1
|
Beck CL, Kunze A. Parallelized Mechanical Stimulation of Neuronal Calcium Through Cell-Internal Nanomagnetic Forces Provokes Lasting Shifts in the Network Activity State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406678. [PMID: 39460486 DOI: 10.1002/smll.202406678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca2+) influx, leading to modulation of activity observed through Ca2+ event rates. Inhibiting particle uptake or altering nanoparticle exposure time reduced the neuronal response to nanomagnetic forces, exposing the requirement of nanoparticle uptake to induce the Ca2+ response. In highly active cortical networks, iNMF robustly modulates synchronous network activity, which is lasting and repeatable. Using pharmacological blockers, it is shown that iNMF activates mechanosensitive ion channels to induce the Ca2+ influx. Then, in contrast to transient mechanically evoked neuronal activity, iNMF activates Ca2+-activated potassium (KCa) channels to stabilize the neuronal membrane potential and induce network activity shifts. The findings reveal the potential of magnetic nanoparticle-mediated mechanical stimulation to modulate neuronal circuit dynamics, providing insights into the biophysics of neuronal computation.
Collapse
Affiliation(s)
- Connor L Beck
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, 59717, USA
- Montana Nanotechnology Facility, Montana State University, Bozeman, MT, 59717, USA
- Optical Technology Center, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
2
|
Nandi T, Kop BR, Pauly KB, Stagg CJ, Verhagen L. The relationship between parameters and effects in transcranial ultrasonic stimulation. Brain Stimul 2024; 17:S1935-861X(24)00175-X. [PMID: 39447740 DOI: 10.1016/j.brs.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Transcranial ultrasonic stimulation (TUS) is rapidly gaining traction for non-invasive human neuromodulation, with a pressing need to establish protocols that maximise neuromodulatory efficacy. In this review, we aggregate and examine empirical evidence for the relationship between tunable TUS parameters and in vitro and in vivo outcomes. Based on this multiscale approach, TUS researchers can make better informed decisions about optimal parameter settings. Importantly, we also discuss the challenges involved in extrapolating results from prior empirical work to future interventions, including the translation of protocols between models and the complex interaction between TUS protocols and the brain. A synthesis of the empirical evidence suggests that larger effects will be observed at lower frequencies within the sub-MHz range, higher intensities and pressures than commonly administered thus far, and longer pulses and pulse train durations. Nevertheless, we emphasise the need for cautious interpretation of empirical data from different experimental paradigms when basing protocols on prior work as we advance towards refined TUS parameters for human neuromodulation.
Collapse
Affiliation(s)
- Tulika Nandi
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands; Department of Human Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.
| | - Benjamin R Kop
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands.
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, FMRIB Building, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK.
| | - Lennart Verhagen
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Mazhari A, Shafieian M. Toward understanding the brain tissue behavior due to preconditioning: an experimental study and RVE approach. Front Bioeng Biotechnol 2024; 12:1462148. [PMID: 39439552 PMCID: PMC11493751 DOI: 10.3389/fbioe.2024.1462148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Brain tissue under preconditioning, as a complex issue, refers to repeated loading-unloading cycles applied in mechanical testing protocols. In previous studies, only the mechanical behavior of the tissue under preconditioning was investigated; However, the link between macrostructural mechanical behavior and microstructural changes in brain tissue remains underexplored. This study aims to bridge this gap by investigating bovine brain tissue responses both before and after preconditioning. We employed a dual approach: experimental mechanical testing and computational modeling. Experimental tests were conducted to observe microstructural changes in mechanical behavior due to preconditioning, with a focus on axonal damage. Concurrently, we developed multiscale models using statistically representative volume elements (RVE) to simulate the tissue's microstructural response. These RVEs, featuring randomly distributed axonal fibers within the extracellular matrix, provide a realistic depiction of the white matter microstructure. Our findings show that preconditioning induces significant changes in the mechanical properties of brain tissue and affects axonal integrity. The RVE models successfully captured localized stresses and facilitated the microscopic analysis of axonal injury mechanisms. These results underscore the importance of considering both macro and micro scales in understanding brain tissue behavior under mechanical loading. This comprehensive approach offers valuable insights into mechanotransduction processes and improves the analysis of microstructural phenomena in brain tissue.
Collapse
Affiliation(s)
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnique), Tehran, Iran
| |
Collapse
|
4
|
Singh A, Reynolds JNJ. Therapeutic ultrasound: an innovative approach for targeting neurological disorders affecting the basal ganglia. Front Neuroanat 2024; 18:1469250. [PMID: 39417047 PMCID: PMC11480080 DOI: 10.3389/fnana.2024.1469250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The basal ganglia are involved in motor control and action selection, and their impairment manifests in movement disorders such as Parkinson's disease (PD) and dystonia, among others. The complex neuronal circuitry of the basal ganglia is located deep inside the brain and presents significant treatment challenges. Conventional treatment strategies, such as invasive surgeries and medications, may have limited effectiveness and may result in considerable side effects. Non-invasive ultrasound (US) treatment approaches are becoming increasingly recognized for their therapeutic potential for reversibly permeabilizing the blood-brain barrier (BBB), targeting therapeutic delivery deep into the brain, and neuromodulation. Studies conducted on animals and early clinical trials using ultrasound as a therapeutic modality have demonstrated promising outcomes for controlling symptom severity while preserving neural tissue. These results could improve the quality of life for patients living with basal ganglia impairments. This review article explores the therapeutic frontiers of ultrasound technology, describing the brain mechanisms that are triggered and engaged by ultrasound. We demonstrate that this cutting-edge method could transform the way neurological disorders associated with the basal ganglia are managed, opening the door to less invasive and more effective treatments.
Collapse
Affiliation(s)
| | - John N. J. Reynolds
- Translational Brain Plasticity Laboratory, Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Center, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Rezaei A, Wang T, Titina C, Wu L. Immediate and Transient Perturbances in EEG Within Seconds Following Controlled Soccer Head Impact. Ann Biomed Eng 2024; 52:2897-2910. [PMID: 39136891 DOI: 10.1007/s10439-024-03602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 09/17/2024]
Abstract
Athletes in contact and collision sports can sustain frequent subconcussive head impacts. Although most impacts exhibit low kinematics around or below 10 g of head linear acceleration, there is growing concern regarding the cumulative effects of repetitive sports head impacts. Even mild impacts can lead to brain deformations as shown through neuroimaging and finite element modeling, and thus may result in mild and transient effects on the brain, prompting further investigations of the biomechanical dose-brain response relationship. Here we report findings from a novel laboratory study with continuous monitoring of brain activity through electroencephalography (EEG) during controlled soccer head impacts. Eight healthy participants performed simulated soccer headers at 2 mild levels (6 g, 4 rad/s and 10 g, 8 rad/s) and three directions (frontal, oblique left, oblique right). Participants were instrumented with an inertial measurement unit (IMU) bite bar and EEG electrodes for synchronized head kinematics and brain activity measurements throughout the experiment. After an impact, EEG exhibited statistically significant elevation of relative and absolute delta power that recovered within two seconds from the impact moment. These changes were statistically significantly higher for 10 g impacts compared with 6 g impacts in some topographical regions, and oblique impacts resulted in contralateral delta power increases. Post-session resting state measurements did not indicate any cumulative effects. Our findings suggest that even mild soccer head impacts could lead to immediate, transient neurophysiological changes. This study paves the way for further dose-response studies to investigate the cumulative effects of mild sports head impacts, with implications for long-term athlete brain health.
Collapse
Affiliation(s)
- Ahmad Rezaei
- Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC, V6T 1Z4, Canada
| | - Timothy Wang
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 2B9, Canada
| | - Cyrus Titina
- Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC, V6T 1Z4, Canada
| | - Lyndia Wu
- Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC, V6T 1Z4, Canada.
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 2B9, Canada.
| |
Collapse
|
6
|
Vahidi M, Rizkalla AS, Mequanint K. Extracellular Matrix-Surrogate Advanced Functional Composite Biomaterials for Tissue Repair and Regeneration. Adv Healthc Mater 2024; 13:e2401218. [PMID: 39036851 DOI: 10.1002/adhm.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Native tissues, comprising multiple cell types and extracellular matrix components, are inherently composites. Mimicking the intricate structure, functionality, and dynamic properties of native composite tissues represents a significant frontier in biomaterials science and tissue engineering research. Biomimetic composite biomaterials combine the benefits of different components, such as polymers, ceramics, metals, and biomolecules, to create tissue-template materials that closely simulate the structure and functionality of native tissues. While the design of composite biomaterials and their in vitro testing are frequently reviewed, there is a considerable gap in whole animal studies that provides insight into the progress toward clinical translation. Herein, we provide an insightful critical review of advanced composite biomaterials applicable in several tissues. The incorporation of bioactive cues and signaling molecules into composite biomaterials to mimic the native microenvironment is discussed. Strategies for the spatiotemporal release of growth factors, cytokines, and extracellular matrix proteins are elucidated, highlighting their role in guiding cellular behavior, promoting tissue regeneration, and modulating immune responses. Advanced composite biomaterials design challenges, such as achieving optimal mechanical properties, improving long-term stability, and integrating multifunctionality into composite biomaterials and future directions, are discussed. We believe that this manuscript provides the reader with a timely perspective on composite biomaterials.
Collapse
Affiliation(s)
- Milad Vahidi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Amin S Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| |
Collapse
|
7
|
Xu Y, Wang Y, Mei S, Hu J, Wu L, Xu L, Bao L, Fang X. The mechanism and potential therapeutic target of piezo channels in pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1452389. [PMID: 39398533 PMCID: PMC11466900 DOI: 10.3389/fpain.2024.1452389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Pain is a common symptom of many clinical diseases; it adversely affects patients' physical and mental health, reduces their quality of life, and heavily burdens patients and society. Pain treatment is one of the most difficult problems today. There is an urgent need to explore the potential factors involved in the pathogenesis of pain to improve its diagnosis and treatment rate. Piezo1/2, a newly identified mechanosensitive ion channel opens in response to mechanical stimuli and plays a critical role in regulating pain-related diseases. Inhibition or downregulation of Piezo1/2 alleviates disease-induced pain. Therefore, in this study, we comprehensively discussed the biology of this gene, focusing on its potential relevance in pain-related diseases, and explored the pharmacological effects of drugs using this gene for the treatment of pain.
Collapse
Affiliation(s)
- Yi Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuheng Wang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Luyang Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lijie Bao
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Sherman J, Bortz E, Antonio ES, Tseng HA, Raiff L, Han X. Ultrasound pulse repetition frequency preferentially activates different neuron populations independent of cell type. J Neural Eng 2024; 21:056008. [PMID: 39178904 PMCID: PMC11381926 DOI: 10.1088/1741-2552/ad731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective. Transcranial ultrasound (US) stimulation serves as an external input to a neuron, and thus the evoked response relies on neurons' intrinsic properties. Neural activity is limited to a couple hundred hertz and often exhibits preference to input frequencies. Accordingly, US pulsed at specific physiologic pulse repetition frequencies (PRFs) may selectively engage neurons with the corresponding input frequency preference. However, most US parametric studies examine the effects of supraphysiologic PRFs. It remains unclear whether pulsing US at different physiologic PRFs could activate distinct neurons in the awake mammalian brain.Approach. We recorded cellular calcium responses of individual motor cortex neurons to US pulsed at PRFs of 10, 40, and 140 Hz in awake mice. We compared the evoked responses across these PRFs in the same neurons. To further understand the cell-type dependent effects, we categorized the recorded neurons as parvalbumin positive fast spiking interneurons or putative excitatory neurons and analyzed single-cell mechanosensitive channel expression in mice and humans using the Allen Brain Institute's RNA-sequencing databases.Main results. We discovered that many neurons were preferentially activated by only one PRF and different PRFs selectively engaged distinct neuronal populations. US-evoked cellular calcium responses exhibited the same characteristics as those naturally occurring during spiking, suggesting that US increases intrinsic neuronal activity. Furthermore, evoked responses were similar between fast-spiking inhibitory neurons and putative excitatory neurons. Thus, variation in individual neuron's cellular properties dominates US-evoked response heterogeneity, consistent with our observed cell-type independent expression patterns of mechanosensitive channels across individual neurons in mice and humans. Finally, US transiently increased network synchrony without producing prolonged over-synchronization that could be detrimental to neural circuit functions.Significance. These results highlight the feasibility of activating distinct neuronal subgroups by varying PRF and the potential to improve neuromodulation effects by combining physiologic PRFs.
Collapse
Affiliation(s)
- Jack Sherman
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, United States of America
| | - Emma Bortz
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Erynne San Antonio
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Laura Raiff
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| |
Collapse
|
9
|
Ham H, Kim KS, Lee JH, Kim DN, Choi HJ, Yoh JJ. Acoustic deep brain modulation: Enhancing neuronal activation and neurogenesis. Brain Stimul 2024; 17:1060-1075. [PMID: 39218349 DOI: 10.1016/j.brs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-invasive deep brain modulation (DBM) stands as a promising therapeutic avenue to treat brain diseases. Acoustic DBM represents an innovative and targeted approach to modulate the deep brain, employing techniques such as focused ultrasound and shock waves. Despite its potential, the optimal mechanistic parameters, the effect in the brain and behavioral outcomes of acoustic DBM remains poorly understood. OBJECTIVE To establish a robust protocol for the shock wave DBM by optimizing its mechanistic profile of external stimulation, and to assess its efficacy in preclinical settings. METHODS We used shockwaves due to their capacity to leverage a broader spectrum of peak intensity (10-127 W/mm2) in contrast to ultrasound (0.1-5.0 W/mm2), thereby enabling a more extensive range of neuromodulation effects. We established various types of shockwave pressure profiles of DBM and compared neural and behavioral responses. To ascertain the anticipated cause of the heightened neural activity response, numerical analysis was employed to examine the mechanical dynamics within the brain. RESULTS An optimized profile led to an enhancement in neuronal activity within the hypothalamus of mouse models. The optimized profile in the hippocampus elicited a marked increase in neurogenesis without neuronal damage. Behavioral analyses uncovered a noteworthy reduction in locomotion without significant effects on spatial memory function. CONCLUSIONS The present study provides an optimized shock wave stimulation protocol for non-invasive DBM. Our optimized stimulation profile selectively triggers neural functions in the deep brain. Our protocol paves the way for new non-invasive DBM devices to treat brain diseases.
Collapse
Affiliation(s)
- Hwichan Ham
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jee-Hwan Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyung-Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do, 25159, South Korea.
| | - Jack J Yoh
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
11
|
Rossi A, Furlani F, Bassi G, Cunha C, Lunghi A, Molinari F, Teran FJ, Lista F, Bianchi M, Piperno A, Montesi M, Panseri S. Contactless magnetically responsive injectable hydrogel for aligned tissue regeneration. Mater Today Bio 2024; 27:101110. [PMID: 39211510 PMCID: PMC11360152 DOI: 10.1016/j.mtbio.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular alignment plays a pivotal role in several human tissues, including skeletal muscle, spinal cord and tendon. Various techniques have been developed to control cellular alignment using 3D biomaterials. However, the majority of 3D-aligned scaffolds require invasive surgery for implantation. In contrast, injectable hydrogels provide a non-invasive delivery method, gaining considerable attention for the treatment of diverse conditions, including osteochondral lesions, volumetric muscle loss, and traumatic brain injury. We engineered a biomimetic hydrogel with magnetic responsiveness by combining gellan gum, hyaluronic acid, collagen, and magnetic nanoparticles (MNPs). Collagen type I was paired with MNPs to form magnetic collagen bundles (MCollB), allowing the orientation control of these bundles within the hydrogel matrix through the application of a remote low-intensity magnetic field. This resulted in the creation of an anisotropic architecture. The hydrogel mechanical properties were comparable to those of human soft tissues, such as skeletal muscle, and proof of the aligned hydrogel concept was demonstrated. In vitro findings confirmed the absence of toxicity and pro-inflammatory effects. Notably, an increased fibroblast cell proliferation and pro-regenerative activation of macrophages were observed. The in-vivo study further validated the hydrogel biocompatibility and demonstrated the feasibility of injection with rapid in situ gelation. Consequently, this magnetically controlled injectable hydrogel exhibits significant promise as a minimally invasive, rapid gelling and effective treatment for regenerating various aligned human tissues.
Collapse
Affiliation(s)
- Arianna Rossi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Franco Furlani
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of G. D'Annunzio, Department of Neurosciences, Imaging and Clinical Sciences. Via Luigi Polacchi, 11, 66100 Chieti, Italy
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde. Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia 44121 Ferrara, Italy
- Section of Physiology, Università di Ferrara 44121 Ferrara, Italy
| | - Filippo Molinari
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Francisco J. Teran
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Nanotech Solutions, Ctra Madrid23, 40150 Villacastín, Spain
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Michele Bianchi
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia 44125 Modena, Italy
| | - Anna Piperno
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| |
Collapse
|
12
|
Lv S, Mo F, Xu Z, Wang Y, Yang G, Han M, Jing L, Xu W, Duan Y, Liu Y, Li M, Liu J, Luo J, Wang M, Song Y, Wu Y, Cai X. Tentacle Microelectrode Arrays Uncover Soft Boundary Neurons in Hippocampal CA1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401670. [PMID: 38828784 PMCID: PMC11304256 DOI: 10.1002/advs.202401670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Indexed: 06/05/2024]
Abstract
Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability. Conventional rigid-based electrodes cause inflammatory responses, restricting recording durations. Inspired by the jellyfish tentacles, the multi-conductive layer ultra-flexible microelectrode arrays (MEAs) are developed. The tentacle MEAs ensure stable recordings during movement, thereby enabling the discovery of soft boundary neurons. The soft boundary neurons demonstrate high-frequency firing that aligns with the boundaries of scene transitions. Furthermore, the localization ability of soft boundary neurons improves with more scene transition boundaries, and their activity decreases when these boundaries are removed. The innovation of ultra-flexible, high-biocompatible tentacle MEAs improves the understanding of neural encoding in spatial cognition. They offer the potential for long-term in vivo recording of neural information, facilitating breakthroughs in the understanding and application of brain spatial navigation mehanisms.
Collapse
Affiliation(s)
- Shiya Lv
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fan Mo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhaojie Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yu Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Gucheng Yang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Meiqi Han
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Luyi Jing
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wei Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yiming Duan
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yaoyao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ming Li
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Juntao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinping Luo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mixia Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yilin Song
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yirong Wu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinxia Cai
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
13
|
Xu G, Zhang M, Mei T, Liu W, Wang L, Xiao K. Nanofluidic Ionic Memristors. ACS NANO 2024. [PMID: 39022809 DOI: 10.1021/acsnano.4c06467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Living organisms use ions and small molecules as information carriers to communicate with the external environment at ultralow power consumption. Inspired by biological systems, artificial ion-based devices have emerged in recent years to try to realize efficient information-processing paradigms. Nanofluidic ionic memristors, memory resistors based on confined fluidic systems whose internal ionic conductance states depend on the historical voltage, have attracted broad attention and are used as neuromorphic devices for computing. Despite their high exposure, nanofluidic ionic memristors are still in the initial stage. Therefore, systematic guidance for developing and reasonably designing ionic memristors is necessary. This review systematically summarizes the history, mechanisms, and potential applications of nanofluidic ionic memristors. The essential challenges in the field and the outlook for the future potential applications of nanofluidic ionic memristors are also discussed.
Collapse
Affiliation(s)
- Guoheng Xu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Miliang Zhang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Tingting Mei
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Wenchao Liu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Li Wang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| |
Collapse
|
14
|
Olaitan GO, Ganesana M, Strohman A, Lynch WJ, Legon W, Jill Venton B. Focused Ultrasound Modulates Dopamine in a Mesolimbic Reward Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580202. [PMID: 38979318 PMCID: PMC11230179 DOI: 10.1101/2024.02.13.580202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm 2 I sppa ) of 2-minute LIFU to the prelimbic region (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm 2 to the PLC significantly reduced dopamine release by ∼ 50% for up to 2 hours. However, double the intensity (26 W/cm 2 ) resulted in less inhibition (∼30%), and half the intensity (6.5 W/cm 2 ) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling of temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm 2 , suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
Collapse
|
15
|
Malekoshoaraie MH, Wu B, Krahe DD, Ahmed Z, Pupa S, Jain V, Cui XT, Chamanzar M. Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation. MICROSYSTEMS & NANOENGINEERING 2024; 10:91. [PMID: 38947533 PMCID: PMC11211464 DOI: 10.1038/s41378-024-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 07/02/2024]
Abstract
Targeted delivery of neurochemicals and biomolecules for neuromodulation of brain activity is a powerful technique that, in addition to electrical recording and stimulation, enables a more thorough investigation of neural circuit dynamics. We have designed a novel, flexible, implantable neural probe capable of controlled, localized chemical stimulation and electrophysiology recording. The neural probe was implemented using planar micromachining processes on Parylene C, a mechanically flexible, biocompatible substrate. The probe shank features two large microelectrodes (chemical sites) for drug loading and sixteen small microelectrodes for electrophysiology recording to monitor neuronal response to drug release. To reduce the impedance while keeping the size of the microelectrodes small, poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically coated on recording microelectrodes. In addition, PEDOT doped with mesoporous sulfonated silica nanoparticles (SNPs) was used on chemical sites to achieve controlled, electrically-actuated drug loading and releasing. Different neurotransmitters, including glutamate (Glu) and gamma-aminobutyric acid (GABA), were incorporated into the SNPs and electrically triggered to release repeatedly. An in vitro experiment was conducted to quantify the stimulated release profile by applying a sinusoidal voltage (0.5 V, 2 Hz). The flexible neural probe was implanted in the barrel cortex of the wild-type Sprague Dawley rats. As expected, due to their excitatory and inhibitory effects, Glu and GABA release caused a significant increase and decrease in neural activity, respectively, which was recorded by the recording microelectrodes. This novel flexible neural probe technology, combining on-demand chemical release and high-resolution electrophysiology recording, is an important addition to the neuroscience toolset used to dissect neural circuitry and investigate neural network connectivity.
Collapse
Affiliation(s)
| | - Bingchen Wu
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, 15213 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 USA
| | - Daniela D. Krahe
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Zabir Ahmed
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Stephen Pupa
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Vishal Jain
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Xinyan Tracy Cui
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, 15213 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 USA
| | - Maysamreza Chamanzar
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, 15213 USA
| |
Collapse
|
16
|
Wang J, Liu H, Shi X, Qin S, Liu J, Lv Q, Liu J, Li Q, Wang Z, Wang L. Development and Application of an Advanced Biomedical Material-Silk Sericin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311593. [PMID: 38386199 DOI: 10.1002/adma.202311593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Sericin, a protein derived from silkworm cocoons, is considered a waste product derived from the silk industry for thousands of years due to a lack of understanding of its properties. However, in recent decades, a range of exciting properties of sericin are studied and uncovered, including cytocompatibility, low-immunogenicity, photo-luminescence, antioxidant properties, as well as cell-function regulating activities. These properties make sericin-based biomaterials promising candidates for biomedical applications. This review summarizes the properties and bioactivities of silk sericin and highlights the latest developments in sericin in tissue engineering and regenerative medicine. Furthermore, the extended application of sericin in developing flexible electronic devices and 3D bioprinting is also discussed. It is believed that sericin-based biomaterials have great potential of being developed into novel tissue engineering products and smart implantable devices for various medical applications toward improving clinical outcomes.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huan Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaolei Shi
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sumei Qin
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwei Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin's Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
17
|
Parker KJ, Kabir IE, Doyley MM, Faiyaz A, Uddin MN, Flores G, Schifitto G. Brain elastography in aging relates to fluid/solid trendlines. Phys Med Biol 2024; 69:115037. [PMID: 38670141 DOI: 10.1088/1361-6560/ad4446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
The relatively new tools of brain elastography have established a general trendline for healthy, aging adult humans, whereby the brain's viscoelastic properties 'soften' over many decades. Earlier studies of the aging brain have demonstrated a wide spectrum of changes in morphology and composition towards the later decades of lifespan. This leads to a major question of causal mechanisms: of the many changes documented in structure and composition of the aging brain, which ones drive the long term trendline for viscoelastic properties of grey matter and white matter? The issue is important for illuminating which factors brain elastography is sensitive to, defining its unique role for study of the brain and clinical diagnoses of neurological disease and injury. We address these issues by examining trendlines in aging from our elastography data, also utilizing data from an earlier landmark study of brain composition, and from a biophysics model that captures the multiscale biphasic (fluid/solid) structure of the brain. Taken together, these imply that long term changes in extracellular water in the glymphatic system of the brain along with a decline in the extracellular matrix have a profound effect on the measured viscoelastic properties. Specifically, the trendlines indicate that water tends to replace solid fraction as a function of age, then grey matter stiffness decreases inversely as water fraction squared, whereas white matter stiffness declines inversely as water fraction to the 2/3 power, a behavior consistent with the cylindrical shape of the axons. These unique behaviors point to elastography of the brain as an important macroscopic measure of underlying microscopic structural change, with direct implications for clinical studies of aging, disease, and injury.
Collapse
Affiliation(s)
- Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, United States of America
| | - Irteza Enan Kabir
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, United States of America
| | - Abrar Faiyaz
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| | - Md Nasir Uddin
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY 14642, United States of America
| | - Gilmer Flores
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
| | - Giovanni Schifitto
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, United States of America
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY 14642, United States of America
| |
Collapse
|
18
|
Zhu P, Simon I, Kokalari I, Kohane DS, Rwei AY. Miniaturized therapeutic systems for ultrasound-modulated drug delivery to the central and peripheral nervous system. Adv Drug Deliv Rev 2024; 208:115275. [PMID: 38442747 PMCID: PMC11031353 DOI: 10.1016/j.addr.2024.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Ultrasound is a promising technology to address challenges in drug delivery, including limited drug penetration across physiological barriers and ineffective targeting. Here we provide an overview of the significant advances made in recent years in overcoming technical and pharmacological barriers using ultrasound-assisted drug delivery to the central and peripheral nervous system. We commence by exploring the fundamental principles of ultrasound physics and its interaction with tissue. The mechanisms of ultrasonic-enhanced drug delivery are examined, as well as the relevant tissue barriers. We highlight drug transport through such tissue barriers utilizing insonation alone, in combination with ultrasound contrast agents (e.g., microbubbles), and through innovative particulate drug delivery systems. Furthermore, we review advances in systems and devices for providing therapeutic ultrasound, as their practicality and accessibility are crucial for clinical application.
Collapse
Affiliation(s)
- Pancheng Zhu
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands; State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics & Astronautics, 210016, Nanjing, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ignasi Simon
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Ida Kokalari
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Alina Y Rwei
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
19
|
Ma X, Wang X, Zhu K, Ma R, Chu F, Liu X, Zhang S, Yin T, Zhou X, Liu Z. Study on the Role of Physical Fields in TMAS to Modulate Synaptic Plasticity in Mice. IEEE Trans Biomed Eng 2024; 71:1531-1541. [PMID: 38117631 DOI: 10.1109/tbme.2023.3342012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Transcranial magneto-acoustic stimulation (TMAS) is a composite technique combining static magnetic and coupled electric fields with transcranial ultrasound stimulation (TUS) and has shown advantages in neuromodulation. However, the role of these physical fields in neuromodulation is unclear. Synaptic plasticity is the cellular basis for learning and memory. In this paper, we varied the intensity of static magnetic, electric and ultrasonic fields respectively to investigate the modulation of synaptic plasticity by these physical fields. METHODS There are control, static magnetic field (0.1 T/0.2 T), TUS (0.15/0.3 MPa), and TMAS (0.15 MPa + 0.2 V/m, 0.3 MPa + 0.2 V/m, 0.3 MPa + 0.4 V/m) groups. Hippocampal areas were stimulated at 5 min daily for 7 days and in vivo electrophysiological experiments were performed. RESULTS TMAS induced greater LTP, LTD, and paired-pulse ratio (PPR) than TUS, reflecting that TMAS has a more significant modulation in both long- and short- term synaptic plasticity. In TMAS, a doubling of the electric field amplitude increases LTP, LTD and PPR to a greater extent than a doubling of the acoustic pressure. Increasing the static magnetic field intensity has no significant effect on the modulation of synaptic plasticity. CONCLUSION This paper argues that electric fields should be the main reason for the difference in modulation between TMAS and TUS and that changing the amplitude of the electric field affected the modulation of TMAS more than changing the acoustic pressure. SIGNIFICANCE This study elucidates the roles of the physical fields in TMAS and provides a parameterisation way to guide TMAS applications based on the dominant roles of the physical fields.
Collapse
|
20
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Foster M, Dwibhashyam S, Patel D, Gupta K, Matz OC, Billings BK, Bitterman K, Bertelson M, Tang CY, Mars RB, Raghanti MA, Hof PR, Sherwood CC, Manger PR, Spocter MA. Comparative anatomy of the caudate nucleus in canids and felids: Associations with brain size, curvature, cross-sectional properties, and behavioral ecology. J Comp Neurol 2024; 532:e25618. [PMID: 38686628 DOI: 10.1002/cne.25618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.
Collapse
Affiliation(s)
- Michael Foster
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Sai Dwibhashyam
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Devan Patel
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Kanika Gupta
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Olivia C Matz
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kathleen Bitterman
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Mads Bertelson
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Cheuk Y Tang
- Departments of Radiology and Psychiatry, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
- College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
22
|
Huang J, Hu X, Chen Z, Ouyang F, Li J, Hu Y, Zhao Y, Wang J, Yao F, Jing J, Cheng L. Fascin-1 limits myosin activity in microglia to control mechanical characterization of the injured spinal cord. J Neuroinflammation 2024; 21:88. [PMID: 38600569 PMCID: PMC11005239 DOI: 10.1186/s12974-024-03089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jinxin Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xuyang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zeqiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yixue Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fei Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Li Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
23
|
Sherman J, Bortz E, Antonio ES, Tseng HA, Raiff L, Han X. Ultrasound pulse repetition frequency preferentially activates different neuron populations independent of cell type. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586645. [PMID: 38585918 PMCID: PMC10996595 DOI: 10.1101/2024.03.25.586645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Transcranial ultrasound activates mechanosensitive cellular signaling and modulates neural dynamics. Given that intrinsic neuronal activity is limited to a couple hundred hertz and often exhibits frequency preference, we examined whether pulsing ultrasound at physiologic pulse repetition frequencies (PRFs) could selectively influence neuronal activity in the mammalian brain. We performed calcium imaging of individual motor cortex neurons, while delivering 0.35 MHz ultrasound at PRFs of 10, 40, and 140 Hz in awake mice. We found that most neurons were preferentially activated by only one of the three PRFs, highlighting unique cellular effects of physiologic PRFs. Further, ultrasound evoked responses were similar between excitatory neurons and parvalbumin positive interneurons regardless of PRFs, indicating that individual cell sensitivity dominates ultrasound-evoked effects, consistent with the heterogeneous mechanosensitive channel expression we found across single neurons in mice and humans. These results highlight the feasibility of tuning ultrasound neuromodulation effects through varying PRFs.
Collapse
|
24
|
Bekbolatova M, Mayer J, Jose R, Syed F, Kurgansky G, Singh P, Pao R, Zaw H, Devine T, Chan-Akeley R, Toma M. Biomechanical Effects of Seizures on Cerebral Dynamics and Brain Stress. Brain Sci 2024; 14:323. [PMID: 38671975 PMCID: PMC11048267 DOI: 10.3390/brainsci14040323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Epilepsy is one of the most common neurological disorders globally, affecting about 50 million people, with nearly 80% of those affected residing in low- and middle-income countries. It is characterized by recurrent seizures that result from abnormal electrical brain activity, with seizures varying widely in manifestation. The exploration of the biomechanical effects that seizures have on brain dynamics and stress levels is relevant for the development of more effective treatments and protective strategies. This study uses a blend of experimental data and computational simulations to assess the brain's physical response during seizures, particularly focusing on the behavior of cerebrospinal fluid and the resulting mechanical stresses on different brain regions. Notable findings show increases in stress, predominantly in the posterior gyri and brainstem, during seizures and an evidence of brain displacement relative to the skull. These observations suggest a dynamic and complex interaction between the brain and skull, with maximum shear stress regions demonstrating the limited yet essential protective role of the CSF. By providing a deeper understanding of the mechanical changes occurring during seizures, this research supports the goal of advancing diagnostic tools, informing more targeted treatment interventions, and guiding the creation of customized therapeutic strategies to enhance neurological care and protect against the adverse effects of seizures.
Collapse
Affiliation(s)
- Molly Bekbolatova
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Jonathan Mayer
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Rejath Jose
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Faiz Syed
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Gregory Kurgansky
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Paramvir Singh
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Rachel Pao
- NewYork-Presbyterian Queens Hospital, New York City, NY 11355, USA;
| | - Honey Zaw
- Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, Atran Berg Building, 8th Floor, New York City, NY 10029, USA;
| | - Timothy Devine
- The Ferrara Center for Patient Safety and Clinical Simulation, Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | | | - Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| |
Collapse
|
25
|
Lilley RL, Kabaliuk N, Reynaud A, Devananthan P, Smith N, Docherty PD. A Novel Experimental Approach for the Measurement of Vibration-Induced Changes in the Rheological Properties of Ex Vivo Ovine Brain Tissue. SENSORS (BASEL, SWITZERLAND) 2024; 24:2022. [PMID: 38610233 PMCID: PMC11014318 DOI: 10.3390/s24072022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Increased incidence of traumatic brain injury (TBI) imposes a growing need to understand the pathology of brain trauma. A correlation between the incidence of multiple brain traumas and rates of behavioural and cognitive deficiencies has been identified amongst people that experienced multiple TBI events. Mechanically, repetitive TBIs may affect brain tissue in a similar way to cyclic loading. Hence, the potential susceptibility of brain tissue to mechanical fatigue is of interest. Although temporal changes in ovine brain tissue viscoelasticity and biological fatigue of other tissues such as tendons and arteries have been investigated, no methodology currently exists to cyclically load ex vivo brain tissue. A novel rheology-based approach found a consistent, initial stiffening response of the brain tissue before a notable softening when subjected to a subsequential cyclic rotational shear. History dependence of the mechanical properties of brain tissue indicates susceptibility to mechanical fatigue. Results from this investigation increase understanding of the fatigue properties of brain tissue and could be used to strengthen therapy and prevention of TBI, or computational models of repetitive head injuries.
Collapse
Affiliation(s)
- Rebecca L. Lilley
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand; (R.L.L.); (N.K.); (A.R.); (P.D.)
| | - Natalia Kabaliuk
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand; (R.L.L.); (N.K.); (A.R.); (P.D.)
- Biomolecular Interaction Centre, Christchurch 8140, New Zealand
| | - Antoine Reynaud
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand; (R.L.L.); (N.K.); (A.R.); (P.D.)
- École Nationale Supérieure de Mécanique et des Microtechniques, 25000 Besançon, France
| | - Pavithran Devananthan
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand; (R.L.L.); (N.K.); (A.R.); (P.D.)
- Biomolecular Interaction Centre, Christchurch 8140, New Zealand
| | - Nicole Smith
- Department of Electrical Engineering, University of Canterbury, Christchurch 8140, New Zealand;
| | - Paul D. Docherty
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand; (R.L.L.); (N.K.); (A.R.); (P.D.)
- Institute for Technical Medicine, Furtwangen University, 78120 Villingen Schwenningen, Germany
| |
Collapse
|
26
|
Hou X, Jing J, Jiang Y, Huang X, Xian Q, Lei T, Zhu J, Wong KF, Zhao X, Su M, Li D, Liu L, Qiu Z, Sun L. Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice. Nat Commun 2024; 15:2253. [PMID: 38480733 PMCID: PMC10937988 DOI: 10.1038/s41467-024-46461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Ultrasound is an acoustic wave which can noninvasively penetrate the skull to deep brain regions, enabling neuromodulation. However, conventional ultrasound's spatial resolution is diffraction-limited and low-precision. Here, we report acoustic nanobubble-mediated ultrasound stimulation capable of localizing ultrasound's effects to only the desired brain region in male mice. By varying the delivery site of nanobubbles, ultrasound could activate specific regions of the mouse motor cortex, evoking EMG signaling and limb movement, and could also, separately, activate one of two nearby deep brain regions to elicit distinct behaviors (freezing or rotation). Sonicated neurons displayed reversible, low-latency calcium responses and increased c-Fos expression in the sub-millimeter-scale region with nanobubbles present. Ultrasound stimulation of the relevant region also modified depression-like behavior in a mouse model. We also provide evidence of a role for mechanosensitive ion channels. Altogether, our treatment scheme allows spatially-targetable, repeatable and temporally-precise activation of deep brain circuits for neuromodulation without needing genetic modification.
Collapse
Affiliation(s)
- Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Jianing Jing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Yizhou Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Xiaohui Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Quanxiang Xian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Ting Lei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Jiejun Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Kin Fung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Xinyi Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Min Su
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Danni Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Langzhou Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Zhihai Qiu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China.
| |
Collapse
|
27
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Procès A, Alpizar YA, Halliez S, Brône B, Saudou F, Ris L, Gabriele S. Stretch-injury promotes microglia activation with enhanced phagocytic and synaptic stripping activities. Biomaterials 2024; 305:122426. [PMID: 38134473 DOI: 10.1016/j.biomaterials.2023.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Microglial cells, as the primary defense line in the central nervous system, play a crucial role in responding to various mechanical signals that can trigger their activation. Despite extensive research on the impact of chemical signaling on brain cells, the understanding of mechanical signaling in microglia remains limited. To bridge this gap, we subjected microglial cells to a singular mechanical stretch and compared their responses with those induced by lipopolysaccharide treatment, a well-established chemical activator. Here we show that stretching microglial cells leads to their activation, highlighting their significant mechanosensitivity. Stretched microglial cells exhibited distinct features, including elevated levels of Iba1 protein, a denser actin cytoskeleton, and increased persistence in migration. Unlike LPS-treated microglial cells, the secretory profile of chemokines and cytokines remained largely unchanged in response to stretching, except for TNF-α. Intriguingly, a single stretch injury resulted in more compacted chromatin and DNA damage, suggesting potential long-term genomic instabilities in stretched microglia. Using compartmentalized microfluidic chambers with neuronal networks, we observed that stretched microglial cells exhibited enhanced phagocytic and synaptic stripping activities. These findings collectively suggest that stretching events can unlock the immune potential of microglial cells, contributing to the maintenance of brain tissue homeostasis following mechanical injury.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology & Biomaterials Group, CIRMAP, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium; Neuroscience Laboratory, Neuroscience Department, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
| | - Yeranddy A Alpizar
- Neurophysiology Laboratory, BIOMED Research Institute, UHasselt, B-3500, Hasselt, Belgium
| | - Sophie Halliez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Bert Brône
- Neurophysiology Laboratory, BIOMED Research Institute, UHasselt, B-3500, Hasselt, Belgium
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, F-38000, Grenoble, France
| | - Laurence Ris
- Neuroscience Laboratory, Neuroscience Department, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, CIRMAP, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium.
| |
Collapse
|
29
|
Lee J, Kim YE, Lim J, Jo Y, Lee HJ, Jo YS, Choi JS. Transcranial focused ultrasound stimulation in the infralimbic cortex facilitates extinction of conditioned fear in rats. Brain Stimul 2024; 17:405-412. [PMID: 38537689 DOI: 10.1016/j.brs.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024] Open
Abstract
Transcranial focused ultrasound (tFUS) neuromodulation emerges as a promising non-invasive approach for improving neurological conditions. Extinction of conditioned fear has served as a prime model for exposure-based therapies for anxiety disorders. We investigated whether tFUS stimulation to a critical brain area, the infralimbic subdivision of the prefrontal cortex (IL), could facilitate fear extinction using rats. In a series of experiments, tFUS was delivered to the IL of a freely-moving rat and compared to sham stimulation (tFUS vs. SHAM). Initially, Fos expression in the IL was measured shortly after the stimulation. The results show that Fos expression was significantly increased in the IL but not in the neighboring regions compared to SHAM. Subsequently, two groups of rats were subjected to fear conditioning, extinction, and retention while receiving stimulation during the extinction. Rats in the tFUS group froze significantly less than SHAM during both extinction and retention tests. Importantly, the reduced freezing in the tFUS group was not attributable to non-specific effect such as auditory noise, as both groups demonstrated a similar level of locomotive activity in an open field regardless of the stimulation condition. Finally, we replicated the procedure with a shortened conditioning-to-extinction interval (15 min) to induce immediate extinction deficit. The tFUS group showed a facilitated reduction in freezing during the extinction, which persisted in the subsequent retention session compared to SHAM. In summary, the current findings suggest that tFUS stimulation in the IL facilitates fear extinction, offering a potential therapeutic regimen for fear-related psychiatric disorders.
Collapse
Affiliation(s)
- Jaeyong Lee
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Ye Eun Kim
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Jihong Lim
- School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yehhyun Jo
- School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyunjoo Jenny Lee
- School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Dema A, Charafeddine RA, van Haren J, Rahgozar S, Viola G, Jacobs KA, Kutys ML, Wittmann T. Doublecortin reinforces microtubules to promote growth cone advance in soft environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582626. [PMID: 38464100 PMCID: PMC10925279 DOI: 10.1101/2024.02.28.582626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Doublecortin (DCX) is a microtubule-associated protein critical for brain development. Although most highly expressed in the developing central nervous system, the molecular function of DCX in neuron morphogenesis remains unknown and controversial. We demonstrate that DCX function is intimately linked to its microtubule-binding activity. By using human induced pluripotent stem cell (hiPSC)- derived cortical i 3 Neurons genome engineered to express mEmerald-tagged DCX from the endogenous locus, we find that DCX-MT interactions become highly polarized very early during neuron morphogenesis. DCX becomes enriched only on straight microtubules in advancing growth cones with approximately 120 DCX molecules bound per micrometer of growth cone microtubule. At a similar saturation, microtubule-bound DCX molecules begin to impede lysosome transport, and thus can potentially control growth cone organelle entry. In addition, by comparing control, DCX-mEmerald and knockout DCX -/Y i 3 Neurons, we find that DCX stabilizes microtubules in the growth cone peripheral domain by reducing the microtubule catastrophe frequency and the depolymerization rate. DCX -/Y i 3 Neuron morphogenesis was inhibited in soft microenvironments that mimic the viscoelasticity of brain tissue and DCX -/Y neurites failed to grow toward brain-derived neurotrophic factor (BDNF) gradients. Together with high resolution traction force microscopy data, we propose a model in which DCX-decorated, rigid growth cone microtubules provide intracellular mechanical resistance to actomyosin generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated forces in the growth cone periphery may be insufficient for productive growth cone advance. These data provide a new mechanistic understanding of how DCX mutations cause lissencephaly-spectrum brain malformations by impacting growth cone dynamics during neuron morphogenesis in physiological environments.
Collapse
|
31
|
Pavuluri K, Huston J, Ehman RL, Manduca A, Jack CR, Senjem ML, Vemuri P, Murphy MC. Associations between vascular health, brain stiffness and global cognitive function. Brain Commun 2024; 6:fcae073. [PMID: 38505229 PMCID: PMC10950054 DOI: 10.1093/braincomms/fcae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
Vascular brain injury results in loss of structural and functional connectivity and leads to cognitive impairment. Its various manifestations, including microinfarcts, microhaemorrhages and white matter hyperintensities, result in microstructural tissue integrity loss and secondary neurodegeneration. Among these, tissue microstructural alteration is a relatively early event compared with atrophy along the aging and neurodegeneration continuum. Understanding its association with cognition may provide the opportunity to further elucidate the relationship between vascular health and clinical outcomes. Magnetic resonance elastography offers a non-invasive approach to evaluate tissue mechanical properties, providing a window into the microstructural integrity of the brain. This retrospective study evaluated brain stiffness as a potential biomarker for vascular brain injury and its role in mediating the impact of vascular dysfunction on cognitive impairment. Seventy-five participants from the Mayo Clinic Study of Aging underwent brain imaging using a 3T MR imager with a spin-echo echo-planar imaging sequence for magnetic resonance elastography and T1- and T2-weighted pulse sequences. This study evaluated the effects of vascular biomarkers (white matter hyperintensities and cardiometabolic condition score) on brain stiffness using voxelwise analysis. Partial correlation analysis explored associations between brain stiffness, white matter hyperintensities, cardiometabolic condition and global cognition. Mediation analysis determined the role of stiffness in mediating the relationship between vascular biomarkers and cognitive performance. Statistical significance was set at P-values < 0.05. Diagnostic accuracy of magnetic resonance elastography stiffness for white matter hyperintensities and cardiometabolic condition was evaluated using receiver operator characteristic curves. Voxelwise linear regression analysis indicated white matter hyperintensities negatively correlate with brain stiffness, specifically in periventricular regions with high white matter hyperintensity levels. A negative association between cardiovascular risk factors and stiffness was also observed across the brain. No significant patterns of stiffness changes were associated with amyloid load. Global stiffness (µ) negatively correlated with both white matter hyperintensities and cardiometabolic condition when all other covariables including amyloid load were controlled. The positive correlation between white matter hyperintensities and cardiometabolic condition weakened and became statistically insignificant when controlling for other covariables. Brain stiffness and global cognition were positively correlated, maintaining statistical significance after adjusting for all covariables. These findings suggest mechanical alterations are associated with cognitive dysfunction and vascular brain injury. Brain stiffness significantly mediated the indirect effects of white matter hyperintensities and cardiometabolic condition on global cognition. Local cerebrovascular diseases (assessed by white matter hyperintensities) and systemic vascular risk factors (assessed by cardiometabolic condition) impact brain stiffness with spatially and statistically distinct effects. Global brain stiffness is a significant mediator between vascular disease measures and cognitive function, highlighting the value of magnetic resonance elastography-based mechanical assessments in understanding this relationship.
Collapse
Affiliation(s)
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
32
|
Kim HJ, Phan TT, Lee K, Kim JS, Lee SY, Lee JM, Do J, Lee D, Kim SP, Lee KP, Park J, Lee CJ, Park JM. Long-lasting forms of plasticity through patterned ultrasound-induced brainwave entrainment. SCIENCE ADVANCES 2024; 10:eadk3198. [PMID: 38394205 PMCID: PMC10889366 DOI: 10.1126/sciadv.adk3198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Achieving long-lasting neuronal modulation with low-intensity, low-frequency ultrasound is challenging. Here, we devised theta burst ultrasound stimulation (TBUS) with gamma bursts for brain entrainment and modulation of neuronal plasticity in the mouse motor cortex. We demonstrate that two types of TBUS, intermittent and continuous TBUS, induce bidirectional long-term potentiation or depression-like plasticity, respectively, as evidenced by changes in motor-evoked potentials. These effects depended on molecular pathways associated with long-term plasticity, including N-methyl-d-aspartate receptor and brain-derived neurotrophic factor/tropomyosin receptor kinase B activation, as well as de novo protein synthesis. Notably, bestrophin-1 and transient receptor potential ankyrin 1 play important roles in these enduring effects. Moreover, pretraining TBUS enhances the acquisition of previously unidentified motor skills. Our study unveils a promising protocol for ultrasound neuromodulation, enabling noninvasive and sustained modulation of brain function.
Collapse
Affiliation(s)
- Ho-Jeong Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Tien Thuy Phan
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keunhyung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Sook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Yeong Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jongrok Do
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jinhyoung Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
33
|
Qiu Z, Minegishi T, Aoki D, Abe K, Baba K, Inagaki N. Adhesion-clutch between DCC and netrin-1 mediates netrin-1-induced axonal haptotaxis. Front Mol Neurosci 2024; 17:1307755. [PMID: 38375502 PMCID: PMC10875621 DOI: 10.3389/fnmol.2024.1307755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024] Open
Abstract
The growth cone, a motile structure located at the tip of growing axons, senses extracellular guidance cues and translates them into directional forces that drive axon outgrowth and guidance. Axon guidance directed by chemical cues on the extracellular adhesive substrate is termed haptotaxis. Recent studies reported that netrin-1 on the substrate functions as a haptotactic axon guidance cue. However, the mechanism mediating netrin-1-induced axonal haptotaxis remains unclear. Here, we demonstrate that substrate-bound netrin-1 induces axonal haptotaxis by facilitating physical interactions between the netrin-1 receptor, DCC, and the adhesive substrates. DCC serves as an adhesion receptor for netrin-1. The clutch-linker molecule shootin1a interacted with DCC, linking it to actin filament retrograde flow at the growth cone. Speckle imaging analyses showed that DCC underwent either grip (stop) or retrograde slip on the adhesive substrate. The grip state was more prevalent on netrin-1-coated substrate compared to the control substrate polylysine, thereby transmitting larger traction force on the netrin-1-coated substrate. Furthermore, disruption of the linkage between actin filament retrograde flow and DCC by shootin1 knockout impaired netrin-1-induced axonal haptotaxis. These results suggest that the directional force for netrin-1-induced haptotaxis is exerted on the substrates through the adhesion-clutch between DCC and netrin-1 which occurs asymmetrically within the growth cone.
Collapse
Affiliation(s)
| | | | | | | | | | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
34
|
Li M, Sun H, Hou Z, Hao S, Jin L, Wang B. Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306451. [PMID: 37771182 DOI: 10.1002/smll.202306451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Understanding the signals from the physical microenvironment is critical for deciphering the processes of neurogenesis and neurodevelopment. The discovery of how surrounding physical signals shape human developing neurons is hindered by the bottleneck of conventional cell culture and animal models. Notwithstanding neural organoids provide a promising platform for recapitulating human neurogenesis and neurodevelopment, building neuronal physical microenvironment that accurately mimics the native neurophysical features is largely ignored in current organoid technologies. Here, it is discussed how the physical microenvironment modulates critical events during the periods of neurogenesis and neurodevelopment, such as neural stem cell fates, neural tube closure, neuronal migration, axonal guidance, optic cup formation, and cortical folding. Although animal models are widely used to investigate the impacts of physical factors on neurodevelopment and neuropathy, the important roles of human stem cell-derived neural organoids in this field are particularly highlighted. Considering the great promise of human organoids, building neural organoid microenvironments with mechanical forces, electrophysiological microsystems, and light manipulation will help to fully understand the physical cues in neurodevelopmental processes. Neural organoids combined with cutting-edge techniques, such as advanced atomic force microscopes, microrobots, and structural color biomaterials might promote the development of neural organoid-based research and neuroscience.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Zongkun Hou
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
35
|
Niloy SI, Strege PR, Hannan EC, Cowan LM, Linsenmeier F, Friedrich O, Farrugia G, Beyder A. Stretch response of the mechano-gated channel TMEM63A in membrane patches and single cells. Am J Physiol Cell Physiol 2024; 326:C622-C631. [PMID: 38189136 PMCID: PMC11193453 DOI: 10.1152/ajpcell.00583.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
The recently discovered ion channel TMEM63A has biophysical features distinctive for mechano-gated cation channels, activating at high pressures with slow kinetics while not inactivating. However, some biophysical properties are less clear, including no information on its function in whole cells. The aim of this study is to expand the TMEM63A biophysical characterization and examine the function in whole cells. Piezo1-knockout HEK293T cells were cotransfected with human TMEM63A and green fluorescent protein (GFP), and macroscopic currents in cell-attached patches were recorded by high-speed pressure clamp at holding voltages from -120 to -20 mV with 0-100 mmHg patch suction for 1 s. HEK293 cells cotransfected with TMEM63A and GCaMP5 were seeded onto polydimethylsiloxane (PDMS) membrane, and the response to 3-12 s of 1%-15% whole cell isotropic (equi-biaxial) stretch induced by an IsoStretcher was measured by the change in intracellular calcium ([Ca2+]i) and presented as (ΔF/F0 > 1). Increasing patch pressures activated TMEM63A currents with accelerating activation kinetics and current amplitudes that were pressure dependent but voltage independent. TMEM63A currents were plateaued within 2 s, recovered quickly, and were sensitive to Gd3+. In whole cells stretched on flexible membranes, radial stretch increased the [Ca2+]i responses in a larger proportion of cells cotransfected with TMEM63A and GCaMP5 than GCaMP5-only controls. TMEM63A currents are force activated and voltage insensitive, have a high threshold for pressure activation with slow activation and deactivation, and lack inactivation over 5 s. TMEM63A has the net polarity and kinetics that would depolarize plasma membranes and increase inward currents, contributing to a sustained [Ca2+]i increase in response to high stretch.NEW & NOTEWORTHY TMEM63A has biophysical features distinctive for mechano-gated cation channels, but some properties are less clear, including no functional information in whole cells. We report that pressure-dependent yet voltage-independent TMEM63A currents in cell membrane patches correlated with cell size. In addition, radial stretch of whole cells on flexible membranes increased the [Ca2+]i responses more in TMEM63A-transfected cells. Inward TMEM63A currents in response to high stretch can depolarize plasma membranes and contribute to a sustained [Ca2+]i increase.
Collapse
Affiliation(s)
- Sayeman Islam Niloy
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Peter R Strege
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Elizabeth C Hannan
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Luke M Cowan
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Fabian Linsenmeier
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Gianrico Farrugia
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Arthur Beyder
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
36
|
Pan TY, Pan YJ, Tsai SJ, Tsai CW, Yang FY. Focused Ultrasound Stimulates the Prefrontal Cortex and Prevents MK-801-Induced Psychiatric Symptoms of Schizophrenia in Rats. Schizophr Bull 2024; 50:120-131. [PMID: 37301986 PMCID: PMC10754174 DOI: 10.1093/schbul/sbad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND HYPOTHESIS Treatment of schizophrenia remains a major challenge. Recent studies have focused on glutamatergic signaling hypoactivity through N-methyl-D-aspartate (NMDA) receptors. Low-intensity pulsed ultrasound (LIPUS) improves behavioral deficits and ameliorates neuropathology in dizocilpine (MK-801)-treated rats. The aim of this study was to investigate the efficacy of LIPUS against psychiatric symptoms and anxiety-like behaviors. STUDY DESIGN Rats assigned to 4 groups were pretreated with or without LIPUS for 5 days. The open field and prepulse inhibition tests were performed after saline or MK-801 (0.3 mg/kg) administration. Then, the neuroprotective effects of LIPUS on the MK-801-treated rats were evaluated using western blotting and immunohistochemical staining. STUDY RESULTS LIPUS stimulation of the prefrontal cortex (PFC) prevented deficits in locomotor activity and sensorimotor gating and improved anxiety-like behavior. MK-801 downregulated the expression of NR1, the NMDA receptor, in rat medial PFC (mPFC). NR1 expression was significantly higher in animals receiving LIPUS pretreatment compared to those receiving only MK-801. In contrast, a significant increase in c-Fos-positive cells in the mPFC and ventral tegmental area was observed in the MK-801-treated rats compared to those receiving only saline; this change was suppressed by pretreatment with LIPUS. CONCLUSIONS This study provides new evidence for the role of LIPUS stimulation in regulating the NMDA receptor and modulating c-Fos activity, which makes it a potentially valuable antipsychotic treatment for schizophrenia.
Collapse
Affiliation(s)
- Tsung-Yu Pan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Che-Wen Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
37
|
Davoudi N, Estrada H, Özbek A, Shoham S, Razansky D. Model-based correction of rapid thermal confounds in fluorescence neuroimaging of targeted perturbation. NEUROPHOTONICS 2024; 11:014413. [PMID: 38371339 PMCID: PMC10871046 DOI: 10.1117/1.nph.11.1.014413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Significance An array of techniques for targeted neuromodulation is emerging, with high potential in brain research and therapy. Calcium imaging or other forms of functional fluorescence imaging are central solutions for monitoring cortical neural responses to targeted neuromodulation, but often are confounded by thermal effects that are inter-mixed with neural responses. Aim Here, we develop and demonstrate a method for effectively suppressing fluorescent thermal transients from calcium responses. Approach We use high precision phased-array 3 MHz focused ultrasound delivery integrated with fiberscope-based widefield fluorescence to monitor cortex-wide calcium changes. Our approach for detecting the neural activation first takes advantage of the high inter-hemispheric correlation of resting state Ca 2 + dynamics and then removes the ultrasound-induced thermal effect by subtracting its simulated spatio-temporal signature from the processed profile. Results The focused 350 μ m -sized ultrasound stimulus triggered rapid localized activation events dominated by transient thermal responses produced by ultrasound. By employing bioheat equation to model the ultrasound heat deposition, we can recover putative neural responses to ultrasound. Conclusions The developed method for canceling transient thermal fluorescence quenching could also find applications with optical stimulation techniques to monitor thermal effects and disentangle them from neural responses. This approach may help deepen our understanding of the mechanisms and macroscopic effects of ultrasound neuromodulation, further paving the way for tailoring the stimulation regimes toward specific applications.
Collapse
Affiliation(s)
- Neda Davoudi
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| | - Hector Estrada
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Ali Özbek
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Shy Shoham
- NYU Langone Health, Neuroscience Institutes, Department of Ophthalmology and Tech4Health New York, United States
| | - Daniel Razansky
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| |
Collapse
|
38
|
Guo H, Salahshoor H, Wu D, Yoo S, Sato T, Tsao DY, Shapiro MG. Effects of focused ultrasound in a "clean" mouse model of ultrasonic neuromodulation. iScience 2023; 26:108372. [PMID: 38047084 PMCID: PMC10690554 DOI: 10.1016/j.isci.2023.108372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.
Collapse
Affiliation(s)
- Hongsun Guo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hossein Salahshoor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Di Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomokazu Sato
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Doris Y. Tsao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| |
Collapse
|
39
|
Badawe HM, El Hassan RH, Khraiche ML. Modeling ultrasound modulation of neural function in a single cell. Heliyon 2023; 9:e22522. [PMID: 38046165 PMCID: PMC10686887 DOI: 10.1016/j.heliyon.2023.e22522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Background Low intensity ultrasound stimulation has been shown to non-invasively modulate neural function in the central nervous system (CNS) and peripheral nervous system (PNS) with high precision. Ultrasound sonication is capable of either excitation or inhibition, depending on the ultrasound parameters used. On the other hand, the mode of interaction of ultrasonic waves with the neural tissue for effective neuromodulation remains ambiguous. New method Here within we propose a numerical model that incorporates the mechanical effects of ultrasound stimulation on the Hodgkin-Huxley (HH) neuron by incorporating the relation between increased external pressure and the membrane induced tension, with a stress on the flexoelectric effect on the neural membrane. The external pressure causes an increase in the total tension of the membrane thus affecting the probability of the ion channels being open after the conformational changes that those channels undergo. Results The interplay between varying the acoustic intensities and frequencies depicts different action potential suppression rates, whereby a combination of low intensity and low frequency ultrasound sonication proved to be the most effective in modulating neural function.Comparison with Existing Methods: Our method solely depends on the HH model of a single neuron and the linear flexoelectric effect of the dielectric neural membrane, when under an ultrasound-induced mechanical strain, while varying the ion-channels conductances based on different sonication frequencies and intensities. We study the effect of ultrasound parameters on the firing rate, latency, and action potential amplitude of a HH neuron for a better understanding of the neuromodulation modality of ultrasound stimulation (in the continuous and pulsed modes). Conclusions This simulation work confirms the published experimental data that low intensity and low frequency ultrasound sonication has a higher success rate of modulating neural firing.
Collapse
Affiliation(s)
- Heba M. Badawe
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Rima H. El Hassan
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Massoud L. Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
40
|
Li W, Tian W, Wu Y, Guo S. A Novel Magnetic Manipulation Promotes Directional Growth of Periodontal Ligament Stem Cells. Tissue Eng Part A 2023; 29:620-632. [PMID: 37603495 DOI: 10.1089/ten.tea.2023.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Periodontium is the rally of soft and hard tissues, which will be devastated continuously by the compromise of periodontitis. Current periodontal therapeutic methods cannot effectively reconstruct periodontal ligament (PDL), which is oriented at an angle with tooth root and combined hard tissues to form cementum-PDL-alveolar bone complex. Hence, it is urgent to find new techniques for PDL reconstruction to achieve functional regeneration of periodontium. Herein, we developed a novel method to manipulate the distribution and growth of periodontal ligament stem cells (PDLSCs) by utilizing highly paralleled static magnetic field (SMF) and magnetic nanoparticles (MNPs). PDLSCs were incubated with MNPs in vitro to label with them. Meanwhile, CCK8 and live/dead cell staining assay were used to detect the impact of SMF and MNPs on cell viability. The directional migration and growth of PDLSCs were visualized under microscope. Furthermore, real-time quantitative PCR and western blot were utilized to calculate the expression level of PDL-related genes. The results showed that PDLSCs could rapidly take up MNPs without compromising cell proliferation and viability, consequently endowed with the ability to respond via magnetic force. The cell migration analysis indicated that PDLSCs could move along the magnetic induction line, testifying that SMF exerted forces on PDLSCs that labeled with MNPs. It was demonstrated that collective application of SMF and MNPs not only induced PDLSCs organized and grew directionally, but also initiated elongation of cells and nucleus. Furthermore, the morphological alteration of the nucleus could also effectively enhance the gene and protein expression of Collagen Ⅰα2, Collagen Ⅲ, and Periostin, suggesting the capability of PDLSCs to differentiate into PDL. In conclusion, this study exhibits a new approach for directional reconstruction of PDL to obtain physiological and functional regeneration of periodontium. The Clinical Trial Registration number: WCHSIRB-D-2022-458.
Collapse
Affiliation(s)
- Weiguang Li
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yafei Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Shujuan Guo
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
41
|
Ermanoska B, Rodal AA. Non-muscle myosin II regulates presynaptic actin assemblies and neuronal mechanobiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566609. [PMID: 38014140 PMCID: PMC10680633 DOI: 10.1101/2023.11.10.566609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Neuromuscular junctions (NMJs) are evolutionarily ancient, specialized contacts between neurons and muscles. Axons and NMJs must endure mechanical strain through a lifetime of muscle contraction, making them vulnerable to aging and neurodegenerative conditions. However, cellular strategies for mitigating this mechanical stress remain unknown. In this study, we used Drosophila larval NMJs to investigate the role of actin and myosin (actomyosin)-mediated contractility in generating and responding to cellular forces at the neuron-muscle interface. We identified a new long-lived, low-turnover presynaptic actin core traversing the NMJ, which partly co-localizes with non-muscle myosin II (NMII). Neuronal RNAi of NMII induced disorganization of this core, suggesting that this structure might have contractile properties. Interestingly, neuronal RNAi of NMII also decreased NMII levels in the postsynaptic muscle proximal to neurons, suggesting that neuronal actomyosin rearrangements propagate their effects trans-synaptically. We also observed reduced Integrin levels upon NMII knockdown, indicating that neuronal actomyosin disruption triggers rearrangements of Integrin-mediated connections between neurons and surrounding muscle tissue. In summary, our study identifies a previously uncharacterized presynaptic actomyosin subpopulation that upholds the neuronal mechanical continuum, transmits signals to adjacent muscle tissue, and collaborates with Integrin receptors to govern the mechanobiology of the neuromuscular junction.
Collapse
|
42
|
Garcia V, Blaquiere M, Janvier A, Cresto N, Lana C, Genin A, Hirbec H, Audinat E, Faucherre A, Barbier EL, Hamelin S, Kahane P, Jopling C, Marchi N. PIEZO1 expression at the glio-vascular unit adjusts to neuroinflammation in seizure conditions. Neurobiol Dis 2023; 187:106297. [PMID: 37717661 DOI: 10.1016/j.nbd.2023.106297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Mechanosensors are emerging players responding to hemodynamic and physical inputs. Their significance in the central nervous system remains relatively uncharted. Using human-derived brain specimens or cells and a pre-clinical model of mesio-temporal lobe epilepsy (MTLE), we examined how the mRNA levels of the mechanosensitive channel PIEZO1 adjust to disease-associated pro-inflammatory trajectories. In brain tissue micro-punches obtained from 18 drug-resistant MTLE patients, PIEZO1 expression positively correlated with pro-inflammatory biomarkers TNFα, IL-1β, and NF-kB in the epileptogenic hippocampus compared to the adjacent amygdala and temporal cortex tissues. In an experimental MTLE model, hippocampal Piezo1 and cytokine expression levels were increased post-status epilepticus (SE) and during epileptogenesis. Piezo1 expression positively correlated with Tnfα, Il1β, and Nf-kb in the hippocampal foci. Next, by combining RNAscope with immunohistochemistry, we identified Piezo1 in glio-vascular cells. Post-SE and during epileptogenesis, ameboid IBA1 microglia, hypertrophic GFAP astrocytes, and damaged NG2DsRed pericytes exhibited time-dependent patterns of increased Piezo1 expression. Digital droplet PCR analysis confirmed the Piezo1 trajectory in isolated hippocampal microvessels in the ipsi and contralateral hippocampi. The combined examinations performed in this model showed Piezo1 expression returning towards basal levels after the epileptogenesis-associated peak inflammation. From these associations, we next asked whether pro-inflammatory players directly regulate PIEZO1 expression. We used human-derived brain cells and confirmed that endothelium, astrocytes, and pericytes expressed PIEZO1. Exposure to human recombinant TNFα or IL1β upregulated NF-kB in all cells. Furthermore, TNFα induced PIEZO1 expression in a dose and time-dependent manner, primarily in astrocytes. This exploratory study describes a spatiotemporal dialogue between PIEZO1 brain cell-mechanobiology and neuro-inflammatory cell remodeling. The precise functional mechanisms regulating this interplay in disease conditions warrant further investigation.
Collapse
Affiliation(s)
- Valentin Garcia
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alicia Janvier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Carla Lana
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Athenais Genin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Helene Hirbec
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Adele Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institute Neuroscience, U1216 Grenoble, France
| | - Sophie Hamelin
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institute Neuroscience, U1216 Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institute Neuroscience, U1216 Grenoble, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
43
|
Turan Sorhun D, Kuşoğlu A, Öztürk E. Developing Bovine Brain-Derived Extracellular Matrix Hydrogels: a Screen of Decellularization Methods for Their Impact on Biochemical and Mechanical Properties. ACS OMEGA 2023; 8:36933-36947. [PMID: 37841171 PMCID: PMC10569007 DOI: 10.1021/acsomega.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Tissue models that recapitulate the key biochemical and physical aspects of the brain have been highly pursued in neural tissue engineering. Decellularization of native organs offers the advantage of preserving the composition of native extracellular matrix (ECM). Brain ECM has distinct features which play a major role in neural cell behavior. Cell instructive ligands and mechanical properties take part in the regulation of cellular processes in homeostasis and diseases. One of the main challenges in decellularization is maintaining mechanical integrity in reconstituted hydrogels and achieving physiologically relevant stiffness. The effect of the decellularization process on different mechanical aspects, particularly the viscoelasticity of brain-derived hydrogels, has not been addressed. In this study, we developed bovine brain-derived hydrogels for the first time. We pursued seven protocols for decellularization and screened their effect on biochemical content, hydrogel formation, and mechanical characteristics. We show that bovine brain offers an easily accessible alternative for in vitro brain tissue modeling. Our data demonstrate that the choice of decellularization method strongly alters gelation as well as the stiffness and viscoelasticity of the resulting hydrogels. Lastly, we investigated the cytocompatibility of brain ECM hydrogels and the effect of modulated mechanical properties on the growth and morphological features of neuroblastoma cells.
Collapse
Affiliation(s)
- Duygu Turan Sorhun
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Alican Kuşoğlu
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ece Öztürk
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Department
of Medical Biology, School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
44
|
Sáez P, Borau C, Antonovaite N, Franze K. Brain tissue mechanics is governed by microscale relations of the tissue constituents. Biomaterials 2023; 301:122273. [PMID: 37639974 DOI: 10.1016/j.biomaterials.2023.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Local mechanical tissue properties are a critical regulator of cell function in the central nervous system (CNS) during development and disorder. However, we still don't fully understand how the mechanical properties of individual tissue constituents, such as cell nuclei or myelin, determine tissue mechanics. Here we developed a model predicting local tissue mechanics, which induces non-affine deformations of the tissue components. Using the mouse hippocampus and cerebellum as model systems, we show that considering individual tissue components alone, as identified by immunohistochemistry, is not sufficient to reproduce the local mechanical properties of CNS tissue. Our results suggest that brain tissue shows a universal response to applied forces that depends not only on the amount and stiffness of the individual tissue constituents but also on the way how they assemble. Our model may unify current incongruences between the mechanics of soft biological tissues and the underlying constituents and facilitate the design of better biomedical materials and engineered tissues. To this end, we provide a freely-available platform to predict local tissue elasticity upon providing immunohistochemistry images and stiffness values for the constituents of the tissue.
Collapse
Affiliation(s)
- P Sáez
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya, Barcelona, Spain; Institute of Mathematics of UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - C Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
| | - N Antonovaite
- Department of Physics and Astronomy and LaserLab Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands
| | - K Franze
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK; Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany.
| |
Collapse
|
45
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
46
|
Zheng Q, Liu H, Yu W, Dong Y, Zhou L, Deng W, Hua F. Mechanical properties of the brain: Focus on the essential role of Piezo1-mediated mechanotransduction in the CNS. Brain Behav 2023; 13:e3136. [PMID: 37366640 PMCID: PMC10498085 DOI: 10.1002/brb3.3136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The brain is a highly mechanosensitive organ, and changes in the mechanical properties of brain tissue influence many physiological and pathological processes. Piezo type mechanosensitive ion channel component 1 (Piezo1), a protein found in metazoans, is highly expressed in the brain and involved in sensing changes of the mechanical microenvironment. Numerous studies have shown that Piezo1-mediated mechanotransduction is closely related to glial cell activation and neuronal function. However, the precise role of Piezo1 in the brain requires further elucidation. OBJECTIVE This review first discusses the roles of Piezo1-mediated mechanotransduction in regulating the functions of a variety of brain cells, and then briefly assesses the impact of Piezo1-mediated mechanotransduction on the progression of brain dysfunctional disorders. CONCLUSIONS Mechanical signaling contributes significantly to brain function. Piezo1-mediated mechanotransduction regulates processes such as neuronal differentiation, cell migration, axon guidance, neural regeneration, and oligodendrocyte axon myelination. Additionally, Piezo1-mediated mechanotransduction plays significant roles in normal aging and brain injury, as well as the development of various brain diseases, including demyelinating diseases, Alzheimer's disease, and brain tumors. Investigating the pathophysiological mechanisms through which Piezo1-mediated mechanotransduction affects brain function will give us a novel entry point for the diagnosis and treatment of numerous brain diseases.
Collapse
Affiliation(s)
- Qingcui Zheng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Hailin Liu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wen Yu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Yao Dong
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Lanqian Zhou
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wenze Deng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Fuzhou Hua
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| |
Collapse
|
47
|
Forster A, Rodrigues J, Ziebell P, Sanguinetti JL, Allen JJ, Hewig J. Investigating the role of the right inferior frontal gyrus in control perception: A double-blind cross-over study using ultrasonic neuromodulation. Neuropsychologia 2023; 187:108589. [PMID: 37302753 DOI: 10.1016/j.neuropsychologia.2023.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Being able to control inner and environmental states is a basic need of living creatures. The perception of such control is based on the perceived ratio of outcome probabilities given the presence and the absence of agentic behavior. If an organism believes that options exist to change the probability of a given outcome, control perception (CP) may emerge. Nonetheless, regarding this model, not much is known about how the brain processes CP from this information. This study uses low-intensity transcranial focused ultrasound neuromodulation in a randomized-controlled double blind cross-over design to investigate the impact of the right inferior frontal gyrus of the lateral prefrontal cortex (lPFC) on this process. 39 healthy participants visited the laboratory twice (once in a sham, once in a neuromodulation condition) and rated their control perception regarding a classical control illusion task. EEG alpha and theta power density were analyzed in a hierarchical single trial-based mixed modeling approach. Results indicate that the litFUS neuromodulation changed the processing of stimulus probability without changing CP. Furthermore, neuromodulation of the right lPFC was found to modulate mid-frontal theta by altering its relationship with self-reported effort and worrying. While these data indicate lateral prefrontal sensitivity to stimulus probability, no evidence emerged for the dependency of CP on this processing.
Collapse
Affiliation(s)
- André Forster
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | - Johannes Rodrigues
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | - Philipp Ziebell
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | | | | | - Johannes Hewig
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| |
Collapse
|
48
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
49
|
Karatum O, Han M, Erdogan ET, Karamursel S, Nizamoglu S. Physical mechanisms of emerging neuromodulation modalities. J Neural Eng 2023; 20:031001. [PMID: 37224804 DOI: 10.1088/1741-2552/acd870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
One of the ultimate goals of neurostimulation field is to design materials, devices and systems that can simultaneously achieve safe, effective and tether-free operation. For that, understanding the working mechanisms and potential applicability of neurostimulation techniques is important to develop noninvasive, enhanced, and multi-modal control of neural activity. Here, we review direct and transduction-based neurostimulation techniques by discussing their interaction mechanisms with neurons via electrical, mechanical, and thermal means. We show how each technique targets modulation of specific ion channels (e.g. voltage-gated, mechanosensitive, heat-sensitive) by exploiting fundamental wave properties (e.g. interference) or engineering nanomaterial-based systems for efficient energy transduction. Overall, our review provides a detailed mechanistic understanding of neurostimulation techniques together with their applications toin vitro, in vivo, and translational studies to guide the researchers toward developing more advanced systems in terms of noninvasiveness, spatiotemporal resolution, and clinical applicability.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Mertcan Han
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Ezgi Tuna Erdogan
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sacit Karamursel
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
50
|
Schneider SE, Scott AK, Seelbinder B, Elzen CVD, Wilson RL, Miller EY, Beato QI, Ghosh S, Barthold JE, Bilyeu J, Emery NC, Pierce DM, Neu CP. Dynamic biophysical responses of neuronal cell nuclei and cytoskeletal structure following high impulse loading. Acta Biomater 2023; 163:339-350. [PMID: 35811070 PMCID: PMC10019187 DOI: 10.1016/j.actbio.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 12/28/2022]
Abstract
Cells are continuously exposed to dynamic environmental cues that influence their behavior. Mechanical cues can influence cellular and genomic architecture, gene expression, and intranuclear mechanics, providing evidence of mechanosensing by the nucleus, and a mechanoreciprocity between the nucleus and environment. Force disruption at the tissue level through aging, disease, or trauma, propagates to the nucleus and can have lasting consequences on proper functioning of the cell and nucleus. While the influence of mechanical cues leading to axonal damage has been well studied in neuronal cells, the mechanics of the nucleus following high impulse loading is still largely unexplored. Using an in vitro model of traumatic neural injury, we show a dynamic nuclear behavioral response to impulse stretch (up to 170% strain per second) through quantitative measures of nuclear movement, including tracking of rotation and internal motion. Differences in nuclear movement were observed between low and high strain magnitudes. Increased exposure to impulse stretch exaggerated the decrease in internal motion, assessed by particle tracking microrheology, and intranuclear displacements, assessed through high-resolution deformable image registration. An increase in F-actin puncta surrounding nuclei exposed to impulse stretch additionally demonstrated a corresponding disruption of the cytoskeletal network. Our results show direct biophysical nuclear responsiveness in neuronal cells through force propagation from the substrate to the nucleus. Understanding how mechanical forces perturb the morphological and behavioral response can lead to a greater understanding of how mechanical strain drives changes within the cell and nucleus, and may inform fundamental nuclear behavior after traumatic axonal injury. STATEMENT OF SIGNIFICANCE: The nucleus of the cell has been implicated as a mechano-sensitive organelle, courting molecular sensors and transmitting physical cues in order to maintain cellular and tissue homeostasis. Disruption of this network due to disease or high velocity forces (e.g., trauma) can not only result in orchestrated biochemical cascades, but also biophysical perturbations. Using an in vitro model of traumatic neural injury, we aimed to provide insight into the neuronal nuclear mechanics and biophysical responses at a continuum of strain magnitudes and after repetitive loads. Our image-based methods demonstrate mechanically-induced changes in cellular and nuclear behavior after high intensity loading and have the potential to further define mechanical thresholds of neuronal cell injury.
Collapse
Affiliation(s)
- Stephanie E Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Adrienne K Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Seelbinder
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Courtney Van Den Elzen
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Robert L Wilson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Emily Y Miller
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Quinn I Beato
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Soham Ghosh
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jeanne E Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Jason Bilyeu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|