1
|
Hejazian SM, Hejazian SS, Mostafavi SM, Hosseiniyan SM, Montazersaheb S, Ardalan M, Zununi Vahed S, Barzegari A. Targeting cellular senescence in kidney diseases and aging: A focus on mesenchymal stem cells and their paracrine factors. Cell Commun Signal 2024; 22:609. [PMID: 39696575 DOI: 10.1186/s12964-024-01968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders. Elevations in senescent cells and senescence-associated secretory phenotype (SASP) levels correlate with decreased kidney function, kidney ailments, and age-related conditions. Strategies involving senotherapeutic agents like senolytics, senomorphics, and senoinflammation have been devised to specifically target senescent cells. Mesenchymal stem cells (MSCs) and their secreted factors may also offer alternative approaches for anti-senescence interventions. The MSC-derived secretome compromises significant therapeutic benefits in kidney diseases by facilitating tissue repair via anti-inflammatory, anti-fibrosis, anti-apoptotic, and pro-angiogenesis effects, thereby improving kidney function and mitigating disease progression. Moreover, by promoting the clearance of senescent cells or modulating their secretory profiles, MSCs could potentially reverse some age-related declines in kidney function.This review article intends to shed light on the present discoveries concerning the role of cellular senescence in kidney aging and diseases. Furthermore, it outlines the role of senotherapeutics utilized to alleviate kidney damage and aging. It also highlights the possible impact of MSCs secretome on mitigating kidney injury and prolonging lifespan across various models of kidney diseases as a novel senotherapy.
Collapse
Affiliation(s)
| | - Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Mostafavi
- Ayatollah Taleghani Hospital, Research Development Unit, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Park JH, Yoon SG, Ghee JY, Yoo JA, Cha JJ, Kang YS, Han SY, Seol YJ, Han JY, Cha DR. Pan-Nox inhibitor treatment improves renal function in aging murine diabetic kidneys. Kidney Res Clin Pract 2024; 43:763-773. [PMID: 37559225 PMCID: PMC11615449 DOI: 10.23876/j.krcp.23.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. RESULTS APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. CONCLUSION Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.
Collapse
Affiliation(s)
- Jeong Hoon Park
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Republic of Korea
| | - Sung Gi Yoon
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Republic of Korea
| | - Jung Yeon Ghee
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Republic of Korea
| | - Ji Ae Yoo
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Republic of Korea
| | - Jin Joo Cha
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Republic of Korea
| | - Young Sun Kang
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Republic of Korea
| | - Sang Youb Han
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Yun Jae Seol
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Republic of Korea
| | - Jee Young Han
- Department of Pathology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Dae Ryong Cha
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Republic of Korea
| |
Collapse
|
3
|
Xiang HL, Yuan Q, Zeng JY, Xu ZY, Zhang HZ, Huang J, Song AN, Xiong J, Zhang C. MDM2 accelerated renal senescence via ubiquitination and degradation of HDAC1. Acta Pharmacol Sin 2024; 45:2328-2338. [PMID: 38760541 PMCID: PMC11489730 DOI: 10.1038/s41401-024-01294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Senescence, an intricate and inevitable biological process, characterized by the gradual loss of homeostasis and declining organ functions. The pathological features of cellular senescence, including cell cycle arrest, metabolic disruptions, and the emergence of senescence-associated secretory phenotypes (SASP), collectively contribute to the intricate and multifaceted nature of senescence. Beyond its classical interaction with p53, murine double minute gene 2 (MDM2), traditionally known as an E3 ubiquitin ligase involved in protein degradation, plays a pivotal role in cellular processes governing senescence. Histone deacetylase (HDAC), a class of histone deacetylases mainly expressed in the nucleus, has emerged as a critical contributor to renal tissues senescence. In this study we investigated the interplay between MDM2 and HDAC1 in renal senescence. We established a natural aging model in mice over a 2-year period that was verified by SA-β-GAL staining and increased expression of senescence-associated markers such as p21, p16, and TNF-α in the kidneys. Furthermore, we showed that the expression of MDM2 was markedly increased, while HDAC1 expression underwent downregulation during renal senescence. This phenomenon was confirmed in H2O2-stimulated HK2 cells in vitro. Knockout of renal tubular MDM2 alleviated renal senescence in aged mice and in H2O2-stimulated HK2 cells. Moreover, we demonstrated that MDM2 promoted renal senescence by orchestrating the ubiquitination and subsequent degradation of HDAC1. These mechanisms synergistically accelerate the aging process in renal tissues, highlighting the intricate interplay between MDM2 and HDAC1, underpinning the age-related organ function decline.
Collapse
Affiliation(s)
- Hui-Ling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jie-Yu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zi-Yu Xu
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Hui-Zi Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - An-Ni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
4
|
Zhao M, He Z, Liu L, Wang Y, Gao L, Shang Y, Zhu M. Causal and mediating effects of lipid and facial aging: association study integrating GWAS, eQTL, mQTL, and pQTL data. Lipids Health Dis 2024; 23:342. [PMID: 39434152 PMCID: PMC11492622 DOI: 10.1186/s12944-024-02328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a potential causal association between lipid levels and facial aging. The aim of this study was to investigate the relationship between levels of specific lipids and facial aging via Mendelian randomization methods. Additionally, this study aimed to identify mediators and explore relevant genes and drug targets. METHODS In this study, genome-wide association data on plasma lipids from 7,174 Finnish individuals in the UK Biobank were used. Two-sample Mendelian randomization was applied to assess the causal effects of specific lipids on facial aging. Sensitivity and pleiotropy analyses were conducted to ensure the robustness and reliability of the results. Multivariate Mendelian randomization was conducted to account for the potential impact of confounding factors. Furthermore, summary-data-based Mendelian randomization was used to identify relevant genes, which were validated through multiomics data. Finally, drug‒gene interactions were explored via molecular docking techniques. RESULTS Two-sample Mendelian randomization analysis revealed a causal relationship between lipid levels and facial aging. According to the multivariate Mendelian randomization results, smoking was found to mediate this association, and these lipids remained significantly associated with facial aging, even after accounting for environmental confounders. Using summary-data-based Mendelian randomization, CYP21A2, CCND1, PSMA4, and MED1 were identified as potential gene targets, with MED1 further validated through pQTL and mQTL data. Additionally, the MED1 protein was found to bind spontaneously with astragalin, fenofibrate, and ginsenoside. CONCLUSIONS The results revealed a causal relationship between lipid levels and facial aging, revealing key gene targets that were still significantly associated with facial aging after controlling for environmental confounders. Additionally, the interactions between MED1 and certain drugs may indicate potential pathways for therapeutic interventions related to facial aging.
Collapse
Affiliation(s)
- Mingjian Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Zhanchen He
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Lukuan Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yichen Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - LinQi Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yuxuan Shang
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China.
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China.
| |
Collapse
|
5
|
Saraswati S, Martínez P, Serrano R, Mejías D, Graña-Castro O, Álvarez Díaz R, Blasco MA. Renal fibroblasts are involved in fibrogenic changes in kidney fibrosis associated with dysfunctional telomeres. Exp Mol Med 2024; 56:2216-2230. [PMID: 39349834 PMCID: PMC11541748 DOI: 10.1038/s12276-024-01318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 10/03/2024] Open
Abstract
Tubulointerstitial fibrosis associated with chronic kidney disease (CKD) represents a global health care problem. We previously reported that short and dysfunctional telomeres lead to interstitial renal fibrosis; however, the cell-of-origin of kidney fibrosis associated with telomere dysfunction is currently unknown. We induced telomere dysfunction by deleting the Trf1 gene encoding a telomere-binding factor specifically in renal fibroblasts in both short-term and long-term life-long experiments in mice to identify the role of fibroblasts in renal fibrosis. Short-term Trf1 deletion in renal fibroblasts was not sufficient to trigger kidney fibrosis but was sufficient to induce inflammatory responses, ECM deposition, cell cycle arrest, fibrogenesis, and vascular rarefaction. However, long-term persistent deletion of Trf1 in fibroblasts resulted in kidney fibrosis accompanied by an elevated urinary albumin-to-creatinine ratio (uACR) and a decrease in mouse survival. These cellular responses lead to the macrophage-to-myofibroblast transition (MMT), endothelial-to-mesenchymal transition (EndMT), and partial epithelial-to-mesenchymal transition (EMT), ultimately causing kidney fibrosis at the humane endpoint (HEP) when the deletion of Trf1 in fibroblasts is maintained throughout the lifespan of mice. Our findings contribute to a better understanding of the role of dysfunctional telomeres in the onset of the profibrotic alterations that lead to kidney fibrosis.
Collapse
Affiliation(s)
- Sarita Saraswati
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Diego Mejías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ruth Álvarez Díaz
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
6
|
Xiong YB, Huang WY, Ling X, Zhou S, Wang XX, Li XL, Zhou LL. Mitochondrial calcium uniporter promotes kidney aging in mice through inducing mitochondrial calcium-mediated renal tubular cell senescence. Acta Pharmacol Sin 2024; 45:2149-2162. [PMID: 38789496 PMCID: PMC11420221 DOI: 10.1038/s41401-024-01298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Renal tubular epithelial cell senescence plays a critical role in promoting and accelerating kidney aging and age-related renal fibrosis. Senescent cells not only lose their self-repair ability, but also can transform into senescence-associated secretory phenotype (SASP) to trigger inflammation and fibrogenesis. Recent studies show that mitochondrial dysfunction is critical for renal tubular cell senescence and kidney aging, and calcium overload and abnormal calcium-dependent kinase activities are involved in mitochondrial dysfunction-associated senescence. In this study we investigated the role of mitochondrial calcium overload and mitochondrial calcium uniporter (MCU) in kidney aging. By comparing the kidney of 2- and 24-month-old mice, we found calcium overload in renal tubular cells of aged kidney, accompanied by significantly elevated expression of MCU. In human proximal renal tubular cell line HK-2, pretreatment with MCU agonist spermine (10 μM) significantly increased mitochondrial calcium accumulation, and induced the production of reactive oxygen species (ROS), leading to renal tubular cell senescence and age-related kidney fibrosis. On the contrary, pretreatment with MCU antagonist RU360 (10 μM) or calcium chelator BAPTA-AM (10 μM) diminished D-gal-induced ROS generation, restored mitochondrial homeostasis, retarded cell senescence, and protected against kidney aging in HK-2 cells. In a D-gal-induced accelerated aging mice model, administration of BAPTA (100 μg/kg. i.p.) every other day for 8 weeks significantly alleviated renal tubuarl cell senescence and fibrosis. We conclude that MCU plays a key role in promoting renal tubular cell senescence and kidney aging. Targeting inhibition on MCU provides a new insight into the therapeutic strategy against kidney aging.
Collapse
Affiliation(s)
- Ya-Bing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Yan Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Long Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li-Li Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Elwakiel A, Gupta D, Rana R, Manoharan J, Al-Dabet MM, Ambreen S, Fatima S, Zimmermann S, Mathew A, Li Z, Singh K, Gupta A, Pal S, Sulaj A, Kopf S, Schwab C, Baber R, Geffers R, Götze T, Alo B, Lamers C, Kluge P, Kuenze G, Kohli S, Renné T, Shahzad K, Isermann B. Factor XII signaling via uPAR-integrin β1 axis promotes tubular senescence in diabetic kidney disease. Nat Commun 2024; 15:7963. [PMID: 39261453 PMCID: PMC11390906 DOI: 10.1038/s41467-024-52214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin β1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin β1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin β1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medical Laboratory Sciences, School of Science, University of Jordan, Amman, Jordan
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Zhiyang Li
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Surinder Pal
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Constantin Schwab
- Institute of pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tom Götze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Bekas Alo
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christina Lamers
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Paul Kluge
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
9
|
Xie H, Yang N, Lu L, Sun X, Li J, Wang X, Guo H, Zhou L, Liu J, Wu H, Yu C, Zhang W, Lu L. Uremic Toxin Receptor AhR Facilitates Renal Senescence and Fibrosis via Suppressing Mitochondrial Biogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402066. [PMID: 38940381 PMCID: PMC11434102 DOI: 10.1002/advs.202402066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/02/2024] [Indexed: 06/29/2024]
Abstract
Retention of metabolic end-products in the bodily fluids of patients with chronic kidney disease (CKD) may lead to uremia. The uremic toxin indoxyl sulfate (IS), a tryptophan metabolite, is an endogenous ligand of aryl hydrocarbon receptor (AhR). It is clarified that the upregulation and activation of AhR by IS in tubular epithelial cells (TECs) promote renal senescence and fibrosis. Renal TEC-specific knockout of AhR attenuates renal senescence and fibrosis, as well as the suppression of PGC1α-mediated mitochondrial biogenesis in ischemia reperfusion (IR)- or IS-treated CKD mice kidneys. Overexpression of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) attenuates IS-induced cell senescence and extracellular matrix production in cultured TECs. Mechanistically, AhR is able to interact with PGC1α and promotes the ubiquitin degradation of PGC1α via its E3 ubiquitin ligase activity. In summary, the elevation and activation of AhR by the accumulated uremic toxins in the progression of CKD accelerate renal senescence and fibrosis by suppressing mitochondrial biogenesis via promoting ubiquitination and proteasomal degradation of PGC1α.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ninghao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, 671013, China
| | - Xi'ang Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jingyao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hengjiang Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, 201102, China
| |
Collapse
|
10
|
Yamamoto T, Isaka Y. Pathological mechanisms of kidney disease in ageing. Nat Rev Nephrol 2024; 20:603-615. [PMID: 39025993 DOI: 10.1038/s41581-024-00868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The kidney is a metabolically active organ that requires energy to drive processes such as tubular reabsorption and secretion, and shows a decline in function with advancing age. Various molecular mechanisms, including genomic instability, telomere attrition, inflammation, autophagy, mitochondrial function, and changes to the sirtuin and Klotho signalling pathways, are recognized regulators of individual lifespan and pivotal factors that govern kidney ageing. Thus, mechanisms that contribute to ageing not only dictate renal outcomes but also exert a substantial influence over life expectancy. Conversely, kidney dysfunction, in the context of chronic kidney disease (CKD), precipitates an expedited ageing trajectory in individuals, leading to premature ageing and a disconnect between biological and chronological age. As CKD advances, age-related manifestations such as frailty become increasingly conspicuous. Hence, the pursuit of healthy ageing necessitates not only the management of age-related complications but also a comprehensive understanding of the processes and markers that underlie systemic ageing. Here, we examine the hallmarks of ageing, focusing on the mechanisms by which they affect kidney health and contribute to premature organ ageing. We also review diagnostic methodologies and interventions for premature ageing, with special consideration given to the potential of emerging therapeutic avenues to target age-related kidney diseases.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
11
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv Biol (Weinh) 2024; 8:e2400079. [PMID: 38935557 DOI: 10.1002/adbi.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Population aging has increased the global prevalence of aging-related diseases, including cancer, sarcopenia, neurological disease, arthritis, and heart disease. Understanding aging, a fundamental biological process, has led to breakthroughs in several fields. Cellular senescence, evinced by flattened cell bodies, vacuole formation, and cytoplasmic granules, ubiquitously plays crucial roles in tissue remodeling, embryogenesis, and wound repair as well as in cancer therapy and aging. The lack of universal biomarkers for detecting and quantifying senescent cells, in vitro and in vivo, constitutes a major limitation. The applications and limitations of major senescence biomarkers, including senescence-associated β-galactosidase staining, telomere shortening, cell-cycle arrest, DNA methylation, and senescence-associated secreted phenotypes are discussed. Furthermore, explore senotherapeutic approaches for aging-associated diseases and cancer. In addition to the conventional biomarkers, this review highlighted the in vitro, in vivo, and disease models used for aging studies. Further, technologies from the current decade including multi-omics and computational methods used in the fields of senescence and aging are also discussed in this review. Understanding aging-associated biological processes by using cellular senescence biomarkers can enable therapeutic innovation and interventions to improve the quality of life of older adults.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon, 34054, Republic of Korea
| |
Collapse
|
12
|
Sanches TR, Parra AC, Sun P, Graner MP, Itto LYU, Butter LM, Claessen N, Roelofs JJ, Florquin S, Veras MM, Andrade MDF, Saldiva PHN, Kers J, Andrade L, Tammaro A. Air pollution aggravates renal ischaemia-reperfusion-induced acute kidney injury. J Pathol 2024; 263:496-507. [PMID: 38934262 DOI: 10.1002/path.6302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/03/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) has emerged as a significant global public health concern. Recent epidemiological studies have highlighted the link between exposure to fine particulate matter (PM2.5) and a decline in renal function. PM2.5 exerts harmful effects on various organs through oxidative stress and inflammation. Acute kidney injury (AKI) resulting from ischaemia-reperfusion injury (IRI) involves biological processes similar to those involved in PM2.5 toxicity and is a known risk factor for CKD. The objective of this study was to investigate the impact of PM2.5 exposure on IRI-induced AKI. Through a unique environmentally controlled setup, mice were exposed to urban PM2.5 or filtered air for 12 weeks before IRI followed by euthanasia 48 h after surgery. Animals exposed to PM2.5 and IRI exhibited reduced glomerular filtration, impaired urine concentration ability, and significant tubular damage. Further, PM2.5 aggravated local innate immune responses and mitochondrial dysfunction, as well as enhancing cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation. This increased renal senescence and suppressed the anti-ageing protein klotho, leading to early fibrotic changes. In vitro studies using proximal tubular epithelial cells exposed to PM2.5 and hypoxia/reoxygenation revealed heightened activation of the STING pathway triggered by cytoplasmic mitochondrial DNA, resulting in increased tubular damage and a pro-inflammatory phenotype. In summary, our findings imply a role for PM2.5 in sensitising proximal tubular epithelial cells to IRI-induced damage, suggesting a plausible association between PM2.5 exposure and heightened susceptibility to CKD in individuals experiencing AKI. Strategies aimed at reducing PM2.5 concentrations and implementing preventive measures may improve outcomes for AKI patients and mitigate the progression from AKI to CKD. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Talita Rojas Sanches
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio Carlos Parra
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Peiqi Sun
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariana Pereira Graner
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lucas Yuji Umesaki Itto
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Loes Maria Butter
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris Jth Roelofs
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology (LIM-5), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria de Fatima Andrade
- Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of São Paulo, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
- Biomolecular Systems Analytics, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
- Biomolecular Systems Analytics, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| | - Lucia Andrade
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Peng X, Ni H, Kuang B, Wang Z, Hou S, Gu S, Gong N. Sirtuin 3 in renal diseases and aging: From mechanisms to potential therapies. Pharmacol Res 2024; 206:107261. [PMID: 38917912 DOI: 10.1016/j.phrs.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.
Collapse
Affiliation(s)
- Xuan Peng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haiqiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiqi Gu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
14
|
Yin Q, Tang TT, Lu XY, Ni WJ, Yin D, Zhang YL, Jiang W, Zhang Y, Li ZL, Wen Y, Gan WH, Zhang AQ, Lv LL, Wang B, Liu BC. Macrophage-derived exosomes promote telomere fragility and senescence in tubular epithelial cells by delivering miR-155. Cell Commun Signal 2024; 22:357. [PMID: 38987851 PMCID: PMC11238407 DOI: 10.1186/s12964-024-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated β-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.
Collapse
Affiliation(s)
- Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Xiao-Yu Lu
- Department of Pediatric Nephrology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wei-Jie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Di Yin
- Department of Nephrology, Taixing People's Hospital, Taixing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Yue Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Wei-Hua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ai-Qing Zhang
- Department of Pediatric Nephrology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Suvakov S, Vaughan LE, Parashuram S, Butler Tobah YS, Jayachandran M, Kattah A, Chamberlain AM, Bielinski SJ, Milic N, Garovic VD. Women With a History of Preeclampsia Exhibit Accelerated Aging and Unfavorable Profiles of Senescence Markers. Hypertension 2024; 81:1550-1560. [PMID: 38690656 PMCID: PMC11168873 DOI: 10.1161/hypertensionaha.123.22250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Senescence, a mechanism of cellular aging, which is characterized by irreversible proliferation arrest and a proinflammatory secretory phenotype, has been documented in women with preeclampsia. As cellular senescence can persist and progress, we postulated that it is associated with accelerated aging phenotype and accumulation of comorbidities in women with a history of preeclampsia. METHODS We included a cohort of women with a history of preeclampsia (n=40) age- and parity-matched to a group of referent women with normotensive pregnancies (n=40). Women with prior major cardiovascular events, neurological, or autoimmune conditions were excluded. We collected urine and blood samples to study markers of aging, data on multimorbidity at the time of enrollment, and prospectively followed them for events over the course of 6 years, on average. RESULTS Women with a history of preeclampsia exhibited unfavorable aging profiles compared with referent women, including decreased urinary α-Klotho (P=0.018); increased leptin (P=0.016) and leptin/adiponectin ratio (P=0.027), and increased extracellular vesicles positive for tissue factor (P=0.025). Women with a history of preeclampsia likewise had a higher rate of comorbidities at the time of enrollment (P=0.003) and had a 4× higher risk of developing major cardiovascular events compared with referent women (P=0.003). CONCLUSIONS Our data suggest that a history of preeclampsia is associated with accelerated aging as indicated by senescence marker differences and the accumulation of multimorbidity later in life. Targeting cellular senescence may offer novel, mechanism-based approaches for the diagnosis and treatment of adverse health outcomes in women with a history of preeclampsia.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Lisa E. Vaughan
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Santosh Parashuram
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Yvonne S. Butler Tobah
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Muthuvel Jayachandran
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Andrea Kattah
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Alanna M. Chamberlain
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Medical Faculty, University of Belgrade, Serbia
| | - Suzette J. Bielinski
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Natasa Milic
- Department of Medical Statistics & Informatics, Medical Faculty, University of Belgrade, Serbia
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Zhang Y, Yu C, Li X. Kidney Aging and Chronic Kidney Disease. Int J Mol Sci 2024; 25:6585. [PMID: 38928291 PMCID: PMC11204319 DOI: 10.3390/ijms25126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Wang B, Yu W, Zhang W, Zhang M, Niu Y, Jin X, Zhang J, Sun D, Li H, Zhang Z, Luo Q, Cheng X, Niu J, Cai G, Chen X, Chen Y. Enhanced TRPC3 transcription through AT1R/PKA/CREB signaling contributes to mitochondrial dysfunction in renal tubular epithelial cells in D-galactose-induced accelerated aging mice. Aging Cell 2024; 23:e14130. [PMID: 38415902 PMCID: PMC11166371 DOI: 10.1111/acel.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
Aging-associated renal dysfunction promotes the pathogenesis of chronic kidney disease. Mitochondrial dysfunction in renal tubular epithelial cells is a hallmark of senescence and leads to accelerated progression of renal disorders. Dysregulated calcium profiles in mitochondria contribute to aging-associated disorders, but the detailed mechanism of this process is not clear. In this study, modulation of the sirtuin 1/angiotensin II type 1 receptor (Sirt1/AT1R) pathway partially attenuated renal glomerular sclerosis, tubular atrophy, and interstitial fibrosis in D-galactose (D-gal)-induced accelerated aging mice. Moreover, modulation of the Sirt1/AT1R pathway improved mitochondrial dysfunction induced by D-gal treatment. Transient receptor potential channel, subtype C, member 3 (TRPC3) upregulation mediated dysregulated cellular and mitochondrial calcium homeostasis during aging. Furthermore, knockdown or knockout (KO) of Trpc3 in mice ameliorated D-gal-induced mitochondrial reactive oxygen species production, membrane potential deterioration, and energy metabolism disorder. Mechanistically, activation of the AT1R/PKA pathway promoted CREB phosphorylation and nucleation of CRE2 binding to the Trpc3 promoter (-1659 to -1648 bp) to enhance transcription. Trpc3 KO significantly improved the renal disorder and cell senescence in D-gal-induced mice. Taken together, these results indicate that TRPC3 upregulation mediates age-related renal disorder and is associated with mitochondrial calcium overload and dysfunction. TRPC3 is a promising therapeutic target for aging-associated renal disorders.
Collapse
Affiliation(s)
- Bin Wang
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
- Department of Clinical MedicineDazhou Vocational and Technical CollegeDazhouSichuanChina
| | - Weiguang Zhang
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Min Zhang
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Yue Niu
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xinye Jin
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Jie Zhang
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Ding Sun
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
| | - Hao Li
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
| | - Zehao Zhang
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
| | - Qing Luo
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Xiaowei Cheng
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Jingxue Niu
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Guangyan Cai
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xiangmei Chen
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Yizhi Chen
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
18
|
Maeda S, Sakai S, Takabatake Y, Yamamoto T, Minami S, Nakamura J, Namba-Hamano T, Takahashi A, Matsuda J, Yonishi H, Matsui S, Imai A, Edahiro R, Yamamoto-Imoto H, Matsui I, Takashima S, Imamura R, Nonomura N, Yanagita M, Okada Y, Ballabio A, Nakamura S, Yoshimori T, Isaka Y. MondoA and AKI and AKI-to-CKD Transition. J Am Soc Nephrol 2024; 35:00001751-990000000-00338. [PMID: 38819935 PMCID: PMC11387036 DOI: 10.1681/asn.0000000000000414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Key Points
The expression of MondoA was decreased in the renal tubules of patients with CKD.Genetic ablation of MondoA in proximal tubules inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon.MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the transcription factor EB-peroxisome proliferator-activated receptor-γ coactivator-1α axis.
Background
Elderly individuals and patients with CKD are at a higher risk of AKI. The transcription factor MondoA is downregulated in the kidneys of aged individuals or patients with AKI; however, its roles in AKI development and the AKI-to-CKD transition remain unknown.
Methods
We investigated the expression of MondoA in human kidney biopsy samples, ischemia-reperfusion–injured (IRI) mouse kidneys, and cultured proximal tubular epithelial cells under hypoxia/reoxygenation. The role of MondoA during the initial and recovery phases after IRI was evaluated using proximal tubule–specific MondoA knockout mice and MondoA-deficient proximal tubular epithelial cells. Furthermore, we explored the involvement of Rubicon and transcription factor EB (TFEB), both of which are downstream factors of MondoA.
Results
MONDOA expression was decreased in the renal tubules of patients with CKD. In mouse kidneys, MondoA expression was decreased under ischemia, whereas its expression was increased during reperfusion. Genetic ablation of MondoA in proximal tubular epithelial cells inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon. Ablation of Rubicon in MondoA-deficient IRI kidneys activated autophagy and protected mitochondrial function. MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the TFEB-peroxisome proliferator-activated receptor-γ coactivator-1α axis. Pharmacological upregulation of TFEB contributed to maintaining mitochondrial biogenesis and increased peroxisome proliferator-activated receptor-γ coactivator-1α transcription.
Conclusions
Our findings demonstrate that MondoA protected against vulnerability to AKI by maintaining autophagy and subsequently supporting mitochondrial function to prevent progression to CKD.
Collapse
Grants
- JP22gm1410014 AMED
- 21K08276 a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 22K16240 a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 21H02935 a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- None Novo Nordisk Pharma
- None Manpei Suzuki Diabetes Foundation
Collapse
Affiliation(s)
- Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuhiro Imai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoichi Imamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Nara, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Shi YS, Yang TN, Wang YX, Ma XY, Liu S, Zhao Y, Li JL. Melatonin Mitigates Atrazine-Induced Renal Tubular Epithelial Cell Senescence by Promoting Parkin-Mediated Mitophagy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0378. [PMID: 38766643 PMCID: PMC11098712 DOI: 10.34133/research.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
The accumulation of senescent cells in kidneys is considered to contribute to age-related diseases and organismal aging. Mitochondria are considered a regulator of cell senescence process. Atrazine as a triazine herbicide poses a threat to renal health by disrupting mitochondrial homeostasis. Melatonin plays a critical role in maintaining mitochondrial homeostasis. The present study aims to explore the mechanism by which melatonin alleviates atrazine-induced renal injury and whether parkin-mediated mitophagy contributes to mitigating cell senescence. The study found that the level of parkin was decreased after atrazine exposure and negatively correlated with senescent markers. Melatonin treatment increased serum melatonin levels and mitigates atrazine-induced renal tubular epithelial cell senescence. Mechanistically, melatonin maintains the integrity of mitochondrial crista structure by increasing the levels of mitochondrial contact site and cristae organizing system, mitochondrial transcription factor A (TFAM), adenosine triphosphatase family AAA domain-containing protein 3A (ATAD3A), and sorting and assembly machinery 50 (Sam50) to prevent mitochondrial DNA release and subsequent activation of cyclic guanosine 5'-monophosphate-adenosine 5'-monophosphate synthase pathway. Furthermore, melatonin activates Sirtuin 3-superoxide dismutase 2 axis to eliminate the accumulation of reactive oxygen species in the kidney. More importantly, the antisenescence role of melatonin is largely determined by the activation of parkin-dependent mitophagy. These results offer novel insights into measures against cell senescence. Parkin-mediated mitophagy is a promising drug target for alleviating renal tubular epithelial cell senescence.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Tian-Ning Yang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Liu
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi Zhao
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
20
|
Wei SJ, Schell JR, Chocron ES, Varmazyad M, Xu G, Chen WH, Martinez GM, Dong FF, Sreenivas P, Trevino R, Jiang H, Du Y, Saliba A, Qian W, Lorenzana B, Nazarullah A, Chang J, Sharma K, Munkácsy E, Horikoshi N, Gius D. Ketogenic diet induces p53-dependent cellular senescence in multiple organs. SCIENCE ADVANCES 2024; 10:eado1463. [PMID: 38758782 PMCID: PMC11100565 DOI: 10.1126/sciadv.ado1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
A ketogenic diet (KD) is a high-fat, low-carbohydrate diet that leads to the generation of ketones. While KDs improve certain health conditions and are popular for weight loss, detrimental effects have also been reported. Here, we show mice on two different KDs and, at different ages, induce cellular senescence in multiple organs, including the heart and kidney. This effect is mediated through adenosine monophosphate-activated protein kinase (AMPK) and inactivation of mouse double minute 2 (MDM2) by caspase-2, leading to p53 accumulation and p21 induction. This was established using p53 and caspase-2 knockout mice and inhibitors to AMPK, p21, and caspase-2. In addition, senescence-associated secretory phenotype biomarkers were elevated in serum from mice on a KD and in plasma samples from patients on a KD clinical trial. Cellular senescence was eliminated by a senolytic and prevented by an intermittent KD. These results have important clinical implications, suggesting that the effects of a KD are contextual and likely require individual optimization.
Collapse
Affiliation(s)
- Sung-Jen Wei
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Joseph R. Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - E. Sandra Chocron
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Mahboubeh Varmazyad
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Guogang Xu
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Wan Hsi Chen
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Gloria M. Martinez
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Felix F. Dong
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Prethish Sreenivas
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Rolando Trevino
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Haiyan Jiang
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Yan Du
- Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
- School of Nursing, UT Health San Antonio, San Antonio, TX, USA
| | - Afaf Saliba
- Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Wei Qian
- Houston Methodist Cancer Center, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Brandon Lorenzana
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Alia Nazarullah
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Jenny Chang
- Houston Methodist Cancer Center, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Kumar Sharma
- Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
- Division of Nephrology, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Erin Munkácsy
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
21
|
Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnology 2024; 22:252. [PMID: 38750509 PMCID: PMC11097501 DOI: 10.1186/s12951-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.
Collapse
Affiliation(s)
- Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yifan Guo
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
22
|
Li L, Xiang T, Guo J, Guo F, Wu Y, Feng H, Liu J, Tao S, Fu P, Ma L. Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence. Nat Commun 2024; 15:3200. [PMID: 38615014 PMCID: PMC11016098 DOI: 10.1038/s41467-024-47315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/25/2024] [Indexed: 04/15/2024] Open
Abstract
Histone lysine crotonylation (Kcr), as a posttranslational modification, is widespread as acetylation (Kac); however, its roles are largely unknown in kidney fibrosis. In this study, we report that histone Kcr of tubular epithelial cells is abnormally elevated in fibrotic kidneys. By screening these crotonylated/acetylated factors, a crotonyl-CoA-producing enzyme ACSS2 (acyl-CoA synthetase short chain family member 2) is found to remarkably increase histone 3 lysine 9 crotonylation (H3K9cr) level without influencing H3K9ac in kidneys and tubular epithelial cells. The integrated analysis of ChIP-seq and RNA-seq of fibrotic kidneys reveal that the hub proinflammatory cytokine IL-1β, which is regulated by H3K9cr, play crucial roles in fibrogenesis. Furthermore, genetic and pharmacologic inhibition of ACSS2 both suppress H3K9cr-mediated IL-1β expression, which thereby alleviate IL-1β-dependent macrophage activation and tubular cell senescence to delay renal fibrosis. Collectively, our findings uncover that H3K9cr exerts a critical, previously unrecognized role in kidney fibrosis, where ACSS2 represents an attractive drug target to slow fibrotic kidney disease progression.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Ting Xiang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Jingjing Guo
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Fan Guo
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Yiting Wu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Han Feng
- Tulane Research and Innovation for Arrhythmia Discoveries-TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jing Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Sibei Tao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China.
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China.
| |
Collapse
|
23
|
Ali I, Zhang H, Zaidi SAA, Zhou G. Understanding the intricacies of cellular senescence in atherosclerosis: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 96:102273. [PMID: 38492810 DOI: 10.1016/j.arr.2024.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is currently the largest cause of mortality and disability globally, surpassing communicable diseases, and atherosclerosis is the main contributor to this epidemic. Aging is intimately linked to atherosclerosis development and progression, however, the mechanism of aging in atherosclerosis is not well known. To emphasize the significant research on the involvement of senescent cells in atherosclerosis, we begin by outlining compelling evidence that indicates various types of senescent cells and SASP factors linked to atherosclerotic phenotypes. We subsequently provide a comprehensive summary of the existing knowledge, shedding light on the intricate mechanisms through which cellular senescence contributes to the pathogenesis of atherosclerosis. Further, we cover that senescence can be identified by both structural changes and several senescence-associated biomarkers. Finally, we discuss that preventing accelerated cellular senescence represents an important therapeutic potential, as permanent changes may occur in advanced atherosclerosis. Together, the review summarizes the relationship between cellular senescence and atherosclerosis, and inspects the molecular knowledge, and potential clinical significance of senescent cells in developing senescent-based therapy, thus providing crucial insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Hongliang Zhang
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, PR China
| | - Syed Aqib Ali Zaidi
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China.
| |
Collapse
|
24
|
Xie H, Yang N, Yu C, Lu L. Uremic toxins mediate kidney diseases: the role of aryl hydrocarbon receptor. Cell Mol Biol Lett 2024; 29:38. [PMID: 38491448 PMCID: PMC10943832 DOI: 10.1186/s11658-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor that responds to pollutants. Subsequent research has revealed that AhR recognizes multiple exogenous and endogenous molecules, including uremic toxins retained in the body due to the decline in renal function. Therefore, AhR is also considered to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the activation of AhR is involved in cell differentiation and senescence, lipid metabolism and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all tissues and organs. The identification of the endogenous uremic toxin receptor opens the door to investigating the precise role and molecular mechanism of tissue and organ damage induced by uremic toxins. This review focuses on summarizing recent findings on the role of AhR activation induced by uremic toxins in chronic kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential clinical approaches to mitigate the effects of uremic toxins are explored herein, such as enhancing uremic toxin clearance through dialysis, reducing uremic toxin production through dietary interventions or microbial manipulation, and manipulating metabolic pathways induced by uremic toxins through controlling AhR signaling. This information may also shed light on the mechanism of uremic toxin-induced injury to other organs, and provide insights into clinical approaches to manipulate the accumulated uremic toxins.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Ninghao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
25
|
Oyama K, Iwagami Y, Kobayashi S, Sasaki K, Yamada D, Tomimaru Y, Noda T, Asaoka T, Takahashi H, Tanemura M, Doki Y, Eguchi H. Removal of gemcitabine-induced senescent cancer cells by targeting glutaminase1 improves the therapeutic effect in pancreatic ductal adenocarcinoma. Int J Cancer 2024; 154:912-925. [PMID: 37699232 DOI: 10.1002/ijc.34725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Insufficient cancer treatment can induce senescent cancer cell formation and treatment resistance. The characteristics of induced senescent cancer (iSnCa) cells remain unclear. Pancreatic ductal adenocarcinoma (PDAC) has a low and nondurable response rate to current treatments. Our study aimed to analyze the properties of iSnCa cells and the relationship between cellular senescence and prognosis in PDAC. We evaluated the characteristics of gemcitabine-induced senescent cancer cells and the effect of senescence-associated secretory phenotype (SASP) factors released by iSnCa cells on surrounding PDAC cells. The relationship between cellular senescence and the prognosis was investigated in 50 patients with PDAC treated with gemcitabine-based neoadjuvant chemotherapy. Exposure to 5 ng/mL gemcitabine-induced senescence, decreased proliferation and increased senescence-associated β-galactosidase-cell staining without cell death in PDAC cells; the expression of glutaminase1 (GLS1) and SASP factors also increased and caused epithelial-mesenchymal transition in surrounding PDAC cells. iSnCa cells were selectively removed by the GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) through apoptosis induction. Cellular senescence was induced in PDAC cells via insufficient gemcitabine in subcutaneous tumor model mice. GLS1 expression was an independent prognostic factor in patients with PDAC who received gemcitabine-based neoadjuvant chemotherapy. This is the first study to identify the relationship between senescence and GLS1 in PDAC. Low-dose gemcitabine-induced senescence and increased GLS1 expression were observed in PDAC cells. Cellular senescence may contribute to treatment resistance of PDAC, hence targeting GLS1 in iSnCa cells may improve the therapeutic effect.
Collapse
Affiliation(s)
- Keisuke Oyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Surgery, Rinku General Medical Center, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
26
|
Goligorsky MS. Permissive role of vascular endothelium in fibrosis: focus on the kidney. Am J Physiol Cell Physiol 2024; 326:C712-C723. [PMID: 38223932 PMCID: PMC11193458 DOI: 10.1152/ajpcell.00526.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Fibrosis, the morphologic end-result of a plethora of chronic conditions and the scorch for organ function, has been thoroughly investigated. One aspect of its development and progression, namely the permissive role of vascular endothelium, has been overshadowed by studies into (myo)fibroblasts and TGF-β; thus, it is the subject of the present review. It has been established that tensile forces of the extracellular matrix acting on cells are a prerequisite for mechanochemical coupling, leading to liberation of TGF-β and formation of myofibroblasts. Increased tensile forces are prompted by elevated vascular permeability in response to diverse stressors, resulting in the exudation of fibronectin, fibrinogen/fibrin, and other proteins, all stiffening the extracellular matrix. These processes lead to the development of endothelial cells dysfunction, endothelial-to-mesenchymal transition, premature senescence of endothelial cells, perturbation of blood flow, and gradual obliteration of microvasculature, leaving behind "string" vessels. The resulting microvascular rarefaction is not only a constant companion of fibrosis but also an adjunct mechanism of its progression. The deepening knowledge of the above chain of pathogenetic events involving endothelial cells, namely increased permeability-stiffening of the matrix-endothelial dysfunction-microvascular rarefaction-tissue fibrosis, may provide a roadmap for therapeutic interventions deemed to curtail and reverse fibrosis.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Pharmacology, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Touro University, Valhalla, New York, United States
| |
Collapse
|
27
|
Chen J, Zhang H, Yi X, Dou Q, Yang X, He Y, Chen J, Chen K. Cellular senescence of renal tubular epithelial cells in acute kidney injury. Cell Death Discov 2024; 10:62. [PMID: 38316761 PMCID: PMC10844256 DOI: 10.1038/s41420-024-01831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Cellular senescence represents an irreversible state of cell-cycle arrest during which cells secrete senescence-associated secretory phenotypes, including inflammatory factors and chemokines. Additionally, these cells exhibit an apoptotic resistance phenotype. Cellular senescence serves a pivotal role not only in embryonic development, tissue regeneration, and tumor suppression but also in the pathogenesis of age-related degenerative diseases, malignancies, metabolic diseases, and kidney diseases. The senescence of renal tubular epithelial cells (RTEC) constitutes a critical cellular event in the progression of acute kidney injury (AKI). RTEC senescence inhibits renal regeneration and repair processes and, concurrently, promotes the transition of AKI to chronic kidney disease via the senescence-associated secretory phenotype. The mechanisms underlying cellular senescence are multifaceted and include telomere shortening or damage, DNA damage, mitochondrial autophagy deficiency, cellular metabolic disorders, endoplasmic reticulum stress, and epigenetic regulation. Strategies aimed at inhibiting RTEC senescence, targeting the clearance of senescent RTEC, or promoting the apoptosis of senescent RTEC hold promise for enhancing the renal prognosis of AKI. This review primarily focuses on the characteristics and mechanisms of RTEC senescence, and the impact of intervening RTEC senescence on the prognosis of AKI, aiming to provide a foundation for understanding the pathogenesis and providing potentially effective approaches for AKI treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, 400042, Chongqing, China
| | - Xiangling Yi
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Qian Dou
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Xin Yang
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China.
| |
Collapse
|
28
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
29
|
Rajput S, Malviya R, Uniyal P. Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells. Curr Pharm Des 2024; 30:825-840. [PMID: 38482624 DOI: 10.2174/0113816128296105240305110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
30
|
Hollands P, Ovokaitys T. New Concepts in the Manipulation of the Aging Process. Curr Stem Cell Res Ther 2024; 19:178-184. [PMID: 36752298 DOI: 10.2174/1574888x18666230208102635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 02/09/2023]
Abstract
This review explores the current concepts in aging and then goes on to describe a novel, ground-breaking technology which will change the way we think about and manage aging. The foundation of the review is based on the work carried out on the QiLaser activation of human Very Small Embryonic Like (hVSEL) pluripotent stem cells in autologous Platelet Rich Plasma (PRP), known as the Qigeneration Procedure. The application of this technology in anti-aging technology is discussed with an emphasis on epigenetic changes during aging focusing on DNA methylation.
Collapse
Affiliation(s)
- Peter Hollands
- CTO Qigenix, 6125 Paseo Del Norte, Suite 140, Carlsbad, CA 92008, USA
| | - Todd Ovokaitys
- CEO Qigenix, 6125 Paseo Del Norte, Suite 140, Carlsbad, CA 92008, USA
| |
Collapse
|
31
|
Sun J, Liu C, Liu YY, Guo ZA. Mitophagy in renal interstitial fibrosis. Int Urol Nephrol 2024; 56:167-179. [PMID: 37450241 DOI: 10.1007/s11255-023-03686-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
As a high energy consumption organ, kidney relies on a large number of mitochondria to ensure normal physiological activities. Under specific stimulation, mitophagy and mitochondrial dynamics (fission, fusion) cooperatively regulate mitochondrial quality and participate in many life activities such as energy metabolism, inflammatory response, oxidative stress, cell senescence and death. Mitophagy plays a key role in the progression of acute kidney injury and chronic kidney disease. The early induction of oxidative stress in renal parenchyma, the activation of pro-inflammatory cytokines and TGF-β signal pathway are closely related to renal interstitial fibrosis. Macrophage reprogramming is also considered to be an important participant in the progression of kidney fibrosis. This review summarizes the molecular mechanism of mitochondrial autophagy and its relationship with the pathway of promoting fibrosis, and discusses the possibility of restoring mitophagy balance as a pharmacological target for the treatment of renal interstitial fibrosis, so as to provide new ideas for more efficient anti-fibrosis and delay the progress of chronic kidney disease.
Collapse
Affiliation(s)
- Jun Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chong Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Liu
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhao-An Guo
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
32
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
33
|
Wang XX, Myakala K, Libby AE, Krawczyk E, Panov J, Jones BA, Bhasin K, Shults N, Qi Y, Krausz KW, Zerfas PM, Takahashi S, Daneshpajouhnejad P, Titievsky A, Taranenko E, Billon C, Chatterjee A, Elgendy B, Walker JK, Albanese C, Kopp JB, Rosenberg AZ, Gonzalez FJ, Guha U, Brodsky L, Burris TP, Levi M. Estrogen-Related Receptor Agonism Reverses Mitochondrial Dysfunction and Inflammation in the Aging Kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1969-1987. [PMID: 37717940 PMCID: PMC10734281 DOI: 10.1016/j.ajpath.2023.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 09/19/2023]
Abstract
A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.
Collapse
Affiliation(s)
- Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia.
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Andrew E Libby
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, District of Columbia
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel; Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| | - Kanchan Bhasin
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Nataliia Shults
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Yue Qi
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Parnaz Daneshpajouhnejad
- Renal Pathology Service, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Titievsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | | | - Cyrielle Billon
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - Arindam Chatterjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Chris Albanese
- Department of Oncology and Center for Translational Imaging, Georgetown University Medical Center, Washington, District of Columbia
| | - Jeffrey B Kopp
- Kidney Diseases Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Avi Z Rosenberg
- Renal Pathology Service, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
34
|
Perschinka F, Boyer N, Forni LG, Joannidis M. Renal function in very old critically ill patients. Curr Opin Crit Care 2023; 29:534-541. [PMID: 37861208 DOI: 10.1097/mcc.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Current demographic change leads to higher number of elderly patients admitted to an ICU. Among other organs also the kidneys show age-related changes, which are associated with a decline in various aspects of renal function. The purpose of this review is to provide an overview of structural and functional changes in elderly and also to specifically address the increased risk of acute kidney injury (AKI) in this population. RECENT FINDINGS Ageing in the kidneys is affected by many different factors, such as low grade chronic inflammation, called inflammageing, and various comorbidities. Nevertheless, a decrease of glomerular filtration rate (GFR) occurs independent of the presence of comorbidities and a steady decline of GFR has been reported in both healthy men and women. Pharmacodynamic of many drugs is altered by these changes. Additionally the rate of diuretic resistance appears to be increased. The cause of AKI occurrence in older age is, multifactorial and includes preventable triggers (hypovolemia, hypotension, nephrotoxins) as well as changes associated with aging. SUMMARY Age-related alterations of the kidneys were found at microscopic and macroscopic levels of the cell. These changes lead to a reduced renal reserve and subsequently to an increased vulnerability of aged kidneys when an additional stressor is added. Age is an independent risk factor for developing AKI. Physicians should take into account the altered renal function in elderly patients and take renal protective measures at an early stage.
Collapse
Affiliation(s)
- Fabian Perschinka
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Naomi Boyer
- Department of Critical Care, Royal Surrey Foundation Trust
| | - Lui G Forni
- Department of Critical Care, Royal Surrey Foundation Trust
- School of Medicine, Faculty of Health Sciences, University of Surrey, Guildford, Surrey, UK
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
易 香, 何 娅, 陈 客. [Research Progress in Stress-Induced Senescence of Renal Tubular Cells in Diabetic Nephropathy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1085-1090. [PMID: 38162078 PMCID: PMC10752771 DOI: 10.12182/20231160107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 01/03/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Renal tubulointerstitial injury is an important pathophysiological basis that contributes to the progression of DN to end-stage renal disease. Stress-induced senescence of renal tubular epithelial cells (RTECs) forms a key link that causes tubulointerstitial injury. In recent years, it has been reported that organelles, such as endoplasmic reticulum, mitochondria, and lysosomes, in RTECs are damaged to varying degrees in DN, and that their functional imbalance may lead to stress-induced senescence of RTECs, thereby causing sustained cellular and tissue-organ damage, which in turn promotes the progression of the disease. However, the core mechanism underlying changes in the senescence microenvironment caused by stress-induced senescence of RTECs in DN is still not understood. In addition, the mechanism by which organelles lose homeostasis also needs to be further investigated. Herein, we described the specific pathophysiological mechanisms of renal tubular injury, stress-induced senescence of RTECs, and their association with organelles in the context of DN in order to provide reference for the next-step research, as well as the development of new therapeutic strategies.
Collapse
Affiliation(s)
- 香伶 易
- 陆军军医大学大坪医院 肾内科 (重庆 400042)Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 娅妮 何
- 陆军军医大学大坪医院 肾内科 (重庆 400042)Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 客宏 陈
- 陆军军医大学大坪医院 肾内科 (重庆 400042)Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
36
|
Lee CT, Ng HY, Zhong HR, Wang Y, Liu CH, Lee YT. Ageing-Related Alterations in Renal Epithelial Glucose Transport. Int J Mol Sci 2023; 24:16455. [PMID: 38003644 PMCID: PMC10671470 DOI: 10.3390/ijms242216455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The kidney plays a crucial role in glucose homeostasis by regulating glucose transport. We aimed to investigate the impact of alterations in glucose transport on glucose metabolism during ageing. Adult male Sprague Dawley rats were divided into five groups: 3-month, 6-month, and 12-month control groups, and 6- and 12-month groups receiving the hydrogen sulfide donor molecule GYY4137. The study found that, as age increased, daily urinary uric acid and protein levels increased in the 12-month group. Blood sugar level and HOMA-IR index increased in the 12-month group, and were partially improved by GYY4137. The kidney tissue showed mild glomerulosclerosis in the 12-month group, which was diminished by GYY4137. Gene expression analysis showed decreased sirtuin and increased p21 expression in the aging groups. Increased SGLT1 and SGLT2 expression was observed in the 12-month group, which was reversed by GYY4137. Both GLUT1 and GLUT2 expression was increased in the 6- and 12-month groups, and reversed by GYY4137 in the 12-month group. The study concluded that aging was associated with increased blood sugar levels and the HOMA-IR index, and the abundance of renal glucose transporters increased as aging progressed. GYY4137 effectively reversed aging-related alterations in glucose homeostasis and renal epithelial transporters.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hua-Rong Zhong
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
| | - Yi Wang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chih-Han Liu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yuai-Ting Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
| |
Collapse
|
37
|
Yang L, Chen Y, Huang W. What Links Chronic Kidney Disease and Ischemic Cardiomyopathy? A Comprehensive Bioinformatic Analysis Utilizing Bulk and Single-Cell RNA Sequencing Data with Machine Learning. Life (Basel) 2023; 13:2215. [PMID: 38004354 PMCID: PMC10672726 DOI: 10.3390/life13112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic kidney disease (CKD) emerges as a substantial contributor to various cardiovascular disorders, including ischemic cardiomyopathy (ICM). However, the underlying molecular mechanisms linking CKD and ICM remain elusive. Our study aims to unravel these connections by integrating publicly available bulk and single-cell RNA sequencing (scRNA-seq) data. Expression profiles from two ICM datasets obtained from heart tissue and one CKD with Peripheral Blood Mononuclear Cell (CKD-PBMC) dataset were collected. We initiated by identifying shared differentially expressed genes (DEGs) between ICM and CKD. Subsequent functional enrichment analysis shed light on the mechanisms connecting CKD to ICM. Machine learning algorithms enabled the identification of 13 candidate genes, including AGRN, COL16A1, COL1A2, FAP, FRZB, GPX3, ITIH5, NFASC, PTN, SLC38A1, STARD7, THBS2, and VPS35. Their expression patterns in ICM were investigated via scRNA-seq data analysis. Notably, most of them were enriched in fibroblasts. COL16A1, COL1A2, PTN, and FAP were enriched in scar-formation fibroblasts, while GPX3 and THBS2 showed enrichment in angiogenesis fibroblasts. A Gaussian naïve Bayes model was developed for diagnosing CKD-related ICM, bolstered by SHapley Additive exPlanations interpretability and validated internally and externally. In conclusion, our investigation unveils the extracellular matrix's role in CKD and ICM interplay, identifies 13 candidate genes, and showcases their expression patterns in ICM. We also constructed a diagnostic model using 13 gene features and presented an innovative approach for managing CKD-related ICM through serum-based diagnostic strategies.
Collapse
Affiliation(s)
- Lingzhi Yang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| | - Yunwei Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Wei Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| |
Collapse
|
38
|
Tanriover C, Copur S, Mutlu A, Peltek IB, Galassi A, Ciceri P, Cozzolino M, Kanbay M. Early aging and premature vascular aging in chronic kidney disease. Clin Kidney J 2023; 16:1751-1765. [PMID: 37915901 PMCID: PMC10616490 DOI: 10.1093/ckj/sfad076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 11/03/2023] Open
Abstract
Aging is the progressive decline of body functions and a number of chronic conditions can lead to premature aging characterized by frailty, a diseased vasculature, osteoporosis, and muscle wasting. One of the major conditions associated with premature and accelerated aging is chronic kidney disease (CKD), which can also result in early vascular aging and the stiffening of the arteries. Premature vascular aging in CKD patients has been considered as a marker of prognosis of mortality and cardiovascular morbidity and therefore requires further attention. Oxidative stress, inflammation, advanced glycation end products, fructose, and an aberrant gut microbiota can contribute to the development of early aging in CKD patients. There are several key molecular pathways and molecules which play a role in aging and vascular aging including nuclear factor erythroid 2-related factor 2 (Nrf-2), AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and klotho. Potential therapeutic strategies can target these pathways. Future studies are needed to better understand the importance of premature aging and early vascular aging and to develop therapeutic alternatives for these conditions.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Andrea Galassi
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
39
|
Hughes BK, Wallis R, Bishop CL. Yearning for machine learning: applications for the classification and characterisation of senescence. Cell Tissue Res 2023; 394:1-16. [PMID: 37016180 PMCID: PMC10558380 DOI: 10.1007/s00441-023-03768-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/05/2023] [Indexed: 04/06/2023]
Abstract
Senescence is a widely appreciated tumour suppressive mechanism, which acts as a barrier to cancer development by arresting cell cycle progression in response to harmful stimuli. However, senescent cell accumulation becomes deleterious in aging and contributes to a wide range of age-related pathologies. Furthermore, senescence has beneficial roles and is associated with a growing list of normal physiological processes including wound healing and embryonic development. Therefore, the biological role of senescent cells has become increasingly nuanced and complex. The emergence of sophisticated, next-generation profiling technologies, such as single-cell RNA sequencing, has accelerated our understanding of the heterogeneity of senescence, with distinct final cell states emerging within models as well as between cell types and tissues. In order to explore data sets of increasing size and complexity, the senescence field has begun to employ machine learning (ML) methodologies to probe these intricacies. Most notably, ML has been used to aid the classification of cells as senescent, as well as to characterise the final senescence phenotypes. Here, we provide a background to the principles of ML tasks, as well as some of the most commonly used methodologies from both traditional and deep ML. We focus on the application of these within the context of senescence research, by addressing the utility of ML for the analysis of data from different laboratory technologies (microscopy, transcriptomics, proteomics, methylomics), as well as the potential within senolytic drug discovery. Together, we aim to highlight both the progress and potential for the application of ML within senescence research.
Collapse
Affiliation(s)
- Bethany K Hughes
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Ryan Wallis
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Cleo L Bishop
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
40
|
Ren LL, Miao H, Wang YN, Liu F, Li P, Zhao YY. TGF-β as A Master Regulator of Aging-Associated Tissue Fibrosis. Aging Dis 2023; 14:1633-1650. [PMID: 37196129 PMCID: PMC10529747 DOI: 10.14336/ad.2023.0222] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
Fibrosis is the abnormal accumulation of extracellular matrix proteins such as collagen and fibronectin. Aging, injury, infections, and inflammation can cause different types of tissue fibrosis. Numerous clinical investigations have shown a correlation between the degree of liver and pulmonary fibrosis in patients and telomere length and mitochondrial DNA content, both of which are signs of aging. Aging involves the gradual loss of tissue function over time, which results in the loss of homeostasis and, ultimately, an organism's fitness. A major feature of aging is the accumulation of senescent cells. Senescent cells abnormally and continuously accumulate in the late stages of life, contributing to age-related fibrosis and tissue deterioration, among other aging characteristics. Furthermore, aging generates chronic inflammation, which results in fibrosis and decreases organ function. This finding suggests that fibrosis and aging are closely related. The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in the physiological and pathological processes of aging, immune regulation, atherosclerosis, and tissue fibrosis. In this review, the functions of TGF-β in normal organs, aging, and fibrotic tissues is discussed: TGF-β signalling is altered with age and is an indicator of pathology associated with tissue fibrosis. In addition, this review discusses the potential targeting of noncoding.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Luo P, Zhang H, Liang Y, Li X, Wen Z, Xia C, Lan X, Yang Y, Xiong Y, Huang J, Ling X, Zhou S, Miao J, Shen W, Hou FF, Liu Y, Zhou L, Liang M. Pentraxin 3 plays a key role in tubular cell senescence and renal fibrosis through inducing β-catenin signaling. Biochim Biophys Acta Mol Basis Dis 2023:166807. [PMID: 37453582 DOI: 10.1016/j.bbadis.2023.166807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Renal fibrosis is the common pathological feature of various chronic kidney diseases (CKD). Tubular cell senescence plays a key role in the progression of renal fibrosis. However, the underlying mechanisms are still in mystery. In this study, we identified, Pentraxin 3 (PTX3), belonging to the Pentraxin family, is a new fibrogenic factor. PTX3 was increased in various CKD models. PTX3 was primarily localized in tubular epithelial cells and upregulated, accompanied by mitochondrial dysfunction and cellular senescence. Overexpression of PTX3 aggravated mitochondrial damage and accelerated cell senescence in tubular cells, leading to more severe fibrogenesis in kidneys. However, knockout of PTX3 significantly preserved mitochondrial homeostasis, and blocked cellular senescence in primary cultured tubular cells. Furthermore, KYA1797K, a destabilizer of β-catenin, greatly inhibited PTX3-induced mitochondrial homeostasis, tubular cell senescence, and renal fibrosis. Overexpression of PTX3 triggered nuclear translocation of β-catenin, an activating form of β-catenin. PTX3-induced mitochondrial dysfunction and tubular cell senescence were also significantly inhibited by knockdown of p16INK4A, a senescence-related protein. In a clinical cohort, we found PTX3 was increased in urine and serum in clinical patients with CKD. Urinary PTX3 negatively correlated with the decline of eGFR. PTX3 also increased gradually following the severity of diseases, triggering the fibrogenesis. Taken together, our results provide strong evidences that PTX3 is a new fibrogenic factor in the development of renal fibrosis through β-catenin-induced mitochondrial dysfunction and cell senescence. This study further suggests PTX3 is a new diagnostic factor to renal fibrosis and provides a new therapeutic target against renal fibrosis.
Collapse
Affiliation(s)
- Pei Luo
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Haixia Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Ye Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xiaolong Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Zhen Wen
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Chaoying Xia
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xiaolei Lan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yaya Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yabing Xiong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Jiewu Huang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xian Ling
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Shan Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Jinhua Miao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Weiwei Shen
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Lili Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| | - Min Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
42
|
Wolf U, Ghadir H, Drewas L, Neef R. Underdiagnosed CKD in Geriatric Trauma Patients and Potent Prevention of Renal Impairment from Polypharmacy Risks through Individual Pharmacotherapy Management (IPM-III). J Clin Med 2023; 12:4545. [PMID: 37445580 DOI: 10.3390/jcm12134545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The aging global patient population with multimorbidity and concomitant polypharmacy is at increased risk for acute and chronic kidney disease, particularly with severe additional disease states or invasive surgical procedures. Because from the expertise of more than 58,600 self-reviewed medications, adverse drug reactions, drug interactions, inadequate dosing, and contraindications all proved to cause or exacerbate the worsening of renal function, we analyzed the association of an electronic patient record- and Summaries of Product Characteristics (SmPCs)-based comprehensive individual pharmacotherapy management (IPM) in the setting of 14 daily interdisciplinary patient visits with the outcome: further renal impairment with reduction of eGFR ≥ 20 mL/min (redGFR) in hospitalized trauma patients ≥ 70 years of age. The retrospective clinical study of 404 trauma patients comparing the historical control group (CG) before IPM with the IPM intervention group (IG) revealed a group-match in terms of potential confounders such as age, sex, BMI, arterial hypertension, diabetes mellitus, and injury patterns. Preexisting chronic kidney disease (CKD) > stage 2 diagnosed as eGFR < 60 mL/min/1.73 m2 on hospital admission was 42% in the CG versus 50% in the IG, although in each group only less than 50% of this was coded as an ICD diagnosis in the patients' discharge letters (19% in CG and 21% in IG). IPM revealed an absolute risk reduction in redGFR of 5.5% (11 of 199 CG patients) to 0% in the IPM visit IG, a relative risk reduction of 100%, NNT 18, indicating high efficacy of IPM and benefit in improving outcomes. There even remained an additive superimposed significant association that included patients in the IPM group before/beyond the 14 daily IPM interventions, with a relative redGFR risk reduction of 0.55 (55%) to 2.5% (5 of 204 patients), OR 0.48 [95% CI 0.438-0.538] (p < 0.001). Bacteriuria, loop diuretics, allopurinol, eGFR ≥ 60 mL/min/1.73 m2, eGFR < 60 mL/min/1.73 m2, and CKD 3b were significantly associated with redGFR; of the latter, 10.5% developed redGFR. Further multivariable regression analysis adjusting for these and established risk factors revealed an additive, superimposed IPM effect on redGFR with an OR 0.238 [95% CI 0.06-0.91], relative risk reduction of 76.2%, regression coefficient -1.437 including patients not yet visited in the IPM period. As consequences of the IPM procedure, the IG differed from the CG by a significant reduction of NSAIDs (p < 0.001), HCT (p = 0.028) and Würzburger pain drip (p < 0.001), and significantly increased prescription rate of antibiotics (p = 0.004). In conclusion, (1) more than 50% of CKD in geriatric patients was not pre-recognized and underdiagnosed, and (2) the electronic patient records-based IPM interdisciplinary networking strategy was associated with effective prevention of further periinterventional renal impairment and requires obligatory implementation in all elderly patients to urgently improve patient and drug safety.
Collapse
Affiliation(s)
- Ursula Wolf
- Pharmacotherapy Management, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Hassan Ghadir
- Medical Clinic II, University Hospital Schleswig-Holstein, Lübeck Campus, 23562 Lübeck, Germany
| | - Luise Drewas
- Internal Medicine Clinic II, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Rüdiger Neef
- Department of Orthopedics, Trauma and Reconstructive Surgery, Division of Geriatric Traumatology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
43
|
Wang Y, Che L, Chen X, He Z, Song D, Yuan Y, Liu C. Repurpose dasatinib and quercetin: Targeting senescent cells ameliorates postmenopausal osteoporosis and rejuvenates bone regeneration. Bioact Mater 2023; 25:13-28. [PMID: 37056256 PMCID: PMC10088057 DOI: 10.1016/j.bioactmat.2023.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Clinical therapies developed for estrogen-deficiency-driven postmenopausal osteoporosis (PMO) and related diseases, such as bone degeneration, show multiple adverse effects nowadays. Targeting senescent cells (SnCs) and the consequent senescence-associated secretory phenotype (SASP) with a combination of dasatinib and quercetin (DQ) is a recently developed novel therapy for multiple age-related diseases. Herein, we found that estrogen deficiency induced-bone loss was attributed to a pro-inflammatory microenvironment with SASP secretions and accelerated SnC accumulation, especially senescent mesenchymal stem cells (MSCs) characterized by exhaustion and dysfunction in middle aged rats. Systematically targeting SnCs with DQ strikingly ameliorated PMO and restored MSC function. Local administration of DQ and bone morphogenetic protein 2 (BMP2) in combination promoted osteogenic differentiation of MSCs and rejuvenated osteoporotic bone regeneration. Our results repurposed DQ as an attractive therapy for treating PMO and related diseases.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zirui He
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
44
|
Chen HY, Wu YH, Wei CY, Liao ZY, Wu HT, Chen YC, Pang JHS. Incomplete Recovery from the Radiocontrast-Induced Dysregulated Cell Cycle, Adhesion, and Fibrogenesis in Renal Tubular Cells after Radiocontrast (Iohexol) Removal. Int J Mol Sci 2023; 24:10945. [PMID: 37446141 DOI: 10.3390/ijms241310945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Contrast-induced nephropathy (CIN) is one of the most common causes of acute kidney injury (AKI). However, management is still limited, and the cellular response to radiocontrast removal for CIN remains unclear. This study aimed to explore the latent effects of iohexol in cultured renal tubular cells with or without the removal of iohexol by medium replacement. HK2 renal tubular cells were subcultured 24 h before use in CIN experiments. Three treatment groups were established: the control, a radiocontrast (iohexol)-only group at 75 mg I/mL (I-75), and iohexol exposure for 24 h with culture medium replacement (I-75/M). Cell cycle arrest, fibrogenic mediator assays, cell viability, cell function, and cell-cycle-related protein expression were compared between groups. Iohexol induced numerous changes in HK2 renal tubular cells, such as enlarged cell shape, cell cycle arrest, increased apoptosis, and polyploidy. Iohexol inhibited the expression of cyclins, CDKs, ZO-1, and E-cadherin but conversely enhanced the expression of p21 and fibrosis-related genes, including TGF-β1, CTGF, collagen I, collagen III, and HIF-1α within 60 hr after the exposure. Except for the recovery from cell cycle arrest and cell cycle gene expression, notably, the removal of iohexol by medium replacement could not fully recover the renal tubular cells from the formation of polyploid cells, the adhesion or spreading, or the expression of fibrosis-related genes. The present study demonstrates, for the first time, that iohexol exerts latent cytotoxic effects on cultured renal tubular cells after its removal, suggesting that these irreversible cell changes may cause the insufficiency of radiocontrast reduction in CIN, which is worth investigating further.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Yu Wei
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Zhi-Yao Liao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiao-Ting Wu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Chang Chen
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33342, Taiwan
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33342, Taiwan
| |
Collapse
|
45
|
Harris AS, Aratani S, Johmura Y, Suzuki N, Dan L, Nakanishi M. In vivo dynamics of senescence in rhabdomyolysis-induced acute kidney injury. Biochem Biophys Res Commun 2023; 673:121-130. [PMID: 37385006 DOI: 10.1016/j.bbrc.2023.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Cellular senescence is involved in the pathogenesis of various diseases, including acute kidney injury (AKI). AKI is defined as a sudden loss of kidney function. In severe AKI, irreversible loss of kidney cells can occur. Cellular senescence might contribute to this maladaptive tubular repair, though, its pathophysiological role in vivo is incompletely understood. In this study, we used p16-CreERT2-tdTomato mice in which cells with high p16 expression, a prototypical senescent marker, are labeled with tdTomato fluorescence. Then, we induced AKI by rhabdomyolysis and traced the cells with high p16 expression following AKI. We proved that the induction of senescence was observed predominantly in proximal tubular epithelial cells (PTECs) and occurred in a relatively acute phase within 1-3 days after AKI. These acute senescent PTECs were spontaneously eliminated by day 15. On the contrary, the generation of senescence in PTECs persisted during the chronic recovery phase. We also confirmed that the kidney function did not fully recover on day 15. These results suggest that the chronic generation of senescent PTECs might contribute to maladaptive recovery from AKI and lead to chronic kidney disease progression.
Collapse
Affiliation(s)
- Alexander S Harris
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sae Aratani
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Narumi Suzuki
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Li Dan
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
46
|
Pramotton FM, Abukar A, Hudson C, Dunbar J, Potterton A, Tonnicchia S, Taddei A, Mazza E, Giampietro C. DYRK1B inhibition exerts senolytic effects on endothelial cells and rescues endothelial dysfunctions. Mech Ageing Dev 2023; 213:111836. [PMID: 37301518 DOI: 10.1016/j.mad.2023.111836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Aging is the major risk factor for chronic disease development. Cellular senescence is a key mechanism that triggers or contributes to age-related phenotypes and pathologies. The endothelium, a single layer of cells lining the inner surface of a blood vessel, is a critical interface between blood and all tissues. Many studies report a link between endothelial cell senescence, inflammation, and diabetic vascular diseases. Here we identify, using combined advanced AI and machine learning, the Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1B (DYRK1B) protein as a possible senolytic target for senescent endothelial cells. We demonstrate that upon induction of senescence in vitro DYRK1B expression is increased in endothelial cells and localized at adherens junctions where it impairs their proper organization and functions. DYRK1B knock-down or inhibition restores endothelial barrier properties and collective behavior. DYRK1B is therefore a possible target to counteract diabetes-associated vascular diseases linked to endothelial cell senescence.
Collapse
Affiliation(s)
- Francesca M Pramotton
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland; Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Asra Abukar
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland; Senecell AG, Zurich 8057, Switzerland
| | | | | | | | - Simone Tonnicchia
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland; Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | | | - Edoardo Mazza
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland; Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Costanza Giampietro
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland; Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland; Senecell AG, Zurich 8057, Switzerland.
| |
Collapse
|
47
|
Li M, Wang D, Liu Z, Huang Y, Zhang Q, Pan C, Lin Y, Sun L, Zheng Y. Assessing the effects of aging on the renal endothelial cell landscape using single-cell RNA sequencing. Front Genet 2023; 14:1175716. [PMID: 37214419 PMCID: PMC10196692 DOI: 10.3389/fgene.2023.1175716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Endothelial cells (ECs) with senescence-associated secretory phenotypes (SASP) have been identified as a key mechanism of aging that contributes to various age-related kidney diseases. In this study, we used single-cell RNA sequencing (scRNA-seq) to create a transcriptome atlas of murine renal ECs and identify transcriptomic changes that occur during aging. We identified seven different subtypes of renal ECs, with glomerular ECs and angiogenic ECs being the most affected by senescence. We confirmed our scRNA-seq findings by using double immunostaining for an EC marker (CD31) and markers of specialized EC phenotypes. Our analysis of the dynamics of capillary lineage development revealed a chronic state of inflammation and compromised glomerular function as prominent aging features. Additionally, we observed an elevated pro-inflammatory and pro-coagulant microenvironment in aged glomerular ECs, which may contribute to age-related glomerulosclerosis and renal fibrosis. Through intercellular communication analysis, we also identified changes in signaling involved in immune regulation that may contribute to a hostile microenvironment for renal homeostasis and function. Overall, our findings provide new insights into the mechanisms of aging in the renal endothelium and may pave the way for the discovery of diagnostic biomarkers and therapeutic interventions against age-related kidney diseases.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Guo E, Sun L, Chen W, Liu C, Chen K, Jiang X, Qin X, Su J, Yang F, Tian H. Young human PRP promotes the rejuvenation of aged bone marrow mesen -chymal stem cells and the therapeutic effect on ischemic heart disease. Eur J Pharmacol 2023; 950:175775. [PMID: 37150499 DOI: 10.1016/j.ejphar.2023.175775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Bone marrow mesenchymal stem cell (BMSC) transplantation is an effective treatment for ischemic heart disease, but its effectiveness is limited in aging populations due to decreased viability and injury resistance of autologous BMSCs. The purpose of this study was to compare the differences between platelet-rich plasma (PRP) derived from young and aged donors, and to investigate whether it is possible to enhance the viability of elderly human BMSCs (hBMSCs) using PRP, and to apply the rejuvenated hBMSCs for the treatment of ischemia. The key growth factors in PRP, including IGF-1, EGF, and PDGF-BB, were found to have significant differences between young and old individuals. Our results showed that PRP could enhance the proliferation, cloning, and rejuvenation of aged hBMSCs, with a superior effect observed when using PRP derived from younger donors. In the SD rat infarct model, the application of hBMSCs optimized with PRP resulted in a smaller infarct area compared to the control group (NC-Old). Specifically, the infarct area in the group treated with hBMSCs cultured with PRP from young donors (YPRP-Old) was smaller than that in the group treated with PRP from older donors (OPRP-Old). The survival rate of hBMSCs after transplantation, the number of neovascularization in the infarct area of SD rats and the recovery of cardiac function were all higher in the YPRP-Old group than the OPRP-Old group, and both groups were better than the group treated with aged hBMSCs alone. In conclusion, PRP may provide a new stem cell transplantation therapy option for ischemic diseases.
Collapse
Affiliation(s)
- Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lu Sun
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xingpei Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianling Su
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Fan Yang
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
49
|
Ribeiro A, Liu F, Srebrzynski M, Rother S, Adamowicz K, Wadowska M, Steiger S, Anders HJ, Schmaderer C, Koziel J, Lech M. Uremic Toxin Indoxyl Sulfate Promotes Macrophage-Associated Low-Grade Inflammation and Epithelial Cell Senescence. Int J Mol Sci 2023; 24:ijms24098031. [PMID: 37175735 PMCID: PMC10179130 DOI: 10.3390/ijms24098031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we investigated the impact of the uremic toxin indoxyl sulfate on macrophages and tubular epithelial cells and its role in modulating the response to lipopolysaccharide (LPS). Indoxyl sulfate accumulates in the blood of patients with chronic kidney disease (CKD) and is a predictor of overall and cardiovascular morbidity/mortality. To simulate the uremic condition, primary macrophages and tubular epithelial cells were incubated with indoxyl sulfate at low concentrations as well as concentrations found in uremic patients, both alone and upon LPS challenge. The results showed that indoxyl sulfate alone induced the release of reactive oxygen species and low-grade inflammation in macrophages. Moreover, combined with LPS (proinflammatory conditions), indoxyl sulfate significantly increased TNF-α, CCL2, and IL-10 release but did not significantly affect the polarization of macrophages. Pre-treatment with indoxyl sulfate following LPS challenge induced the expression of aryl hydrocarbon receptor (Ahr) and NADPH oxidase 4 (Nox4) which generate reactive oxygen species (ROS). Further, experiments with tubular epithelial cells revealed that indoxyl sulfate might induce senescence in parenchymal cells and therefore participate in the progression of inflammaging. In conclusion, this study provides evidence that indoxyl sulfate provokes low-grade inflammation, modulates macrophage function, and enhances the inflammatory response associated with LPS. Finally, indoxyl sulfate signaling contributes to the senescence of tubular epithelial cells during injury.
Collapse
Affiliation(s)
- Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Department of Nephrology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Feiyue Liu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Matthias Srebrzynski
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Simone Rother
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Stefanie Steiger
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
50
|
Li S, Livingston MJ, Ma Z, Hu X, Wen L, Ding HF, Zhou D, Dong Z. Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity. JCI Insight 2023; 8:e166643. [PMID: 36917180 PMCID: PMC10243740 DOI: 10.1172/jci.insight.166643] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cisplatin is a widely used chemotherapy drug; however, it induces both acute and chronic kidney diseases (CKD) in patients with cancer. The pathogenesis of cisplatin-induced CKD is unclear, and effective renoprotective approaches are not available. Here, we report that repeated low-dose cisplatin (RLDC) treatment of C57BL/6 mice induced chronic cellular senescence in kidney tubules, accompanied with tubular degeneration and profibrotic phenotype transformation that culminated in maladaptive repair and renal fibrosis. Suppression of tubular senescence by senolytic drugs ABT-263 and Fisetin attenuated renal fibrosis and improved tubular repair, as indicated by restoration of tubular regeneration and renal function. In vitro, RLDC also induced senescence in mouse proximal tubular (BUMPT) cells. ABT-263 eliminated senescent BUMPT cells following RLDC treatment, reversed the profibrotic phenotype of the cells, and increased their clonogenic activity. Moreover, ABT-263 alleviated the paracrine effect of RLDC-treated BUMPT cells on fibroblasts for fibrosis. Consistently, knockdown of p16 suppressed post-RLDC senescence and fibrotic changes in BUMPT cells and alleviated their paracrine effects on renal fibroblast proliferation. These results indicate that persistent induction of tubular senescence plays an important role in promoting cisplatin-induced CKD. Targeting senescent tubular cells may be efficient for improvement of kidney repair and for the prevention and treatment of cisplatin-induced CKD.
Collapse
Affiliation(s)
- Siyao Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xiaoru Hu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Lu Wen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Han-Fei Ding
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Daohong Zhou
- Center for Innovative Drug Development and Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|