system atrophy (MSA) and corticobasal degeneration (CBD) were studied. Memory disturbance was the most common FS in AD (34%), FTLD (19%) and LBD (26%), gait disturbance in PSP (35%) and MSA (27%) and aphasia and personality changes in CBD (20%, respectively). In a model adjusting for prevalence in the general population, AD was predicted by memory disturbance in 79.0%, aphasia in 97.2%, personality changes in 96.0% and by cognitive disturbance in 99.0%. Gait disturbance and tremor predicted LBD in 54.6% and 97.3%, coordination disturbance MSA in 59.4% and dysarthria FTLD in 73.0%. Cognitive FSs were associated with longer survival in AD (12.0 vs. 5.3 years; p < 0.001) and FTLD (8.2 vs. 4.1 years; p = 0.005) and motor FSs with shorter survival in PSP (7.2 vs. 9.7; p = 0.048). CONCLUSIONS Assessing FSs in neurodegenerative diseases may be beneficial for accuracy of diagnosis and prognosis and thereby may improve clinical care and precision of study recruitment.
Collapse
Affiliation(s)
- Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Irena Kostova
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Department for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peer Schmitz
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Otto Windl
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
26
|
Fernandez-Cerado C, Legarda GP, Velasco-Andrada MS, Aguil A, Ganza-Bautista NG, Lagarde JBB, Soria J, Jamora RDG, Acuña PJ, Vanderburg C, Sapp E, DiFiglia M, Murcar MG, Campion L, Ozelius LJ, Alessi AK, Singh-Bains MK, Waldvogel HJ, Faull RLM, Macalintal-Canlas R, Muñoz EL, Penney EB, Ang MA, Diesta CCE, Bragg DC, Acuña-Sunshine G. Promise and challenges of dystonia brain banking: establishing a human tissue repository for studies of X-Linked Dystonia-Parkinsonism. J Neural Transm (Vienna) 2021; 128:575-587. [PMID: 33439365 PMCID: PMC8099813 DOI: 10.1007/s00702-020-02286-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023]
Abstract
X-Linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease affecting individuals with ancestry to the island of Panay in the Philippines. In recent years there has been considerable progress at elucidating the genetic basis of XDP and candidate disease mechanisms in patient-derived cellular models, but the neural substrates that give rise to XDP in vivo are still poorly understood. Previous studies of limited XDP postmortem brain samples have reported a selective dropout of medium spiny neurons within the striatum, although neuroimaging of XDP patients has detected additional abnormalities in multiple brain regions beyond the basal ganglia. Given the need to fully define the CNS structures that are affected in this disease, we created a brain bank in Panay to serve as a tissue resource for detailed studies of XDP-related neuropathology. Here we describe this platform, from donor recruitment and consent to tissue collection, processing, and storage, that was assembled within a predominantly rural region of the Philippines with limited access to medical and laboratory facilities. Thirty-six brains from XDP individuals have been collected over an initial 4 years period. Tissue quality was assessed based on histologic staining of cortex, RNA integrity scores, detection of neuronal transcripts in situ by fluorescent hybridization chain reaction, and western blotting of neuronal and glial proteins. The results indicate that this pipeline preserves tissue integrity to an extent compatible with a range of morphologic, molecular, and biochemical analyses. Thus the algorithms that we developed for working in rural communities may serve as a guide for establishing similar brain banks for other rare diseases in indigenous populations.
Collapse
Affiliation(s)
| | - G Paul Legarda
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | | | - Abegail Aguil
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | | | | | - Jasmin Soria
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | - Roland Dominic G Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Patrick J Acuña
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, USA
| | - Ellen Sapp
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Marian DiFiglia
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Micaela G Murcar
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Lindsey Campion
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Laurie J Ozelius
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Amy K Alessi
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Malvindar K Singh-Bains
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Edwin L Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Ellen B Penney
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Mark A Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | - D Cristopher Bragg
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA.
| | - Geraldine Acuña-Sunshine
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines. .,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA.
| |
Collapse
|
27
|
Abstract
Neurotransmitter switching is a form of brain plasticity in which an environmental stimulus causes neurons to replace one neurotransmitter with another, often resulting in changes in behavior. This raises the possibility of applying a specific environmental stimulus to induce a switch that can enhance a desirable behavior or ameliorate symptoms of a specific pathology. For example, a stimulus inducing an increase in the number of neurons expressing dopamine could treat Parkinson's disease, or one affecting the number expressing serotonin could alleviate depression. This may already be producing successful treatment outcomes without our knowing that transmitter switching is involved, with improvement of motor function through physical activity and cure of seasonal depression with phototherapy. This review presents prospects for future investigation of neurotransmitter switching, considering opportunities and challenges for future research and describing how the investigation of transmitter switching is likely to evolve with new tools, thus reshaping our understanding of both normal brain function and mental illness.
Collapse
|
28
|
Tang K, Wan M, Zhang H, Zhang Q, Yang Q, Chen K, Wang N, Zhang D, Qiu W, Ma C. The top 100 most-cited articles citing human brain banking from 1970 to 2020: a bibliometric analysis. Cell Tissue Bank 2020; 21:685-697. [PMID: 32761559 DOI: 10.1007/s10561-020-09849-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
Many articles involving human brain banks have been published. Bibliometric analysis can determine the history of the development of research and future research trends in a specific field. Three independent researchers retrieved and reviewed articles from the Web of Science database using the following strategy: "TS = (((brain OR cerebral) AND (bank* OR biobank*)) OR brainbank*)." The top 100 most-cited articles were identified and listed in descending order by total citations. Web of Science was used to identify ten recent articles describing bank construction. GeenMedical ( https://www.geenmedical.com/ ) was used to identify ten recent articles from journals with an impact factor (IF) > 20. The top 100 most-cited articles citing human brain banks were published between 1991 and 2017. Fifty-two percent of the articles focused on a specific type of neurodegenerative disease, and 16% discussed the construction and development of human brain banks. Articles using brain tissue had more total and annual citations than those on bank construction. Ten articles with high IFs were published from 2017 to 2019, and they were primarily studies using novel research techniques such RNA sequencing and genome-wide association studies. Most studies were published in journals specializing in neurology or neuroscience such as Movement Disorders (10%), and had been conducted in the United States (52%) by neurologists (62%). The top 100 most-cited articles and recent publications citing human brain banks and their bibliometric characteristics were identified and analyzed, which may serve as a useful reference and pave the way for further research.
Collapse
Affiliation(s)
- Keyun Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, China
| | - Mengyao Wan
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, China
| | - Hanlin Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, China
| | - Qing Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qian Yang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kang Chen
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, China
| | - Naili Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Experimental Demonstration Center of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Experimental Demonstration Center of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China. .,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China.
| |
Collapse
|
29
|
Chan RJW, Seah S, Foo JYJ, Yong ACW, Chia NSY, Agustin SJU, Neo SXM, Tay KY, Au WL, Tan LCS, Ng ASL. Patient attitudes towards brain donation across both neurodegenerative and non-neurodegenerative neurological disorders. Cell Tissue Bank 2020; 21:265-277. [PMID: 32140800 DOI: 10.1007/s10561-020-09819-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Brain donations are imperative for research; understanding possible barriers to entry is required to improve brain donation rates. While a few surveys have studied attitudes towards brain banking in patients with neurodegenerative disorders, none have surveyed patients with chronic neurological disorders but without neurodegeneration. This cross-sectional study was conducted on 187 participants, with both neurodegenerative (n = 122) and non-neurodegenerative disorders (n = 65), to compare their attitudes and preferences towards brain donation. Encouragingly, patients with non-neurodegenerative disorders were just as likely to consider brain donation as those with neurodegenerative diseases. Approximately half of each group were willing to consider brain donation, and majority of participants across both groups would not be offended if asked to participate in brain donation (71%). Across both groups, altruistic reasons such as desire to advance medical knowledge and benefit to other patients were the main motivating factors for brain donation, while perceived stress for family members, fears of body disfigurement and religious reasons were the main reasons against brain donation. Of note, nearly two-thirds of all participants were agreeable to allow their family to decide on their behalf. Overall, participants with non-neurodegenerative disorders appeared equally likely to consider brain donation as participants with neurodegenerative disorders. This is an important finding as they represent a significant population seen in specialist neurology clinics who may be overlooked in brain donor recruitment and awareness efforts. Healthcare professionals involved in brain banking should consider actively approaching these potential donors and involving their family members in these discussions.
Collapse
Affiliation(s)
- Reudi J W Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Sherilyn Seah
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore
| | - Joel Y J Foo
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Alisa C W Yong
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Nicole S Y Chia
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Sherwin J U Agustin
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Shermyn X M Neo
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Kay-Yaw Tay
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
30
|
Iacobuzio-Donahue CA, Michael C, Baez P, Kappagantula R, Hooper JE, Hollman TJ. Cancer biology as revealed by the research autopsy. Nat Rev Cancer 2019; 19:686-697. [PMID: 31519982 PMCID: PMC7453489 DOI: 10.1038/s41568-019-0199-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
A research autopsy is a post-mortem medical procedure performed on a deceased individual with the primary goal of collecting tissue to support basic and translational research. This approach has increasingly been used to investigate the pathophysiological mechanisms of cancer evolution, metastasis and treatment resistance. In this Review, we discuss the rationale for the use of research autopsies in cancer research and provide an evidence-based discussion of the quality of post-mortem tissues compared with other types of biospecimens. We also discuss the advantages of using post-mortem tissues over other types of biospecimens, including the large amounts of tissue that can be obtained and the extent of multiregion sampling that is achievable, which is not otherwise possible in living patients. We highlight how the research autopsy has supported the identification of the clonal origins and modes of spread among metastases, the extent that selective pressures imposed by treatments cause bottlenecks leading to parallel and convergent tumour evolution, and the creation of rare tissue banks and patient-derived model systems. Finally, we comment on the future of the research autopsy as an integral component of precision medicine strategies.
Collapse
Affiliation(s)
- Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Chelsea Michael
- Department of Health Informatics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priscilla Baez
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajya Kappagantula
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jody E Hooper
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Travis J Hollman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
31
|
Suemoto CK, Leite RE, Ferretti‐Rebustini RE, Rodriguez RD, Nitrini R, Pasqualucci CA, Jacob‐Filho W, Grinberg LT. Neuropathological lesions in the very old: results from a large Brazilian autopsy study. Brain Pathol 2019; 29:771-781. [PMID: 30861605 PMCID: PMC6742578 DOI: 10.1111/bpa.12719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/28/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To compare neuropathological correlates of cognitive impairment between very old and younger individuals from a Brazilian clinicopathological study. METHODS We assessed the frequency of neuropathological lesions and their association with cognitive impairment (Clinical Dementia Rating scale ≥0.5) in the 80 or over age group compared to younger participants, using logistic regression models adjusted for sex, race and education. RESULTS Except for infarcts and siderocalcinosis, all neuropathological lesions were more common in the 80 or over age group (n = 412) compared to 50-79 year olds (n = 677). Very old participants had more than twice the likelihood of having ≥2 neuropathological diagnoses than younger participants (OR = 2.66, 95% CI = 2.03-3.50). Neurofibrillary tangles, infarcts and hyaline arteriolosclerosis were associated with cognitive impairment in the two age groups. Siderocalcinosis was associated with cognitive impairment in the younger participants only, while Lewy body disease was associated with cognitive impairment in the very old only. In addition, we found that the association of infarcts and multiple pathologies with cognitive impairment was attenuated in very old adults (Infarcts: P for interaction = 0.04; and multiple pathologies: P = 0.05). However, the predictive value for the aggregate model with all neuropathological lesions showed similar discrimination in both age groups [Area under Receiver Operating Characteristic curve (AUROC) = 0.778 in younger participants and AUROC = 0.765 in the very old]. CONCLUSION AND RELEVANCE Despite a higher frequency of neuropathological findings in the very old group, as found in studies with high-income populations, we found attenuation of the effect of infarcts rather than neurofibrillary tangles and plaques as reported previously.
Collapse
Affiliation(s)
- Claudia K. Suemoto
- Division of GeriatricsUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Renata E.P. Leite
- Division of GeriatricsUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | | | | | - Ricardo Nitrini
- Department of NeurologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | | | - Wilson Jacob‐Filho
- Division of GeriatricsUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Lea T. Grinberg
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCA
| |
Collapse
|
32
|
McFadden WC, Walsh H, Richter F, Soudant C, Bryce CH, Hof PR, Fowkes M, Crary JF, McKenzie AT. Perfusion fixation in brain banking: a systematic review. Acta Neuropathol Commun 2019; 7:146. [PMID: 31488214 PMCID: PMC6728946 DOI: 10.1186/s40478-019-0799-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023] Open
Abstract
Background Perfusing fixatives through the cerebrovascular system is the gold standard approach in animals to prepare brain tissue for spatial biomolecular profiling, circuit tracing, and ultrastructural studies such as connectomics. Translating these discoveries to humans requires examination of postmortem autopsy brain tissue. Yet banked brain tissue is routinely prepared using immersion fixation, which is a significant barrier to optimal preservation of tissue architecture. The challenges involved in adopting perfusion fixation in brain banks and the extent to which it improves histology quality are not well defined. Methodology We searched four databases to identify studies that have performed perfusion fixation in human brain tissue and screened the references of the eligible studies to identify further studies. From the included studies, we extracted data about the methods that they used, as well as any data comparing perfusion fixation to immersion fixation. The protocol was preregistered at the Open Science Framework: https://osf.io/cv3ys/. Results We screened 4489 abstracts, 214 full-text publications, and identified 35 studies that met our inclusion criteria, which collectively reported on the perfusion fixation of 558 human brains. We identified a wide variety of approaches to perfusion fixation, including perfusion fixation of the brain in situ and ex situ, perfusion fixation through different sets of blood vessels, and perfusion fixation with different washout solutions, fixatives, perfusion pressures, and postfixation tissue processing methods. Through a qualitative synthesis of data comparing the outcomes of perfusion and immersion fixation, we found moderate confidence evidence showing that perfusion fixation results in equal or greater subjective histology quality compared to immersion fixation of relatively large volumes of brain tissue, in an equal or shorter amount of time. Conclusions This manuscript serves as a resource for investigators interested in building upon the methods and results of previous research in designing their own perfusion fixation studies in human brains or other large animal brains. We also suggest several future research directions, such as comparing the in situ and ex situ approaches to perfusion fixation, studying the efficacy of different washout solutions, and elucidating the types of brain donors in which perfusion fixation is likely to result in higher fixation quality than immersion fixation. Electronic supplementary material The online version of this article (10.1186/s40478-019-0799-y) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Wang L, Xia Y, Chen Y, Dai R, Qiu W, Meng Q, Kuney L, Chen C. Brain Banks Spur New Frontiers in Neuropsychiatric Research and Strategies for Analysis and Validation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2019; 17:402-414. [PMID: 31811942 PMCID: PMC6943778 DOI: 10.1016/j.gpb.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/13/2019] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders affect hundreds of millions of patients and families worldwide. To decode the molecular framework of these diseases, many studies use human postmortem brain samples. These studies reveal brain-specific genetic and epigenetic patterns via high-throughput sequencing technologies. Identifying best practices for the collection of postmortem brain samples, analyzing such large amounts of sequencing data, and interpreting these results are critical to advance neuropsychiatry. We provide an overview of human brain banks worldwide, including progress in China, highlighting some well-known projects using human postmortem brain samples to understand molecular regulation in both normal brains and those with neuropsychiatric disorders. Finally, we discuss future research strategies, as well as state-of-the-art statistical and experimental methods that are drawn upon brain bank resources to improve our understanding of the agents of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Le Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Child Health Institute of New Jersey, Department of Neuroscience, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Rujia Dai
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Wenying Qiu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100101, China
| | - Qingtuan Meng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Liz Kuney
- Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China.
| |
Collapse
|
34
|
Le BD, Stein JL. Mapping causal pathways from genetics to neuropsychiatric disorders using genome-wide imaging genetics: Current status and future directions. Psychiatry Clin Neurosci 2019; 73:357-369. [PMID: 30864184 PMCID: PMC6625892 DOI: 10.1111/pcn.12839] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022]
Abstract
Imaging genetics aims to identify genetic variants associated with the structure and function of the human brain. Recently, collaborative consortia have been successful in this goal, identifying and replicating common genetic variants influencing gross human brain structure as measured through magnetic resonance imaging. In this review, we contextualize imaging genetic associations as one important link in understanding the causal chain from genetic variant to increased risk for neuropsychiatric disorders. We provide examples in other fields of how identifying genetic variant associations to disease and multiple phenotypes along the causal chain has revealed a mechanistic understanding of disease risk, with implications for how imaging genetics can be similarly applied. We discuss current findings in the imaging genetics research domain, including that common genetic variants can have a slightly larger effect on brain structure than on risk for disorders like schizophrenia, indicating a somewhat simpler genetic architecture. Also, gross brain structure measurements share a genetic basis with some, but not all, neuropsychiatric disorders, invalidating the previously held belief that they are broad endophenotypes, yet pinpointing brain regions likely involved in the pathology of specific disorders. Finally, we suggest that in order to build a more detailed mechanistic understanding of the effects of genetic variants on the brain, future directions in imaging genetics research will require observations of cellular and synaptic structure in specific brain regions beyond the resolution of magnetic resonance imaging. We expect that integrating genetic associations at biological levels from synapse to sulcus will reveal specific causal pathways impacting risk for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Brandon D. Le
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, USA
| | - Jason L. Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
35
|
Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Front Neurosci 2019; 13:582. [PMID: 31293366 PMCID: PMC6598414 DOI: 10.3389/fnins.2019.00582] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022] Open
Abstract
The complex development of the human nervous system has been traditionally studied using a combination of animal models, human post-mortem brain tissue, and human genetics studies. However, there has been a lack of experimental human cellular models that would allow for a more precise elucidation of the intricate dynamics of early human brain development. The development of stem cell technologies, both embryonic and induced pluripotent stem cells (iPSCs), has given neuroscientists access to the previously inaccessible early stages of human brain development. In particular, the recent development of three-dimensional culturing methodologies provides a platform to study the differentiation of stem cells in both normal development and disease states in a more in vivo like context. Three-dimensional neural models or cerebral organoids possess an innate advantage over two-dimensional neural cultures as they can recapitulate tissue organization and cell type diversity that resemble the developing brain. Brain organoids also provide the exciting opportunity to model the integration of different brain regions in vitro. Furthermore, recent advances in the differentiation of non-neuronal tissue from stem cells provides the opportunity to study the interaction between the developing nervous system and other non-neuronal systems that impact neuronal function. In this review, we discuss the potential and limitations of the organoid system to study in vitro neurological diseases that arise in the neuroendocrine and the enteric nervous system or from interactions with the immune system.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Allison Osmundsen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Shannon W. Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Sofia B. Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
36
|
The standardization of cerebrospinal fluid markers and neuropathological diagnoses brings to light the frequent complexity of concomitant pathology in Alzheimer's disease: The next challenge for biochemical markers? Clin Biochem 2019; 72:15-23. [PMID: 31194969 DOI: 10.1016/j.clinbiochem.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
During the last two decades, neuropathological examination of the brain has evolved both technically and scientifically. The increasing use of immunohistochemistry to detect protein aggregates paralleled a better understanding of neuroanatomical progression of protein deposition. As a consequence, an international effort was achieved to standardize hyperphosphorylated-Tau (phospho-TAU), ßAmyloid (Aß), alpha syncuclein (alpha-syn), phosphorylated transactive response DNA-binding protein 43 (phospho-TDP43) and vascular pathology detection. Meanwhile harmonized staging systems emerged in order to increase inter rater reproducibility. Therefore, a refined definition of Alzheimer's disease was recommended., a clearer picture of the neuropathological lesions diversity emerged secondarily to the systematic assessment of concomitant pathology highlighting finally a low rate of pure AD pathology. This brings new challenges to laboratory medicine in the field of cerebrospinal fluid (CSF) markers of Alzheimer's disease: how to further validate total Tau, phospho-TAU, Aß40 and Aß42 and new marker level cut-offs while autopsy rates are declining?
Collapse
|
37
|
Akinyemi R, Ojagbemi A, Akinyemi J, Salami A, Olopade F, Farombi T, Nweke M, Uvere E, Aridegbe M, Balogun J, Ogbole G, Jegede A, Kalaria R, Ogunniyi A, Owolabi M, Arulogun O. Gender differential in inclination to donate brain for research among Nigerians: the IBADAN Brain Bank Project. Cell Tissue Bank 2019; 20:297-306. [PMID: 31028517 DOI: 10.1007/s10561-019-09769-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/17/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Laboratory-based studies of neurological disease patterns and mechanisms are sparse in sub-Saharan Africa. However, availability of human brain tissue resource depends on willingness towards brain donation. This study evaluated the level of willingness among outpatient clinic attendees in a Nigerian teaching hospital. METHODS Under the auspices of the IBADAN Brain Bank Project, a 43-item semi-structured interviewer-administered questionnaire was designed to evaluate knowledge, attitude, and beliefs of individuals attending Neurology, Psychiatry and Geriatrics Outpatient clinics regarding willingness to donate brain for research. Association between participants characteristics and willingness towards brain donation was investigated using logistic regression models. Analysis was conducted using Stata SE version 12.0. RESULTS A total of 412 participants were interviewed. Their mean age was 46.3 (16.1) years. 229 (55.6%) were females and 92.5% had at least 6 years of formal education. Overall, 109 (26.7%) were willing to donate brains for research. In analyses adjusting for educational status, religion, ethnicity, marital status and family setting, male sex showed independent association with willingness towards brain donation OR (95% CI) 1.7 (1.08-2.69), p = 0.023. Participants suggested public engagement and education through mass media (including social media) and involvement of religious and community leaders as important interventions to improve awareness and willingness towards brain donation. CONCLUSION The survey revealed low willingness among outpatient clinic attendees to donate brain for research, although men were more inclined to donate. It is imperative to institute public engagement and educational interventions in order to improve consent for brain donation for research.
Collapse
Affiliation(s)
- Rufus Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria. .,Neuroscience and Ageing Research Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Akin Ojagbemi
- Department of Psychiatry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joshua Akinyemi
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayodeji Salami
- Department of Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Funmi Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitope Farombi
- Chief Tony Anenih Geriatric Centre, University College Hospital, Ibadan, Nigeria
| | - Michael Nweke
- Department of Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ezinne Uvere
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Aridegbe
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Balogun
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Godwin Ogbole
- Department of Radiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayodele Jegede
- Department of Sociology, Faculty of the Social Sciences, University of Ibadan, Ibadan, Nigeria
| | - Rajesh Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Owolabi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oyedunni Arulogun
- Department of Health Promotion and Education, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
38
|
Huitinga I, de Goeij M, Klioueva N. Legal and Ethical Issues in Brain Banking. Neurosci Bull 2019; 35:267-269. [PMID: 30390244 PMCID: PMC6426895 DOI: 10.1007/s12264-018-0305-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/27/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Inge Huitinga
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Netherlands Royal Academy of Arts and Sciences, Amsterdam, Netherlands.
| | - Mignon de Goeij
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Netherlands Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Natasja Klioueva
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Netherlands Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
39
|
Shepherd CE, Alvendia H, Halliday GM. Brain Banking for Research into Neurodegenerative Disorders and Ageing. Neurosci Bull 2019; 35:283-288. [PMID: 30604281 DOI: 10.1007/s12264-018-0326-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/27/2018] [Indexed: 10/27/2022] Open
Abstract
Advances in cellular and molecular biology underpin most current therapeutic advances in medicine. Such advances for neurological and neurodegenerative diseases are hindered by the lack of similar specimens. It is becoming increasingly evident that greater access to human brain tissue is necessary to understand both the cellular biology of these diseases and their variation. Research in these areas is vital to the development of viable therapeutic options for these currently untreatable diseases. The development and coordination of human brain specimen collection through brain banks is evolving. This perspective article from the Sydney Brain Bank reviews data concerning the best ways to collect and store material for different research purposes.
Collapse
Affiliation(s)
- Claire E Shepherd
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | - Holly Alvendia
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia.,New York University, New York, NY, USA
| | - Glenda M Halliday
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia. .,Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
40
|
Zhou Y, Lutz P, Ibrahim EC, Courtet P, Tzavara E, Turecki G, Belzeaux R. Suicide and suicide behaviors: A review of transcriptomics and multiomics studies in psychiatric disorders. J Neurosci Res 2018; 98:601-615. [DOI: 10.1002/jnr.24367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Zhou
- McGill Group for Suicide Studies Douglas Mental Health University Institute, McGill University Montréal Canada
| | - Pierre‐Eric Lutz
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 Strasbourg France
| | - El Chérif Ibrahim
- Institut de Neurosciences de la Timone ‐ UMR7289,CNRS Aix‐Marseille Université Marseille France
- Fondamental, Fondation de Recherche et de Soins en Santé Mentale Créteil France
| | - Philippe Courtet
- Fondamental, Fondation de Recherche et de Soins en Santé Mentale Créteil France
- CHRU Montpellier, University of Montpellier, INSERM unit 1061 Montpellier France
| | - Eleni Tzavara
- Fondamental, Fondation de Recherche et de Soins en Santé Mentale Créteil France
- INSERM, UMRS 1130, CNRS, UMR 8246, Sorbonne University UPMC, Neuroscience Paris‐Seine Paris France
| | - Gustavo Turecki
- McGill Group for Suicide Studies Douglas Mental Health University Institute, McGill University Montréal Canada
| | - Raoul Belzeaux
- Institut de Neurosciences de la Timone ‐ UMR7289,CNRS Aix‐Marseille Université Marseille France
- Fondamental, Fondation de Recherche et de Soins en Santé Mentale Créteil France
- AP‐HM, Pôle de Psychiatrie Marseille France
| |
Collapse
|
41
|
Rizzi L, Roriz-Cruz M. Sirtuin 1 and Alzheimer's disease: An up-to-date review. Neuropeptides 2018; 71:54-60. [PMID: 30007474 DOI: 10.1016/j.npep.2018.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Sirtuins are NAD+-dependent enzymes that regulate a large number of cellular pathways and are related to aging and age-associated diseases. In recent years, the role of sirtuins in Alzheimer's disease (AD) has become increasingly apparent. Growing evidence demonstrates that sirtuin 1 (SIRT1) regulates many processes that go amiss in AD, such as: APP processing, neuroinflammation, neurodegeneration, and mitochondrial dysfunction. Here we review how SIRT1 affects AD and cognition, the main mechanisms in which SIRT1 is related to AD pathology, and its importance for the prevention and possible diagnosis of AD.
Collapse
Affiliation(s)
- Liara Rizzi
- Division of Geriatric Neurology, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-903, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-903, Brazil.
| | - Matheus Roriz-Cruz
- Division of Geriatric Neurology, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-903, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-903, Brazil
| |
Collapse
|
42
|
Akinyemi RO, Salami A, Akinyemi J, Ojagbemi A, Olopade F, Coker M, Farombi T, Nweke M, Arulogun O, Jegede A, Owolabi M, Kalaria RN, Ogunniyi A. Brain banking in low and middle-income countries: Raison D'être for the Ibadan Brain Ageing, Dementia And Neurodegeneration (IBADAN) Brain Bank Project. Brain Res Bull 2018; 145:136-141. [PMID: 30149197 DOI: 10.1016/j.brainresbull.2018.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Brain banks are biorepositories of central nervous system (CNS) tissue including fixed and frozen whole brains, brain biopsies and spinal cord, as well as body fluids comprising the cerebrospinal fluid (CSF) and blood stored for research purposes. Though several independent brain banks exist in high income countries, only five low- and middle - income countries (LMIC) have brain banks. The African continent is yet to establish a formalized brain bank despite its huge human genomic diversity, ageing of her populations with concomitant increases in ageing - associated brain disorders and differential phenotypic expression and outcomes of brain disorders. Cellular and molecular clinicopathological studies are vital to shaping our understanding of the interaction between racial (genetic) and geographical (environmental) factors in the natural history and mechanisms of disease, and unravelling frameworks of diagnostic biomarkers, and new therapeutic and preventative interventions. The Ibadan Brain Ageing, Dementia And Neurodegeneration (IBADAN) Brain Bank, the first organized brain tissue biorepository in sub - Saharan Africa, is set up to accrue, process and store unique brain tissues for future research into a broad spectrum of neurological and psychiatric disorders. The potential unique discoveries and research breakthroughs will benefit people of African ancestry and other ancestral populations.
Collapse
Affiliation(s)
- Rufus O Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ayodeji Salami
- Department of Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joshua Akinyemi
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akin Ojagbemi
- Department of Psychiatry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Funmi Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Motunrayo Coker
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitope Farombi
- Chief Tony Anenih Geriatric Centre, University College Hospital, Ibadan, Nigeria
| | - Michael Nweke
- Department of Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oyedunni Arulogun
- Department of Health Education and Promotion, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayodele Jegede
- Department of Sociology, Faculty of the Social Sciences, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Owolabi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Rajesh N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adesola Ogunniyi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
43
|
Patel T, Brookes KJ, Turton J, Chaudhury S, Guetta-Baranes T, Guerreiro R, Bras J, Hernandez D, Singleton A, Francis PT, Hardy J, Morgan K. Whole-exome sequencing of the BDR cohort: evidence to support the role of the PILRA gene in Alzheimer's disease. Neuropathol Appl Neurobiol 2018; 44:506-521. [PMID: 29181857 PMCID: PMC6005734 DOI: 10.1111/nan.12452] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/22/2017] [Indexed: 02/03/2023]
Abstract
AIM Late-onset Alzheimer's disease (LOAD) accounts for 95% of all Alzheimer's cases and is genetically complex in nature. Overlapping clinical and neuropathological features between AD, FTD and Parkinson's disease highlight the potential role of genetic pleiotropy across diseases. Recent genome-wide association studies (GWASs) have uncovered 20 new loci for AD risk; however, these exhibit small effect sizes. Using NGS, here we perform association analyses using exome-wide and candidate-gene-driven approaches. METHODS Whole-exome sequencing was performed on 132 AD cases and 53 control samples. Exome-wide single-variant association and gene burden tests were performed for 76 640 nonsingleton variants. Samples were also screened for known causative mutations in familial genes in AD and other dementias. Single-variant association and burden analysis was also carried out on variants in known AD and other neurological dementia genes. RESULTS Tentative single-variant and burden associations were seen in several genes with kinase and protease activity. Exome-wide burden analysis also revealed significant burden of variants in PILRA (P = 3.4 × 10-5 ), which has previously been linked to AD via GWAS, hit ZCWPW1. Screening for causative mutations in familial AD and other dementia genes revealed no pathogenic variants. Variants identified in ABCA7, SLC24A4, CD33 and LRRK2 were nominally associated with disease (P < 0.05) but did not withstand correction for multiple testing. APOE (P = 0.02) and CLU (P = 0.04) variants showed significant burden on AD. CONCLUSIONS In addition, polygenic risk scores (PRS) were able to distinguish between cases and controls with 83.8% accuracy using 3268 variants, sex, age at death and APOE ε4 and ε2 status as predictors.
Collapse
Affiliation(s)
- T Patel
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | - K J Brookes
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | - J Turton
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | - S Chaudhury
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | | | - R Guerreiro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL (UK DRI), London, UK
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - J Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL (UK DRI), London, UK
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - D Hernandez
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA
| | - A Singleton
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA
| | - P T Francis
- Brains for Dementia Research Resource, Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - J Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL (UK DRI), London, UK
| | - K Morgan
- Human Genetics Group, University of Nottingham, Nottingham, UK
| |
Collapse
|
44
|
Beier K, Frebel L. Brain Banking für die Forschung – eine empirisch-ethische Analyse praktischer Herausforderungen. Ethik Med 2018. [DOI: 10.1007/s00481-018-0486-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Bilbrey AC, Humber MB, Plowey ED, Garcia I, Chennapragada L, Desai K, Rosen A, Askari N, Gallagher-Thompson D. The Impact of Latino Values and Cultural Beliefs on Brain Donation: Results of a Pilot Study to Develop Culturally Appropriate Materials and Methods to Increase Rates of Brain Donation in this Under-Studied Patient Group. Clin Gerontol 2018; 41:237-248. [PMID: 29227743 PMCID: PMC5962259 DOI: 10.1080/07317115.2017.1373178] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Increasing the number of Latino persons with dementia who consent to brain donation (BD) upon death is an important public health goal that has not yet been realized. This study identified the need for culturally sensitive materials to answer questions and support the decision-making process for the family. METHODS Information about existing rates of BD was obtained from the Alzheimer's Disease Centers. Several methods of data collection (query NACC database, contacting Centers, focus groups, online survey, assessing current protocol and materials) were used to give the needed background to create culturally appropriate BD materials. RESULTS A decision was made that a brochure for undecided enrollees would be beneficial to discuss BD with family members. For those needing further details, a step-by-step handout would provide additional information. CONCLUSIONS Through team collaboration and engagement of others in the community who work with Latinos with dementia, we believe this process allowed us to successfully create culturally appropriate informational materials that address a sensitive topic for Hispanic/Latino families. CLINICAL IMPLICATIONS Brain tissue is needed to further knowledge about underlying biological mechanism of neurodegenerative diseases, however it is a sensitive topic. Materials assist with family discussion and facilitate the family's follow-through with BD.
Collapse
Affiliation(s)
- Ann Choryan Bilbrey
- a Stanford Alzheimer's Disease Research Center , Stanford University , Palo Alto , California , USA
- c Department of Psychiatry and Behavioral Sciences , Stanford University , Palo Alto , California , USA
| | - Marika B Humber
- a Stanford Alzheimer's Disease Research Center , Stanford University , Palo Alto , California , USA
- f Palo Alto University , Palo Alto , California , USA
| | - Edward D Plowey
- a Stanford Alzheimer's Disease Research Center , Stanford University , Palo Alto , California , USA
- b Department of Neurology , Stanford University , Palo Alto , California , USA
| | - Iliana Garcia
- a Stanford Alzheimer's Disease Research Center , Stanford University , Palo Alto , California , USA
- d Nuestra Casa , East Palo Alto , California, USA
| | - Lakshmi Chennapragada
- a Stanford Alzheimer's Disease Research Center , Stanford University , Palo Alto , California , USA
| | - Kanchi Desai
- a Stanford Alzheimer's Disease Research Center , Stanford University , Palo Alto , California , USA
| | - Allyson Rosen
- a Stanford Alzheimer's Disease Research Center , Stanford University , Palo Alto , California , USA
- e Veterans Affairs Medical Center , Palo Alto , California , USA
| | - Nusha Askari
- a Stanford Alzheimer's Disease Research Center , Stanford University , Palo Alto , California , USA
| | - Dolores Gallagher-Thompson
- a Stanford Alzheimer's Disease Research Center , Stanford University , Palo Alto , California , USA
- c Department of Psychiatry and Behavioral Sciences , Stanford University , Palo Alto , California , USA
| |
Collapse
|
46
|
Sonnemans LJP, Kubat B, Prokop M, Klein WM. Can virtual autopsy with postmortem CT improve clinical diagnosis of cause of death? A retrospective observational cohort study in a Dutch tertiary referral centre. BMJ Open 2018; 8:e018834. [PMID: 29549202 PMCID: PMC5857682 DOI: 10.1136/bmjopen-2017-018834] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To investigate whether virtual autopsy with postmortem CT (PMCT) improves clinical diagnosis of the immediate cause of death. DESIGN Retrospective observational cohort study. INCLUSION CRITERIA inhospital and out-of-hospital deaths over the age of 1 year in whom virtual autopsy with PMCT and conventional autopsy were performed. EXCLUSION CRITERIA forensic cases, postmortal organ donors and cases with incomplete scanning procedures. Cadavers were examined by virtual autopsy with PMCT prior to conventional autopsy. The clinically determined cause of death was recorded before virtual autopsy and was then adjusted with the findings of virtual autopsy. Using conventional autopsy as reference standard, we investigated the increase in sensitivity for immediate cause of death, type of pathology and anatomical system involved before and after virtual autopsy. SETTING Tertiary referral centre. PARTICIPANTS 86 cadavers that underwent conventional and virtual autopsy between July 2012 and June 2016. INTERVENTION PMCT consisted of brain, cervical spine and chest-abdomen-pelvis imaging. Conventional autopsy consisted of thoracoabdominal examination with/without brain autopsy. PRIMARY AND SECONDARY OUTCOME MEASURES Increase in sensitivity for the immediate cause of death, type of pathology (infection, haemorrhage, perfusion disorder, other or not assigned) and anatomical system (pulmonary, cardiovascular, gastrointestinal, other or not assigned) involved, before and after virtual autopsy. RESULTS Using PMCT, the sensitivity for immediate cause of death increased with 12% (95% CI 2% to 22%) from 53% (41% to 64%) to 64% (53% to 75%), with 18% (9% to 27%) from 65% (54% to 76%) to 83% (73% to 91%) for type of pathology and with 19% (9% to 30%) from 65% (54% to 76%) to 85% (75% to 92%) for anatomical system. CONCLUSION While unenhanced PMCT is an insufficient substitute for conventional autopsy, it can improve diagnosis of cause of death over clinical diagnosis alone and should therefore be considered whenever autopsy is not performed.
Collapse
Affiliation(s)
- Lianne J P Sonnemans
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Bela Kubat
- Department of Pathology, Netherlands Forensic Institute, Hague, The Netherlands
- Department of Pathology, Maastricht UMC+, Maastricht, The Netherlands
| | - Mathias Prokop
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Willemijn M Klein
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, The Netherlands
| |
Collapse
|
47
|
Brain donation procedures in the Sudden Death Brain Bank in Edinburgh. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:17-27. [PMID: 29496140 DOI: 10.1016/b978-0-444-63639-3.00002-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Brain banks typically receive donations through premortem consent procedures, often through disease-specific patient cohorts, such as dementia. While some control cases can be obtained through this route, access to age-matched control tissues, and some chronic neurologic conditions, particularly psychiatric disorders, can be challenging. The Edinburgh Sudden Death Brain Bank was established to try and increase access to control cases across all ages, and also access to psychiatric disorders through suicides. This chapter outlines the processes for establishing donations through medicolegal postmortems, which, although often with a prolonged postmortem interval, can provide high-quality well-characterized postmortem brain tissue to the neuroscience research community.
Collapse
|
48
|
Freund M, Taylor A, Ng C, Little AR. The NIH NeuroBioBank: creating opportunities for human brain research. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:41-48. [PMID: 29496155 DOI: 10.1016/b978-0-444-63639-3.00004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The National Institutes of Health (NIH) NeuroBioBank is a federally funded research resource for human neurologic diseases and disorders. This chapter will discuss the principles that guided the creation of the NIH NeuroBioBank and the rationale for the resource model selected. In addition, we will describe some performance metrics in the first 2 years and highlight recent advances in biomedical neuroscience that could only have been achieved using postmortem human tissues. The NIH NeuroBioBank was created in order to increase availability of high-quality postmortem human brain tissues to the research community across a broad spectrum of neurologic diseases and disorders, and to achieve economies of scale over previous funding and organizational models. In addition, we aim to increase public awareness about the value of human tissue donation for research by providing web-based information to the public and through active outreach to disease advocacy communities. Studies with human brain tissue have led to a rapid increase in our knowledge of the biologic differences between humans and are bridging the divide between humans and model organisms. Studies of human brain are beginning to give us a glimpse not only into what makes us uniquely human as well as how individual biology may be connected to health and disease.
Collapse
Affiliation(s)
- Michelle Freund
- National Institute of Mental Health, Rockville, MD, United States
| | - Anna Taylor
- National Institute of Neurological Disorders and Stroke, Rockville, MD, United States
| | - Cathy Ng
- National Institute of Mental Health, Rockville, MD, United States
| | - A Roger Little
- National Institute on Drug Abuse, Rockville, MD, United States.
| |
Collapse
|
49
|
Kramvis I, Mansvelder HD, Meredith RM. Neuronal life after death: electrophysiologic recordings from neurons in adult human brain tissue obtained through surgical resection or postmortem. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:319-333. [PMID: 29496151 DOI: 10.1016/b978-0-444-63639-3.00022-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recordings from fresh human brain slices derived from surgically resected brain tissue are being used to unravel mechanisms underlying human neurophysiology and for the evaluation of potential therapeutic targets and compounds. Data resulting from these studies provide unique insights into physiologic properties of human neuronal microcircuits. However, substantial limitations still remain with this approach. First, the tissue is always resected from patients, never from healthy controls. Second, the patient population undergoing brain surgery with tissue resection is limited to epilepsy and tumor patients - never from patients with other neurologic disorders. Third, the vast majority of tissue resected is limited largely to temporal cortex and hippocampus, occasionally amygdala. Therefore, the possibility to study brain tissue: (1) from healthy controls; (2) from patients with different neuropathologies; (3) from different brain areas; and (4) from a wide spectrum of ages only exists through autopsy-derived brain tissue. Here we describe methods and results from physiologic recordings of adult human neurons and microcircuits in both surgically derived brain tissue as well as in tissue derived from autopsies. We define postmortem time windows during which physiologic recordings could match data obtained from surgical tissue.
Collapse
Affiliation(s)
- Ioannis Kramvis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Mighdoll MI, Hyde TM. Brain donation at autopsy: clinical characterization and toxicologic analyses. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:143-154. [PMID: 29496137 DOI: 10.1016/b978-0-444-63639-3.00011-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The study of postmortem human brain tissue is central to the advancement of neurobiologic studies of psychiatric and neurologic illnesses, particularly the study of brain-specific isoforms and molecules. Due to tissue demands, especially pertaining to brain regions strongly implicated in the pathophysiology of neuropsychiatric disorders, the success and future of this research depend on the availability of high-quality brain specimens from large numbers of subjects, including nonpsychiatric controls, both of which may be obtained from brain banks. In this chapter, we elaborate on the need for and acquisition of well-curated and properly diagnosed postmortem human brains, relying upon our experience with the Human Brain and Tissue Repository located at the Lieber Institute for Brain Development in Baltimore, MD. We explain the advantages of sourcing postmortem human tissue from medical examiner offices, which provide access to cases of all ages, both with and without central nervous system disorders. Neuropathology analyses and toxicologic screenings, along with autopsy reports and extensive interviews with family members and treating physicians, are invaluable to the diagnoses of postmortem cases. Ultimately, the study of psychiatric and neurologic disorders is the study of brain disease, and accordingly, there is no substitution for human brain tissue.
Collapse
Affiliation(s)
- Michelle I Mighdoll
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|