1
|
Song M, Lim KM, Song K, Kang GH, Kim SJ, Lee Y, Yu S, Jeong KH, Cho SG. Efficient Treatment of Psoriasis Using Conditioned Media from Mesenchymal Stem Cell Spheroids Cultured to Produce Transforming Growth Factor- β1-Enriched Small-Sized Extracellular Vesicles. Int J Stem Cells 2024; 17:407-417. [PMID: 39396918 PMCID: PMC11612221 DOI: 10.15283/ijsc24089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Psoriasis is a common chronic inflammatory disease in which keratinocytes proliferate abnormally due to excessive immune action. Psoriasis can be associated with various comorbidities and has a significant impact on health-related quality of life. Although many systemic treatments, including biologic agents, have been developed, topical treatment remains the main option for psoriasis management. Consequently, there is an urgent need to develop topical treatments with minimal side effects and high efficacy. Mesenchymal stem cells (MSCs) exhibit excellent immune regulation, anti-inflammatory activities, and therapeutic effects, and MSC-derived extracellular vesicles (EVs) can serve as crucial mediators of functional transfer from MSCs. Therefore, this study aimed to develop a safe and easy-to-use emulsion cream for treating psoriasis using MSC conditioned media (CM) containing EVs. We developed an enhanced Wharton's jelly MSC (WJ-MSC) culture method through a three-dimensional (3D) culture containing exogenous transforming growth factor-β3. Using the 3D culture system, we obtained CM from WJ-MSCs, which yielded a higher EV production compared to that of conventional WJ-MSC culture methods, and investigated the effect of EV-enriched 3D-WJ-MSC-CM cream on psoriasis-related inflammation. Administration of the EV-enriched 3D-WJ-MSC-CM cream significantly reduced erythema, thickness, and scaling of skin lesions, alleviated imiquimod-induced psoriasiform lesions in mice, and ameliorated histopathological changes in mouse skin. The upregulated mRNA expression of inflammatory cytokines, including IL-17a, IL-22, IL-23, and IL-36, decreased in the lesions. In conclusion, we present here a new topical treatment for psoriasis using an MSC EV-enriched cream.
Collapse
Affiliation(s)
- Myeongjin Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
- R&D Team, StemExOne Co., Ltd., Seoul, Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
- R&D Team, StemExOne Co., Ltd., Seoul, Korea
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
- R&D Team, StemExOne Co., Ltd., Seoul, Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
- R&D Team, StemExOne Co., Ltd., Seoul, Korea
| | - Se Jong Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
- R&D Team, StemExOne Co., Ltd., Seoul, Korea
| | - Youngseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
| | - Sujin Yu
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
| | - Ki-Heon Jeong
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
- R&D Team, StemExOne Co., Ltd., Seoul, Korea
| |
Collapse
|
2
|
Knödlseder N, Fábrega MJ, Santos-Moreno J, Manils J, Toloza L, Marín Vilar M, Fernández C, Broadbent K, Maruotti J, Lemenager H, Carolis C, Zouboulis CC, Soler C, Lood R, Brüggemann H, Güell M. Delivery of a sebum modulator by an engineered skin microbe in mice. Nat Biotechnol 2024; 42:1661-1666. [PMID: 38195987 DOI: 10.1038/s41587-023-02072-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024]
Abstract
Microorganisms can be equipped with synthetic genetic programs for the production of targeted therapeutic molecules. Cutibacterium acnes is the most abundant commensal of the human skin, making it an attractive chassis to create skin-delivered therapeutics. Here, we report the engineering of this bacterium to produce and secrete the therapeutic molecule neutrophil gelatinase-associated lipocalin, in vivo, for the modulation of cutaneous sebum production.
Collapse
Affiliation(s)
- Nastassia Knödlseder
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - María-José Fábrega
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Santos-Moreno
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Manils
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Toloza
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Marín Vilar
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Fernández
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Katrina Broadbent
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | | | | | - Carlo Carolis
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | - Christos C Zouboulis
- Hochschulklinik für Dermatologie, Venerologie und Allergologie, Immunologisches Zentrum; Städtisches Klinikum Dessau; and Medizinische Hochschule Brandenburg Theodor Fontane und Fakultät für Gesundheitswissenschaften Brandenburg, Dessau-Roßlau, Germany
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Rolf Lood
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
3
|
Yin L, Zhang E, Mao T, Zhu Y, Ni S, Li Y, Liu C, Fang Y, Ni K, Lu Y, Li H, Zhou M, Hu Q. Macrophage P2Y 6R activation aggravates psoriatic inflammation through IL-27-mediated Th1 responses. Acta Pharm Sin B 2024; 14:4360-4377. [PMID: 39525587 PMCID: PMC11544167 DOI: 10.1016/j.apsb.2024.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Purinergic signaling plays a causal role in the modulation of immune inflammatory response in the course of psoriasis, but its regulatory mechanism remains unclear. As a member of purinoceptors, P2Y6R mainly distributed in macrophages was significantly up-expressed in skin lesions from patients with psoriasis in the present study. Here, the severity of psoriasis was alleviated in imiquimod-treated mice with macrophages conditional knockout of P2Y6R, while the cell-chat algorithm showed there was a correlation between macrophage P2Y6R and Th1 cells mediated by IL-27. Mechanistically, P2Y6R enhanced PLC β /p-PKC/MAPK activation to induce IL-27 release dependently, which subsequently regulated the differentiation of Th1 cells, leading to erythematous and scaly plaques of psoriasis. Interestingly, we developed a novel P2Y6R inhibitor FS-6, which bonds with the ARG266 side chain of P2Y6R, exhibited remarkable anti-psoriasis effects targeting P2Y6R. Our study provides insights into the role of P2Y6R in the pathogenesis of psoriasis and suggests its potential as a target for the development of therapeutic interventions. A novel P2Y6R inhibitor FS-6 could be developed as an anti-psoriasis drug candidate for the clinic.
Collapse
Affiliation(s)
- Li Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Enming Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shurui Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yehong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhe Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Park S, Jang J, Kim HJ, Jung Y. Unveiling multifaceted roles of myeloid innate immune cells in the pathogenesis of psoriasis. Mol Aspects Med 2024; 99:101306. [PMID: 39191143 DOI: 10.1016/j.mam.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide. Initially viewed as a keratinocyte disorder, psoriasis is now recognized to involve a complex interplay between genetic predisposition, environmental triggers, and a dysregulated immune system, with a significant role of CD4+ T cells producing IL-17. Recent genetic studies have identified susceptibility loci that underscore the importance of innate immune responses, particularly the roles of myeloid cells, such as dendritic cells, macrophages, and neutrophils. These cells initiate and sustain inflammation through cytokine production triggered by external stimuli. They influence keratinocyte behavior and interact with adaptive immune cells. Recent techniques have further revealed the heterogeneity of myeloid cells in psoriatic lesions, highlighting the contributions of less-studied subsets, such as eosinophils and mast cells. This review examines the multifaceted roles of myeloid innate immune cells in psoriasis, emphasizing their functional diversity in promoting psoriatic inflammation. It also describes current treatment targeting myeloid innate immune cells and explores potential new therapeutic strategies based on the functional characteristics of these subsets. Future research should focus on the detailed characterization of myeloid subsets and their interactions to develop targeted treatments that address the complex immune landscape of psoriasis.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
5
|
Gao Y, Zhan W, Guo D, Lin H, Farooq MA, Jin C, Zhang L, Zhou Y, Yao J, Duan Y, He C, Jiang S, Jiang W. GPR97 depletion aggravates imiquimod-induced psoriasis pathogenesis via amplifying IL-23/IL-17 axis signal pathway. Biomed Pharmacother 2024; 179:117431. [PMID: 39260323 DOI: 10.1016/j.biopha.2024.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Skin psoriasis is defined as receiving external stimulation to activate skin dendritic cells (DCs) which can release interleukin 23 (IL-23) to interlink the innate and adaptive immunity as well as induce T helper 17 (Th17) cell differentiation leading to elevated production of interleukin 17 (IL-17) for keratinocytes over production. This autoimmune loop in psoriasis pathogenesis is influenced by G protein-coupled receptor (GPCR) signalling transduction, and in particular, function of adhesion molecule GPR97 in psoriasis endures to be utterly addressed. In this research, our team allocated GPR97 depletion (GPR97-/-), GPR97 conditional depletion on dendritic cell (DC-cKO), and keratin 14-conditional knockout (K14-cKO) mice models to explore the function of GPR97 which influences keratinocytes and skin immunity. It was found that significantly aggravated psoriasis-like lesion in GPR97-/- mice. In addition, hyperproliferative keratinocytes as well as accumulation of DCs and Th17 cells were detected in imiquimod (IMQ)-induced GPR97-/- mice, which was consistent with the results in DC-cKO and K14-cKO psoriasis model. Additional investigations indicated that beclomethasone dipropionate (BDP), an agonist of GPR97, attenuated the psoriasis-like skin disease and restricted HaCaT cells abnormal proliferation as well as Th17 cells differentiation. Particularly, we found that level of NF-κB p65 was increased in GPR97-/- DCs and BDP could inhibit p65 activation in DCs. Role of GPR97 is indispensable and this adhesion receptor may affect immune cell enrichment and function in skin and alter keratinocytes proliferation as well as differentiation in psoriasis.
Collapse
Affiliation(s)
- Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weirong Zhan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haizhen Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chenxu Jin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cong He
- Laboratory of Cancer Genomics and Biology, Department of Urology and Institute of Translational Medicine. Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute Fudan University, Shanghai 200438, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Krzistetzko J, Géraud C, Dormann C, Riedel A, Leibing T. Phenotypical and biochemical characterization of murine psoriasiform and fibrotic skin disease models in Stabilin-deficient mice. FEBS Open Bio 2024; 14:1455-1470. [PMID: 38946049 PMCID: PMC11492309 DOI: 10.1002/2211-5463.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024] Open
Abstract
Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are scavenger receptors expressed by liver sinusoidal endothelial cells (LSECs). The Stabilin-mediated scavenging function is responsible for regulating the molecular composition of circulating blood in mammals. Stab1 and Stab2 have been shown to influence fibrosis in liver and kidneys and to modulate inflammation in atherosclerosis. In this context, circulating and localized TGFBi and POSTN are differentially controlled by the Stabilins as their receptors. To assess Stab1 and Stab2 functions in inflammatory and fibrotic skin disease, topical Imiquimod (IMQ) was used to induce psoriasis-like skin lesions in mice and Bleomycin (BLM) was applied subcutaneously to induce scleroderma-like effects in the skin. The topical treatment with IMQ, as expected, led to psoriasis-like changes in the skin of mice, including increased epidermal thickness and significant weight loss. Clinical severity was reduced in Stab2-deficient compared to Stab1-deficient mice. We did not observe differential effects in the skin of Stabilin-deficient mice after bleomycin injection. Interestingly, treatment with IMQ led to a significant increase of Stabilin ligand TGFBi plasma levels in Stab2-/- mice, treatment with BLM resulted in a significant decrease in TGFBi levels in Stab1-/- mice. Overall, Stab1 and Stab2 deficiency resulted in minor alterations of the disease phenotypes accompanied by alterations of circulating ligands in the blood in response to the disease models. Stabilin-mediated clearance of TGFBi was altered in these disease processes. Taken together our results suggest that Stabilin deficiency-associated plasma alterations may interfere with preclinical disease severity and treatment responses in patients.
Collapse
Affiliation(s)
- Jessica Krzistetzko
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Christof Dormann
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Anna Riedel
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
7
|
Ando T, Abe Y, Yamaji K, Nishikomori R, Tamura N. A case of cryopyrin-associated periodic syndrome due to somatic mosaic mutation complicated with recurrent circinate erythematous psoriasis. Mod Rheumatol Case Rep 2024; 8:368-372. [PMID: 38036300 DOI: 10.1093/mrcr/rxad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Cryopyrin-associated periotic syndrome (CAPS) is a rare autoinflammatory disease caused by genetic variants in innate immunity genes. Autoinflammatory diseases, including CAPS, mediate proinflammatory cytokines such as interleukin (IL)-1 and IL-18 and result in severe systemic inflammation. A gain-of-function mutation in the NLR family pyrin domain-containing 3 (NLRP3) gene, which encodes the protein cryopyrin, was identified to be responsible for CAPS in 2001, and since then several additional pathogenic mutations have been found. Moreover, other phenotypes have been identified based on severity and symptomatology, including familial cold autoinflammatory syndrome, Muckle-Wells syndrome, and neonatal-onset multisystem inflammatory disease/chronic neurologic cutaneous articular syndrome. Prompt diagnosis of CAPS remains challenging, however, due to unspecific, extensive clinical signs, and delayed diagnosis and treatment targeting IL-1 lead to multiorgan damage. Another factor complicating diagnosis is the existence of somatic mosaic mutations in the NLRP3 gene in some cases, resulting in symptoms and clinical courses that are atypical. The frequency of somatic mosaic mutations in CAPS was estimated to be 19% in a systematic review. Psoriasis is a chronic inflammatory skin disease that affects ∼3% of the global population. Although no reports have shown complication between CAPS and psoriasis, these diseases have several similarities and potential relationships, for instance activation of T helper 17 cells in the dermis and increased NLRP3 gene expression in psoriatic skin compared with normal skin. Here, we report a case of CAPS due to a somatic mosaic mutation with recurrent circinate erythematous psoriasis.
Collapse
Affiliation(s)
- Taiki Ando
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Abe
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryuta Nishikomori
- The Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Wei J, Zhang J, Hu F, Zhang W, Wu Y, Liu B, Lu Y, Li L, Han L, Lu C. Anti-psoriasis effect of 18β-glycyrrhetinic acid by breaking CCL20/CCR6 axis through its vital active group targeting GUSB/ATF2 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155524. [PMID: 38552435 DOI: 10.1016/j.phymed.2024.155524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease. Current research suggests that the long-term persistence and recurrence of psoriasis are closely related to the feedback loop formed between keratinocytes and immune cells, especially in Th 17 or DC cells expressing CCR6. CCL20 is the ligand of CCR6. Therefore, drugs that block the expression of CCL20 or CCR6 may have a certain therapeutic effect on psoriasis. Glycyrrhetinic acid (GA) is the main active ingredient of the plant drug licorice and is often used to treat autoimmune diseases, including psoriasis. However, its mechanism of action is still unclear. METHODS Psoriasis like skin lesion model was established by continuously applying imiquimod on the back skin of normal mice and CCR6-/- mice for 7 days. The therapeutic and preventive effects of glycyrrhetinic acid (GA) on the model were observed and compared. The severity of skin injury is estimated through clinical PASI scores and histopathological examination. qRT-PCR and multiple cytoline assay were explored to detect the expression levels of cytokines in animal dorsal skin lesions and keratinocyte line HaCaT cells, respectively. The dermis and epidermis of the mouse back were separated for the detection of CCL20 expression. Transcription factor assay was applied to screen, and luciferase activity assay to validate transcription factors regulated by GA. Technology of surface plasmon laser resonance with LC-MS (SPR-MS), molecular docking, and enzyme activity assay were used to identified the target proteins for GA. Finally, we synthesized different derivatives of 18beta-GA and compared their effects, as well as glycyrrhetinic acid (GL), on the skin lesion of imiquimod-induced mice to evaluate the active groups of 18beta-GA. RESULTS 18β-glycyrrhetinic acid (GA) improved IMQ-induced psoriatic lesions, and could specifically reduce the chemokine CCL20 level of the epidermis in lesion area, especially in therapeutic administration manner. The process was mainly regulated by transcription factor ATF2 in the keratinocytes. In addition, GUSB was identified as the primary target of 18βGA. Our findings indicated that the subject on molecular target research of glycyrrhizin should be glycyrrhetinic acid (GA) instead of glycyrrhizic acid (GL), because GL showed little activity in vitro or in vivo. Apart from that, α, β, -unsaturated carbonyl in C11/12 positions was crucial or unchangeable to its activity of 18βGA, while proper modification of C3 or C30 position of 18βGA may vastly increase its activity. CONCLUSION Our research indicates that 18βGA exerted its anti-psoriasis effect mainly by suppressing ATF2 and downstream molecule CCL20 predominately through α, β, -unsaturated carbonyl at C11/12 position binding to GUSB in the keratinocytes, and then broke the feedback loop between keratinocytes and CCR6-expressing immune cells. GA has more advantages than GL in the external treatment of psoriasis. A highlight of this study is to investigate the influence of special active groups on the pharmacological action of a natural product, inspired by the molecular docking result.
Collapse
Affiliation(s)
- Jianan Wei
- Research Team of Molecular and Systems Biology of Chinese medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Junhong Zhang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Fengju Hu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wenjuan Zhang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yunshan Wu
- Laboratory of Chinese Medicine Quality Standard, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Bo Liu
- Laboratory of Chinese Medicine Quality Standard, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yue Lu
- Research Team of Molecular and Systems Biology of Chinese medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Li Li
- Research Team of Molecular and Systems Biology of Chinese medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ling Han
- Research Team of Molecular and Systems Biology of Chinese medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Chuanjian Lu
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
9
|
Bharatha M, Nandana MB, Praveen R, Nayaka S, Velmurugan D, Vishwanath BS, Rajaiah R. Unconjugated bilirubin and its derivative ameliorate IMQ-induced psoriasis-like skin inflammation in mice by inhibiting MMP9 and MAPK pathway. Int Immunopharmacol 2024; 130:111679. [PMID: 38377853 DOI: 10.1016/j.intimp.2024.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves dysregulated proliferation of keratinocytes. Psoriatic skin lesions are characterized by redness, thickness, and scaling. The interleukin axis of IL-23/IL-17 is critically involved in the development of human psoriasis. Imiquimod (IMQ), an agonist of TLR7 is known to induce psoriatic-like skin inflammation in mice. The topical application of IMQ induces systemic inflammation with increased proinflammatory cytokines in serum and secondary lymphoid organs. Further, matrix metalloproteases (MMPs) have been implicated in the pathophysiology of psoriatic-like skin inflammation. The increased MMP9 activity and gene expression of proinflammatory cytokines in IMQ-induced psoriatic skin is mediated by the activation of the MAPK pathway. Moreover, the increased expression of neutrophil-specific chemokines confirmed the infiltration of neutrophils at the site of psoriatic skin inflammation. In contrast, expression of IL-10, an anti-inflammatory cytokine gene expression is reduced in IMQ-treated mice skin. Topical application of unconjugated bilirubin (UCB) and its derivative dimethyl ester of bilirubin (BD1) on IMQ-induced psoriatic mice skin significantly mitigated the symptoms of psoriasis by inhibiting the activity of MMP9. Further, UCB and BD1 reduced neutrophil infiltration as evidenced by decreased myeloperoxidase (MPO) activity and reduced gene expression of proinflammatory cytokines, and neutrophil-specific chemokines. Apart from these modulations UCB and BD1 reduced MAPK phosphorylation and upregulated anti-inflammatory cytokines. To conclude, UCB and BD1 immunomodulated the psoriatic skin inflammation induced by IMQ in mice by inhibiting neutrophil mediated MMP9, decreased proinflammatory cytokines gene expression and modulating the MAPK pathway.
Collapse
Affiliation(s)
- Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Spandan Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Devadasan Velmurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| |
Collapse
|
10
|
Kim H, Choi MR, Jeon SH, Jang Y, Yang YD. Pathophysiological Roles of Ion Channels in Epidermal Cells, Immune Cells, and Sensory Neurons in Psoriasis. Int J Mol Sci 2024; 25:2756. [PMID: 38474002 DOI: 10.3390/ijms25052756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the rapid abnormal growth of skin cells in the epidermis, driven by an overactive immune system. Consequently, a complex interplay among epidermal cells, immune cells, and sensory neurons contributes to the development and progression of psoriasis. In these cellular contexts, various ion channels, such as acetylcholine receptors, TRP channels, Ca2+ release-activated channels, chloride channels, and potassium channels, each serve specific functions to maintain the homeostasis of the skin. The dysregulation of ion channels plays a major role in the pathophysiology of psoriasis, affecting various aspects of epidermal cells, immune responses, and sensory neuron signaling. Impaired function of ion channels can lead to altered calcium signaling, inflammation, proliferation, and sensory signaling, all of which are central features of psoriasis. This overview summarizes the pathophysiological roles of ion channels in epidermal cells, immune cells, and sensory neurons during early and late psoriatic processes, thereby contributing to a deeper understanding of ion channel involvement in the interplay of psoriasis and making a crucial advance toward more precise and personalized approaches for psoriasis treatment.
Collapse
Affiliation(s)
- Hyungsup Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| | - Yongwoo Jang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| |
Collapse
|
11
|
Kommoss KS, Bieler T, Ringen J, Lehmann A, Mihalceanu S, Hobohm L, Keller K, Brand A, Fischer B, Kramer D, Wild J, Waisman A, Enk A, Schäkel K, Heikenwälder M, Karbach S. A simple tool for evaluation of inflammation in psoriasis: Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio as markers in psoriasis patients and related murine models of psoriasis-like skin disease. J Mol Med (Berl) 2024; 102:247-255. [PMID: 38127137 PMCID: PMC10857970 DOI: 10.1007/s00109-023-02406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 11/04/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Objective parameters to quantify psoriatic inflammation are needed for interdisciplinary patient care, as well as preclinical experimental models. This study evaluates neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in psoriasis patients and five murine models of psoriasis-like skin disease based on topical imiquimod application and overexpression of IL-17A under different promotors. We performed a single-center prospective observational study in a German population, investigating psoriasis patients prior to, 4 weeks, and 16 weeks post begin of systemic anti-inflammatory therapy. Psoriasis area and severity index (PASI), blood count, and C-reactive protein (CRP) levels were attained at each timepoint. Additionally, five murine models of psoriasis-like skin disease involving five distinct experimental procedures differing in time of disease-onset and severity were investigated regarding PLR and NLR. Of 43 recruited psoriasis patients, 34 patients were followed up to 16 weeks. The cohort was 69.77% male, showing a median age of 32.0 years (range 19.0-67.0; IQR 26). The median PASI decreased from 16.35 (8.0-50.0; 10.20) to 1.6 (0-10.3; 2.56) after 16 weeks of systemic therapy. Spearman's correlation showed statistically significant positive correlation for NLR with PASI (rs = 0.27, p = 0.006), however not for PLR. NLR, but not PLR, was significantly associated with PASI in a multiple linear regression analysis including age, sex, psoriasis arthritis, and smoking. In the murine models of psoriasis-like skin disease, both NLR and PLR were significantly increased in the acute-severe models compared to controls (p < 0.001, p = 0.005, and p = 0.02, respectively), demonstrating gradually less increased values from severe-acute to mild-late-onset psoriatic phenotype. NLR was significantly associated with PASI in psoriatic patients as well as psoriatic phenotype in different murine psoriasis models. Our data warrants investigation of NLR in psoriasis patients and preclinical psoriasis models as an objective biomarker of psoriatic skin inflammation. KEY MESSAGES : NLR, but not PLR, showed a statistically significant positive correlation with Psoriasis Area and Severity Index (PASI) in our human psoriasis cohort. Both NLR and PLR were significantly increased in murine psoriasis models compared to matched controls, with gradually less increased values from severe-acute to mild-late-onset psoriatic phenotype. NLR may represent an easily available, cheap, and objective parameter to monitor psoriatic inflammation in both clinical patient routine, as well as preclinical experimental murine models.
Collapse
Affiliation(s)
- Katharina S Kommoss
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tabea Bieler
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Julia Ringen
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Annika Lehmann
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Silvia Mihalceanu
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lukas Hobohm
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Center for Cardiology-Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Karsten Keller
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Center for Cardiology-Cardiology I, University Medical Center Mainz, Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Brand
- Institute of Molecular Medicine, University Medical Center Mainz, Mainz, Germany
| | - Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Johannes Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Center for Cardiology-Cardiology I, University Medical Center Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK)-Partner Site RheinMain (Mainz), Mainz, Germany
| | - Ari Waisman
- Institute of Molecular Medicine, University Medical Center Mainz, Mainz, Germany
| | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Center, Institute for Interdisciplinary Research On Cancer Metabolism and Chronic Inflammation, Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Susanne Karbach
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Center for Cardiology-Cardiology I, University Medical Center Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK)-Partner Site RheinMain (Mainz), Mainz, Germany
| |
Collapse
|
12
|
Hakoi H, Miki Y, Nomura S, Nakajima K, Terashima-Murase C, Takeichi T, Sano S, Akiyama M, Sakasegawa SI, Murakami M, Yamamoto K. Lysophospholipase D from Thermocrispum limits psoriatic inflammation by hydrolyzing epidermal lysoplasmalogen produced by group IIF secreted phospholipase A 2. Biochimie 2023; 215:75-87. [PMID: 37802209 DOI: 10.1016/j.biochi.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Epidermal lipids play important roles in skin homeostasis and diseases. Psoriasis is an inflammatory disease characterized by keratinocyte hyperproliferation and Th17 immune responses. We previously reported that ethanolamine-type lysoplasmalogen (P-LPE), preferentially produced by group IIF secreted PLA2 (sPLA2-IIF/PLA2G2F) that is expressed in the suprabasal epidermis, promotes epidermal hyperplasia in psoriatic inflammation. Herein, we show that forcible degradation of epidermal P-LPE by topical application of recombinant lysophospholipase D (LyPls-PLD) from Thermocrispum, a lysoplasmalogen-specific hydrolase, attenuated epidermal hyperplasia and inflammation in imiquimod-induced and K5.Stat3C-transgenic mouse psoriasis models. In humans, P-LPE levels were elevated in the tape-stripped stratum corneum of patients with psoriasis. Moreover, in primary cultured human epidermal keratinocytes, aberrant cell proliferation and activation by psoriatic cytokines were sPLA2-IIF/P-LPE-dependent and were suppressed by the addition of LyPls-PLD with a decrease in P-LPE. These findings confirm that the sPLA2-IIF/P-LPE axis in the epidermis indeed regulates psoriasis, that P-LPE is a lipid biomarker that predicts the severity of psoriasis, and that pharmacological removal of this bioactive lipid is useful to prevent the disease. Thus, our study may lead to the development of drug discovery and diagnostic techniques based on this pathway.
Collapse
Affiliation(s)
- Haruka Hakoi
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan.
| | - Yoshimi Miki
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Saki Nomura
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan.
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan.
| | | | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan.
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shin-Ichi Sakasegawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Asahi Kasei Pharma Corporation, Shizuoka, Japan.
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - Kei Yamamoto
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
13
|
Ke Y, Li BZ, Nguyen K, Wang D, Wang S, Young CD, Wang XJ. IL-22RA2 Is a SMAD7 Target Mediating the Alleviation of Dermatitis and Psoriatic Phenotypes in Mice. J Invest Dermatol 2023; 143:2243-2254.e10. [PMID: 37211203 PMCID: PMC11127768 DOI: 10.1016/j.jid.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
Long-term management of inflammatory skin diseases is challenging because of side effects from repeated use of systemic treatments or topical corticosteroids. This study sought to identify the mechanisms and developmental therapeutics for these diseases using genetic models and pharmacological approaches. We found that mice overexpressing SMAD7 in keratinocytes but not mice overexpressing the N-terminal domain of SMAD7 (i.e., N-SMAD7) were resistant to imiquimod-induced T helper 1/17- and T helper 2-type inflammation. We generated a Tat-PYC-SMAD7 (truncated SMAD7 protein encompassing C-terminal SMAD7 and PY motif fused with cell-penetrating Tat peptide). Topically applied Tat-PYC-SMAD7 to inflamed skin entered cells upon contact and attenuated imiquimod-, 2,4-dinitrofluorobenzene-, and tape-stripping-induced inflammation. RNA-sequencing analyses of mouse skin exposed to these insults showed that in addition to inhibiting TGFβ/NF-κB, SMAD7 blunted IL-22/signal transducer and activator of transcription 3 activation and associated pathogenesis, which is due to SMAD7 transcriptionally upregulating IL-22 antagonist IL-22RA2. Mechanistically, SMAD7 facilitated nuclear translocation and DNA binding of C/EBPβ to IL22RA2 promoter for IL22RA2 transactivation. Consistent with the observations in mice mentioned earlier, transcript levels of IL22RA2 were increased in human atopic dermatitis and psoriasis lesions with clinical remission. Our study identified the anti-inflammation functional domain of SMAD7 and suggests the mechanism and feasibility for developing SMAD7-based biologics as a topical therapy for skin inflammatory disorders.
Collapse
Affiliation(s)
- Yao Ke
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Ben-Zheng Li
- Department of Physiology and Biophysics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Khoa Nguyen
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Donna Wang
- Allander Biotechnologies, Aurora, Colorado, USA
| | - Suyan Wang
- Allander Biotechnologies, Aurora, Colorado, USA
| | - Christian D Young
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Allander Biotechnologies, Aurora, Colorado, USA.
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California, USA; Allander Biotechnologies, Aurora, Colorado, USA.
| |
Collapse
|
14
|
Zhu L, Xia X, Li G, Zhu C, Li Q, Wang B, Shi NX, Lei Z, Yang S, Zhang Z, Li H, Tan J, Liu Z, Wen Q, Zhong H, Lin XJ, Sun G, Bao X, Wang Q, Deng L, Bin L, Cao G, Yin Z. SLC38A5 aggravates DC-mediated psoriasiform skin inflammation via potentiating lysosomal acidification. Cell Rep 2023; 42:112910. [PMID: 37531255 DOI: 10.1016/j.celrep.2023.112910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Amino acid (aa) metabolism is closely correlated with the pathogenesis of psoriasis; however, details on aa transportation during this process are barely known. Here, we find that SLC38A5, a sodium-dependent neutral aa transporter that counter-transports protons, is markedly upregulated in the psoriatic skin of both human patients and mouse models. SLC38A5 deficiency significantly ameliorates the pathogenesis of psoriasis, indicating a pathogenic role of SLC38A5. Surprisingly, SLC38A5 is almost exclusively expressed in dendritic cells (DCs) when analyzing the psoriatic lesion and mainly locates on the lysosome. Mechanistically, SLC38A5 potentiates lysosomal acidification, which dictates the cleavage and activation of TLR7 with ensuing production of pro-inflammatory cytokines such as interleukin-23 (IL-23) and IL-1β from DCs and eventually aggravates psoriatic inflammation. In summary, this work uncovers an auxiliary mechanism in driving lysosomal acidification, provides inspiring insights for DC biology and psoriasis etiology, and reveals SLC38A5 as a promising therapeutic target for treating psoriasis.
Collapse
Affiliation(s)
- Leqing Zhu
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Department of Dermatology, First Affiliated Hospital, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangzhou National Laboratory, Guangzhou International BioIsland, Guangzhou 510005, China
| | - Xichun Xia
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Guangqiang Li
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Chuyun Zhu
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Qingqing Li
- Department of Dermatology, Guangdong Women's and Children's Hospital, Guangzhou 511442, China
| | - Baocheng Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Nan-Xi Shi
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Zhiwei Lei
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China; Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Shuxian Yang
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Zhanpeng Zhang
- Department of Dermatology, First Affiliated Hospital, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Haishan Li
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Jingyi Tan
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Zonghua Liu
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Qiong Wen
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Hui Zhong
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Xue-Jia Lin
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Guodong Sun
- Guandgong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Xiucong Bao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qian Wang
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China.
| | - Liehua Deng
- Department of Dermatology, First Affiliated Hospital, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| | - Lianghua Bin
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| | - Guangchao Cao
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China.
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China.
| |
Collapse
|
15
|
Honda T, Kabashima K, Kunisawa J. Exploring the roles of prostanoids, leukotriens, and dietary fatty acids in cutaneous inflammatory diseases: Insights from pharmacological and genetic approaches. Immunol Rev 2023; 317:95-112. [PMID: 36815685 DOI: 10.1111/imr.13193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Prostanoids and leukotrienes (LTs) are representative of ω6 fatty acid-derived metabolites that exert their actions through specific receptors on the cell surface. These lipid mediators, being unstable in vivo, act locally at their production sites; thus, their physiological functions remain unclear. However, recent pharmacological and genetic approaches using experimental murine models have provided significant insights into the roles of these lipid mediators in various pathophysiological conditions, including cutaneous inflammatory diseases. These lipid mediators act not only through signaling by themselves but also by potentiating the signaling of other chemical mediators, such as cytokines and chemokines. For instance, prostaglandin E2 -EP4 and LTB4 -BLT1 signaling on cutaneous dendritic cells substantially facilitate their chemokine-induced migration ability into the skin and play critical roles in the priming and/or activation of antigen-specific effector T cells in the skin. In addition to these ω6 fatty acid-derived metabolites, various ω3 fatty acid-derived metabolites regulate skin immune cell functions, and some exert potent anti-inflammatory functions. Lipid mediators act as modulators of cutaneous immune responses, and manipulating the signaling from lipid mediators has the potential as a novel therapeutic approach for human skin diseases.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
- 5. A*Star Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Pharmaceutical Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
16
|
Malik B, Vokic I, Mohr T, Poppelaars M, Holcmann M, Novoszel P, Timelthaler G, Lendl T, Krauss D, Elling U, Mildner M, Penninger JM, Petzelbauer P, Sibilia M, Csiszar A. FAM3C/ILEI protein is elevated in psoriatic lesions and triggers psoriasiform hyperproliferation in mice. EMBO Mol Med 2023; 15:e16758. [PMID: 37226685 PMCID: PMC10331587 DOI: 10.15252/emmm.202216758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
FAM3C/ILEI is an important cytokine for tumor progression and metastasis. However, its involvement in inflammation remains elusive. Here, we show that ILEI protein is highly expressed in psoriatic lesions. Inducible keratinocyte-specific ILEI overexpression in mice (K5-ILEIind ) recapitulates many aspects of psoriasis following TPA challenge, primarily manifested by impaired epidermal differentiation and increased neutrophil recruitment. Mechanistically, ILEI triggers Erk and Akt signaling, which then activates STAT3 via Ser727 phosphorylation. Keratinocyte-specific ILEI deletion ameliorates TPA-induced skin inflammation. A transcriptomic ILEI signature obtained from the K5-ILEIind model shows enrichment in several signaling pathways also found in psoriasis and identifies urokinase as a targetable enzyme to counteract ILEI activity. Pharmacological inhibition of urokinase in TPA-induced K5-ILEIind mice results in significant improvement of psoriasiform symptoms by reducing ILEI secretion. The ILEI signature distinguishes psoriasis from healthy skin with uPA ranking among the top "separator" genes. Our study identifies ILEI as a key driver in psoriasis, indicates the relevance of ILEI-regulated genes for disease manifestation, and shows the clinical impact of ILEI and urokinase as novel potential therapeutic targets in psoriasis.
Collapse
Affiliation(s)
- Barizah Malik
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
- Present address:
School of Biochemistry and Biotechnology, Quaid‐e‐Azam CampusUniversity of the PunjabLahorePakistan
| | - Iva Vokic
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University ViennaViennaAustria
| | - Marle Poppelaars
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Martin Holcmann
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Philipp Novoszel
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Gerald Timelthaler
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Thomas Lendl
- Research Institute of Molecular PathologyViennaAustria
| | - Dana Krauss
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
| | - Michael Mildner
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
- Department of Medical Genetics, Life Science InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Maria Sibilia
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Agnes Csiszar
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| |
Collapse
|
17
|
Lu Y, Zhu Y, Zhao X, Pan M, He H. An optical system for noninvasive microscopy of psoriatic mice in vivo. JOURNAL OF BIOPHOTONICS 2023; 16:e202200310. [PMID: 36519190 DOI: 10.1002/jbio.202200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease involved with both complex morphological changes of skin and immune processes. The clinical diagnostics and research of psoriasis often require invasive biopsy which lacks their real-time dynamics in vivo. Here we report a noninvasive microscopic system developed by combining in vivo fluorescent microscopy, optical clearing, and immunolabeling to enable real-time imaging of immune cells and cytokines in blood flow in psoriatic animal models. The vascular morphology and time-lapse kinetics of interleukin (IL)-23, IL-17, tumor necrosis factor-α, and CD4+ cells in blood are captured at submicron resolution through the thickening epidermis and opaque scales during the development of psoriasis in vivo. Our data suggest IL-23 recruits CD4+ cells to release IL-17 in blood that further leaks out in the psoriatic skin area. This optical system enables noninvasive and real-time assessment of immune molecules and cells in vivo, providing good potential for medical researches on psoriasis.
Collapse
Affiliation(s)
- Yiting Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Zhu
- Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Pan
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Zhan ZY, Zhang ZH, Yang HX, Wu YL, Nan JX, Lian LH. Potential skin health promoting benefits of costunolide: a therapeutic strategy to improve skin inflammation in imiquimod-induced psoriasis. Food Funct 2023; 14:2392-2403. [PMID: 36786020 DOI: 10.1039/d2fo02545k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Psoriasis is a recurrent inflammatory skin disease. IL-36-related cytokines are overexpressed in psoriasis, but the mechanism is not yet clear. Costunolide (Cos) is a sesquiterpenoid compound derived from the root of the traditional Chinese medicine Aucklandia lappa Decne. This study aimed to explore the mechanism of Cos on improving psoriasis-like skin inflammation. An in vivo model was established by applying imiquimod treatment to the back skin of mice, and an in vitro model was established by using polyinosinic-polycytidylic acid (Poly(I:C)) stimulated-mouse primary dermal fibroblasts to induce inflammation. The results showed that Cos improved the pathological changes of psoriasis-like skin inflammation. In addition, Cos could inhibit epidermal damage and inflammation-related expression and improve the occurrence of skin-related inflammation in both in vivo and in vitro experiments. The improvement of psoriasis-like skin inflammatory response might be through the P2X7R/IL-36 signaling pathway. Collectively, Cos has an inhibitory effect on the expression of psoriasis-like skin inflammation. This showed that Cos has potential skin health promoting benefits by preventing psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
19
|
Carrillo D, Edwards N, Arancibia‐Altamirano D, Otárola F, Villarroel C, Prieto CP, Villamizar‐Sarmiento MG, Sauma D, Valenzuela F, Lattus J, Oyarzun‐Ampuero F, Palma V. Efficacy of stem cell secretome loaded in hyaluronate sponge for topical treatment of psoriasis. Bioeng Transl Med 2023; 8:e10443. [PMID: 36925706 PMCID: PMC10013801 DOI: 10.1002/btm2.10443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 02/24/2023] Open
Abstract
Psoriasis vulgaris is an inflammatory disease characterized by distinctive skin lesions and dysregulated angiogenesis. Recent research uses stem cell secretion products (CM); a set of bioactive factors with therapeutic properties that regulate several cellular processes, including tissue repair and angiogenesis. The aim of this work was to evaluate the effect of CM of Wharton's gelatin MSC (hWJCM) in a treatment based on the bioactivation of a hyaluronic acid matrix (HA hWJCM) in a psoriasiform-like dermatitis (PD) mouse model. A preclinical study was conducted on PD mice. The effect of hWJCM, Clobetasol (Clob) gold standard, HA Ctrl, and HA hWJCM was tested topically evaluating severity of PD, mice weight as well as skin, liver, and spleen appearance. Treatment with either hWJCM, HA Ctrl or HA hWJCM, resulted in significant improvement of the PD phenotype. Moreover, treatment with HA hWJCM reduced the Psoriasis Area Severity Index (PASI), aberrant angiogenesis, and discomfort associated with the disease, leading to total recovery of body weight. We suggest that the topical application of HA hWJCM can be an effective noninvasive therapeutic solution for psoriasis, in addition to other skin diseases, laying the groundwork for future studies in human patients.
Collapse
Affiliation(s)
- Daniela Carrillo
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
- Facultad de Medicina y CienciaUniversidad San SebastianConcepciónChile
| | - Natalie Edwards
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - David Arancibia‐Altamirano
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - Fabiola Otárola
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - Cynthia Villarroel
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - Catalina P Prieto
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - María Gabriela Villamizar‐Sarmiento
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de ChileSantiagoChile
- Department of Sciences and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical SciencesUniversidad de ChileSantiagoChile
| | - Daniela Sauma
- Department of Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - Fernando Valenzuela
- Dermatology Department, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - José Lattus
- Campus Oriente, Department of Obstetrics and Gynecology, Faculty of MedicineUniversity of ChileSantiago de ChileChile
| | - Felipe Oyarzun‐Ampuero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de ChileSantiagoChile
- Department of Sciences and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical SciencesUniversidad de ChileSantiagoChile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| |
Collapse
|
20
|
Parab S, Doshi G. The Experimental Animal Models in Psoriasis Research: A Comprehensive Review. Int Immunopharmacol 2023; 117:109897. [PMID: 36822099 DOI: 10.1016/j.intimp.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Psoriasis is an autoimmune, chronic, inflammatory skin condition mediated by T cells. It differs from other inflammatory conditions by causing significant alterations in epidermal cell proliferation and differentiation that are both complicated and prominent. The lack of an appropriate animal model has significantly hindered studies into the pathogenic mechanisms of psoriasis since animals other than humans typically do not exhibit the complex phenotypic features of human psoriasis. A variety of methods, including spontaneous mutations, drug-induced mutations, genetically engineered animals, xenotransplantation models, and immunological reconstitution approaches, have all been employed to study specific characteristics in the pathogenesis of psoriasis. Although some of these approaches have been used for more than 50 years and far more models have been introduced recently, they have surprisingly not yet undergone detailed validation. Despite their limitations, these models have shown a connection between keratinocyte hyperplasia, vascular hyperplasia, and a cell-mediated immune response in the skin. The xenotransplantation of diseased or unaffected human skin onto immune-compromised recipients has also significantly aided psoriasis research. This technique has been used in a variety of ways to investigate the function of T lymphocytes and other cells, including preclinical therapeutic studies. The design of pertinent in vivo and in vitro psoriasis models is currently of utmost concern and a crucial step toward its cure. This article outlines the general approach in the development of psoriasis-related animal models, aspects of some specific models, along with their strengths and limitations.
Collapse
Affiliation(s)
- Siddhi Parab
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
21
|
Cappello A, Mancini M, Madonna S, Rinaldo S, Paone A, Scarponi C, Belardo A, Zolla L, Zuccotti A, Panatta E, Pallotta S, Annicchiarico-Petruzzelli M, Albanesi C, Cutruzzolà F, Wang L, Jia W, Melino G, Candi E. Extracellular serine empowers epidermal proliferation and psoriasis-like symptoms. SCIENCE ADVANCES 2022; 8:eabm7902. [PMID: 36525488 DOI: 10.1126/sciadv.abm7902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The contribution of nutrient availability to control epidermal cell proliferation, inflammation, and hyperproliferative diseases remains unknown. Here, we studied extracellular serine and serine/glycine metabolism using human keratinocytes, human skin biopsies, and a mouse model of psoriasis-like disease. We focused on a metabolic enzyme, serine hydroxymethyltransferase (SHMT), that converts serine into glycine and tetrahydrofolate-bound one‑carbon units to support cell growth. We found that keratinocytes are both serine and glycine auxotrophs. Metabolomic profiling and hypoxanthine supplementation indicated that SHMT silencing/inhibition reduced cell growth through purine depletion, leading to nucleotide loss. In addition, topical application of an SHMT inhibitor suppressed both keratinocyte proliferation and inflammation in the imiquimod model and resulted in a decrease in psoriasis-associated gene expression. In conclusion, our study highlights SHMT2 activity and serine/glycine availability as an important metabolic hub controlling both keratinocyte proliferation and inflammatory cell expansion in psoriasis and holds promise for additional approaches to treat skin diseases.
Collapse
Affiliation(s)
- Angela Cappello
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Mara Mancini
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Stefania Madonna
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences A.Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences A.Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudia Scarponi
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Antonio Belardo
- Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Lello Zolla
- Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | | | - Emanuele Panatta
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | | | | | | | - Francesca Cutruzzolà
- Department of Biochemical Sciences A.Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Lu Wang
- Chinese Medicine and Systems Biology/School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Wei Jia
- Chinese Medicine and Systems Biology/School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| |
Collapse
|
22
|
Mellor LF, Gago-Lopez N, Bakiri L, Schmidt FN, Busse B, Rauber S, Jimenez M, Megías D, Oterino-Sogo S, Sanchez-Prieto R, Grivennikov S, Pu X, Oxford J, Ramming A, Schett G, Wagner EF. Keratinocyte-derived S100A9 modulates neutrophil infiltration and affects psoriasis-like skin and joint disease. Ann Rheum Dis 2022; 81:1400-1408. [PMID: 35788494 PMCID: PMC9484400 DOI: 10.1136/annrheumdis-2022-222229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/07/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES S100A9, an alarmin that can form calprotectin (CP) heterodimers with S100A8, is mainly produced by keratinocytes and innate immune cells. The contribution of keratinocyte-derived S100A9 to psoriasis (Ps) and psoriatic arthritis (PsA) was evaluated using mouse models, and the potential usefulness of S100A9 as a Ps/PsA biomarker was assessed in patient samples. METHODS Conditional S100A9 mice were crossed with DKO* mice, an established psoriasis-like mouse model based on inducible epidermal deletion of c-Jun and JunB to achieve additional epidermal deletion of S100A9 (TKO* mice). Psoriatic skin and joint disease were evaluated in DKO* and TKO* by histology, microCT, RNA and proteomic analyses. Furthermore, S100A9 expression was analysed in skin, serum and synovial fluid samples of patients with Ps and PsA. RESULTS Compared with DKO* littermates, TKO* mice displayed enhanced skin disease severity, PsA incidence and neutrophil infiltration. Altered epidermal expression of selective pro-inflammatory genes and pathways, increased epidermal phosphorylation of STAT3 and higher circulating TNFα were observed in TKO* mice. In humans, synovial S100A9 levels were higher than the respective serum levels. Importantly, patients with PsA had significantly higher serum concentrations of S100A9, CP, VEGF, IL-6 and TNFα compared with patients with only Ps, but only S100A9 and CP could efficiently discriminate healthy individuals, patients with Ps and patients with PsA. CONCLUSIONS Keratinocyte-derived S100A9 plays a regulatory role in psoriatic skin and joint disease. In humans, S100A9/CP is a promising marker that could help in identifying patients with Ps at risk of developing PsA.
Collapse
Affiliation(s)
| | | | - Latifa Bakiri
- CNIO, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Rauber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maria Jimenez
- CNIO, Spanish National Cancer Research Centre, Madrid, Spain
| | - Diego Megías
- CNIO, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Ricardo Sanchez-Prieto
- Universidad de Castilla La Mancha, Centro Regional de Investigaciones Biomédicas Albacete, Albacete, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergei Grivennikov
- Cancer Prevention & Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xinzhu Pu
- Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Julia Oxford
- Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University (FAU) Erlangen-Nurnberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University (FAU) Erlangen-Nurnberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Chen J, Qi H, Liu L, Niu Y, Yu S, Qin S, He L. Elevated cholesteryl ester transfer and phospholipid transfer proteins aggravated psoriasis in imiquimod-induced mouse models. Lipids Health Dis 2022; 21:75. [PMID: 35982498 PMCID: PMC9389805 DOI: 10.1186/s12944-022-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Psoriasis is a chronic inflammatory skin disorder related to dyslipidemia, with decreased high-density lipoprotein (HDL). Various cell types express phospholipid transfer protein (PLTP) as well as cholesteryl ester transfer protein (CETP). Their elevated levels among transgenic (Tg) mice led to reduced HDL and a higher risk of atherosclerosis (AS). This study examined whether elevated CETP and PLTP could aggravate psoriasis in a psoriasis vulgaris mouse model. Methods The back skins of CETP-Tg, PLTP-Tg, and C57BL/6 male mice, aged six to 8 weeks, were shaved for imiquimod cream (IMQ) (5%) treatment for five consecutive days. The clinical pathological parameters were rated independently using the modified target lesion psoriasis severity score. The skin sections stained with hematoxylin-eosin were scored by the Baker score. Epidermal thickening and differentiation and inflammatory factor infiltration were determined by immunohistochemistry. Inflammatory cytokine levels were measured using quantitative reverse transcription-polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay (ELISA) kits. This work employed SPSS Statistics Version to conduct statistical analyses. Results In this study, CETP-Tg and PLTP-Tg mice had higher clinical and histological scores than wild-type (WT) mice. Immunohistochemistry of the epidermis and dermis revealed a high proportion of proliferating cell nuclear antigen (PCNA) positivity within psoriatic skin lesions of CETP-Tg and PLTP-Tg mice compared with WT mice. Interferon-α (IFN-α), interleukin-1β (IL-1β), IL-6, IL-17A, IL-17F, IL-22, and IL-23p19 mRNA levels increased within CETP-Tg and PLTP-Tg mice compared with WT counterparts. In comparison with WT mice, plasma tumor necrosis factor-α (TNF-α) levels, rather than IL-6 levels, were increased in CETP-Tg and PLTP-Tg mice. Conclusions Elevated CETP and PLTP aggravate psoriasis in a imiquimod-induced mouse model.
Collapse
Affiliation(s)
- Jun Chen
- Department of Geriatrics, The Affiliated Hospital of Chengde Medical University Chengde, 067000, Hebei, China
| | - Haihua Qi
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Lijun Liu
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Yandong Niu
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Shuping Yu
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Shucun Qin
- Institute of Atherosclerosis, Shandong First Medical University, Tai'an, 271000, Shandong, China
| | - Lei He
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
24
|
Li T, Gao S, Han W, Gao Z, Wei Y, Wu G, Qiqiu W, Chen L, Feng Y, Yue S, Kuang H, Jiang X. Potential effects and mechanisms of Chinese herbal medicine in the treatment of psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115275. [PMID: 35487447 DOI: 10.1016/j.jep.2022.115275] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a chronic inflammatory dermatosis related to high morbidity and mortality. The incidence of psoriasis is increasing in recent decades. Some patients with psoriasis are anxious about the underlying side effects of synthetic drugs they are on. Therefore, they are eager to seek alternative and efficient therapy, such as Chinese herbal medicine (CHM). Researchers have found some CHM provides best source for the development of anti-psoriatic drugs because of their structural diversity and fewer adverse reactions. Some of CHM formulas or active constituents extracted from CHM have been rapidly developed into clinical drugs with good efficacy. At present, along with the CHM formulas, single CHM and its active components have been extensively accepted and utilized in the treatment of psoriasis, whose therapeutic mechanisms hitherto have not been thoroughly illustrated. AIM OF THE STUDY This review aimed to comprehensively summarize about the existing therapeutic mechanisms of CHM in the treatment of psoriasis and to provide a reference to develop future related studies in this field. MATERIALS AND METHODS Relevant literatures about how CHM treated psoriasis were acquired from published scientific studies (including PubMed, CNKI, Web of Science, Baidu Scholar, The Plant List, Elsevier and SciFinder). All plants appearing in the review have been included in The Plant List or Medicinal Plant Names Services (MPNS). RESULTS In this review, we collect numerous literatures about how CHM treats psoriasis via immune cells, signaling pathways and disease-related mediators and systematically elucidates potential mechanisms from the point of the suppression of oxidative stress, the inhibition of abnormal abnormal proliferation and differentiation, the inhibition of immune responses, and the suppression of angiogenesis. CONCLUSIONS Psoriasis is considered as a complicated disease caused by interaction among various mechanisms. The CHM formulas, single CHM and its active components have considerable positive reports about the treatment of psoriasis, which brings hope for a promising future of CHM in the clinical therapy of psoriasis. In the paper, we have concluded that the existing therapeutic mechanisms of CHM in the treatment of psoriasis.
Collapse
Affiliation(s)
- Tingting Li
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Si Gao
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Wei Han
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No.4 Dong-qing Road, Huaxi District, Guiyang, 550025, China
| | - Zhenqiu Gao
- School of Pharmacy, Yancheng Teachers University, Xiwang Road, Tinghu District, Yancheng, 224007, China
| | - Yundong Wei
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Gang Wu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Wei Qiqiu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Li Chen
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Yiping Feng
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Shijiao Yue
- Gangnan Castle Peak Psychiatric Hospital, Jiangnan Industrial Park District, Guigang, 537100, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Xudong Jiang
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China.
| |
Collapse
|
25
|
Li H, Guan Y, Liang B, Ding P, Hou X, Wei W, Ma Y. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol 2022; 928:175091. [PMID: 35714692 DOI: 10.1016/j.ejphar.2022.175091] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
NOD-like receptor protein 3 (NLRP3), an important intracellular pattern recognition receptor, is a component of the NLRP3 inflammasome along with apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and pro-caspase-1. Previous studies have shown that dysregulation of NLRP3 inflammasome may be associated with several human diseases, and therefore blocking NLRP3 inflammasome activation may represent a therapeutic strategy for various diseases. MCC950 is a specific small-molecule inhibitor that selectively blocks activation of the NLRP3 inflammasome. In recent years, research on MCC950 has expanded; its targets are gradually being elucidated, and its metabolism and toxicity have been a focus of study. Preclinical research of MCC950 has yielded promising findings, and MCC950 has shown good efficacy in the treatment of autoimmune diseases, cardiovascular diseases, metabolic diseases and other diseases. Furthermore, clinical trials of MCC950 and other inhibitors of NLRP3 inflammasome have also been conducted. In this review, we discuss the drug targets, metabolism, toxicity and preclinical and clinical research advances of MCC950. We further discuss the clinical therapeutic potential of MCC950 to provide insights for the further study and application of MCC950.
Collapse
Affiliation(s)
- Hao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui, 230032, China
| | - Peng Ding
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, 230032, Anhui, China
| | - Xin Hou
- School of Medicine, Ningbo University, Ningbo, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
26
|
Low molecular weight protamine-corticosteroid conjugate for topical treatment of psoriasis: A hypothesis. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Lee TA, Huang YT, Hsiao PF, Chiu LY, Chern SR, Wu NL. Critical roles of irradiance in the regulation of UVB-induced inflammasome activation and skin inflammation in human skin keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112373. [PMID: 34959183 DOI: 10.1016/j.jphotobiol.2021.112373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
UVB dosage is generally regarded as the most critical factor that determines the severity of UVB-induced skin erythema. However, recent studies have demonstrated that different UV irradiances induce varying biological responses in mouse skin even at constant UV doses. UVB-induced inflammasome activation is particularly observed in human skin keratinocytes, which are classified as immunocompetent cells, but not in mouse skin keratinocytes, which do not express sufficient inflammasome complex components. In human skin UVB-induced sunburn reactions, NLRP1 inflammasome activation critically mediates the inflammatory responses. Here, we employed primary human skin keratinocytes to explore the impact of different irradiances of a constant UVB dosage on inflammasome activation and related inflammatory responses. Our findings indicated that low-irradiance UVB induced relatively stronger NLRP1 inflammasome activation, which manifested as more active IL-1β, IL-18 release, and enhanced procaspase-1 cleavage compared to high-irradiance UVB at the same dose. Irradiance did not influence cell lysis or the expression of inflammasome complex proteins including NLRP1, proIL-1β, proIL-18, procaspase-1, and ASC. The UVB-induced TNF-α and cyclooxygenase-2 expression was also relatively higher in keratinocytes exposed to low-irradiance UVB. Low-irradiance UVB also increased reactive oxygen species production. UVB-triggered signaling analysis revealed that low-irradiance UVB resulted in more prominent p38 and JNK activation. Therefore, our findings indicated that, in addition to the role of total dosage, irradiance crucially modulates UVB-elicited inflammation in human skin keratinocytes, thus providing novel insights into human skin photobiology.
Collapse
Affiliation(s)
- Te-An Lee
- Department of Urology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan.
| | - Yi-Ting Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| | - Pa-Fan Hsiao
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing, and Management.
| | - Ling-Ya Chiu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Nan-Lin Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing, and Management; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
28
|
Linh NTT, Giang NH, Lien NTK, Trang BK, Trang DT, Ngoc NT, Nghia VX, My LT, Mao CV, Hoang NH, Xuan NT. Association of PSORS1C3, CARD14 and TLR4 genotypes and haplotypes with psoriasis susceptibility. Genet Mol Biol 2022; 45:e20220099. [DOI: 10.1590/1678-4685-gmb-2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Le Tra My
- Institute of Genome Research, Vietnam
| | - Can Van Mao
- Vietnam Military Medical University, Vietnam
| | - Nguyen Huy Hoang
- University of Science and Technology, Vietnam; Institute of Genome Research, Vietnam
| | - Nguyen Thi Xuan
- University of Science and Technology, Vietnam; Institute of Genome Research, Vietnam
| |
Collapse
|
29
|
Jang S, Jang S, Kim SY, Ko J, Kim E, Park JY, Hyung H, Lee JH, Lim SG, Park S, Yi J, Lee HJ, Kim MO, Lee HS, Ryoo ZY. Overexpression of Lin28a Aggravates Psoriasis-Like Phenotype by Regulating the Proliferation and Differentiation of Keratinocytes. J Inflamm Res 2021; 14:4299-4312. [PMID: 34511969 PMCID: PMC8415766 DOI: 10.2147/jir.s312963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/06/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose Psoriasis is a common and well-studied autoimmune skin disease, which is characterized by plaques. The formation of psoriasis plaques occurs through the hyperproliferation and abnormal differentiation of keratinocytes, infiltration of numerous immune cells into the dermis, increased subepidermal angiogenesis, and various autoimmune-associated cytokines and chemokines. According to previous research, Lin28 regulates the let-7 family, and let-7b is associated with psoriasis. However, the link between Lin28 and psoriasis is unclear. In this study, an association was identified between Lin28a and psoriasis progression, which promoted the pathological characteristic of psoriasis in epidermal keratinocytes. Patients and Methods This study aims to investigate the role of Lin28a and its underlying mechanism in psoriasis through in vivo and in vitro models, which include the Lin28a-overexpressing transgenic (TG) mice and Lin28a-overexpressing human keratinocyte (HaCaT) cell lines, respectively. Results In vivo and in vitro results revealed that overexpression of Lin28a downregulated microRNA let-7 expression levels and caused hyperproliferation and abnormal differentiation in keratinocytes. In imiquimod (IMQ)-induced psoriasis-like inflammation, Lin28a overexpressing transgenic (TG) mice exhibited more severe symptoms of psoriasis. Conclusion Mechanistically, Lin28a exacerbated psoriasis-like inflammation through the activation of the extracellular-signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 signaling (STAT 3) by targeting proinflammatory cytokine interleukin-6 (IL-6).
Collapse
Affiliation(s)
- Soyeon Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Si-Yong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Jiwon Ko
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Ji Yeong Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Jin Hong Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Su-Geun Lim
- School of Life Science, Kyungpook National University, Daegu, Korea
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu, Korea
| | - Junkoo Yi
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
30
|
Balkrishna A, Sakat S, Joshi K, Singh R, Verma S, Nain P, Bhattacharya K, Varshney A. Modulation of psoriatic-like skin inflammation by traditional Indian medicine Divya-Kayakalp-Vati and Oil through attenuation of pro-inflammatory cytokines. J Tradit Complement Med 2021; 12:335-344. [PMID: 35747349 PMCID: PMC9210137 DOI: 10.1016/j.jtcme.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
|
31
|
Cardinali G, Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Dell'Anna ML, Truglio M, Vento A, Zaccarini M, Zouboulis CC, Picardo M. Anti-Inflammatory and Pro-Differentiating Properties of the Aryl Hydrocarbon Receptor Ligands NPD-0614-13 and NPD-0614-24: Potential Therapeutic Benefits in Psoriasis. Int J Mol Sci 2021; 22:ijms22147501. [PMID: 34299118 PMCID: PMC8304622 DOI: 10.3390/ijms22147501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Maria Lucia Dell'Anna
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Antonella Vento
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
32
|
Maifeld A, Wild J, Karlsen TV, Rakova N, Wistorf E, Linz P, Jung R, Birukov A, Gimenez-Rivera VA, Wilck N, Bartolomaeus T, Dechend R, Kleinewietfeld M, Forslund SK, Krause A, Kokolakis G, Philipp S, Clausen BE, Brand A, Waisman A, Kurschus FC, Wegner J, Schultheis M, Luft FC, Boschmann M, Kelm M, Wiig H, Kuehne T, Müller DN, Karbach S, Markó L. Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity. J Invest Dermatol 2021; 142:166-178.e8. [PMID: 34237339 DOI: 10.1016/j.jid.2021.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Sodium can accumulate in the skin at concentrations exceeding serum levels. A high sodium environment can lead to pathogenic T helper 17 cell expansion. Psoriasis is a chronic inflammatory skin disease in which IL-17‒producing T helper 17 cells play a crucial role. In an observational study, we measured skin sodium content in patients with psoriasis and in age-matched healthy controls by Sodium-23 magnetic resonance imaging. Patients with PASI > 5 showed significantly higher sodium and water content in the skin but not in other tissues than those with lower PASI or healthy controls. Skin sodium concentrations measured by Sodium-23 spectroscopy or by atomic absorption spectrometry in ashed-skin biopsies verified the findings with Sodium-23 magnetic resonance imaging. In vitro T helper 17 cell differentiation of naive CD4+ cells from patients with psoriasis markedly induced IL-17A expression under increased sodium chloride concentrations. The imiquimod-induced psoriasis mouse model replicated the human findings. Extracellular tracer Chromium-51-EDTA measurements in imiquimod- and sham-treated skin showed similar extracellular volumes, rendering excessive water of intracellular origin. Chronic genetic IL-17A‒driven psoriasis mouse models underlined the role of IL-17A in dermal sodium accumulation and inflammation. Our data describe skin sodium as a pathophysiological feature of psoriasis, which could open new avenues for its treatment.
Collapse
Affiliation(s)
- András Maifeld
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Wild
- Center of Cardiology - Cardiology I, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tine V Karlsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Natalia Rakova
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Elisa Wistorf
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Peter Linz
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Birukov
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Nicola Wilck
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theda Bartolomaeus
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Helios Clinic Berlin-Buch, Berlin, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University Campus Diepenbeek, Hasselt, Belgium
| | - Sofia K Forslund
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Krause
- Medical Centre for Rheumatology and Clinical Immunology, Immanuel Krankenhaus Berlin, Berlin, Germany
| | - Georgios Kokolakis
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Philipp
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Björn E Clausen
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Brand
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ari Waisman
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joanna Wegner
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Schultheis
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Boschmann
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Kelm
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Congenital Heart Disease, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Titus Kuehne
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Congenital Heart Disease, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Berlin, Germany
| | - Susanne Karbach
- Center of Cardiology - Cardiology I, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
33
|
Akhter KF, Mumin MA, Lui EMK, Charpentier PA. Transdermal nanotherapeutics: Panax quinquefolium polysaccharide nanoparticles attenuate UVB-induced skin cancer. Int J Biol Macromol 2021; 181:221-231. [PMID: 33774070 DOI: 10.1016/j.ijbiomac.2021.03.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Ultraviolet (UV) radiation is known to cause an imbalance of the endogenous antioxidant system leading to an increase in skin cancer. Panax quinquefolium (American ginseng) polysaccharides (GPS) can inhibit such an imbalance due to its anti-oxidative and anti-inflammatory properties. The aim of this study was to investigate the therapeutic effects of topical formulations containing GPS nanoparticles (NPs) to inhibit UVB induced oxidative damage and skin cancer. Photoaging was conducted under UVB irradiation with a dose of 300 mJ/cm2 on SKH1 hairless mice. The treatment groups (n = 5) were as follows: sham control, native GPS, GPS NPs and fluorescent labeled GPS NPs. To compare the photoprotective performance, the topical formulations were applied before and after UVB induction (pre-treatment and post-treatment), followed by sacrificing the animals. Then, skin and blood samples were collected, and inflammatory cytokines production was measured using ELISA. Compared to the sham control, GPS NPs pre-treated mice skin and blood samples exhibited a significant lowering in all cytokine production. In addition, skin histology analysis showed that pre-treatment of GPS NPs prevented epidermal damage and proliferation. The results support that topical formulation containing GPS NPs can inhibit UVB induced oxidative damage and skin cancer.
Collapse
Affiliation(s)
- Kazi Farida Akhter
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Md Abdul Mumin
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Edmund M K Lui
- Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Paul A Charpentier
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Biomedical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada.
| |
Collapse
|
34
|
López-Cano M, Filgaira I, Nolen EG, Cabré G, Hernando J, Tosh DK, Jacobson KA, Soler C, Ciruela F. Optical control of adenosine A 3 receptor function in psoriasis. Pharmacol Res 2021; 170:105731. [PMID: 34157422 DOI: 10.1016/j.phrs.2021.105731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 01/12/2023]
Abstract
Psoriasis is a chronic and relapsing inflammatory skin disease lacking a cure that affects approximately 2% of the population. Defective keratinocyte proliferation and differentiation, and aberrant immune responses are major factors in its pathogenesis. Available treatments for moderate to severe psoriasis are directed to immune system causing systemic immunosuppression over time, and thus concomitant serious side effects (i.e. infections and cancer) may appear. In recent years, the Gi protein-coupled A3 receptor (A3R) for adenosine has been suggested as a novel and very promising therapeutic target for psoriasis. Accordingly, selective, and high affinity A3R agonists are known to induce robust anti-inflammatory effects in animal models of autoimmune inflammatory diseases. Here, we demonstrated the efficacy of a selective A3R agonist, namely MRS5698, in preventing the psoriatic-like phenotype in the IL-23 mouse model of psoriasis. Subsequently, we photocaged this molecule with a coumarin moiety to yield the first photosensitive A3R agonist, MRS7344, which in photopharmacological experiments prevented the psoriatic-like phenotype in the IL-23 animal model. Thus, we have demonstrated the feasibility of using a non-invasive, site-specific, light-directed approach to psoriasis treatment.
Collapse
Affiliation(s)
- Marc López-Cano
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ingrid Filgaira
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain; Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | | | - Gisela Cabré
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Concepció Soler
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain; Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
35
|
The Role of NLRP1, NLRP3, and AIM2 Inflammasomes in Psoriasis: Review. Int J Mol Sci 2021; 22:ijms22115898. [PMID: 34072753 PMCID: PMC8198493 DOI: 10.3390/ijms22115898] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are high-molecular-weight protein complexes that may cleave the two main proinflammatory cytokines, pro-interleukin-1β and pro-interleukin-18, into active forms, and contribute to psoriasis. Despite recent advances made in the pathogenesis of psoriasis, mainly studied as an autoimmune condition, activation of immune response triggers of psoriasis is still not completely understood. Recently, focus was placed on the role of inflammasomes in the pathogenesis of psoriasis. Multiple types of inhibitors and activators of various inflammasomes, inflammasome-related genes, and genetic susceptibility loci were recognized in psoriasis. In this systemic review, we collect recent and comprehensive evidence from the inflammasomes, NLRP1, NLRP3, and AIM2, in pathogenesis of psoriasis.
Collapse
|
36
|
Gago-López N, Lagunas Arnal C, Perez JJ, Wagner EF. Topical application of an amygdalin analogue reduces inflammation and keratinocyte proliferation in a psoriasis mouse model. Exp Dermatol 2021; 30:1662-1674. [PMID: 33998705 PMCID: PMC8597152 DOI: 10.1111/exd.14390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/25/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease without cure. Systemic and biological therapies are the most effective treatments for patients with severe psoriasis. However, these drugs can cause serious side effects from extended use. Safe and effective topical drugs are needed to decrease psoriatic plaques and reduce the risk of adverse effects. Amygdalin analogues are stable small molecules that showed benefits in psoriasis xenografts to immune‐deficient mice by systemic application. However, whether topical application of these amygdalin analogues could reduce the progression of the psoriatic phenotype in an immune‐competent organism is unknown. Here, we analyse the efficiency of topical application of an amygdalin analogue cream on a well‐established genetic and immune‐competent mouse model of psoriasis. Topical application of an amygdalin analogue cream ameliorates psoriasis‐like disease in mice, reduces epidermal hyperplasia and skin inflammation. Amygdalin analogue treatment leads to reduced expression of local pro‐inflammatory cytokines, but systemic pro‐inflammatory cytokines that are highly expressed in psoriasis patients such as IL‐17A, IL6 or G‐CSF are also decreased. Furthermore, expression of important mediators of psoriasis initiation and epidermal hyperplasia, such as TNFa, S100A9 and TSLP, is decreased in lesional epidermis after amygdalin analogue treatment. In conclusion, we show that amygdalin analogue reduces the proliferative capacity of psoriasis‐like stimulated keratinocytes and their inflammatory response in vivo and in vitro. These results suggest that topical application of amygdalin analogues may represent a safe and effective treatment for psoriasis.
Collapse
Affiliation(s)
- Nuria Gago-López
- Genes, Development and Disease group, Cancer Cell Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO, Madrid, Spain.,Melanoma group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO, Madrid, Spain
| | - Carmen Lagunas Arnal
- Ferrer Advanced Biotherapeutics, Grupo Ferrer Internacional S.A, Barcelona, Spain
| | - Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Erwin F Wagner
- Department of Dermatology and Department of Laboratory Medicine, Medical University of Vienna (MUW, Vienna, Austria
| |
Collapse
|
37
|
Bai J, Li Y, Li M, Tan S, Wu D. IL-37 As a Potential Biotherapeutics of Inflammatory Diseases. Curr Drug Targets 2021; 21:855-863. [PMID: 32348214 DOI: 10.2174/1389450121666200429114926] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
Interleukin-37 (IL-37) was discovered as a new member of pro-inflammatory IL-1 superfamily. However, further studies suggested that IL-37 plays a critical anti-inflammatory role in innate and adaptive immunity. IL-37 may suppress the inflammatory process via intracellular SMAD family member 3 (SMAD3) and extracellular IL-18 Receptor alpha (IL-18Rα) signaling pathway, respectively. Meanwhile, the abnormal expression of IL-37 was observed in immune-mediated inflammatory diseases, such as inflammatory bowel disease, rheumatoid arthritis, atherosclerosis, systemic lupus erythematosus, asthma, and multiple sclerosis, which suggest IL-37 is a potential therapeutic target for these diseases. In this review, we summarize the anti-inflammatory mechanism of IL-37 and discuss the critical roles of IL-37 in the pathogenesis of these diseases. Further studies are required to confirm the effectiveness of IL-37 as a novel target for these inflammatory diseases.
Collapse
Affiliation(s)
- Junhui Bai
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Yukun Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| |
Collapse
|
38
|
Single cell transcriptional zonation of human psoriasis skin identifies an alternative immunoregulatory axis conducted by skin resident cells. Cell Death Dis 2021; 12:450. [PMID: 33958582 PMCID: PMC8102483 DOI: 10.1038/s41419-021-03724-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023]
Abstract
Psoriasis is the most common skin disease in adults. Current experimental and clinical evidences suggested the infiltrating immune cells could target local skin cells and thus induce psoriatic phenotype. However, recent studies indicated the existence of a potential feedback signaling loop from local resident skin cells to infiltrating immune cells. Here, we deconstructed the full-thickness human skins of both healthy donors and patients with psoriasis vulgaris at single cell transcriptional level, and further built a neural-network classifier to evaluate the evolutional conservation of skin cell types between mouse and human. Last, we systematically evaluated the intrinsic and intercellular molecular alterations of each cell type between healthy and psoriatic skin. Cross-checking with psoriasis susceptibility gene loci, cell-type based differential expression, and ligand-receptor communication revealed that the resident psoriatic skin cells including mesenchymal and epidermis cell types, which specifically harbored the target genes of psoriasis susceptibility loci, intensively evoked the expression of major histocompatibility complex (MHC) genes, upregulated interferon (INF), tumor necrosis factor (TNF) signalling and increased cytokine gene expression for primarily aiming the neighboring dendritic cells in psoriasis. The comprehensive exploration and pathological observation of psoriasis patient biopsies proposed an uncovered immunoregulatory axis from skin local resident cells to immune cells, thus provided a novel insight for psoriasis treatment. In addition, we published a user-friendly website to exhibit the transcriptional change of each cell type between healthy and psoriatic human skin.
Collapse
|
39
|
Xie J, Huang S, Huang H, Deng X, Yue P, Lin J, Yang M, Han L, Zhang DK. Advances in the Application of Natural Products and the Novel Drug Delivery Systems for Psoriasis. Front Pharmacol 2021; 12:644952. [PMID: 33967781 PMCID: PMC8097153 DOI: 10.3389/fphar.2021.644952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Psoriasis, an incurable autoimmune skin disease, is one of the most common immune-mediated disorders. Presently, numerous clinical research studies are underway, and treatment options are available. However, these treatments focus on improving symptoms of the disease and fail to achieve a radical cure; they also have certain toxic side effects. In recent years, natural products have increasingly gained attention because of their high efficiency and low toxicity. Despite their obvious therapeutic effects, natural products’ biological activity was limited by their instability, poor solubility, and low bioavailability. Novel drug delivery systems, including liposomes, lipospheres, nanostructured lipid carriers, niosomes, nanoemulsions, nanospheres, microneedles, ethosomes, nanocrystals, and foams could potentially overcome the limitations of poor water solubility and permeability in traditional drug delivery systems. Thus, to achieve a therapeutic effect, the drug can reach the epidermis and dermis in psoriatic lesions to interact with the immune cells and cytokines.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Yue
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
40
|
Novoszel P, Holcmann M, Stulnig G, De Sa Fernandes C, Zyulina V, Borek I, Linder M, Bogusch A, Drobits B, Bauer T, Tam‐Amersdorfer C, Brunner PM, Stary G, Bakiri L, Wagner EF, Strobl H, Sibilia M. Psoriatic skin inflammation is promoted by c-Jun/AP-1-dependent CCL2 and IL-23 expression in dendritic cells. EMBO Mol Med 2021; 13:e12409. [PMID: 33724710 PMCID: PMC8033525 DOI: 10.15252/emmm.202012409] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor (TLR) stimulation induces innate immune responses involved in many inflammatory disorders including psoriasis. Although activation of the AP-1 transcription factor complex is common in TLR signaling, the specific involvement and induced targets remain poorly understood. Here, we investigated the role of c-Jun/AP-1 protein in skin inflammation following TLR7 activation using human psoriatic skin, dendritic cells (DC), and genetically engineered mouse models. We show that c-Jun regulates CCL2 production in DCs leading to impaired recruitment of plasmacytoid DCs to inflamed skin after treatment with the TLR7/8 agonist Imiquimod. Furthermore, deletion of c-Jun in DCs or chemical blockade of JNK/c-Jun signaling ameliorates psoriasis-like skin inflammation by reducing IL-23 production in DCs. Importantly, the control of IL-23 and CCL2 by c-Jun is most pronounced in murine type-2 DCs. CCL2 and IL-23 expression co-localize with c-Jun in type-2/inflammatory DCs in human psoriatic skin and JNK-AP-1 inhibition reduces the expression of these targets in TLR7/8-stimulated human DCs. Therefore, c-Jun/AP-1 is a central driver of TLR7-induced immune responses by DCs and JNK/c-Jun a potential therapeutic target in psoriasis.
Collapse
Affiliation(s)
- Philipp Novoszel
- Department of Medicine IComprehensive Cancer CenterInstitute of Cancer ResearchMedical University of ViennaViennaAustria
| | - Martin Holcmann
- Department of Medicine IComprehensive Cancer CenterInstitute of Cancer ResearchMedical University of ViennaViennaAustria
| | - Gabriel Stulnig
- Department of Medicine IComprehensive Cancer CenterInstitute of Cancer ResearchMedical University of ViennaViennaAustria
| | - Cristiano De Sa Fernandes
- Department of Medicine IComprehensive Cancer CenterInstitute of Cancer ResearchMedical University of ViennaViennaAustria
| | - Victoria Zyulina
- Division of Immunology and PathophysiologyOtto Loewi Research CenterMedical University of GrazGrazAustria
| | - Izabela Borek
- Division of Immunology and PathophysiologyOtto Loewi Research CenterMedical University of GrazGrazAustria
| | - Markus Linder
- Department of Medicine IComprehensive Cancer CenterInstitute of Cancer ResearchMedical University of ViennaViennaAustria
| | - Alexandra Bogusch
- Department of Medicine IComprehensive Cancer CenterInstitute of Cancer ResearchMedical University of ViennaViennaAustria
| | - Barbara Drobits
- Department of Medicine IComprehensive Cancer CenterInstitute of Cancer ResearchMedical University of ViennaViennaAustria
| | - Thomas Bauer
- Department of Medicine IComprehensive Cancer CenterInstitute of Cancer ResearchMedical University of ViennaViennaAustria
| | - Carmen Tam‐Amersdorfer
- Division of Immunology and PathophysiologyOtto Loewi Research CenterMedical University of GrazGrazAustria
| | - Patrick M Brunner
- Division of Immunology, Allergy and Infectious DiseasesDepartment of DermatologyMedical University of ViennaViennaAustria
| | - Georg Stary
- Division of Immunology, Allergy and Infectious DiseasesDepartment of DermatologyMedical University of ViennaViennaAustria
| | - Latifa Bakiri
- Division of Immunology, Allergy and Infectious DiseasesDepartment of DermatologyMedical University of ViennaViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Erwin F Wagner
- Division of Immunology, Allergy and Infectious DiseasesDepartment of DermatologyMedical University of ViennaViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Herbert Strobl
- Division of Immunology and PathophysiologyOtto Loewi Research CenterMedical University of GrazGrazAustria
| | - Maria Sibilia
- Department of Medicine IComprehensive Cancer CenterInstitute of Cancer ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
41
|
Sukseree S, Bakiri L, Palomo-Irigoyen M, Uluçkan Ö, Petzelbauer P, Wagner EF. Sequestosome 1/p62 enhances chronic skin inflammation. J Allergy Clin Immunol 2021; 147:2386-2393.e4. [PMID: 33675820 DOI: 10.1016/j.jaci.2021.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The molecular control of inflammation and epidermal thickening in skin lesions of patients with atopic dermatitis (AD) is not known. Sequestosome 1/p62 is a multifunctional adapter protein implicated in the control of key regulators of cellular homeostasis, such as proinflammatory and mechanistic target of rapamycin signaling. OBJECTIVE We sought to determine whether p62 plays a role in the cutaneous and systemic manifestations of an AD-like mouse model. METHODS AD-like skin lesions were induced by deletion of JunB/AP-1, specifically in epidermal keratinocytes (JunBΔep). The contribution of p62 to pathological changes was determined by inactivation of p62 in JunBΔepp62-/- double knockout mice. RESULTS Expression of p62 was elevated in skin lesions of JunBΔep mice, resembling upregulation of p62 in AD and psoriasis. When p62 was inactivated, JunBΔep-associated defects in the differentiation of keratinocytes, epidermal thickening, skin infiltration by mast cells and neutrophils, and the development of macroscopic skin lesions were significantly reduced. p62 inactivation had little effect on circulating cytokines, but decreased serum IgE. Signaling through mechanistic target of rapamycin and natural factor kappa B was increased in JunBΔep but not in JunBΔepp62-/- double knockout skin, indicating an important role of p62 in enhancing these signaling pathways in the skin during AD-like inflammation. CONCLUSIONS Our results provide the first in vivo evidence for a proinflammatory role of p62 in skin and suggest that p62-dependent signaling pathways may be promising therapeutic targets to ameliorate the skin manifestations of AD and possibly psoriasis.
Collapse
Affiliation(s)
- Supawadee Sukseree
- Genes and Disease Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Latifa Bakiri
- Genes and Disease Laboratory, Department of Laboratory Medicine (KILM), Medical University of Vienna, Vienna, Austria
| | - Marta Palomo-Irigoyen
- Genes and Disease Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Özge Uluçkan
- Genes Development and Disease group, CNIO, Madrid, Spain
| | - Peter Petzelbauer
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Genes and Disease Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria; Genes and Disease Laboratory, Department of Laboratory Medicine (KILM), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
42
|
Afonina IS, Van Nuffel E, Beyaert R. Immune responses and therapeutic options in psoriasis. Cell Mol Life Sci 2021; 78:2709-2727. [PMID: 33386888 PMCID: PMC11072277 DOI: 10.1007/s00018-020-03726-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
Abstract
Psoriasis is a chronic inflammatory disease of the skin that affects about 2-3% of the population and greatly impairs the quality of life of affected individuals. Psoriatic skin is characterized by excessive proliferation and aberrant differentiation of keratinocytes, as well as redness caused by increased dilation of the dermal blood vessels and infiltration of immune cells. Although the pathogenesis of psoriasis has not yet been completely elucidated, it is generally believed to arise from a complex interplay between hyperproliferating keratinocytes and infiltrating, activated immune cells. So far, the exact triggers that elicit this disease are still enigmatic, yet, it is clear that genetic predisposition significantly contributes to the development of psoriasis. In this review, we summarize current knowledge of important cellular and molecular mechanisms driving the initiation and amplification stages of psoriasis development, with a particular focus on cytokines and emerging evidence illustrating keratinocyte-intrinsic defects as key drivers of inflammation. We also discuss mouse models that have contributed to a better understanding of psoriasis pathogenesis and the preclinical development of novel therapeutics, including monoclonal antibodies against specific cytokines or cytokine receptors that have revolutionized the treatment of psoriasis. Future perspectives that may have the potential to push basic research and open up new avenues for therapeutic intervention are provided.
Collapse
Affiliation(s)
- Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, Ghent University - VIB, Technologiepark 71, B-9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, Ghent University - VIB, Technologiepark 71, B-9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, Ghent University - VIB, Technologiepark 71, B-9052, Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.
| |
Collapse
|
43
|
Papavassiliou AG, Musti AM. The Multifaceted Output of c-Jun Biological Activity: Focus at the Junction of CD8 T Cell Activation and Exhaustion. Cells 2020; 9:cells9112470. [PMID: 33202877 PMCID: PMC7697663 DOI: 10.3390/cells9112470] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
c-Jun is a major component of the dimeric transcription factor activator protein-1 (AP-1), a paradigm for transcriptional response to extracellular signaling, whose components are basic-Leucine Zipper (bZIP) transcription factors of the Jun, Fos, activating transcription factor (ATF), ATF-like (BATF) and Jun dimerization protein 2 (JDP2) gene families. Extracellular signals regulate c-Jun/AP-1 activity at multiple levels, including transcriptional and posttranscriptional regulation of c-Jun expression and transactivity, in turn, establishing the magnitude and the duration of c-Jun/AP-1 activation. Another important level of c-Jun/AP-1 regulation is due to the capability of Jun family members to bind DNA as a heterodimer with every other member of the AP-1 family, and to interact with other classes of transcription factors, thereby acquiring the potential to integrate diverse extrinsic and intrinsic signals into combinatorial regulation of gene expression. Here, we review how these features of c-Jun/AP-1 regulation underlie the multifaceted output of c-Jun biological activity, eliciting quite distinct cellular responses, such as neoplastic transformation, differentiation and apoptosis, in different cell types. In particular, we focus on the current understanding of the role of c-Jun/AP-1 in the response of CD8 T cells to acute infection and cancer. We highlight the transcriptional and epigenetic regulatory mechanisms through which c-Jun/AP-1 participates in the productive immune response of CD8 T cells, and how its downregulation may contribute to the dysfunctional state of tumor infiltrating CD8 T cells. Additionally, we discuss recent insights pointing at c-Jun as a suitable target for immunotherapy-based combination approaches to reinvigorate anti-tumor immune functions.
Collapse
Affiliation(s)
- Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Maria Musti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-3337543732
| |
Collapse
|
44
|
Janowski K, Steuden S. The Temperament Risk Factor, Disease Severity, and Quality of Life in Patients with Psoriasis. Ann Dermatol 2020; 32:452-459. [PMID: 33911787 PMCID: PMC7875235 DOI: 10.5021/ad.2020.32.6.452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/21/2014] [Accepted: 05/02/2014] [Indexed: 11/08/2022] Open
Abstract
Background Psoriasis exerts a profound negative impact on health-related quality of life (QoL). Although the severity of psoriasis is one potential variable that contributes to decreased QoL, previous studies have shown only weak or no association between measures of psoriasis severity and QoL. We hypothesized that this relationship is moderated by temperament factors. Objective We aimed to verify whether the relationship between disease severity and QoL is moderated by a constellation of temperament traits (i.e., temperament risk factors) and whether this moderation takes place via cognitive-appraisal and coping processes. Methods One hundred fifty patients with psoriasis vulgaris participated in the study. Psoriasis severity was assessed by a standardized measure, the Psoriasis Area and Severity Index (PASI), and the patients also completed a battery of psychological questionnaires assessing QoL, temperament, disease-related cognitive appraisals, and coping strategies. Results A specific constellation of temperament traits was found to moderate the strength of the association between the PASI and QoL. This constellation of temperament traits was associated with certain disease-related cognitive appraisals (i.e., threat, obstacle/loss, harm, profit, value) and emotion-focused coping strategies (i.e., self-blame, avoidance, resignation, seeking social support, and seeking information). Conclusion The constellation of temperament traits is a crucial individual variable that strongly moderates the negative impact of psoriasis severity on QoL, potentially through the activation of non-adaptive cognitive appraisals and coping strategies in susceptible individuals.
Collapse
Affiliation(s)
- Konrad Janowski
- Institute of Psychology, University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| | - Stanisława Steuden
- Department of Clinical Psychology, John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
45
|
Zhao J, Xie P, Galiano RD, Qi S, Mao R, Mustoe TA, Hong SJ. Imiquimod-induced skin inflammation is relieved by knockdown of sodium channel Na x. Exp Dermatol 2020; 28:576-584. [PMID: 30903711 DOI: 10.1111/exd.13917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/30/2022]
Abstract
Nax is an atypical sodium channel that mediates inflammatory pathways in pathological conditions of the skin. In this study, we developed a skin inflammation model in the rabbit ear through application of imiquimod (IMQ). Knockdown of Nax using RNAi attenuated IMQ-induced skin inflammation, including skin erythema, scaling and papule formation. Histologic analysis showed that thickening and insufficient differentiation of the epidermis found in psoriasis-like skin were normalized by administration of Nax -RNAi. Excessive infiltration of inflammatory cells found in inflammatory lesions, such as mast cells, eosinophils, neutrophils, T cells and macrophages, was reduced by Nax -RNAi. Expression of S100A9, which is a downstream gene of Nax and a mediator of inflammation, was decreased by Nax -RNAi. Our results demonstrated that knockdown of Nax ameliorated IMQ-induced psoriasis-like skin inflammation in vivo. Thus, targeting of Nax may represent a potential therapeutic option for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jingling Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| | - Ping Xie
- Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| | - Robert D Galiano
- Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renxiang Mao
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Thomas A Mustoe
- Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| | - Seok Jong Hong
- Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| |
Collapse
|
46
|
Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative Stress as an Important Contributor to the Pathogenesis of Psoriasis. Int J Mol Sci 2020; 21:E6206. [PMID: 32867343 PMCID: PMC7503883 DOI: 10.3390/ijms21176206] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023] Open
Abstract
This review discusses how oxidative stress (OS), an imbalance between oxidants and antioxidants in favor of the oxidants, increased production of reactive oxygen species (ROS)/reactive nitrogen species (RNS), and decreased concentration/activity of antioxidants affect the pathogenesis or cause the enhancement of psoriasis (Ps). Here, we also consider how ROS/RNS-induced stress modulates the activity of transcriptional factors and regulates numerous protein kinase cascades that participate in the regulation of crosstalk between autophagy, apoptosis, and regeneration. Answers to these questions will likely uncover novel strategies for the treatment of Ps. Action in the field will avoid destructive effects of ROS/RNS-mediated OS resulting in cellular dysfunction and cell death. The combination of the fragmentary information on the role of OS can provide evidence to extend the full picture of Ps.
Collapse
Affiliation(s)
- Joanna Pleńkowska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland
| | - Paweł Mozolewski
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| |
Collapse
|
47
|
Fujii K, Yamamoto Y, Mizutani Y, Saito K, Seishima M. Indoleamine 2,3-Dioxygenase 2 Deficiency Exacerbates Imiquimod-Induced Psoriasis-Like Skin Inflammation. Int J Mol Sci 2020; 21:E5515. [PMID: 32752186 PMCID: PMC7432009 DOI: 10.3390/ijms21155515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme known to suppress immune responses, and several reports have showed that it is associated with psoriasis. IDO2 is an isoform of IDO1, recently identified as a catalytic enzyme in the tryptophan-kynurenine pathway, which is expressed in dendritic cells and monocytes. The expression of IDO2 in immune cells suggests that IDO2 may contribute to immune functions. However, the role of IDO2 in the pathogenesis of psoriasis remains unclear. In this study, to elucidate the role of IDO2 in psoriasis, we assessed imiquimod (IMQ)-induced psoriasis-like dermatitis in IDO2 knockout (KO) mice. Skin inflammation, evaluated by scoring erythema, scaling, and ear thickness, was significantly worse in the IDO2 KO mice than in the wild-type (WT) mice. The mRNA expression levels of TNF-α, IL-23p19, and IL-17A, key cytokines involved in the development of psoriasis, were also increased in the IDO2 KO mice. Furthermore, immunohistochemistry revealed that the number of Ki67-positive cells in the epidermis and CD4-, CD8-, and IL-17-positive lymphocytes infiltrating the dermis were significantly increased in the IDO2 KO mice. These results suggest that IDO2 might decrease IL-17 expression, thereby resulting in the suppression of skin inflammation in IMQ-induced psoriasis-like dermatitis.
Collapse
Affiliation(s)
- Kento Fujii
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194, Japan; (Y.M.); (M.S.)
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan; (Y.Y.); (K.S.)
| | - Yoko Mizutani
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194, Japan; (Y.M.); (M.S.)
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan; (Y.Y.); (K.S.)
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194, Japan; (Y.M.); (M.S.)
| |
Collapse
|
48
|
An Anti-Inflammatory Poly(PhosphorHydrazone) Dendrimer Capped with AzaBisPhosphonate Groups to Treat Psoriasis. Biomolecules 2020; 10:biom10060949. [PMID: 32586038 PMCID: PMC7356153 DOI: 10.3390/biom10060949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Dendrimers are nanosized, arborescent macromolecules synthesized in a stepwise fashion with attractive degrees of functionality and structure definition. This is one of the reasons why they are widely used for biomedical applications. Previously, we have shown that a poly(phosphorhydrazone) (PPH) dendrimer capped with anionic azabisphosphonate groups (so-called ABP dendrimer) has immuno-modulatory and anti-inflammatory properties towards human immune cells in vitro. Thereafter, we have shown that the ABP dendrimer has a promising therapeutic efficacy to treat models of acute and chronic inflammatory disorders in animal models. In these models, the active pharmaceutical ingredient was administered systematically (intravenous and oral administrations), but also loco-regionally in the vitreous tissue. Herein, we assessed the therapeutic efficacy of the ABP dendrimer in the preclinical mouse model of psoriasis induced by imiquimod. The ABP dendrimer was administered in phosphate-buffered saline solution via either systemic injection or topical application. We show that the topical application enabled the control of both the clinical and histopathological scores, and the control of the infiltration of macrophages in the skin of treated mice.
Collapse
|
49
|
Zheng QY, Xu F, Yang Y, Sun DD, Zhong Y, Wu S, Li GQ, Gao WW, Wang T, Xu GL, Liang SJ. C5a/C5aR1 mediates IMQ-induced psoriasiform skin inflammation by promoting IL-17A production from γδ-T cells. FASEB J 2020; 34:10590-10604. [PMID: 32557852 DOI: 10.1096/fj.202000384r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Psoriasis is a chronic relapsing inflammatory skin disease, affecting up to 3% of the global population. Accumulating evidence suggests that the complement system is involved in its pathogenesis. Our previous study revealed that the C5a/C5aR1 pathway is crucial for disease development. However, the underlying mechanisms remain largely unknown. To explore potential mechanisms, psoriatic skin lesions and histological changes were assessed following imiquimod (IMQ) cream treatment. Inflammatory cytokine expression was tested by real-time RT-PCR. Immunohistochemistry and flow cytometry were used to identify inflammatory cell infiltration and interleukin (IL-17A) IL-17A expression. A C5aR1 antagonist (C5aR1a) and PI3K inhibitor (wortmannin) were used for blocking experiments (both in vivo and in vitro) to explore the mechanism. C5a/C5aR1-pathway inhibition significantly attenuated psoriasis-like skin lesions with decreased epidermal hyperplasia, downregulated type 17-related inflammatory gene expression, and reduced IL-17A-producing γδ-T cell responses. Mechanistically, C5a/C5aR1 promoted the latter phenotype via PI3K-Akt signaling. Consistently, C5aR1 deficiency clearly ameliorated IMQ-induced chronic psoriasiform dermatitis, with a significant decrease in IL-17A expression. Finally, blocking C5aR1 signaling further decreased psoriasiform skin inflammation in IL-17-deficient mice. Results suggest that C5a/C5aR1 mediates experimental psoriasis and skin inflammation by upregulating IL-17A expression from γδ-T cells. Blocking C5a/C5aR1/IL-17A axis is expected to be a promising strategy for psoriasis treatment.
Collapse
Affiliation(s)
- Quan-You Zheng
- Department of Urology, 958th Hospital, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Feng Xu
- Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Yi Yang
- Department of Rheumatism and Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dao-Dong Sun
- Department of Urology, 958th Hospital, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Zhong
- Department of Urology, 958th Hospital, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shun Wu
- Department of Nephrology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gui-Qing Li
- Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Wei-Wu Gao
- Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Tao Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Gui-Lian Xu
- Department of Immunology, Basical Medicine College, Army Medical University, Chongqing, China
| | - Shen-Ju Liang
- Department of Rheumatism and Immunology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
50
|
Zheng QY, Liang SJ, Xu F, Yang Y, Feng JL, Shen F, Zhong Y, Wu S, Shu Y, Sun DD, Xu GL. Complement component 3 prevents imiquimod-induced psoriatic skin inflammation by inhibiting apoptosis in mice. Int Immunopharmacol 2020; 85:106692. [PMID: 32535539 DOI: 10.1016/j.intimp.2020.106692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Complement component 3 (C3), a pivotal molecule in the complement system, is an essential immune mediator in various diseases, including psoriasis. However, the mechanistic role of C3 in psoriasis pathology and development remains elusive. Here, we showed that C3 deficiency dramatically augmented imiquimod-induced psoriasis-like skin inflammation, characterized by greater epidermal hyperplasia, inflammatory cell infiltration, and inflammatory gene expression than those in wild-type counterparts. In addition, C3 deficiency promoted imiquimod-induced skin cell apoptosis and supported greater proportions of IFN-γ+ T cells in the inflamed tissues. Accordingly, C3 supplement in the C3 deficient mice reduced skin inflammation and cells apoptosis. Moreover, blocking apoptosis with Z-VAD-FMK, a broad caspase inhibitor, markedly attenuated imiquimod-induced psoriasis-like skin inflammation and IFN-γ+ T cell responses in C3-deficient mice. Collectively, our results suggest that C3 prevents imiquimod-induced psoriasis-like skin inflammation by inhibiting apoptosis.
Collapse
Affiliation(s)
- Quan-You Zheng
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Immunology, Army Medical University, Chongqing 400038, China
| | - Shen-Ju Liang
- Department of Rheumatism and Immunology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Feng Xu
- Department of Immunology, Army Medical University, Chongqing 400038, China
| | - Yi Yang
- Department of Rheumatism and Immunology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jian-Li Feng
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Fen Shen
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yu Zhong
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Immunology, Army Medical University, Chongqing 400038, China
| | - Shun Wu
- Department of Immunology, Army Medical University, Chongqing 400038, China
| | - Yong Shu
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Dao-Dong Sun
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Gui-Lian Xu
- Department of Immunology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|