1
|
Zhang K, Zheng S, Wu J, He J, Ouyang Y, Ao C, Lang R, Jiang Y, Yang Y, Xiao H, Li Y, Li M, Wang H, Li C, Wu D. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate renal fibrosis in diabetic nephropathy by targeting Hedgehog/SMO signaling. FASEB J 2024; 38:e23599. [PMID: 38572590 DOI: 10.1096/fj.202302324r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Jiasheng Wu
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiao
- School of Life Science, Hubei University, Wuhan, China
| | - Yu Li
- School of Life Science, Hubei University, Wuhan, China
| | - Mao Li
- School of Life Science, Hubei University, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
2
|
Jiang M, Yang Z, Lyu L, Shi M. Dapagliflozin attenuates renal fibrosis by suppressing angiotensin II/TGFβ signaling in diabetic mice. J Diabetes Complications 2024; 38:108687. [PMID: 38266571 DOI: 10.1016/j.jdiacomp.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
AIMS Diabetic nephropathy (DN) complicates diabetes Mellitus and intimately relates to intrarenal renin-angiotensin system (RAS) activity. Dapagliflozin, a selective inhibitor of sodium-glucose cotransporter 2 (SGLT2), has been validated to improve renal outcomes in diabetic patients from clinical research by elusive mechanisms. This study explored the presumption that the eagerness activity of intrarenal RAS in DN generated oxidative stress to promote renal fibrosis, and the process can be interrupted by dapagliflozin. METHODS A streptozotocin-induced DN model was established in male C57BL/6J mice. Mice were treated with dapagliflozin or losartan for 14 weeks. Biochemical data, renal fibrosis, oxidative stress, and RAS were measured. RESULTS DN mice were characterized by overtly low body weight, high levels of blood glucose, and renal injury. Interrupting SGLT2 and RAS significantly improved renal dysfunction and pathological lesions in DN mice. Consistent with these favorable effects, dapagliflozin revoked the local RAS/oxidative stress and the succeeding transforming growth factor beta (TGFβ) signaling. CONCLUSIONS This research clarifies that intrarenal RAS activity triggers renal injury in DN, and dapagliflozin attenuates renal fibrosis by suppressing Angiotensin II/TGFβ signaling. It unravels a novel insight into the role of prevention and treatment of SGLT2 inhibitors to DN.
Collapse
Affiliation(s)
- Mingwang Jiang
- Department of Nephrology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Zhichen Yang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Lu Lyu
- Department of Nephrology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| | - Meng Shi
- Department of Nephrology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| |
Collapse
|
3
|
Jaafarinia A, Kafami B, Sahebnasagh A, Saghafi F. Evaluation of therapeutic effects of crocin in attenuating the progression of diabetic nephropathy: a preliminary randomized triple-blind placebo-controlled trial. BMC Complement Med Ther 2022; 22:262. [PMID: 36209091 PMCID: PMC9548209 DOI: 10.1186/s12906-022-03744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background Diabetic nephropathy (DN) is one of the most important complications of type 2 diabetes (T2DM). Oxidative stress and inflammatory cytokines play an essential role in the development and progression of DN. Despite adopting appropriate therapies, many patients with DN progress to end-stage renal disease (ESRD). Therefore, exploring innovative strategies for better management of DN is crucial. Crocin, a natural compound found in saffron, has profound antioxidant, antifibrotic and anti-inflammatory properties. This study aimed to evaluate the therapeutic effects of crocin in attenuation of the progression of DN. Methods In this randomized, triple-blind, placebo-controlled clinical trial, 44 patients with T2DM and microalbuminuria were randomly assigned to receive either crocin (15 mg/day) or a placebo for 90 days. Eventually, 40 patients completed the study: 21 patients in the crocin group and 19 in the placebo group. The primary outcome was a change in urine Albumin-to-Creatinine Ratio (uACR) from baseline to the end of the treatment period. We also evaluated metabolic, anthropometric, and biochemical parameters as the secondary outcomes. Results The results of the present study showed that uACR increased in both groups, but the increment was not significantly higher in the crocin group compared with the placebo. Serum levels of transforming growth factor-β (TGF-β) decreased in the crocin group and increased in the placebo group, but none of these changes was significant. Crocin significantly reduced triglyceride (TG) as an important metabolic parameter (P-Value = 0.03). Conclusion This study has shown that crocin may be a safe and potential adjunct to conventional therapies for DN patients but because of our limitations such as short duration of the treatment period, and prescribing low doses of crocin, we could not achieve the significant level.
Collapse
Affiliation(s)
- Asma Jaafarinia
- grid.412505.70000 0004 0612 5912Department of nephrology, Shahid Rahnemoon hospital, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran ,grid.412505.70000 0004 0612 5912Diabetes Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Behzad Kafami
- grid.412505.70000 0004 0612 5912Pharmaceutical Sciences Research Center, School of Pharmacy, Student Research Committee, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Adeleh Sahebnasagh
- grid.464653.60000 0004 0459 3173Department of Internal Medicine, Clinical Research Center, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- grid.412505.70000 0004 0612 5912Department of Clinical Pharmacy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
4
|
Engineering of a Long-Acting Bone Morphogenetic Protein-7 by Fusion with Albumin for the Treatment of Renal Injury. Pharmaceutics 2022; 14:pharmaceutics14071334. [PMID: 35890230 PMCID: PMC9316787 DOI: 10.3390/pharmaceutics14071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
The bone morphogenetic protein-7 (BMP7) is capable of inhibiting TGF-β/Smad3 signaling, which subsequently results in protecting the kidney from renal fibrosis, but its lower blood retention and osteogenic activity are bottlenecks for its clinical application. We report herein on the fusion of carbohydrate-deficient human BMP7 and human serum albumin (HSA-BMP7) using albumin fusion technology and site-directed mutagenesis. When using mouse myoblast cells, no osteogenesis was observed in the glycosylated BMP7 derived from Chinese hamster ovary cells in the case of unglycosylated BMP7 derived from Escherichia coli and HSA-BMP7. On the contrary, the specific activity for the Smad1/5/8 phosphorylation of HSA-BMP7 was about 25~50-times lower than that for the glycosylated BMP7, but the phosphorylation activity of the HSA-BMP7 was retained. A pharmacokinetic profile showed that the plasma half-life of HSA-BMP7 was similar to that for HSA and was nearly 10 times longer than that of BMP7. In unilateral ureteral obstruction mice, weekly dosing of HSA-BMP7 significantly attenuated renal fibrosis, but the individual components, i.e., HSA or BMP7, did not. HSA-BMP7 also attenuated a cisplatin-induced acute kidney dysfunction model. The findings reported herein indicate that HSA-BMP7 has the potential for use in clinical applications for the treatment of renal injuries.
Collapse
|
5
|
MicroRNA-10a/b inhibit TGF-β/Smad-induced renal fibrosis by targeting TGF-β receptor 1 in diabetic kidney disease. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:488-499. [PMID: 35505968 PMCID: PMC9046110 DOI: 10.1016/j.omtn.2022.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022]
Abstract
TGF-β/Smad signaling plays a vital role in the development of fibrosis in diabetic kidney disease (DKD). However, remedies targeting key elements in TGF-β/Smad signaling are lacking. Here, we found that TGF-β receptor 1 (TGFBR1), a key protein in TGF-β/Smad signaling, was upregulated in kidney from diabetic mice and patients with DKD. Induction of TGFBR1 was regulated by microRNA-10a and -10b (miR-10a/b) by a post-transcriptional mechanism. Furthermore, the decreased XRN2, an exoribonuclease, was identified to contribute to affecting miR-10a/b maturation in vitro. In streptozotocin (STZ)-induced DKD mice, preventing the reduction of miR-10a/b in the kidney by an in situ lentivirus-injection method attenuated collagen deposition and foot process effacement, whereas deprivation of miR-10a/b aggravated renal fibrosis. Mechanistically, manipulating miR-10a/b in the kidney influenced TGFBR1 protein expression, TGF-β/Smad signaling activation, and downstream pro-fibrotic genes expression including fibronectin (FN) and α-smooth muscle actin (α-SMA). In a cohort of patients diagnosed DKD, renal miR-10a/b expressions were downregulated, whereas both TGFBR1 and fibrosis were enhanced. Our finding suggests that overexpressing miR-10a/b in kidney may be a promising method for the treatment of fibrosis in DKD.
Collapse
|
6
|
Hinden L, Ahmad M, Hamad S, Nemirovski A, Szanda G, Glasmacher S, Kogot-Levin A, Abramovitch R, Thorens B, Gertsch J, Leibowitz G, Tam J. Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Nat Commun 2022; 13:1783. [PMID: 35379807 PMCID: PMC8980033 DOI: 10.1038/s41467-022-29124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions. Renal proximal tubules modulate whole-body homeostasis by sensing various nutrients. Here the authors describe the existence and importance of a unique CB1/mTORC1/GLUT2 signaling axis in regulating nutrient homeostasis in healthy and diseased kidney.
Collapse
|
7
|
Liu H, Sridhar VS, Montemayor D, Lovblom LE, Lytvyn Y, Ye H, Kim J, Ali MT, Scarr D, Lawler PR, Perkins BA, Sharma K, Cherney DZI. Changes in plasma and urine metabolites associated with empagliflozin in patients with type 1 diabetes. Diabetes Obes Metab 2021; 23:2466-2475. [PMID: 34251085 DOI: 10.1111/dom.14489] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
AIM To examine the impact of the sodium-glucose co-transporter-2 inhibitor, empagliflozin, on plasma and urine metabolites in participants with type 1 diabetes. MATERIAL AND METHODS Participants (n = 40, 50% male, mean age 24.3 years) with type 1 diabetes and without overt evidence of diabetic kidney disease had baseline assessments performed under clamped euglycaemia and hyperglycaemia, on two consecutive days. Participants then proceeded to an 8-week, open-label treatment period with empagliflozin 25 mg/day, followed by repeat assessments under clamped euglycaemia and hyperglycaemia. Plasma and urine metabolites were first grouped into metabolic pathways using MetaboAnalyst software. Principal component analysis was performed to create a representative value for each sufficiently represented metabolic group (false discovery rate ≤ 0.1) for further analysis. RESULTS Of the plasma metabolite groups, tricarboxylic acid (TCA) cycle (P < .0001), biosynthesis of unsaturated fatty acids (P = .0045), butanoate (P < .0001), propanoate (P = .0053), and alanine, aspartate and glutamate (P < .0050) metabolites were increased after empagliflozin treatment under clamped euglycaemia. Of the urine metabolite groups, only butanoate metabolites (P = .0005) were significantly increased. Empagliflozin treatment also attenuated the increase in a number of urine metabolites observed with acute hyperglycaemia. CONCLUSIONS Empagliflozin was associated with increased lipid and TCA cycle metabolites in participants with type 1 diabetes, suggesting a shift in metabolic substrate use and improved mitochondrial function. These effects result in more efficient energy production and may contribute to end-organ protection by alleviating local hypoxia and oxidative stress.
Collapse
Affiliation(s)
- Hongyan Liu
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Vikas S Sridhar
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada
| | - Daniel Montemayor
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hongping Ye
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jiwan Kim
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mir Tariq Ali
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daniel Scarr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Z I Cherney
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Ding H, Li J, Li Y, Yang M, Nie S, Zhou M, Zhou Z, Yang X, Liu Y, Hou FF. MicroRNA-10 negatively regulates inflammation in diabetic kidney via targeting activation of the NLRP3 inflammasome. Mol Ther 2021; 29:2308-2320. [PMID: 33744467 DOI: 10.1016/j.ymthe.2021.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome activation has emerged as a central mediator of kidney inflammation in diabetic kidney disease (DKD). However, the mechanism underlying this activation in DKD remains poorly defined. In this study, we found that kidney-enriched microRNA-10a and -10b (miR-10a/b), predominantly expressed in podocytes and tubular epithelial cells, were downregulated in kidney from diabetic mice and patients with DKD. High glucose decreased miR-10a/b expression in vitro in an osmolarity-independent manner. miR-10a/b functioned as negative regulators of the NLRP3 inflammasome through targeting the 3'untranslated region of NLRP3 mRNA, inhibiting assembly of the NLRP3 inflammasome and decreasing caspase-1-dependent release of pro-inflammatory cytokines. Delivery of miR-10a/b into kidney prevented NLRP3 inflammasome activation and renal inflammation, and it reduced albuminuria in streptozotocin (STZ)-treated mice, whereas knocking down miR-10a/b increased NLRP3 inflammasome activation. Restoration of miR-10a/b expression in established DKD ameliorated kidney inflammation and mitigated albuminuria in both db/db and STZ-treated mice. These results suggest a novel intervention strategy for inhibiting kidney inflammation in DKD by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hanying Ding
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Jinxiang Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Yang Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Minliang Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Sheng Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Miaomiao Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Zhanmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Xiaobing Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China.
| |
Collapse
|
9
|
Zhang Q, Yang M, Xiao Y, Han Y, Yang S, Sun L. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Curr Med Chem 2021; 28:1003-1024. [PMID: 31701843 DOI: 10.2174/0929867326666191108160643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common and important microvascular complications of diabetes mellitus (DM). The main clinical features of DN are proteinuria and a progressive decline in renal function, which are associated with structural and functional changes in the kidney. The pathogenesis of DN is multifactorial, including genetic, metabolic, and haemodynamic factors, which can trigger a sequence of events. Controlling metabolic risks such as hyperglycaemia, hypertension, and dyslipidaemia is not enough to slow the progression of DN. Recent studies emphasized immunoinflammation as a critical pathogenic factor in the progression of DN. Therefore, targeting inflammation is considered a potential and novel treatment strategy for DN. In this review, we will briefly introduce the inflammatory process of DN and discuss the anti-inflammatory effects of antidiabetic drugs when treating DN.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Pourheydar B, Samadi M, Habibi P, Nikibakhsh AA, Naderi R. Renoprotective effects of tropisetron through regulation of the TGF-β1, p53 and matrix metalloproteinases in streptozotocin-induced diabetic rats. Chem Biol Interact 2021; 335:109332. [PMID: 33387473 DOI: 10.1016/j.cbi.2020.109332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 02/02/2023]
Abstract
Renal fibrosis is a major cause of renal failure in diabetic nephropathy. Tropisetron is an antagonist of the 5HT3 receptor that exhibits anti-fibrosis effects. The present research aimed to investigate the protected role of tropisetron against renal fibrosis of diabetic nephropathy and its molecular mechanisms. For this purpose, male Wistar rats were allocated into 5 groups of control, tropisetron, diabetes, tropisetron + diabetes, and glibenclamide + diabetes (n = 7). After induction of type 1 diabetes with a single injection of STZ, tropisetron (3 mg/kg) and glibenclamide (1 mg/kg) were given to the rats daily by intraperitoneal injection for 2 weeks. The obtained data revealed that the treatment of diabetic rats with tropisetron led to a significant decrease in the elevated blood glucose, serum cystatin c, and urinary total protein (UTP) level, indicating the improvement of the impaired kidney function. Moreover, the results of Masson's trichrome staining showed that fibrosis attenuated in the kidney of diabetic rats after tropisetron treatment. RT-PCR and Western blotting revealed that TGF-β1, the apoptotic mediator, and p53 were considerably declined in the kidney of diabetic rats in response to tropisetron treatment. Meanwhile, the expressions of matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase-2 (MMP-2) were increased. These notable effects were equipotent with glibenclamide, as a standard drug, suggesting that tropisetron can alleviate renal fibrosis in diabetic nephropathy. Our data indicate that tropisetron could improve kidney function and attenuate renal fibrosis through regulation of TGF-β1, p53, and expression of extracellular matrix metalloproteinases.
Collapse
Affiliation(s)
- Bagher Pourheydar
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parisa Habibi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ali Nikibakhsh
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Zeng J, Li D, Li Z, Zhang J, Zhao X. Dendrobium officinale Attenuates Myocardial Fibrosis via Inhibiting EMT Signaling Pathway in HFD/STZ-Induced Diabetic Mice. Biol Pharm Bull 2021; 43:864-872. [PMID: 32378562 DOI: 10.1248/bpb.b19-01073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fibrosis is a major contributor for diabetic cardiomyopathy and Dendrobium officinale possessed therapeutic effects on hyperglycemia and diabetic cardiomyopathy. To further investigate the possible mechanisms of the Dendrobium officinale on diabetic myocardial fibrosis in mice. Water-soluble extracts of Dendrobium officinale (DOE) from dry stem was analyzed by HPLC and phenol-sulfuric acid method. Diabetic mice were induced by intraperitoneal injection of streptozotocin (STZ) (30 mg/kg) for 4 consecutive days after intragastric administration of a high-fat diet (HFD) for 2 weeks. The groups were as follows: control group, model group, DOE low, medium, high dose group (75, 150, 300 mg/kg) and Metformin positive group (125 mg/kg). The results showed that DOE dose-dependently lower serum insulin, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and grew the high-density lipoprotein cholesterol (HDL-C) after 12 weeks of daily administration with DOE. Hematoxylin-eosin staining and Sirius red staining showed obvious amelioration of cardiac injury and fibrosis. In addition, the result of immunoblot indicated that DOE increased the expression of peroxisome proliferator activated receptor-α (PPAR-α), phosphorylation of insulin receptor substrate 1 (p-IRS1) and E-cadherin and repressed the expression of transforming growth factor β1 (TGF-β1), phosphorylation of c-Jun N-terminal kinase (p-JNK), Twist, Snail1 and Vimentin. The present findings suggested that DOE ameliorated HFD/STZ-induced diabetic cardiomyopathy (DCM). The possible mechanism mainly associated with DOE accelerating lipid transport, inhibiting insulin resistant and suppressing fibrosis induced by epithelial mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Jie Zeng
- College of Pharmaceutical Sciences, Southwest University
| | - Dongning Li
- College of Pharmaceutical Sciences, Southwest University
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University
| | - Xiaoyan Zhao
- College of Pharmaceutical Sciences, Southwest University
| |
Collapse
|
12
|
Dai Q, Zhang Y, Liao X, Jiang Y, Lv X, Yuan X, Meng J, Xie Y, Peng Z, Yuan Q, Tao L, Huang L. Fluorofenidone Alleviates Renal Fibrosis by Inhibiting Necroptosis Through RIPK3/MLKL Pathway. Front Pharmacol 2021; 11:534775. [PMID: 33390935 PMCID: PMC7772387 DOI: 10.3389/fphar.2020.534775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cell death and sterile inflammation are major mechanisms of renal fibrosis, which eventually develop into end-stage renal disease. “Necroptosis” is a type of caspase-independent regulated cell death, and sterile inflammatory response caused by tissue injury is strongly related to necrosis. Fluorofenidone (AKF-PD) is a novel compound shown to ameliorate renal fibrosis and associated inflammation. We investigated whether AKF-PD could alleviate renal fibrosis by inhibiting necroptosis. Unilateral ureteral obstruction (UUO) was used to induce renal tubulointerstitial fibrosis in C57BL/6J mice. AKF-PD (500 mg/kg) or necrostatin-1 (Nec-1; 1.65 mg/kg) was administered simultaneously for 3 and 7 days. Obstructed kidneys and serum were harvested after euthanasia. AKF-PD and Nec-1 ameliorated renal tubular damage, inflammatory-cell infiltration, and collagen deposition, and the expression of proinflammatory factors (interlukin-1β, tumor necrosis factor [TNF]-α) and chemokines (monocyte chemoattractant protein-1) decreased. AKF-PD or Nec-1 treatment protected renal tubular epithelial cells from necrosis and reduced the release of lactate dehydrogenase in serum. Simultaneously, production of receptor-interacting protein kinase (RIPK)3 and mixed lineage kinase domain-like protein (MLKL) was also reduced 3 and 7 days after UUO. AKF-PD and Nec-1 significantly decreased the percentage of cell necrosis, inhibiting the phosphorylation of MLKL and RIPK3 in TNF-α- and Z-VAD–stimulated human proximal tubular epithelial (HK-2) cells. In conclusion, AKF-PD and Nec-1 have effective anti-inflammatory and antifibrotic activity in UUO-induced renal tubulointerstitial fibrosis, potentially mediated by the RIPK3/MLKL pathway.
Collapse
Affiliation(s)
- Qin Dai
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Jiang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Meng
- Department of Respirology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - LiJian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Stone RC, Chen V, Burgess J, Pannu S, Tomic-Canic M. Genomics of Human Fibrotic Diseases: Disordered Wound Healing Response. Int J Mol Sci 2020; 21:ijms21228590. [PMID: 33202590 PMCID: PMC7698326 DOI: 10.3390/ijms21228590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrotic disease, which is implicated in almost half of all deaths worldwide, is the result of an uncontrolled wound healing response to injury in which tissue is replaced by deposition of excess extracellular matrix, leading to fibrosis and loss of organ function. A plethora of genome-wide association studies, microarrays, exome sequencing studies, DNA methylation arrays, next-generation sequencing, and profiling of noncoding RNAs have been performed in patient-derived fibrotic tissue, with the shared goal of utilizing genomics to identify the transcriptional networks and biological pathways underlying the development of fibrotic diseases. In this review, we discuss fibrosing disorders of the skin, liver, kidney, lung, and heart, systematically (1) characterizing the initial acute injury that drives unresolved inflammation, (2) identifying genomic studies that have defined the pathologic gene changes leading to excess matrix deposition and fibrogenesis, and (3) summarizing therapies targeting pro-fibrotic genes and networks identified in the genomic studies. Ultimately, successful bench-to-bedside translation of observations from genomic studies will result in the development of novel anti-fibrotic therapeutics that improve functional quality of life for patients and decrease mortality from fibrotic diseases.
Collapse
Affiliation(s)
- Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Correspondence: (R.C.S.); (M.T.-C.)
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
| | - Jamie Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Medical Scientist Training Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sukhmani Pannu
- Department of Dermatology, Tufts Medical Center, Boston, MA 02116, USA;
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- John P. Hussman Institute for Human Genomics, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (R.C.S.); (M.T.-C.)
| |
Collapse
|
14
|
Yoon JJ, Lee HK, Kim HY, Han BH, Lee HS, Lee YJ, Kang DG. Sauchinone Protects Renal Mesangial Cell Dysfunction against Angiotensin II by Improving Renal Fibrosis and Inflammation. Int J Mol Sci 2020; 21:E7003. [PMID: 32977573 PMCID: PMC7583825 DOI: 10.3390/ijms21197003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Abnormal and excessive growth of mesangial cells is important in the pathophysiologic processes of diabetes-associated interstitial fibrosis and glomerulosclerosis, leading to diabetic nephropathy, which eventually turns into end-stage renal disease. Sauchinone, a biologically-active lignan isolated from aerial parts of Saururus chinensis, has anti-inflammatory and anti-viral activities effects on various cell types. However, there are no studies reporting the effects of sauchinone on diabetic nephropathy. The present study aims to investigate the role of sauchinone in mesangial cell proliferation and fibrosis induced by angiotensin II, as well as the underlying mechanisms of these processes. Human renal mesangial cells were induced by angiotensin II (AngII, 10 μM) in the presence or absence of sauchinone (0.1-1 μM) and incubated for 48 h. In this study, we found that AngII induced mesangial cell proliferation, while treatment with sauchinone inhibited the cell proliferation in a dose-dependent manner. Pre-treatment with sauchinone induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21, and p27kip1 expression. In addition, AngII-enhanced expression of fibrosis biomarkers such as fibronectin, collagen IV, and connective tissue growth factor (CTGF), which was markedly attenuated by sauchinone. Sauchinone also decreased AngII-induced TGF-β1 and Smad-2, Smad-3, and Smad-4 expression. This study further revealed that sauchinone ameliorated AngII-induced mesangial inflammation through disturbing activation of inflammatory factors, and NLRP3 inflammasome, which is composed of the NLRP3 protein, procaspase-1, and apoptosis-associated speck-like protein containing a CARD (ASC). Moreover, pretreatment of sauchinone inhibited NF-κB translocation and ROS production in AngII-exposed mesangial cells. These data suggest that sauchinone has a protective effect on renal proliferation, fibrosis and inflammation. Therefore, sauchinone might be a potential pharmacological agent in prevention of AngII-induced renal damage leading to diabetic nephropathy.
Collapse
Affiliation(s)
- Jung Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea; (J.J.Y.); (H.K.L.); (H.Y.K.); (B.H.H.); (H.S.L.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea
| | - Hyeon Kyoung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea; (J.J.Y.); (H.K.L.); (H.Y.K.); (B.H.H.); (H.S.L.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea; (J.J.Y.); (H.K.L.); (H.Y.K.); (B.H.H.); (H.S.L.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea
| | - Byung Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea; (J.J.Y.); (H.K.L.); (H.Y.K.); (B.H.H.); (H.S.L.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea; (J.J.Y.); (H.K.L.); (H.Y.K.); (B.H.H.); (H.S.L.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea
| | - Yun Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea; (J.J.Y.); (H.K.L.); (H.Y.K.); (B.H.H.); (H.S.L.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea; (J.J.Y.); (H.K.L.); (H.Y.K.); (B.H.H.); (H.S.L.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea
| |
Collapse
|
15
|
Changes in snail and SRF expression in the kidneys of diabetic rats during ageing. Acta Histochem 2020; 122:151460. [PMID: 31668740 DOI: 10.1016/j.acthis.2019.151460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Diabetic nephropathy is a progressive condition which develops for many years. We analyzed expression of Snail and serum response factor (SRF), epithelial-mesenchymal transition (EMT) regulatory transcription factors with a key role in renal fibrosis, in different renal areas of diabetic rats during ageing. METHODS Male Sprague-Dawley rats were treated with 55 mg/kg streptozotocin (model of type 1 diabetes mellitus; DM group) or citrate buffer (control). DM group received insulin weekly to prevent ketoacidosis. After 2 weeks, 2, 6 and 12 months kidney samples were collected and analysed in different renal areas. RESULTS Snail expression was located within cortex in proximal convoluted tubules, in control and DM groups, in the cytoplasm. Percentage of Snail-positive cells in control groups was high and decreased with time, whereas in DM groups the highest percentage was after 2 weeks. In all time points, smaller percentage of Snail expression was seen in DM groups compared to controls. SRF expression was mostly located in the proximal convoluted tubules, always in the cytoplasm. In control groups SRF was expressed in all time periods in proximal convoluted tubules, with decrement after 12 months. Percentage of SRF-positive cells was higher in control groups compared to DM in all time points, with the exception of 12 months. To a smaller degree, SRF expression was seen in the glomeruli and distal convoluted tubules, with more SRF positive cells in DM compared to their control groups. CONCLUSIONS While Snail expression remained lower in diabetic tissues, compared to controls, expression of SRF increased in diabetic tissues in the second part of the year. These changes may need long time to develop, and, in line with earlier reports, it is possible that insulin treatment of DM rats once a week reduces possibility of EMT and development of renal fibrosis even in the long term.
Collapse
|
16
|
Permyakova A, Gammal A, Hinden L, Weitman M, Weinstock M, Tam J. A Novel Indoline Derivative Ameliorates Diabesity-Induced Chronic Kidney Disease by Reducing Metabolic Abnormalities. Front Endocrinol (Lausanne) 2020; 11:91. [PMID: 32218769 PMCID: PMC7078689 DOI: 10.3389/fendo.2020.00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Both diabetes and obesity (diabesity) contribute significantly to the development of chronic kidney disease (CKD). In search of new remedies to reverse or arrest the progression of CKD, we examined the therapeutic potential of a novel compound, AN1284, in a mouse model of CKD induced by type 2 diabetes with obesity. Six-week-old BKS Cg-Dock 7m+/+ Leprdb/J mice with type 2 diabetes and obesity were treated with AN1284 (2.5 or 5 mg kg-1 per day) via micro-osmotic pumps implanted subcutaneously for 3 months. Measures included renal, pancreatic, and liver assessment as well as energy utilization. AN1284 improved kidney function in BSK-db/db animals by reducing albumin and creatinine and preventing renal inflammation and morphological changes. The treatment was associated with weight loss, decreased body fat mass, increased utilization of body fat toward energy, preservation of insulin sensitivity and pancreatic β cell mass, and reduction of dyslipidemia, hepatic steatosis, and liver injury. This indoline derivative protected the kidney from the deleterious effects of hyperglycemia by ameliorating the metabolic abnormalities of diabetes. It could have therapeutic potential for preventing CKD in human subjects with diabesity.
Collapse
Affiliation(s)
- Anna Permyakova
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaad Gammal
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Weitman
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Marta Weinstock
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Joseph Tam
| |
Collapse
|
17
|
Ninčević V, Omanović Kolarić T, Roguljić H, Kizivat T, Smolić M, Bilić Ćurčić I. Renal Benefits of SGLT 2 Inhibitors and GLP-1 Receptor Agonists: Evidence Supporting a Paradigm Shift in the Medical Management of Type 2 Diabetes. Int J Mol Sci 2019; 20:ijms20235831. [PMID: 31757028 PMCID: PMC6928920 DOI: 10.3390/ijms20235831] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most perilous side effects of diabetes mellitus type 1 and type 2 (T1DM and T2DM).). It is known that sodium/glucose cotransporter 2 inhibitors (SGLT 2i) and glucagone like peptide-1 receptor agonists (GLP-1 RAs) have renoprotective effects, but the molecular mechanisms are still unknown. In clinical trials GLP-1 analogs exerted important impact on renal composite outcomes, primarily on macroalbuminuria, possibly through suppression of inflammation-related pathways, however enhancement of natriuresis and diuresis is also one of possible mechanisms of nephroprotection. Dapagliflozin, canagliflozin, and empagliflozin are SGLT2i drugs, useful in reducing hyperglycemia and in their potential renoprotective mechanisms, which include blood pressure control, body weight loss, intraglomerular pressure reduction, and a decrease in urinary proximal tubular injury biomarkers. In this review we have discussed the potential synergistic and/or additive effects of GLP 1 RA and SGLT2 inhibitors on the primary onset and progression of kidney disease, and the potential implications on current guidelines of diabetes type 2 management.
Collapse
Affiliation(s)
- Vjera Ninčević
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tea Omanović Kolarić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Hrvoje Roguljić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department for Cardiovascular Disease, University Hospital Osijek, 4, 31000 Osijek, Croatia
| | - Tomislav Kizivat
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia;
- Department for Nuclear Medicine and Oncology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek; J. Huttlera 4, 31000 Osijek, Croatia
| | - Martina Smolić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ines Bilić Ćurčić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Osijek, 31000 Osijek, Croatia
- Correspondence:
| |
Collapse
|
18
|
Encinas JFA, Foncesca CH, Perez MM, Simões DP, da Costa Aguiar Alves B, Bacci MR, Maifrino LBM, Fonseca FLA, da Veiga GL. Role of hypoxia-inducible factor 1α as a potential biomarker for renal diseases-A systematic review. Cell Biochem Funct 2019; 37:443-451. [PMID: 31317578 DOI: 10.1002/cbf.3425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/01/2019] [Accepted: 06/26/2019] [Indexed: 01/14/2023]
Abstract
Renal cells need oxygen for homeostasis; it is known for adjusting cellular functioning and the energy obtainment have a broad relationship with cellular respiration, through the O2 bioavailability. O2 homeostasis regulation in the kidney is mediated by hypoxia-inducible factors (HIFs). HIF is divided into three α isoforms, represented by HIF-1α, HIF-2α, and HIF-3α in addition to three paralogs of HIF-1β; these are involved in some metabolic processes, as well as in the pathogenesis of several diseases. Renal biopsy analyses of patients and experimental animal models aim to understand the relationship between HIF and protection against developing renal diseases or the induction of their onset, being thus this molecule can be considered a potential biomarker of renal disease. We carried out a systematic review to which we included studies on HIF-1α and renal disease in the last 5 years (2013-2018) in researches with humans and/or animal model through searches in three databases: LILACS, PubMed, and SciELO by two researchers. We obtained 22 articles that discussed the relationship with HIF as inductor or protector against renal disease and no relation between HIF and renal. We observed controversies remain regarding the relation between of HIF with renal diseases; this may be related to the different intracellular pathways mediated by HIF-1α, thereby determining differentiated cellular responses.
Collapse
Affiliation(s)
| | - Carlos Henrique Foncesca
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil
| | - Matheus Moreira Perez
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil
| | - Diogo Pimenta Simões
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil.,Universidade Municipal de São Caetano do Sul/USCS - São Caetano do Sul, Sao Caetano do Sul, Brazil
| | | | - Marcelo Rodrigues Bacci
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil
| | | | - Fernando Luiz Affonso Fonseca
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil.,Universidade Federal de São Paulo/UNIFESP - Diadema, São Paulo, Brazil
| | - Glaucia Luciano da Veiga
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil
| |
Collapse
|
19
|
Chua JT, Argueta DA, DiPatrizio NV, Kovesdy CP, Vaziri ND, Kalantar-Zadeh K, Moradi H. Endocannabinoid System and the Kidneys: From Renal Physiology to Injury and Disease. Cannabis Cannabinoid Res 2019; 4:10-20. [PMID: 31346545 PMCID: PMC6653784 DOI: 10.1089/can.2018.0060] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: As the prevalence of kidney disease continues to rise worldwide, there is accumulating evidence that kidney injury and dysfunction, whether acute or chronic, is associated with major adverse outcomes, including mortality. Meanwhile, effective therapeutic options in the treatment of acute kidney injury (AKI) and chronic kidney disease (CKD) have been sparse. Many of the effective treatments that are routinely utilized for different pathologies in patients without kidney disease have failed to demonstrate efficacy in those with renal dysfunction. Hence, there is an urgent need for discovery of novel pathways that can be targeted for innovative and effective clinical therapies in renal disease states. Discussion: There is now accumulating evidence that the endocannabinoid (EC) system plays a prominent role in normal renal homeostasis and function. In addition, numerous recent studies have described mechanisms through which alteration in the EC system can contribute to kidney damage and disease. These include a potential role for cannabinoid receptors in tubulo-glomerular damage and fibrosis, which are common features of AKI, interstitial nephritis, glomerulopathy, and other conditions leading to AKI and CKD. Conclusion: These findings suggest that manipulating the EC system may be an effective therapeutic strategy for the treatment of kidney disease and injury. However, further mechanistic studies are needed to fully delineate the role of this system in various conditions affecting the kidneys. Furthermore, while most of the current literature is focused on the role of the EC system as a whole in renal pathophysiology, future studies will also need to clarify the contribution of each component of this system, including the EC mediators, in the pathogenesis of kidney disease and their potential role as part of a therapeutic strategy.
Collapse
Affiliation(s)
- Janice T. Chua
- University of California–Irvine, School of Medicine, Orange, California
| | - Donovan A. Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Csaba P. Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee
- Nephrology Section, Memphis Veterans Affairs Medical Center, Memphis, Tennessee
| | | | - Kamyar Kalantar-Zadeh
- University of California–Irvine, School of Medicine, Orange, California
- Nephrology Section, Tibor Rubin Veteran Affairs Health System, Long Beach, California
| | - Hamid Moradi
- University of California–Irvine, School of Medicine, Orange, California
- Nephrology Section, Tibor Rubin Veteran Affairs Health System, Long Beach, California
- Address correspondence to: Hamid Moradi, MD, Nephrology Section, Department of Medicine, Tibor Rubin Veteran Affairs Health System, 5901 E. 7th Street, Long Beach, CA 90822,
| |
Collapse
|
20
|
Yoon JJ, Park JH, Kim HJ, Jin HG, Kim HY, Ahn YM, Kim YC, Lee HS, Lee YJ, Kang DG. Dianthus superbus Improves Glomerular Fibrosis and Renal Dysfunction in Diabetic Nephropathy Model. Nutrients 2019; 11:E553. [PMID: 30841605 PMCID: PMC6471502 DOI: 10.3390/nu11030553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
Glomerular fibrosis is caused by an accumulation of intercellular spaces containing mesangial matrix proteins through either diffused or nodular changes. Dianthus superbus has been used in traditional medicine as a diuretic, a contraceptive, and an anti-inflammatory agent. The aim of this study was to investigate the effects of Dianthus superbus-EtOAc soluble fraction (DS-EA) on glomerular fibrosis and renal dysfunction, which has been implicated in diabetic nephropathy in human renal mesangial cells and db/db mice. DS-EA was administered to db/db mice at 10 or 50 mg/kg/day for 8 weeks. DS-EA treatment significantly ameliorated blood glucose, insulin, the homeostasis model assessment of insulin resistance (HOMA-IR) index, and HbA1c in diabetic mice. DS-EA decreased albumin excretion, creatinine clearance (Ccr), and plasma creatinine levels. DS-EA also ameliorated the levels of kidney injury molecules-1 (KIM-1) and C-reactive protein. DS-EA reduced the periodic acid-Schiff (PAS) staining intensity and basement membrane thickening in glomeruli of the diabetic nephropathy model. In addition, DS-EA suppressed transforming growth factor-β (TGF-β)/Smad signaling. Collagen type IV, a glomerular fibrosis biomarker, was significantly decreased upon DS-EA administration. DS-EA pretreatment attenuated levels of inflammation factors such as intracellular cell adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1). DS-EA inhibited the translocation of nuclear factor kappa B (NF-κB) in Angiotensin II (Ang II)-stimulated mesangial cells. These findings suggest that DS-EA has a protective effect against renal inflammation and fibrosis. Therefore, DS-EA may serve as a potential therapeutic agent targeting glomerulonephritis and glomerulosclerosis, which lead to diabetic nephropathy.
Collapse
Affiliation(s)
- Jung Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Ji Hun Park
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Hye Jin Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Hong-Guang Jin
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332005, China.
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - You Mee Ahn
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Youn Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Yun Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| |
Collapse
|
21
|
Guo C, Dong Y, Zhu H, Liu Y, Xie G. Ameliorative effects of protodioscin on experimental diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:77-83. [PMID: 30466631 DOI: 10.1016/j.phymed.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/03/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetic nephropathy is one of the most common and serious complications of diabetes mellitus. HYPOTHESIS/PURPOSE The present study aimed to investigate the effects of protodioscin on renal damage in high-fat diet-fed and streptozotocin-induced diabetic rats. METHODS After 4 weeks of feeding a high-fat diet, male Sprague-Dawley rats were injected 35 mg/kg streptozotocin intraperitoneally. The diabetic rats were divided into 4 groups, and treated orally with carboxymethylcellulose sodium, metformin, or protodioscin (20 or 40 mg/kg). After 12 weeks of treatment, blood, urine, and renal tissue were collected for biochemical and histological examination. RESULTS Protodioscin significantly reduced the levels of blood glucose, serum creatinine, and blood urea nitrogen, and also the excretion of urinary protein and albumin in diabetic rats. Histological examinations showed that protodioscin ameliorated the diabetes-induced glomerular and tubular pathological changes. Furthermore, protodioscin significantly reduced the renal concentrations of total cholesterol, triglycerides, free fatty acids, phospholipids, and TNF-α. CONCLUSION These results indicate that protodioscin has ameliorative effects on diabetic nephropathy.
Collapse
Affiliation(s)
- Changrun Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yaping Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hengqing Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxi Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guoyong Xie
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Kato M. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Res Clin Pract 2018; 37:197-209. [PMID: 30254844 PMCID: PMC6147183 DOI: 10.23876/j.krcp.2018.37.3.197] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 02/01/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major renal complication of diabetes that leads to renal dysfunction and end-stage renal disease (ESRD). Major features of DKD include accumulation of extracellular matrix proteins and glomerular hypertrophy, especially in early stage. Transforming growth factor-β plays key roles in regulation of profibrotic genes and signal transducers such as Akt kinase and MAPK as well as endoplasmic reticulum stress, oxidant stress, and autophagy related to hypertrophy in diabetes. Many drugs targeting the pathogenic signaling in DKD (mostly through protein-coding genes) are under development. However, because of the limited number of protein-coding genes, noncoding RNAs (ncRNAs) including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are attracting more attention as potential new drug targets for human diseases. Some miRNAs and lncRNAs regulate each other (by hosting, enhancing transcription from the neighbor, hybridizing each other, and changing chromatin modifications) and create circuits and cascades enhancing the pathogenic signaling in DKD. In this short and focused review, the functional significance of ncRNAs (miRNAs and lncRNAs) in the early stages of DKD and their therapeutic potential are discussed.
Collapse
Affiliation(s)
- Mitsuo Kato
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
23
|
Zhang M, Yan Z, Bu L, An C, Wang D, Liu X, Zhang J, Yang W, Deng B, Xie J, Zhang B. Rapeseed protein-derived antioxidant peptide RAP alleviates renal fibrosis through MAPK/NF-κB signaling pathways in diabetic nephropathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1255-1268. [PMID: 29795979 PMCID: PMC5958891 DOI: 10.2147/dddt.s162288] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction Kidney fibrosis is the main pathologic change in diabetic nephropathy (DN), which is the major cause of end-stage renal disease. Current therapeutic strategies slow down but cannot reverse the progression of renal dysfunction in DN. Plant-derived bioactive peptides in foodstuffs are widely used in many fields because of their potential pharmaceutical and nutraceutical benefits. However, this type of peptide has not yet been studied in renal fibrosis of DN. Previous studies have indicated that the peptide YWDHNNPQIR (named RAP), a natural peptide derived from rapeseed protein, has an antioxidative stress effect. The oxidative stress is believed to be associated with DN. The aim of this study was to evaluate the pharmacologic effects of RAP against renal fibrosis of DN and high glucose (HG)-induced mesangial dysfunction. Materials and methods Diabetes was induced by streptozotocin and high-fat diet in C57BL/6 mice and these mice were treated by subcutaneous injection of different doses of RAP (0.1 mg/kg and 0.5 mg/kg, every other day) or PBS for 12 weeks. Later, functional and histopathologic analyses were performed. Parallel experiments verifying the molecular mechanism by which RAP alleviates DN were carried out in HG-induced mesangial cells (MCs). Results RAP improved the renal function indices, including 24-h albuminuria, triglyceride, serum creatinine, and blood urea nitrogen levels, but did not lower blood glucose levels in DN mice. RAP also simultaneously attenuated extracellular matrix accumulation in DN mice and HG-induced MCs. Furthermore, RAP reduced HG-induced cell proliferation, but it showed no toxicity in MCs. Additionally, RAP inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways. Conclusion RAP can attenuate fibrosis in vivo and in vitro by antagonizing the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Mingyan Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhibin Yan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lili Bu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunmei An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dan Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianfeng Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bochuan Deng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Type 1 diabetes mellitus induces structural changes and molecular remodelling in the rat kidney. Mol Cell Biochem 2018; 449:9-25. [DOI: 10.1007/s11010-018-3338-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/17/2018] [Indexed: 12/24/2022]
|
25
|
Wang X, Li D, Fan L, Xiao Q, Zuo H, Li Z. CAPE- pNO 2 ameliorated diabetic nephropathy through regulating the Akt/NF-κB/ iNOS pathway in STZ-induced diabetic mice. Oncotarget 2017; 8:114506-114525. [PMID: 29383098 PMCID: PMC5777710 DOI: 10.18632/oncotarget.23016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes mellitus. This study aimed to determine the effects and potential mechanism of caffeic acid para-nitro phenethyl ester (CAPE-pNO2), a derivative of caffeic acid phenethyl ester (CAPE), on DN; In vivo, intraperitoneal injections of streptozotocin (STZ) were used to induce diabetes in mice; then, the mice were intraperitoneally injected daily with CAPE or CAPE-pNO2 for 8 weeks. The mice were sacrificed, and blood samples and kidney tissues were collected to measure biological indexes. The results showed that CAPE and CAPE-pNO2 could lower serum creatinine, blood urea nitrogen, 24-h albumin excretion, malondialdehyde and myeloperoxidase levels and increase superoxide dismutase activity in diabetic mice. According to HE, PAS and Masson staining, these two compounds ameliorated structural changes and fibrosis in the kidneys. In addition, the immunohistochemical and western blot results showed that CAPE and CAPE-pNO2 inhibited inflammation through the Akt/NF-κB pathway and prevented renal fibrosis through the TGF-β/Smad pathway. In vitro, CAPE and CAPE-pNO2 inhibited glomerular mesangial cell (GMC) proliferation, arrested cell cycle progression and suppressed ROS generation. These compounds also inhibited ECM accumulation via regulating the TGF-β1, which was a similar effect to that of the NF-κB inhibitor PDTC. More importantly, CAPE and CAPE-pNO2 could up-regulate nitric oxide synthase expression in STZ-induced diabetic mice and HG-induced GMCs. CAPE-pNO2 had stronger effects than CAPE both in vivo and in vitro. These data suggest that CAPE-pNO2 ameliorated DN by suppressing oxidative stress, inflammation, and fibrosis via the Akt/NF-κB/ iNOS pathway.
Collapse
Affiliation(s)
- Xiaoling Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Dejuan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Lu Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Qianhan Xiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
26
|
Hinden L, Udi S, Drori A, Gammal A, Nemirovski A, Hadar R, Baraghithy S, Permyakova A, Geron M, Cohen M, Tsytkin-Kirschenzweig S, Riahi Y, Leibowitz G, Nahmias Y, Priel A, Tam J. Modulation of Renal GLUT2 by the Cannabinoid-1 Receptor: Implications for the Treatment of Diabetic Nephropathy. J Am Soc Nephrol 2017; 29:434-448. [PMID: 29030466 DOI: 10.1681/asn.2017040371] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/10/2017] [Indexed: 12/15/2022] Open
Abstract
Altered glucose reabsorption via the facilitative glucose transporter 2 (GLUT2) during diabetes may lead to renal proximal tubule cell (RPTC) injury, inflammation, and interstitial fibrosis. These pathologies are also triggered by activating the cannabinoid-1 receptor (CB1R), which contributes to the development of diabetic nephropathy (DN). However, the link between CB1R and GLUT2 remains to be determined. Here, we show that chronic peripheral CB1R blockade or genetically inactivating CB1Rs in the RPTCs ameliorated diabetes-induced renal structural and functional changes, kidney inflammation, and tubulointerstitial fibrosis in mice. Inhibition of CB1R also downregulated GLUT2 expression, affected the dynamic translocation of GLUT2 to the brush border membrane of RPTCs, and reduced glucose reabsorption. Thus, targeting peripheral CB1R or inhibiting GLUT2 dynamics in RPTCs has the potential to treat and ameliorate DN. These findings may support the rationale for the clinical testing of peripherally restricted CB1R antagonists or the development of novel renal-specific GLUT2 inhibitors against DN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Matan Geron
- Cellular and Molecular Pain Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, and
| | - Merav Cohen
- The Alexander Grass Center for Bioengineering, Benin School of Computer and Science Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Jerusalem, Israel; and
| | - Sabina Tsytkin-Kirschenzweig
- The Alexander Grass Center for Bioengineering, Benin School of Computer and Science Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Jerusalem, Israel; and
| | - Yael Riahi
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaakov Nahmias
- The Alexander Grass Center for Bioengineering, Benin School of Computer and Science Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Jerusalem, Israel; and
| | - Avi Priel
- Cellular and Molecular Pain Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, and
| | | |
Collapse
|
27
|
Kambli L, Bhatt LK, Oza M, Prabhavalkar K. Novel therapeutic targets for epilepsy intervention. Seizure 2017; 51:27-34. [DOI: 10.1016/j.seizure.2017.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
|
28
|
Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, Karch J, Molkentin JD. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 2017; 127:3770-3783. [PMID: 28891814 DOI: 10.1172/jci94753] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
The master cytokine TGF-β mediates tissue fibrosis associated with inflammation and tissue injury. TGF-β induces fibroblast activation and differentiation into myofibroblasts that secrete extracellular matrix proteins. Canonical TGF-β signaling mobilizes Smad2 and Smad3 transcription factors that control fibrosis by promoting gene expression. However, the importance of TGF-β-Smad2/3 signaling in fibroblast-mediated cardiac fibrosis has not been directly evaluated in vivo. Here, we examined pressure overload-induced cardiac fibrosis in fibroblast- and myofibroblast-specific inducible Cre-expressing mouse lines with selective deletion of the TGF-β receptors Tgfbr1/2, Smad2, or Smad3. Fibroblast-specific deletion of Tgfbr1/2 or Smad3, but not Smad2, markedly reduced the pressure overload-induced fibrotic response as well as fibrosis mediated by a heart-specific, latency-resistant TGF-β mutant transgene. Interestingly, cardiac fibroblast-specific deletion of Tgfbr1/2, but not Smad2/3, attenuated the cardiac hypertrophic response to pressure overload stimulation. Mechanistically, loss of Smad2/3 from tissue-resident fibroblasts attenuated injury-induced cellular expansion within the heart and the expression of fibrosis-mediating genes. Deletion of Smad2/3 or Tgfbr1/2 from cardiac fibroblasts similarly inhibited the gene program for fibrosis and extracellular matrix remodeling, although deletion of Tgfbr1/2 uniquely altered expression of an array of regulatory genes involved in cardiomyocyte homeostasis and disease compensation. These findings implicate TGF-β-Smad2/3 signaling in activated tissue-resident cardiac fibroblasts as principal mediators of the fibrotic response.
Collapse
Affiliation(s)
- Hadi Khalil
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Onur Kanisicak
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Robert N Correll
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Xing Fu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tobias Schips
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ronald J Vagnozzi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ruijie Liu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan, USA
| | - Thanh Huynh
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jason Karch
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
29
|
Um JE, Park JT, Nam BY, Lee JP, Jung JH, Kim Y, Kim S, Park J, Wu M, Han SH, Yoo TH, Kang SW. Periostin-binding DNA aptamer treatment attenuates renal fibrosis under diabetic conditions. Sci Rep 2017; 7:8490. [PMID: 28819200 PMCID: PMC5561139 DOI: 10.1038/s41598-017-09238-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy, the major cause of chronic kidney disease, is associated with progressive renal fibrosis. Recently, accumulation of periostin, an extracellular matrix protein, was shown to augment renal fibrosis. Aptamers have higher binding affinities without developing the common side effects of antibodies. Thus, we evaluated the effect of periostin inhibition by an aptamer-based inhibitor on renal fibrosis under diabetic conditions. In vitro, transforming growth factor-β1 (TGF-β1) treatment significantly upregulated periostin, fibronectin, and type I collagen mRNA and protein expressions in inner medullary collecting duct (IMCD) cells. These increases were attenuated significantly in periostin-binding DNA aptamer (PA)-treated IMCD cells exposed to TGF-β1. In vivo, PA treatment attenuated the increased blood urea nitrogen levels in the diabetic mice significantly. Fibronectin and type I collagen mRNA and protein expressions increased significantly in the kidneys of diabetic mice: PA administration abrogated these increases significantly. Immunohistochemistry and Sirius Red staining also revealed that fibronectin expression was significantly higher and tubulointersititial fibrosis was significantly worse in diabetic mice kidneys compared with control mice. These changes were ameliorated by PA treatment. These findings suggested that inhibition of periostin using a DNA aptamer could be a potential therapeutic strategy against renal fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Jae Eun Um
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Bo Young Nam
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jong Ha Jung
- Aptamer Sciences Inc., POSTECH Biotech Center, Pohang, Gyeongbuk, Korea
| | - Youndong Kim
- Aptamer Sciences Inc., POSTECH Biotech Center, Pohang, Gyeongbuk, Korea
| | - Seonghun Kim
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Meiyan Wu
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea.
| |
Collapse
|
30
|
Chen H, Yang X, Lu K, Lu C, Zhao Y, Zheng S, Li J, Huang Z, Huang Y, Zhang Y, Liang G. Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice. Toxicol Lett 2017; 278:48-58. [PMID: 28700904 DOI: 10.1016/j.toxlet.2017.07.212] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 01/25/2023]
Abstract
Hyperglycemia-induced inflammation and fibrosis have important roles in the pathogenesis of diabetic nephropathy and cardiomyopathy. With inflammatory cytokines and signaling pathways as important mediators, targeting inflammation may be an effective approach to new avenue for treating diabetic complications. J17, a molecule with structural similarities to curcumin, exhibited good anti-inflammatory activities by inhibiting LPS-induced inflammatory response in macrophages. However, its ability to alleviate hyperglycemia-induced injury via its anti-inflammatory actions remained unclear. Thus, we reported that J17 exerts significant inhibitory effects on hyperglycemia-induced inflammation and fibrosis in NRK-52E cells, H9C2 cells and a streptozotocin-induced diabetic mouse model. We also found that the anti-inflammatory and anti-fibrosis activities of J17 are associated with the inhibition of the P38 and AKT signal pathway, respectively. In vivo oral administration of J17 suppressed hyperglycemia-induced inflammation, hypertrophy and fibrosis, thereby reducing key markers for renal and cardiac dysfunction and improving in fibrosis and pathological changes in both renal and cardiac tissues of diabetic mice. The results of this study indicated that J17 can be potentially used as a cardio- and reno-protective agent and that targeting the P38 and AKT pathways may be an effective therapeutic strategy for diabetic complications.
Collapse
Affiliation(s)
- Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xi Yang
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Kongqin Lu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chun Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Suqing Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhangjian Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210038, China
| | - Yi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
31
|
Miyazawa H, Hirai K, Ookawara S, Ishibashi K, Morishita Y. Nano-sized carriers in gene therapy for renal fibrosis in vivo. NANO REVIEWS & EXPERIMENTS 2017; 8:1331099. [PMID: 30410705 PMCID: PMC6167027 DOI: 10.1080/20022727.2017.1331099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022]
Abstract
Renal fibrosis is the final common pathway leading to end-stage renal failure regardless of underlying initial nephropathies. No specific therapy has been established for renal fibrosis. Gene therapy is a promising strategy for the treatment of renal fibrosis. Nano-sized carriers including viral vectors and non-viral vectors have been shown to enhance the delivery and treatment effects of gene therapy for renal fibrosis in vivo. This review focuses on the mechanisms of renal fibrosis and the in vivo technologies and methodologies of nano-sized carriers in gene therapy for renal fibrosis. RESPONSIBLE EDITOR Alexander Seifalian Director of Nanotechnology & Regenerative Medicine Ltd., The London BioScience Innovation Centre, London, UNITED KINGDOM.
Collapse
Affiliation(s)
- Haruhisa Miyazawa
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
32
|
Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK, Arya DS. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol 2017; 313:F414-F422. [PMID: 28566504 DOI: 10.1152/ajprenal.00393.2016] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022] Open
Abstract
Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5-20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway.
Collapse
Affiliation(s)
- Salma Malik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Kapil Suchal
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Kamal Kishore
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India; and
| |
Collapse
|
33
|
Tam J. The emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases. J Basic Clin Physiol Pharmacol 2017; 27:267-76. [PMID: 26280171 DOI: 10.1515/jbcpp-2015-0055] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022]
Abstract
Endocannabinoids (eCBs) are endogenous lipid ligands that bind to cannabinoid receptors that also mediate the effects of marijuana. The eCB system is comprised of eCBs, anandamide, and 2-arachidonoyl glycerol, their cannabinoid-1 and cannabinoid-2 receptors (CB1 and CB2, respectively), and the enzymes involved in their biosynthesis and degradation. It is present in both the central nervous system and peripheral organs including the kidney. The current review focuses on the role of the eCB system in normal kidney function and various diseases, such as diabetes and obesity, that directly contributes to the development of renal pathologies. Normally, activation of the CB1 receptor regulates renal vascular hemodynamics and stimulates the transport of ions and proteins in different nephron compartments. In various mouse and rat models of obesity and type 1 and 2 diabetes mellitus, eCBs generated in various renal cells activate CB1 receptors and contribute to the development of oxidative stress, inflammation, and renal fibrosis. These effects can be chronically ameliorated by CB1 receptor blockers. In contrast, activation of the renal CB2 receptors reduces the deleterious effects of these chronic diseases. Because the therapeutic potential of globally acting CB1 receptor antagonists in these conditions is limited due to their neuropsychiatric adverse effects, the recent development of peripherally restricted CB1 receptor antagonists may represent a novel pharmacological approach in treating renal diseases.
Collapse
|
34
|
Liu L, Shi M, Wang Y, Zhang C, Su B, Xiao Y, Guo B. SnoN upregulation ameliorates renal fibrosis in diabetic nephropathy. PLoS One 2017; 12:e0174471. [PMID: 28350874 PMCID: PMC5370123 DOI: 10.1371/journal.pone.0174471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/09/2017] [Indexed: 11/19/2022] Open
Abstract
Progressive reduction of SnoN is associated with gradual elevation of TGF-β1 during diabetic nephropathy progression, suggesting SnoN to be a possible mediator of TGF-β1 signaling, with potential therapeutic benefits against TGF- β1 –induced renal fibrosis. To characterize SnoN for its role in renal fibrosis, we assessed SnoN expression patterns in response to high glucose stress, and evaluated the effects of upregulating SnoN on renal fibrosis. High glucose stress induced significantly elevated SnoN, TGF-β1, and Arkadia transcription; however, significantly reduced SnoN protein levels were observed under these conditions. Upregulating the SnoN protein was achieved by Arkadia knockdown, which resulted in inhibited high glucose-induced epithelial-mesenchymal transition (EMT) in renal tubular cells, the onset phase of renal fibrosis. Alternatively, EMT was suppressed by dominantly expressed exogenous SnoN without interfering with TGF-β1. Overall, renal SnoN upregulation ameliorates renal fibrosis by relieving high glucose-induced EMT; these findings support a translational approach targeting SnoN for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Lirong Liu
- Department of Clinical Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Changzhi Zhang
- Department of Respiratory Medicine, People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Bo Su
- Department of Pathology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- * E-mail:
| |
Collapse
|
35
|
Ji X, Li C, Ou Y, Li N, Yuan K, Yang G, Chen X, Yang Z, Liu B, Cheung WW, Wang L, Huang R, Lan T. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway. Mol Cell Endocrinol 2016; 437:268-279. [PMID: 27378149 DOI: 10.1016/j.mce.2016.06.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023]
Abstract
Diabetic nephropathy (DN) is characterized by proliferation of mesangial cells, mesangial hypertrophy and extracellular matrix (ECM) accumulation. Our recent study found that andrographolide inhibited high glucose-induced mesangial cell proliferation and fibronectin expression through inhibition of AP-1 pathway. However, whether andrographolide has reno-protective roles in DN has not been fully elucidated. Here, we studied the pharmacological effects of andrographolide against the progression of DN and high glucose-induced mesangial dysfunction. Diabetes was induced in C57BL/6 mice by intraperitoneal injection of streptozotocin (STZ). After 1 weeks after STZ injection, normal diet was substituted with a high-fat diet (HFD). Diabetic mice were intraperitoneal injected with andrographolide (2 mg/kg, twice a week). After 8 weeks, functional and histological analyses were carried out. Parallel experiments uncovering the molecular mechanism by which andrographolide prevents from DN was performed in mesangial cells. Andrographolide inhibited the increases in fasting blood glucose, triglyceride, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. Andrographolide also prevented renal hypertrophy and ECM accumulation. Furthermore, andrographolide markedly attenuated NOX1 expression, ROS production and pro-inflammatory cytokines as well. Additionally, andrographolide inhibited Akt/NF-κB signaling pathway. These results demonstrate that andrographolide is protective against the progression of experimental DN by inhibiting renal oxidative stress, inflammation and fibrosis.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Changzheng Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yitao Ou
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ning Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kai Yuan
- Department of Endocrine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Guizhi Yang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyan Chen
- Department of Endocrine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhicheng Yang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Liu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wai W Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Lijing Wang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ren Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China.
| | - Tian Lan
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
36
|
Hassanzadeh-Taheri M, Hosseini M, Hassanpour-Fard M, Ghiravani Z, Vazifeshenas-Darmiyan K, Yousefi S, Ezi S. Effect of turnip leaf and root extracts on renal function in diabetic rats. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13596-016-0249-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Tian YM, Guan Y, Li N, Ma HJ, Zhang L, Wang S, Zhang Y. Chronic intermittent hypobaric hypoxia ameliorates diabetic nephropathy through enhancing HIF1 signaling in rats. Diabetes Res Clin Pract 2016; 118:90-7. [PMID: 27351799 DOI: 10.1016/j.diabres.2016.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/13/2016] [Accepted: 06/05/2016] [Indexed: 12/23/2022]
Abstract
AIM Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) had anti-diabetes effect. The present study was to explore the renal protective effect of CIHH in diabetic rats. METHODS Sprague-Dawley rats were randomly divided into three groups: diabetes mellitus group (DM, induced by high-fat diet combined with low-dose streptozotocin), diabetes plus CIHH treatment group (DM+CIHH, simulated 5000-m altitude, 6h per day for 28days, after diabetes model confirmed) and control group (CON). Systolic arterial blood pressure (SAP), blood biochemicals, urinary albumin, and histopathology of kidney were determined. The superoxide dismutase (SOD) activity, malondialdehyde (MDA) level, protein levels of hypoxia induced factors (HIFs) and transforming growth factor β1 (TGF-β1) in kidney were assayed. RESULTS The increased SAP, urinary albumin, hyperplasia of glomerular, fibrosis in mesangial and glomerular, and abnormal lipid metabolism in diabetic rats were ameliorated by CIHH treatment. And decreased superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) level in diabetic kidney were reversed in CIHH-treated DM rats. In addition up-regulated TGF-β1 and down-regulated HIF1α in diabetic kidney returned back to normal level in CIHH-treated DM rats. CONCLUSIONS These data demonstrated for the first time that CIHH had protective effects against the early stage damage of diabetic nephropathy through activating HIF1 signaling, improving anti-oxidation and inhibiting TGF-β1 signaling in diabetic rats.
Collapse
Affiliation(s)
- Yan-Ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Na Li
- Department of Physiology, Medical College, Hebei University, Baoding 071000, PR China
| | - Hui-Jie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Li Zhang
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang 050082, PR China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China.
| |
Collapse
|
38
|
Al-Kafaji G, Al-Mahroos G, Al-Muhtaresh HA, Skrypnyk C, Sabry MA, Ramadan AR. Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: A potential blood-based biomarker. Exp Ther Med 2016; 12:815-822. [PMID: 27446281 DOI: 10.3892/etm.2016.3395] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/31/2016] [Indexed: 12/18/2022] Open
Abstract
Circulating microRNAs (miRNAs) have been proposed as promising biomarkers for multiple diseases. miR-126 is reported to be associated with type 2 diabetes mellitus (T2D), diabetic nephropathy (DN) and end stage renal disease. The aim of this study was to investigate the expression of circulating miR-126 and to assess its potential as a blood-based biomarker for DN in T2D patients. In 52 patients with T2D without history of DN (with noromoalbuminuria), 50 patients with T2D and DN (29 with microalbuminuria and 21 with macroalbuminuria), and 50 non-diabetic healthy controls, the expression of circulating miR-126 in peripheral whole blood was evaluated by quantitative polymerase chain reaction. The expression levels of circulating miR-126 were significantly decreased in T2D patients and further decreased in DN patients compared with those in the controls. Multivariate logistic regression analysis confirmed the independent association of lower miR-126 levels with T2D [adjusted odds ratio (OR), 0.797; 95% confidence interval (CI), 0.613-0.960] and DN (adjusted OR, 0.513; 95% CI, 0.371-0.708). miR-126 levels were associated with the degree of albuminuria and showed significantly low expression in DN patients with microalbuminuria (adjusted OR, 0.781; 95% CI; 0.698-0.952) and further lower expression in DN patients with macroalbuminuria (adjusted OR, 0.433; 95% CI, 0.299-0.701), respectively compared with T2D patients with normoalbuminuria. miR-126 levels negatively correlated with albuminuria positively with glomerular filtration rate (P<0.05), and in addition, negatively correlated with fasting glucose, glycated hemoglobin, triglyceride and LDL (P<0.05). Stepwise multiple regression analysis identified albuminuria as a significant predictor of miR-126 (P<0.001). miR-126 in peripheral blood yielded area under the receiver operating characteristic curves of 0.854 (95% CI, 0.779-0.929) and 0.959 (95% CI, 0.916-1.000) in the differentiation of DN patients from T2D patients and DN patients from non-diabetic controls respectively. These data suggest that decreased expression of circulating miR-126 is associated with the development of DN in T2D patients, and may be a promising blood-based biomarker for DN risk estimation.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine/Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Ghazi Al-Mahroos
- Diabetes and Endocrinology Clinic, Salmaniya Medical Complex, Manama 12, Kingdom of Bahrain
| | - Haifa Abdulla Al-Muhtaresh
- Department of Molecular Medicine/Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Cristina Skrypnyk
- Department of Molecular Medicine/Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Mohamed Abdalla Sabry
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Ahmad R Ramadan
- Department of Life Sciences, Medical Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| |
Collapse
|
39
|
Kang WL, Xu GS. Atrasentan increased the expression of klotho by mediating miR-199b-5p and prevented renal tubular injury in diabetic nephropathy. Sci Rep 2016; 6:19979. [PMID: 26813039 PMCID: PMC4728478 DOI: 10.1038/srep19979] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Atrasentan is a promising therapy for treating diabetic nephropathy (DN). Here we evaluated whether atrasentan down-regulated the miR-199b-5p expression, thereby increasing klotho and preventing renal tubular injury in DN. One-hundred patients with type 2 diabetes mellitus (T2DM) and 40 healthy subjects were included. A DN mice model was established by an injection of streptozotocin (STZ). Human renal proximal tubular epithelial HK-2 cells were exposed to high glucose (20 mmol/L). Treated the mice and HK-2 cells with atrasentan, and we then investigated whether and how miR-199b-5p and Klotho were involved in preventing renal tubular injury in DN. In patients, the serum miR-199b-5p level increased and the klotho concentration decreased in accordance with elevated albuminuria. Atrasentan down-regulated miR-199b-5p and up-regulated klotho of the DN mice and HK-2 cells exposed to high glucose. High glucose promoted the binding of histone H3 to the miR-199b-5p promoter, and atrasentan canceled this effect. MiR-199b-5p targeted the 3′ UTR of klotho. Overexpression of miR-199b-5p canceled the effects of atrasentan on klotho expression and apoptosis of renal tubular cells in both in vivo and in vitro. The increased serum klotho, mediated by miR-199b-5p, is a possible mechanism by which atrasentan prevents renal tubular injury in DN.
Collapse
Affiliation(s)
- Wen-Ling Kang
- Medical Center of the Graduate School, Nanchang University, Nanchang 330000, China.,Department of Nephrology, People's Hospital of Xinyu City, Xinyu 338000, China
| | - Gao-Si Xu
- Department of Nephrology, Second Affiliated Hospital, Nanchang University, Nanchang 330006 China
| |
Collapse
|
40
|
Li F, Lei T, Xie K, Wu X, Tang C, Jiang M, Liu J, Luo E, Shen G. Effects of extremely low frequency pulsed magnetic fields on diabetic nephropathy in streptozotocin-treated rats. Biomed Eng Online 2016; 15:8. [PMID: 26786255 PMCID: PMC4717615 DOI: 10.1186/s12938-015-0121-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022] Open
Abstract
Background Extremely low frequency pulsed magnetic fields (ELFPMF) have been shown to induce Faraday currents and measurable effects on biological systems. A kind of very high frequency electromagnetic field was reported that it improved the symptoms of diabetic nephropathy (DN) which is a major complication of diabetes. However, few studies have examined the effects of ELFPMF DN at the present. The present study was designed to investigate the effects of ELFPMF on DN in streptozotocin (STZ)–induced type 1 diabetic rats. Methods Adult male SD rats were randomly divided into three weight-matched groups: Control (non-diabetic rats without DN), DN + ELFPMF (diabetic rats with DN exposed to ELFPMF, 8 h/days, 6 weeks) and DN (diabetic rats with DN exposed to sham ELFPMF). Renal morphology was examined by light and electron microscopy, vascular endothelial growth factor (VEGF)-A and connective tissue growth factor (CTGF) were measured by enzyme linked immune sorbent assay. Results After 6 weeks’ ELFPMF exposure, alterations of hyperglycemia and weight loss in STZ-treated rats with DN were not found, while both positive and negative effects of ELFPMF on the development of DN in diabetic rats were observed. The positive one was that ELFPMF exposure attenuated the pathological alterations in renal structure observed in STZ-treated rats with DN, which were demonstrated by slighter glomerular and tubule-interstitial lesions examined by light microscopy and slighter damage to glomerular basement membrane and podocyte foot processes examined by electron microscopy. And then, the negative one was that ELFPMF stimulation statistically significantly decreased renal expression of VEGF-A and statistically significantly increased renal expression of CTGF in diabetic rats with DN, which might partially aggravate the symptoms of DN. Conclusion Both positive and negative effects of ELFPMF on the development of DN in diabetic rats were observed. The positive effect induced by ELFPMF might play a dominant role in the procession of DN in diabetic rats, and it is suggested that the positive effect should be derived from the correction of pathogenic diabetes-induced mediators.
Collapse
Affiliation(s)
- Feijiang Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| | - Tao Lei
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| | - Kangning Xie
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| | - Xiaoming Wu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| | - Chi Tang
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| | - Maogang Jiang
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| | - Juan Liu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| | - Erping Luo
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| | - Guanghao Shen
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
41
|
Lu Q, Zuo WZ, Ji XJ, Zhou YX, Liu YQ, Yao XQ, Zhou XY, Liu YW, Zhang F, Yin XX. Ethanolic Ginkgo biloba leaf extract prevents renal fibrosis through Akt/mTOR signaling in diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1071-1078. [PMID: 26547529 DOI: 10.1016/j.phymed.2015.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Recently, extract of Ginkgo biloba leaves (GbE) have become widely known phytomedicines and have shown various pharmacological activities, including improvement of blood circulation, protection of oxidative cell damage, prevention of Alzheimer's disease, treatment of cardiovascular disease and diabetes complications. This study was designed to investigate the effects of an ethanolic GbE on renal fibrosis in diabetic nephropathy (DN) and to clarify the possible mechanism by which GbE prevents renal fibrosis. STUDY DESIGN We investigated the protective effects of GbE on renal fibrosis in STZ-induced diabetic rats. Rats were randomized into six groups termed normal control, diabetes mellitus, low dose of GbE (50 mg/kg/d), intermediate dose of GbE (100 mg/kg/d), high dose of GbE (200 mg/kg/d) and rapamycin (1 mg/kg/d). METHODS After 12 weeks, the rats were sacrificed and then fasting blood glucose (FBG), creatinine (Cr), blood urea nitrogen (BUN), urine protein, relative kidney weight, glycogen and collagen accumulation, and collagen IV and laminin expression were measured by different methods. The amounts of E-cadherin, α-SMA and snail, as well as the phosphorylation of Akt, mTOR and p70S6K in the renal cortex of rats, were examined by western blotting. RESULTS Compared with diabetic rats, the levels of Cr, BUN, urine protein, relative kidney weight, accumulation of glycogen and collagen, and expression of collagen IV and laminin in the renal cortex were all decreased in GbE treated rats. In addition, GbE reduced the expression of E-cadherin, α-SMA, snail and the phosphorylation of Akt, mTOR and p70S6K in diabetic renal cortex. CONCLUSION GbE can prevent renal fibrosis in rats with diabetic nephropathy, which is most likely to be associated with its abilities to inhibit the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Wen-Zi Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xiao-Jun Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yue-Xian Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yu-Qing Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xiao-Qin Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xue-Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Fan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
42
|
Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci 2015; 1353:72-88. [PMID: 25877817 PMCID: PMC4607544 DOI: 10.1111/nyas.12758] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by posttranscriptional and epigenetic mechanisms and thereby affect many cellular processes and disease states. Over 2,000 human mature miRNAs have been identified, and at least 60% of all human protein-coding genes are known to be regulated by miRNAs. MicroRNA biogenesis involves classical transcription regulation and processing by key ribonucleases, as well as other protein factors and epigenetic mechanisms. Diabetic nephropathy (DN), a severe microvascular complication frequently associated with diabetes mellitus, is a major cause of renal failure. Although several mechanisms of regulation of key renal genes implicated in DN pathogenesis have been identified, a greater understanding is needed to develop better treatment modalities. Recent studies show that miRNAs induced in renal cells in vivo and in vitro under diabetic conditions can promote the accumulation of extracellular matrix proteins related to fibrosis and glomerular dysfunction. In this review, we highlight the significance of the expression of miRNAs in various stages of DN and emerging approaches to exploit them as biomarkers for early detection or novel therapeutic targets to prevent progression of DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
43
|
Lin HH, Huang CC, Lin TY, Lin CY. p-Cresol mediates autophagic cell death in renal proximal tubular cells. Toxicol Lett 2015; 234:20-9. [DOI: 10.1016/j.toxlet.2015.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/27/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
44
|
Korish AA, Abdel Gader AG, Korashy HM, Al-Drees AM, Alhaider AA, Arafah MM. Camel milk attenuates the biochemical and morphological features of diabetic nephropathy: inhibition of Smad1 and collagen type IV synthesis. Chem Biol Interact 2015; 229:100-8. [PMID: 25617480 DOI: 10.1016/j.cbi.2015.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/27/2014] [Accepted: 01/07/2015] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a common microvascular complication of diabetes mellitus (DM) that worsens its morbidity and mortality. There is evidence that camel milk (CM) improves the glycemic control in DM but its effect on the renal complications especially the DN remains unclear. Thus the current study aimed to characterize the effects of CM treatment on streptozotocin (STZ)-induced DN. Using STZ-induced diabetes, we investigated the effect of CM treatment on kidney function, proteinuria, renal Smad1, collagen type IV (Col4), blood glucose, insulin resistance (IR), lipid peroxidation, the antioxidant superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH). In addition renal morphology was also examined. The current results showed that rats with untreated diabetes exhibited marked hyperglycemia, IR, high serum urea and creatinine levels, excessive proteinuria, increased renal Smad1 and Col4, glomerular expansion, and extracellular matrix deposition. There was also increased lipid peroxidation products, decreased antioxidant enzyme activity and GSH levels. Camel milk treatment decreased blood glucose, IR, and lipid peroxidation. Superoxide dismutase and CAT expression, CAT activity, and GSH levels were increased. The renoprotective effects of CM were demonstrated by the decreased serum urea and creatinine, proteinuria, Smad1, Col4, and preserved normal tubulo-glomerular morphology. In conclusion, beside its hypoglycemic action, CM attenuates the early changes of DN, decreased renal Smad1 and Col4. This could be attributed to a primary action on the glomerular mesangial cells, or secondarily to the hypoglycemic and antioxidant effects of CM. The protective effects of CM against DN support its use as an adjuvant anti-diabetes therapy.
Collapse
Affiliation(s)
- Aida A Korish
- Physiology Department (29), College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Riyadh, Saudi Arabia
| | - Abdel Galil Abdel Gader
- Physiology Department (29), College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| | - Abdul Majeed Al-Drees
- Physiology Department (29), College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Riyadh, Saudi Arabia
| | - Abdulqader A Alhaider
- Physiology Department (29), College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Riyadh, Saudi Arabia; Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Maha M Arafah
- Pathology Department, College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Abstract
Diabetic nephropathy (DN), a severe microvascular complication frequently associated with both type 1 and type 2 diabetes mellitus, is a leading cause of renal failure. The condition can also lead to accelerated cardiovascular disease and macrovascular complications. Currently available therapies have not been fully efficacious in the treatment of DN, suggesting that further understanding of the molecular mechanisms underlying the pathogenesis of DN is necessary for the improved management of this disease. Although key signal transduction and gene regulation mechanisms have been identified, especially those related to the effects of hyperglycaemia, transforming growth factor β1 and angiotensin II, progress in functional genomics, high-throughput sequencing technology, epigenetics and systems biology approaches have greatly expanded our knowledge and uncovered new molecular mechanisms and factors involved in DN. These mechanisms include DNA methylation, chromatin histone modifications, novel transcripts and functional noncoding RNAs, such as microRNAs and long noncoding RNAs. In this Review, we discuss the significance of these emerging mechanisms, how they mediate the actions of growth factors to augment the expression of extracellular matrix and inflammatory genes associated with DN and their potential usefulness as diagnostic biomarkers or novel therapeutic targets for DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
46
|
Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice. PLoS One 2014; 9:e96147. [PMID: 24801481 PMCID: PMC4011795 DOI: 10.1371/journal.pone.0096147] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-α, a lipid-sensing transcriptional factor, serves an important role in lipotoxicity. We evaluated whether fenofibrate has a renoprotective effect by ameliorating lipotoxicity in the kidney. Eight-week-old male C57BLKS/J db/m control and db/db mice, divided into four groups, received fenofibrate for 12 weeks. In db/db mice, fenofibrate ameliorated albuminuria, mesangial area expansion and inflammatory cell infiltration. Fenofibrate inhibited accumulation of intra-renal free fatty acids and triglycerides related to increases in PPARα expression, phosphorylation of AMP-activated protein kinase (AMPK), and activation of Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α)-estrogen-related receptor (ERR)-1α-phosphorylated acetyl-CoA carboxylase (pACC), and suppression of sterol regulatory element-binding protein (SREBP)-1 and carbohydrate regulatory element-binding protein (ChREBP)-1, key downstream effectors of lipid metabolism. Fenofibrate decreased the activity of phosphatidylinositol-3 kinase (PI3K)-Akt phosphorylation and FoxO3a phosphorylation in kidneys, increasing the B cell leukaemia/lymphoma 2 (BCL-2)/BCL-2-associated X protein (BAX) ratio and superoxide dismutase (SOD) 1 levels. Consequently, fenofibrate recovered from renal apoptosis and oxidative stress, as reflected by 24 hr urinary 8-isoprostane. In cultured mesangial cells, fenofibrate prevented high glucose-induced apoptosis and oxidative stress through phosphorylation of AMPK, activation of PGC-1α-ERR-1α, and suppression of SREBP-1 and ChREBP-1. Our results suggest that fenofibrate improves lipotoxicity via activation of AMPK-PGC-1α-ERR-1α-FoxO3a signaling, showing its potential as a therapeutic modality for diabetic nephropathy.
Collapse
|
47
|
miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction. Sci Rep 2014; 4:4578. [PMID: 24694752 PMCID: PMC3974136 DOI: 10.1038/srep04578] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/19/2014] [Indexed: 01/28/2023] Open
Abstract
micro RNAs (miRNAs) are small non-coding RNAs that act as posttranscriptional repressors by binding to the 3'-UTR of target mRNAs. On the other hand, mesenchymal-epithelial transition (EMT) and kidney fibrosis is a pathological process of chronic kidney disease (CKD), and its relationship to miRNAs is becoming recognized as a potential target for CKD therapies. To find new miRNAs involved in EMT, we examined miRNA expression in experimental models of EMT and renal epithelialization using microarray, and found that miR-34c attenuates EMT induced by TGF-β in a mouse tubular cell line. To confirm the effects of miR-34c in vivo, we administered the precursor of miR-34c to mice with unilateral ureteral obstruction, and miR-34c decreased kidney fibrosis area and the expression of connective tissue growth factor, α-SMA, collagen type 1, collagen type 3 and fibronectin. In conclusion, our study showed miR-34c attenuates EMT and kidney fibrosis of mice with ureteral obstruction.
Collapse
|
48
|
Thioredoxin-interacting protein mediates dysfunction of tubular autophagy in diabetic kidneys through inhibiting autophagic flux. J Transl Med 2014; 94:309-20. [PMID: 24492284 DOI: 10.1038/labinvest.2014.2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) expression is ubiquitous and is induced by a variety of cellular stresses, including high intracellular glucose. TXNIP is associated with activation of oxidative stress and tubulointerstitial fibrosis in diabetic nephropathy. Autophagy is a major pathway that delivers damaged proteins and organelles to lysosomes to maintain cellular homeostasis. This study aimed to investigate the dysregulation of autophagy and the regulation of TXNIP on autophagy in renal proximal tubular cells (PTCs) under diabetic conditions. The formation of autophagosomes was measured using transmission electron microscopy, and LC3-II, and the effectiveness of autophagic clearance was determined by p62 expression in diabetic kidney and in human PTCs exposed to high glucose (HG). The results collectively demonstrated increased expression of TXNIP, LC3/LC3-II and p62 in renal tubular cells of mice with diabetic nephropathy and in cultured human PTCs exposed to HG (30 mM/l) for 48 h compared with control. The formation of autophagic vacuoles was increased in HG-induced cells. Furthermore, silencing of TXNIP by siRNA transfection reduced autophagic vacuoles and the expression of LC3-II and p62 in human PTCs exposed to HG compared with control and partially reversed the accumulation of LC3-II and p62 induced by bafilomycin A1 (50 nM/l), a pharmacological inhibitor of autophagy which blocks the fusion of autophagosomes with lysosomes and impairs the degradation of LC3-II and p62. Collectively, these results suggest that hyperglycemia leads to dysfunction of autophagy in renal tubular cells and decreases autophagic clearance. HG-induced overexpression of TXNIP may contribute to the dysfunction of tubular autophagy in diabetes.
Collapse
|
49
|
Xie P, Joladarashi D, Dudeja P, Sun L, Kanwar YS. Modulation of angiotensin II-induced inflammatory cytokines by the Epac1-Rap1A-NHE3 pathway: implications in renal tubular pathobiology. Am J Physiol Renal Physiol 2014; 306:F1260-74. [PMID: 24553435 DOI: 10.1152/ajprenal.00069.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Besides the glomerulus, the tubulointerstitium is often concomitantly affected in certain diseases, e.g., diabetic nephropathy, and activation of the renin-angiotensin system, to a certain extent, worsens its outcome because of perturbations in hemodynamics and possibly tubuloglomerular feedback. Certain studies suggest that pathobiology of the tubulointerstitium is influenced by small GTPases, e.g., Rap1. We investigated the effect of ANG II on inflammatory cytokines, while at the same time focusing on upstream effector of Rap1, i.e., Epac1, and some of the downstream tubular transport molecules, i.e., Na/H exchanger 3 (NHE3). ANG II treatment of LLC-PK1 cells decreased Rap1a GTPase activity in a time- and dose-dependent manner. ANG II treatment led to an increased membrane translocation of NHE3, which was reduced with Epac1 and PKA activators. ANG II-induced NHE3 translocation was notably reduced with the transfection of Rap1a dominant positive mutants, i.e., Rap1a-G12V or Rap1a-T35A. Transfection of cells with dominant negative Rap1a mutants, i.e., Rap1a-S17A, or Epac1 mutant, i.e., EPAC-ΔcAMP, normalized ANG II-induced translocation of NHE3. In addition, ANG II treatment led to an increased expression of inflammatory cytokines, i.e., IL-1β, IL-6, IL-8, and TNF-α, which was reduced with Rap1a-G12V or Rap1a-T35A transfection, while it reverted to previous comparable levels following transfection of Rap1a-S17A or EPAC-ΔcAMP. ANG II-induced expression of cytokines was reduced with the treatment with NHE3 inhibitor S3226 or with Epac1 and PKA activators. These data suggest that this novel Epac1-Rap1a-NHE3 pathway conceivably modulates ANG II-induced expression of inflammatory cytokines, and this information may yield the impetus for developing strategies to reduce tubulointertstitial inflammation in various renal diseases.
Collapse
Affiliation(s)
- Ping Xie
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois; and
| | | | - Pradeep Dudeja
- Department of Medicine, University of Illinois, Chicago, Illinois
| | - Lin Sun
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois; and
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
50
|
Yang HY, Wu LY, Yeh WJ, Chen JR. Beneficial effects of β-conglycinin on renal function and nephrin expression in early streptozotocin-induced diabetic nephropathy rats. Br J Nutr 2014; 111:78-85. [PMID: 23803175 DOI: 10.1017/s0007114513001876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objective of the present study was to investigate the effects of β-conglycinin and soya isoflavones on diabetic nephropathy (DN). DN was induced by an intravenous injection of streptozotocin (25 mg/kg) in spontaneously hypertensive rats. DN rats were divided into a non-diabetic group (C, control group) and three DN groups (D, DN with control diet; B, DN+control diet with one-eighth of casein replaced by β-conglycinin as the protein source; and I, DN+control diet with 0·01 % soya isoflavones). After a 4-week experimental period, we found that fasting blood sugar and plasma and kidney advanced glycation end product levels and 24 h urinary protein excretion of the B group were significantly lower than those of the D group and insulin sensitivity and nephrin expression of the B group were significantly higher than those of the D group. In addition, systolic blood pressure, angiotensin-converting enzyme activity, angiotensin II level and plasma TAG level of the B group were significantly lower than those of the D group, whereas only the levels of plasma TAG and thiobarbituric acid-reactive substances of the I group were lower than those of the D group. In conclusion, β-conglycinin may be beneficial for retarding DN progression and this effect cannot be completely explained by its isoflavone content.
Collapse
MESH Headings
- Angiotensin II/blood
- Animals
- Antigens, Plant/pharmacology
- Antigens, Plant/therapeutic use
- Blood Glucose/metabolism
- Blood Pressure/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diet therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Nephropathies/diet therapy
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/physiopathology
- Dietary Proteins/pharmacology
- Dietary Proteins/therapeutic use
- Globulins/pharmacology
- Globulins/therapeutic use
- Glycation End Products, Advanced/metabolism
- Insulin Resistance
- Isoflavones/pharmacology
- Kidney/drug effects
- Kidney/metabolism
- Kidney/physiopathology
- Male
- Membrane Proteins/metabolism
- Peptidyl-Dipeptidase A/metabolism
- Phytotherapy
- Plant Preparations/pharmacology
- Plant Preparations/therapeutic use
- Rats
- Rats, Inbred SHR
- Seed Storage Proteins/pharmacology
- Seed Storage Proteins/therapeutic use
- Soybean Proteins/pharmacology
- Soybean Proteins/therapeutic use
- Glycine max/chemistry
- Thiobarbituric Acid Reactive Substances
- Triglycerides/blood
Collapse
Affiliation(s)
- Hsin-Yi Yang
- Department of Nutrition, I-Shou University, Kaohsiung 824, Taiwan, ROC
| | - Lin-Yi Wu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Wan-Ju Yeh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Jiun-Rong Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan, ROC
| |
Collapse
|