1
|
Guo A, Chen Y, Liu H, Gao S, Huang X, Liu D, Zhao Q, Hong X. Predicting and validating the risk of interstitial lung disease in systemic lupus erythematosus. Int J Med Inform 2025; 197:105839. [PMID: 39986125 DOI: 10.1016/j.ijmedinf.2025.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE Our study aimed toconstruct a web-based calculator to predict high risk patients of interstitial lung disease (ILD) in systemic lupus erythematosus (SLE). METHODS This retrospective study comprised training and test cohorts, including 581 and 86 patients, respectively. Univariate, least absolute shrinkage and selection operator (LASSO), random forest (RF), eXtreme Gradient Boosting (XGBoost), and logistic regression (LR) analyses were performed. A Venn diagram was used to investigate critical features. Receiver operating characteristic (ROC) analysis and decision curve analysis were used to evaluate the model's performance. Risk stratification was performed using the best ROC cut-off value. The web-based calculator was established using Streamlit software. RESULTS Characteristics such as Raynaud's phenomenon, pulmonary artery systolic pressure, serositis, anti-U1RNP antibodies, anti-Ro52 antibodies, C-reactive protein, age, and disease course were associated with SLE complicated by ILD (SLE-ILD). LR-Venn, RF-Venn, XGBoost-Venn, LASSO-logic, RF, and XGBoost models were constructed. In training cohort, the XGBoost model demonstrated the highest area under the ROC curve (AUC, 0.890; cut-off value, 0.197; sensitivity, 0.793; specificity, 0.836) and provideda netbenefitin decision curve analysis (odds ratio [OR] for SLE-ILD [high- vs. low-risk], 19.6). The model was validated in the test cohort (AUC, 0.866; sensitivity, 0.722; specificity, 0.897; OR, 22.7). Furthermore, an XGBoost model-based web calculator was developed. CONCLUSION Our web calculator (https://st-xgboost-app-kcv9qm.streamlit.app/) greatly improved risk prediction for SLE-ILD and was implemented effectively.
Collapse
Affiliation(s)
- Aoyang Guo
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China; Department of Standardized Training of Residents, Shenzhen People's Hospital, Shenzhen, China
| | - Yanran Chen
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China
| | - Hongyang Liu
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China
| | - Shujun Gao
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China
| | - Xinyi Huang
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Dongzhou Liu
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Qianqian Zhao
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Xiaoping Hong
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
2
|
Qin X, Zhang M, Liang J, Xu S, Fu X, Liu Z, Tian T, Song J, Lin Y. Nanoparticles encapsulating antigenic peptides induce tolerogenic dendritic cells in situ for treating systemic lupus erythematosus. J Control Release 2025; 380:943-956. [PMID: 39983922 DOI: 10.1016/j.jconrel.2025.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Using Tetrahedral framework nucleic acids, we combined antigenic peptides to create the "DART" vaccine: DNA framework-Antigenic peptide-RNA modification-Targeting aptamer coupling. Generating antigen-specific tolerogenic dendritic cells (tolDCs), for systemic lupus erythematosus (SLE) is a potential therapeutic strategy for addressing compromised autoimmune tolerance. However, simple antigenic peptides degrade easily, lack specificity for delivery to dendritic cells (DCs), and cannot transform DCs to tolDCs. Therefore, this study aims to employ DART to generate tolDCs and compare DART-treated DCs to tolDCs. DART improved peptide stability, specifically targeted DCs, induced tolDCs in situ, and showed promising outcomes in mitigating SLE symptoms in the MRL/lpr mouse model. DART effectively normalized the plasma cytokine levels, glomerulonephritis, and joint lesions in MRL/lpr mice. These findings highlight the potential of the DART vaccine to induce transformation of DCs to tolDCs and address SLE symptoms, suggesting novel therapeutic utility. These findings may advance vaccine design for various autoimmune diseases.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siqi Xu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Xiao Fu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Orefice V, Ceccarelli F, Barbati C, Buoncuore G, Pirone C, Alessandri C, Conti F. Caffeine improves systemic lupus erythematosus endothelial dysfunction by promoting endothelial progenitor cells survival. Rheumatology (Oxford) 2025; 64:1886-1893. [PMID: 39380132 DOI: 10.1093/rheumatology/keae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/20/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE We studied the role of caffeine intake on endothelial function in SLE by assessing its effect on circulating endothelial progenitor cells (EPCs) both ex vivo in SLE patients and in vitro in healthy donors (HD) treated with SLE sera. METHODS We enrolled SLE patients without traditional cardiovascular risks factors. Caffeine intake was evaluated with a 7-day food frequency questionnaire. EPCs percentage was assessed by flow cytometry analysis and, subsequently, EPCs pooled from six HD were co-cultured with caffeine with and without SLE sera. After 7 days, we evaluated cells' morphology and ability to form colonies, the percentage of apoptotic cells by flow cytometry analysis and the levels of autophagy and apoptotic markers by western blot. Finally, we performed a western blot analysis to assess the A2AR/SIRT3/AMPK pathway. RESULTS We enrolled 31 SLE patients, and observed a positive correlation between caffeine intake and circulating EPCs percentage. HD EPCs treated with SLE sera and caffeine showed an improvement in morphology and in number of EPCs colony-forming units in comparison with those incubated without caffeine. Caffeine was able to restore autophagy and apoptotic markers in HD EPCs as before SLE sera treatment. Finally, caffeine treatment was able to significantly reduce A2AR levels, leading to an increase in protein levels of SIRT3 and subsequently AMPK phosphorylation. CONCLUSIONS Caffeine intake positively correlated with the percentage of circulating EPCs in SLE patients; moreover, caffeine in vitro treatment was able to improve EPC survival and vitality through the inhibition of apoptosis and the promotion of autophagy via A2AR/SIRT3/AMPK pathway.
Collapse
Affiliation(s)
- Valeria Orefice
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Fulvia Ceccarelli
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristiana Barbati
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Giorgia Buoncuore
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Carmelo Pirone
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristiano Alessandri
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Conti
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Huang F, Sun K, Zhou J, Bao J, Xie G, Lu K, Fan Y. Decoding tryptophan: Pioneering new frontiers in systemic lupus erythematosus. Autoimmun Rev 2025; 24:103809. [PMID: 40158642 DOI: 10.1016/j.autrev.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects multiple organ systems, with its pathogenesis intricately tied to genetic, environmental, and immune regulatory factors. In recent years, the aberration of tryptophan metabolism has emerged as a key player in the disease, particularly through the activation of the kynurenine pathway and its influence on immune regulation. This review delves into the critical pathways of tryptophan metabolism and its profound impact on the multi-system manifestations of SLE, including its connections to the nervous system, kidneys, skin, and other organs. Additionally, it examines how tryptophan metabolism modulates the function of various immune cell types. The review also explores potential therapeutic avenues targeting tryptophan metabolism, such as dietary interventions, probiotic modulation, IDO expression inhibition, and immunoadsorption techniques. While current research has underscored the pivotal role of tryptophan metabolism in the onset and progression of SLE, its full therapeutic potential remains to be fully elucidated. This review aims to provide a solid scientific foundation for therapeutic strategies based on modulating tryptophan metabolism in SLE, offering a comprehensive overview of both clinical and basic research in this rapidly evolving field.
Collapse
Affiliation(s)
- Fugang Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ke Sun
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiawang Zhou
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie Bao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 310005, Zhejiang, China.
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
5
|
Xu H, Ding S, Ning X, Ma Y, Yu Q, Shen Y, Han L, Xu Z. Integrated bioinformatics and validation reveal TMEM45A in systemic lupus erythematosus regulating atrial fibrosis in atrial fibrillation. Mol Med 2025; 31:104. [PMID: 40102753 PMCID: PMC11917082 DOI: 10.1186/s10020-025-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Accumulative evidence has shown that systemic lupus erythematosus (SLE) increases the risk of various cardiovascular diseases including atrial fibrillation (AF). The study aimed to screen potential key genes underlying co-pathogenesis between SLE and AF, and to discover therapeutic targets for AF. METHODS Differentially expressed genes (DEGs) were identified, and co-expressed gene modules were obtained through weighted gene co-expression network analysis (WGCNA) based on the AF and SLE expression profiles from the GEO database. Subsequently, machine learning algorithms including LASSO regression and support vector machine (SVM) method were employed to identify the candidate therapeutic target for SLE-related AF. Furthermore, the therapeutic role of TMEM45A was validated both in vivo and vitro. RESULTS Totally, 26 DEGs were identified in SLE and AF. The PPI network combined with WGCNA identified 51 key genes in SLE and AF. Ultimately, Machine learning-based methods screened three hub genes in SLE combined with AF, including TMEM45A, ITGB2 and NFKBIA. The cMAP analysis exposed KI-8751 and YM-155 as potential drugs for AF treatment. Regarding TMEM45A, the aberrant expression was validated in blood of SLE patients. Additionally, TMEM45A expression was up-regulated in the atrial tissue of patients with AF. Furthermore, TMEM45A knockdown alleviated AF occurrence and atrial fibrosis in vivo and Ang II-induced NRCFs fibrosis in vitro. CONCLUSION The crosstalk genes underlying co-pathogenesis between SLE and AF were unraveled. Furthermore, the pro-fibrotic role of TMEM45A was validated in vivo and vitro, highlighting its potential as a therapeutic target for AF.
Collapse
Affiliation(s)
- Hongjie Xu
- Department of Cardiovascular Surgery, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Sufan Ding
- Department of Cardiovascular Surgery, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaoping Ning
- Department of Cardiovascular Surgery, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Ye Ma
- Department of Cardiovascular Surgery, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Qi Yu
- Department of Cardiovascular Surgery, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Lin Han
- Department of Cardiovascular Surgery, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
6
|
Liu C, Zhang M, Yan L, Luo J, Liu Z, Liu T, Jiang Y. Evaluation of thrombospondin 1 as a novel biomarker in pediatric-onset systemic lupus erythematosus. BMC Pediatr 2025; 25:190. [PMID: 40082799 PMCID: PMC11905435 DOI: 10.1186/s12887-025-05542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE This study aimed to assess the potential of thrombospondin 1 (TBS-1) as a biomarker for pediatric-onset systemic lupus erythematosus (pSLE) and investigated its association with clinical characteristics and other laboratory tests in pSLE. METHODS A total of 112 pSLE and 50 age-matched and gender-matched healthy controls (HCs) were recruited in this study from January 2022 to June 2023 at West China Second University Hospital, Sichuan university. Plasma TBS-1 levels were measured, and clinical and laboratory findings were collected from the medical database. RESULTS The plasma TBS-1 level was significantly lower in pSLE patients (26778 ng/mL, IQR: 9875-59011) compared to HCs (100583 ng/mL, IQR: 58327-189547) (P < 0.0001). ROC analysis demonstrated that TBS-1 could effectively differentiate pSLE patients and HCs (AUC: 0.845, 95%CI: 0.785-0.905, P < 0.0001) with an optimal cut-off was 49,937 ng/mL, yielding a sensitivity of 84% and specificity of 70.5% based on the Youden index. Compared to TBS-1 positive patients, TBS-1 negative patients exhibited significant reductions in hemoglobin, IgM, and fibrinogen levels. CONCLUSION In light of the current data, the efficacy of TBS-1 as a biomarker in pSLE diverged from its performance in adult SLE. In summary, TBS-1 shows potential as a biomarker for pSLE, particularly in hematological manifestations. Further investigations are essential to delve into the immunomodulatory roles of TBS-1 in the autoimmune pathways of pSLE.
Collapse
Affiliation(s)
- Chenxi Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Wuhou District, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Menglan Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Wuhou District, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Lingyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Wuhou District, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Jie Luo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Wuhou District, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Zhijun Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Wuhou District, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Wuhou District, Chengdu, Sichuan, P.R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Wuhou District, Chengdu, Sichuan, P.R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Colina M, Campana G. Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization. J Clin Med 2025; 14:1735. [PMID: 40095875 PMCID: PMC11901317 DOI: 10.3390/jcm14051735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatic diseases encompass a wide range of autoimmune and inflammatory disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriatic arthritis (PsA), and systemic sclerosis (SSc). These conditions often result in chronic pain, disability, and reduced quality of life, with unpredictable disease courses that may lead to joint destruction, organ damage, or systemic complications. Biomarkers, defined as measurable indicators of biological processes or conditions, have the potential to transform clinical practice by improving disease diagnosis, monitoring, prognosis, and treatment decisions. While significant strides have been made in identifying and validating biomarkers in rheumatic diseases, challenges remain in their standardization, clinical utility, and integration into routine practice. This review provides an overview of the current state of biomarkers in rheumatic diseases, their roles in clinical settings, and the emerging advancements in the field.
Collapse
Affiliation(s)
- Matteo Colina
- Rheumatology Service, Section of Internal Medicine, Department of Medicine and Oncology, Ospedale Santa Maria della Scaletta, 40026 Imola, Italy
| | - Gabriele Campana
- Alma Mater Studiorum, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
8
|
Yang X, Si M, Liu T, Yang J, Jiang L, Sun X, Yu H. The aryl hydrocarbon receptor affects the inflammatory response of bone marrow mesenchymal stem cell via the hippo-YAP pathway to exacerbate systemic lupus erythematosus. FASEB J 2025; 39:e70410. [PMID: 39985295 DOI: 10.1096/fj.202402784r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
The impaired immune regulation of bone marrow mesenchymal stem cells (BM-MSCs) disrupts T-cell homeostasis and alters the immunological environment in individuals with systemic lupus erythematosus (SLE). However, the specific molecular mechanisms underlying the defective immune functions of BM-MSCs in patients with SLE remain unclear. Here, we report that BM-MSCs derived from MRL/lpr mice exhibit a diminished proliferative capacity, elevated levels of aryl hydrocarbon receptor (AhR) and increased levels of secreted proinflammatory cytokines, including IL-1β, IL-6, and TNF-α. These BM-MSCs can increase splenocyte proliferation and upregulate the expression of retinoic acid receptor-related orphan receptor gamma t (RORγt) in EL4 cells, which constitute a murine T-cell lymphoblastic leukemia cell line. Furthermore, MRL/lpr mice treated with FICZ (an AhR agonist) displayed splenomegaly and exacerbated renal pathology, alongside increased levels of AhR, and inflammatory cytokines. Notably, BM-MSCs isolated from FICZ-treated mice also facilitated splenocyte proliferation and increased the RORγt level in EL4 cells during coculture. Similar effects were observed when BM-MSCs were exposed to FICZ in vitro, but these effects were reversed by the administration of CH223191 (an AhR antagonist). Additionally, the expression of Yes-associated protein (YAP) was significantly increased in both MRL/lpr mice and FICZ-treated BM-MSCs. Importantly, verteporfin (a Hippo-YAP inhibitor) attenuated the elevated RORγt levels in EL4 cells and the increased splenocyte proliferation. This study advances our understanding of SLE pathogenesis by pinpointing AhR as a pivotal modulator of the inflammatory response of BM-MSCs through the Hippo-YAP pathway in individuals with SLE. This novel insight not only enriches the current knowledge of SLE mechanisms but also highlights new potential therapeutic targets for SLE.
Collapse
Affiliation(s)
- Xingzhi Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Mingjun Si
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Ting Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jingyu Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Lili Jiang
- School of Material Science and Technology, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haitao Yu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Laboratory Medicine, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Zhou Y, Ye H, Yu Y, Ge C, Yin M, Liu Z, Shen J, Zhou R, Li Y, Leong KW, Yin L. Helix-Guarded Molecular Clips for Cell-Free DNA Scavenging and Treatment of Systemic Lupus Erythematosus. J Am Chem Soc 2025; 147:6612-6622. [PMID: 39932220 DOI: 10.1021/jacs.4c15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Immune disorders induced by cell-free DNA (cfDNA) account for the incidence and deterioration of systemic lupus erythematosus (SLE). Scavenging of cfDNA using cationic polymers represents a promising modality for SLE management. However, they bind cfDNA mainly via electrostatic interaction, which would result in an undesired discharge of the captured cfDNA upon competitive replacement by the negatively charged serum/intracellular components. Inspired by the natural recognition mechanism of biomacromolecules via spatial matching, we herein developed a library of dendrimer-templated, spherical, α-helical, and guanidine-rich polypeptides as molecular clips for cfDNA scavenging. Upon optimization of the polypeptide length and density on the dendrimer surface, the top-performing G3-8 was identified, which could tightly confine cfDNA within the cavity between the adjacent, rod-like α-helices. As thus, the helical G3-8 but not the random-coiled analogue D,L-G3-8 enabled robust cfDNA scavenging under serum-rich conditions to inhibit TLR9 activation and inflammation. In SLE mice, i.v. injected G3-8 efficiently prevented organ failure and inhibited inflammation by scavenging cfDNA. This study provides an enlightened strategy to stably bind and scavenge cfDNA and may shift the current paradigm of SLE management.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yi Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Zhongmin Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Guo Y, Wang YY, Wang Y, Liu YH, Liu JY, Shen YY, Cao AP, Wang RB, Xie BY, Pan X, Li AL, Zhou T, Wang N, Xia Q, Zhang WN. Petroselinic Acid from Apiaceae Family Plants Ameliorates Autoimmune Disorders Through Suppressing Cytosolic-Nucleic-Acid-Mediated Type I Interferon Signaling. Biomolecules 2025; 15:329. [PMID: 40149865 PMCID: PMC11939978 DOI: 10.3390/biom15030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
The recognition of cytosolic nucleic acids is a critical step in the host immune response against danger signals, such as molecular patterns from pathogens or tissue damage. Nonetheless, over-reactivity to self-nucleic acids leads to the sustained production of type I interferon (IFN), mediated either by cGAS or RLR, contributing to the pathogenesis of certain autoimmune diseases, such as Aicardi-Goutières syndrome (AGS). Therefore, inhibiting excessive IFN production represents a potential therapeutic strategy for such autoimmune conditions. In this study, we discovered that petroselinic acid (PA), a natural compound isolated from Apiaceae family plants, effectively suppresses type I IFN production induced by cytosolic nucleic acids. Mechanistic investigations revealed that PA inhibits the phosphorylation of TBK1 and IRF3, which are key nodal proteins within the type I interferon pathway. Notably, molecular docking suggests potential binding between PA and cytosolic nucleic acid sensors, such as cGAS and RIG-I. Moreover, we found that PA effectively attenuates the expression of type I IFN and their downstream interferon-stimulated genes (ISGs) in models of AGS autoimmune disease characterized by excessive nucleic acid accumulation. Thus, our research identifies a natural compound that offers a promising strategy for treating autoimmune diseases resulting from aberrant self-nucleic acid recognition and the hyperactivation of type I interferon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qing Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.G.); (Y.-Y.W.); (Y.W.); (Y.-H.L.); (J.-Y.L.); (Y.-Y.S.); (A.-P.C.); (R.-B.W.); (B.-Y.X.); (X.P.); (A.-L.L.); (T.Z.); (N.W.)
| | - Wei-Na Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.G.); (Y.-Y.W.); (Y.W.); (Y.-H.L.); (J.-Y.L.); (Y.-Y.S.); (A.-P.C.); (R.-B.W.); (B.-Y.X.); (X.P.); (A.-L.L.); (T.Z.); (N.W.)
| |
Collapse
|
11
|
Gronke K, Nguyen M, Fuhrmann H, Santamaria de Souza N, Schumacher J, Pereira MS, Löschberger U, Brinkhege A, Becker NJ, Yang Y, Sonnert N, Leopold S, Martin AL, von Münchow-Klein L, Pessoa Rodrigues C, Cansever D, Hallet R, Richter K, Schubert DA, Daniel GM, Dylus D, Forkel M, Schwinge D, Schramm C, Redanz S, Lassen KG, Manfredo Vieira S, Piali L, Palm NW, Bieniossek C, Kriegel MA. Translocating gut pathobiont Enterococcus gallinarum induces T H17 and IgG3 anti-RNA-directed autoimmunity in mouse and human. Sci Transl Med 2025; 17:eadj6294. [PMID: 39908347 DOI: 10.1126/scitranslmed.adj6294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Chronic autoimmune diseases often lead to long-term sequelae and require lifelong immunosuppression because of an incomplete understanding of the triggers and drivers in genetically predisposed patients. Gut bacteria that escape the gut barrier, known as translocating gut pathobionts, have been implicated as instigators and perpetuators of extraintestinal autoimmune diseases in mice. The gut microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. Here, we show that the translocating pathobiont Enterococcus gallinarum can induce both human and mouse interferon-γ+ T helper 17 (TH17) differentiation and immunoglobulin G3 (IgG3) subclass switch of anti-E. gallinarum RNA antibodies, which correlated with anti-human RNA autoantibody responses in patients with systemic lupus erythematosus (SLE) and autoimmune hepatitis, two extraintestinal autoimmune diseases. E. gallinarum RNA, but not human RNA, triggered Toll-like receptor 8 (TLR8), and TLR8-mediated human monocyte activation promoted human TH17 induction by E. gallinarum. Translocation of the pathobiont triggered increased anti-RNA autoantibody titers that correlated with renal autoimmune pathophysiology in murine gnotobiotic lupus models and with disease activity in patients with SLE. These studies elucidate cellular mechanisms of how a translocating gut pathobiont induces systemic human T cell- and B cell-dependent autoimmune responses and provide a framework for developing host- and microbiota-derived biomarkers and targeted therapies in autoimmune diseases.
Collapse
Affiliation(s)
- Konrad Gronke
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Mytien Nguyen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Helen Fuhrmann
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Noemi Santamaria de Souza
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Julia Schumacher
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Márcia S Pereira
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Ulrike Löschberger
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Anna Brinkhege
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Nathalie J Becker
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
- Section of Rheumatology and Clinical Immunology, Department of Internal Medicine, University Hospital Münster, 48149 Münster, Germany
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nicole Sonnert
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Shana Leopold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Anjelica L Martin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Lilly von Münchow-Klein
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Cecilia Pessoa Rodrigues
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Dilay Cansever
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Remy Hallet
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Kirsten Richter
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - David A Schubert
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Guillaume M Daniel
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - David Dylus
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Marianne Forkel
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Dorothee Schwinge
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Martin Zeitz Centre for Rare Diseases and Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sylvio Redanz
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Kara G Lassen
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Silvio Manfredo Vieira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luca Piali
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Martin A Kriegel
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
- Section of Rheumatology and Clinical Immunology, Department of Internal Medicine, University Hospital Münster, 48149 Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
12
|
Hatano R, Nakamura H, Yamamoto A, Otsuka H, Itoh T, Hosokawa N, Yu J, Ranjbar S, Hasegawa Y, Sato T, Dang NH, Ohnuma K, Morimoto S, Sekigawa I, Ishii T, Morimoto C. An abnormal increase in CD26(-)CD28(-) cytotoxic effector CD4 and CD8 T cell populations in patients with systemic lupus erythematosus. Int Immunol 2025; 37:153-172. [PMID: 39383111 DOI: 10.1093/intimm/dxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024] Open
Abstract
CD26 is a human T cell costimulatory molecule as well as a T cell subset marker, and the increase of CD26+ T cells in inflamed tissues and peripheral blood has been reported in diverse autoimmune diseases. In contrast, our group has previously shown that levels of circulating CD26+ T cells are decreased in patients with systemic lupus erythematosus (SLE), although the role of reduced CD26 T cell surface expression in SLE pathology remains to be elucidated. In the present study, we conducted CD26-based T cell subset analyses utilizing peripheral blood mononuclear cells from 57 SLE patients and 31 healthy adult volunteers. We show that the increase in the CD26(-) T cell population reflects the abnormal expansion of CD26(-)CD28(-) cytotoxic subsets of both CD8 T cells and CD4 T cells in SLE patients. Single-cell RNA sequencing analysis of the CD26(-)CD28(-) CD4 and CD8 T cell populations reveals unique characteristics with similarities to natural killer T cells. In addition, the level of CD26(-)CD28(-) T cells is increased in some active-stage SLE patients with renal manifestation. Meanwhile, the effect of prednisolone treatment on these populations varies from patient to patient, with levels of these cytotoxic effector populations still being elevated in some inactive-stage SLE patients. Taken together, our data suggest that analysis of these populations in SLE may be a useful tool to classify this markedly heterogeneous condition.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hayato Nakamura
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ayako Yamamoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takumi Itoh
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nao Hosokawa
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jinghui Yu
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sedigheh Ranjbar
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuta Hasegawa
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsutomu Sato
- Department of Hematology, Toyama University Hospital, Toyama, Toyama 930-0194, Japan
| | - Nam H Dang
- Division of Hematology/Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shinji Morimoto
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Urayasu, Chiba 279-0021, Japan
| | - Iwao Sekigawa
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Urayasu, Chiba 279-0021, Japan
| | - Tomonori Ishii
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
13
|
Guo SK, Liu CX, Xu YF, Wang X, Nan F, Huang Y, Li S, Nan S, Li L, Kon E, Li C, Wei MY, Su R, Wei J, Peng S, Ad-El N, Liu J, Peer D, Chen T, Yang L, Chen LL. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis. Nat Biotechnol 2025; 43:236-246. [PMID: 38653797 DOI: 10.1038/s41587-024-02204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Efforts to advance RNA aptamers as a new therapeutic modality have been limited by their susceptibility to degradation and immunogenicity. In a previous study, we demonstrated synthesized short double-stranded region-containing circular RNAs (ds-cRNAs) with minimal immunogenicity targeted to dsRNA-activated protein kinase R (PKR). Here we test the therapeutic potential of ds-cRNAs in a mouse model of imiquimod-induced psoriasis. We find that genetic supplementation of ds-cRNAs leads to inhibition of PKR, resulting in alleviation of downstream interferon-α and dsRNA signals and attenuation of psoriasis phenotypes. Delivery of ds-cRNAs by lipid nanoparticles to the spleen attenuates PKR activity in examined splenocytes, resulting in reduced epidermal thickness. These findings suggest that ds-cRNAs represent a promising approach to mitigate excessive PKR activation for therapeutic purposes.
Collapse
Affiliation(s)
- Si-Kun Guo
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Feng Xu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Wang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang Nan
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Youkui Huang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siqi Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan Nan
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Edo Kon
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Center for Nanoscience and Nanotechnology, Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Chen Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Yuan Wei
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rina Su
- Department of Dermatology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shiguang Peng
- Department of Dermatology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Nitay Ad-El
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Center for Nanoscience and Nanotechnology, Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Jiaquan Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Center for Nanoscience and Nanotechnology, Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Ting Chen
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- New Cornerstone Science Laboratory, Shenzhen, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
14
|
Belot A, Tusseau M, Cognard J, Georgin‐Lavialle S, Boursier G, Hedrich CM. How (Ultra-)Rare Gene Variants Improve Our Understanding of More Common Autoimmune and Inflammatory Diseases. ACR Open Rheumatol 2025; 7:e70003. [PMID: 39964335 PMCID: PMC11834591 DOI: 10.1002/acr2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
The aim of this study was to explore the impact of rare and ultra-rare genetic variants on the understanding and treatment of autoimmune and autoinflammatory diseases with a focus on systemic lupus erythematosus (SLE) and Behçet syndrome. This review summarizes current research on the monogenic causes of SLE and Behçet syndrome, highlighting the various pathways that can be responsible for these unique phenotypes. In monogenic SLE, the identification of complement and DNASE1L3 deficiencies has elucidated mechanisms of apoptotic body accumulation and extracellular nucleic acid sensing. Type I interferonopathies underline the specific role of DNA/RNA sensing and the interferon overexpression in the development of systemic autoimmunity. Other significant genetic defects include Toll-like receptor hypersignaling and JAK/STATopathies, which contribute to the breakdown of immune tolerance. To date, genetic defects directly affecting B and T cell biology only account for a minority of identified causes of monogenic lupus, highlighting the importance of a tight regulation of mechanistic target of rapamycin and RAS (Rat sarcoma GTPase)/MAPK (mitogen-activated protein kinase) signaling in lupus. In Behçet syndrome, rare variants in TNFAIP3, RELA, and NFKB1 genes have been identified, underscoring the importance of NF-κB overactivation. Additional monogenic diseases such as ELF4, WDR1 mutations and trisomy 8 further illustrate the genetic complexity of this condition. Observations from genetic studies in SLE and Behçet syndrome highlight the complexity of systemic inflammatory diseases in which distinct molecular defects caused by single-gene mutations can promote lupus or Behçet syndromes, often unrecognizable from their genetically complex "classical" forms. Insights gained from studying rare genetic variants enhance our understanding of immune function in health and disease, paving the way for targeted therapies and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Belot
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and Autoimmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisLyonFrance
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant and Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisParisFrance
| | - Jade Cognard
- American Memorial Hospital, Centre Hospitalier Universitaire Reims, Reims Champagne‐Ardenne UniversityReimsFrance
| | - Sophie Georgin‐Lavialle
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Sorbonne Université, Hôpital Tenon, DMU 3ID, AP‐HPParisFrance
| | - Guilaine Boursier
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Centre Hospitalier Universitaire Montpellier, University of MontpellierMontpellierFrance
| | - Christian M. Hedrich
- Institute of Life Course and Medical Sciences, University of Liverpool and Alder Hey Children's NHS Foundation TrustLiverpoolUnited Kingdom
| |
Collapse
|
15
|
Stockfelt M, Teng YKO, Vital EM. Opportunities and limitations of B cell depletion approaches in SLE. Nat Rev Rheumatol 2025; 21:111-126. [PMID: 39815102 DOI: 10.1038/s41584-024-01210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
B cell depletion with rituximab, a chimeric monoclonal antibody that selectively targets B cells by binding CD20, has been used off label in severe and resistant systemic lupus erythematosus (SLE) for over two decades. Several biological mechanisms limit the efficacy of rituximab, including immunological reactions towards the chimeric molecule, increased numbers of residual B cells, including plasmablasts and plasma cells, and a post-treatment surge in B cell-activating factor (BAFF) levels. Consequently, rituximab induces remission in only a proportion of patients, and safety issues limit its use. However, the use of rituximab has established the value of B cell depletion strategies in SLE and has guided the development of several improved B cell depletion therapies for SLE. These include enhanced monoclonal antibodies, modalities that redirect the specificity of patient T cells using chimeric antigen receptor T cells or bispecific T cell engagers, and combination treatment that simultaneously inhibits the BAFF pathway. In this Review, we consider evidence gathered from over two decades of using rituximab in SLE and examine how B cell depletion therapies could be further optimized to achieve immunological and clinical efficacy. In addition, we discuss the prospects of B cell depletion strategies for personalized treatment in SLE based on genetic research and studies in pre-symptomatic individuals.
Collapse
Affiliation(s)
- Marit Stockfelt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Y K Onno Teng
- Center of Expertise for Lupus, Vasculitis and Complement-mediated Systemic disease (LuVaCs), Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
16
|
Chen D, Sun F, Miao M, Wang Y, Jin Y, Zhang X, Shao M, Zhou Y, Sun X, Ye H, Li Z. Dose effect of corticosteroids on peripheral lymphocyte profiles in patients with systemic lupus erythematosus. Clin Rheumatol 2025; 44:669-679. [PMID: 39760906 DOI: 10.1007/s10067-024-07254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE To investigate the dose effect of methylprednisolone (MP) on peripheral lymphocyte profiles in patients with systemic lupus erythematosus (SLE). This study investigated the impact of varied MP doses on peripheral lymphocyte subtypes in SLE patients. METHODS We conducted a prospective study involving 51 SLE patients, categorized into four groups (40 mg/day, 80 mg/day, 500 mg/day, and 1000 mg/day) based on the administered MP dosage during hospitalization. We analyzed the lymphocyte count and proportion in peripheral blood, along with their subpopulations, before and after MP treatment using the paired Mann-Whitney U test. RESULTS Treatment with a clinically rational dose of MP (40 mg/day or 80 mg/day) resulted in increased lymphocyte counts, encompassing total lymphocytes, T cells, CD4 + T cells, regulatory T cells (Treg), and effector T cells (Teff) in the short term. Conversely, the counts of these cells decreased with pulse MP (500 mg/day or 1000 mg/day). The percentage of Treg cells and the Treg/Teff ratio increased following 40 mg or 80 mg MP/day treatment, whereas they decreased after pulse therapy. A gradual augmentation in the count and percentage of Treg cells was observed during continuous administration of 40 mg or 80 mg MP/day for 1 week, while in patients receiving pulse therapy, Treg cells tended to decrease during the therapy but rapidly recovered upon MP reduction. CONCLUSION Lower doses of MP in the short term increased Treg cells, inhibiting systemic inflammation in SLE. High-dose pulse therapy exhibited a suppressive effect on Tregs. Key Points • Different dosages of methylprednisolone have variable effects on peripheral lymphocyte subsets. • Methylprednisolone pulse therapy leads to a rapid decrease in Treg cells. • Clinically rational methylprednisolone treatment leads to an increase in Treg cells.
Collapse
Affiliation(s)
- Da Chen
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Feng Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Miao Miao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Yifan Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Yuebo Jin
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiaoying Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Miao Shao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Yunshan Zhou
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
17
|
Zhu BY, Liu ZC, Zhao ZX, Huang HP, Zhang N, Xia J, Chen WW. Pharmacological Mechanism of Chinese Medicine in Systemic Lupus Erythematosus: A Narrative Review. Chin J Integr Med 2025; 31:157-169. [PMID: 39240290 DOI: 10.1007/s11655-024-3762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 09/07/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder affecting multiple systems, characterized by the development of harmful autoantibodies and immune complexes that lead to damage in organs and tissues. Chinese medicine (CM) plays a role in mitigating complications, enhancing treatment effectiveness, and reducing toxicity of concurrent medications, and ensuring a safe pregnancy. However, CM mainly solves the disease comprehensively through multi-target and multi-channel regulation process, therefore, its treatment mechanism is often complicated, involving many molecular links. This review introduces the research progress of pathogenesis of SLE from the aspects of genetics, epigenetics, innate immunity and acquired immunity, and then discusses the molecular mechanism and target of single Chinese herbal medicine and prescription that are commonly used and effective in clinic to treat SLE.
Collapse
Affiliation(s)
- Bo-Yu Zhu
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhi-Chao Liu
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhen-Xi Zhao
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hui-Ping Huang
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Na Zhang
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia Xia
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wei-Wei Chen
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
18
|
Jägerback S, Gomez A, Parodis I. Predictors of renal flares in systemic lupus erythematosus: a post-hoc analysis of four phase III clinical trials of belimumab. Rheumatology (Oxford) 2025; 64:623-631. [PMID: 38216728 PMCID: PMC11781576 DOI: 10.1093/rheumatology/keae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE The objective of this study was to identify predictors of renal flares in patients with SLE treated for active extra-renal disease. METHODS Data from four clinical trials of belimumab in SLE (BLISS-52, NCT00424476; BLISS-76, NCT00410384; BLISS-NEA, NCT01345253; BLISS-SC, NCT01484496) were used. Patients were assigned to belimumab or placebo on top of standard therapy. We investigated the performance of predictors of renal flares through weeks 52-76 using proportional hazards regression analysis. RESULTS Of 3225 participants, 192 developed at least one renal flare during follow-up, with the first occurring after a median time of 197 days. Current/former renal involvement [hazards ratio (HR): 15.4; 95% CI: 8.3-28.2; P < 0.001], low serum albumin levels (HR 0.9; 95% CI: 0.8-0.9; P < 0.001), proteinuria (HR: 1.6; 95% CI: 1.5-1.7; P < 0.001), and low C3 levels (HR: 2.9; 95% CI: 2.1-4.1; P < 0.001) at baseline appeared robust determinants of impending renal flares. Anti-dsDNA positivity yielded an increased hazard for renal flares (HR: 2.1; 95% CI: 1.4-3.2; P < 0.001), which attenuated after adjustments. Anti-Sm positivity was associated with renal flares in the placebo (HR: 3.7; 95% CI: 2.0-6.9; P < 0.001) but not in the belimumab subgroup, whereas anti-ribosomal P positivity was associated with renal flares in the belimumab subgroup only (HR: 2.8; 95% CI: 1.5-5.0; P = 0.001). CONCLUSION A history of renal involvement, high baseline proteinuria, hypoalbuminaemia, and C3 consumption were robust determinants of impending renal flares. In addition to anti-dsDNA, anti-Sm and anti-ribosomal P protein antibody positivity may have value in surveillance of renal SLE.
Collapse
Affiliation(s)
- Sandra Jägerback
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine, Danderyd University Hospital, Danderyd, Sweden
| | - Alvaro Gomez
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
19
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
20
|
Rekvig OP. Why is it so difficult to understand why we don't understand human systemic lupus erythematosus? Contemplating facts, conflicts, and impact of "the causality cascade paradigm". Front Immunol 2025; 15:1507792. [PMID: 39936150 PMCID: PMC11811100 DOI: 10.3389/fimmu.2024.1507792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
In attempts to understand systemic lupus erythematosus (SLE), we find ourselves in the intellectual cross-point between nosology, pathogenicity-oriented science, philosophy, empiricism, and qualified conjectures. A vital consequence in science theory is that scientific hypotheses that are not critically investigated are in danger of being transformed into scientific dogmas. This statement has consequences for this study. Two central problematic aspects are discussed. For the first, we have to consider new selection principles for classification criteria-implying integration of the causality principle. Second, central historical data must be implemented if we aim to understand SLE. These data comprise famous descriptions of distinct, dynamically changing DNA structures linked to the genetic machinery. These unique structures have since their discoveries decades ago mostly been ignored in SLE research. Likewise, inconclusive dogmatic data indicate that different glomerular ligands are recognized by nephritogenic anti-dsDNA antibodies-exposed chromatin fragments or inherent membrane ligands. These incongruent models have not been comparatively and systematically investigated. Three research areas will be critically discussed: (i) selection and role of SLE classification criteria, a process that must imply the causality principle; (ii) definition and impact of anti-dsDNA structure-specific antibodies; (iii) incongruent pathogenic models that account for lupus nephritis. A precise and critically important question is if SLE itself is a response to a dominant unified cause that initiates a cascade of downstream effects (criteria) or if SLE represents combined responses to a random interplay of multiple cause-effect events. These principally different explanations are formally not excluded or accepted today. Currently, SLE may be regarded as a disease with phenotypic diversity, independently segregated manifestations with unresolved etiologies that are not unique to a single SLE phenotype. The focus for the present discussion is basically how we, by critical hypotheses, can re-consider science-based selection of SLE classification criteria in order to delimitate and rationalize SLE. Classification criteria, autoimmunity, DNA structures, and anti-dsDNA antibodies are integrated aspects in this discussion.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
21
|
Zeng Y, Xu W, Chao P, Xiao Y, Yang T. Neutrophil extracellular traps as a potential marker of systemic lupus erythematosus activity. Int Immunopharmacol 2025; 146:113840. [PMID: 39689598 DOI: 10.1016/j.intimp.2024.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The heterogeneity of systemic lupus erythematosus (SLE) poses a significant challenge in identifying biomarkers for assessing disease activity. Currently, there is a paucity of established biomarkers capable of evaluating SLE flares. This study aimed to identify novel biomarkers that exhibit improved diagnostic accuracy in assessing SLE activity. METHODS A cross-sectional study was conducted at Zhongshan Hospital Xiamen University from August 2021 to April 2024,enrolling 118 patients with SLE, including 81 cases of active SLE, 50 cases of active lupus nephritis (LN) and 30 cases of active non-LN. The objective was to evaluate the diagnostic accuracy of novel biomarker called Neutrophil Extracellular Traps(NETs) for SLE activity and analyze its correlations with conventional biomarkers such as complement C3, C4, and anti-dsDNA. RESULTS Serum NETs levels were significantly elevated in patients with active SLE and active LN(P < 0.001). Furthermore, positive correlations were observed between NETs levels and disease activity score based on Systemic Lupus Erythematosus Disease Activity Index-2 K (SLEDAI-2 K) (r = 0.64, P < 0.001), as well as anti-dsDNA antibody (r = 0.54, P < 0.001).Conversely, the NETs levels were negativity correlated with complement C3 concentration (r = -0.50, P < 0.001), as well as C4 concentration (r = -0.34,P < 0.001). Univariate and multivariate analysis revealed two biomarkers performed statistical significance: NETs (OR = 6.802, 95 %CI: 2.414-19.167,P < 0.001) and anti-dsDN A(OR = 3.95,95 %CI:1.582-9.864, P = 0.003). NETs had the highest AUC of 0.82(P < 0.001), with a cut-off at 515.47 ng/L demonstrating 61.63 % sensitivity and 96.87 % specificity. For the active LN group, the AUC was found to be 0.97 (P < 0.001), with a cutoff value of 515.47 ng/L, sensitivity of 100 %, and specificity of 59.76 %. Moreover, the active non-LN group had AUC of 0.70 (P = 0.007), with the same cutoff value, sensitivity of 89.61 %, and specificity of 51.61 %. CONCLUSION In contrast to conventional laboratory markers, serum NETs represent a novel diagnostic marker for assessing disease activity in SLE, demonstrating promising potential for clinical application.
Collapse
Affiliation(s)
- Yanli Zeng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease,School of Medicine,XiamenUniversity, Xiamen 361004, China; Xiamen Clinical Laboratory Quality ControlCenter,Zhongshan Hospital Xiamen University, Xiamen 361004, China.
| | - Wenlong Xu
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Pengli Chao
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yun Xiao
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Tianci Yang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease,School of Medicine,XiamenUniversity, Xiamen 361004, China; Xiamen Clinical Laboratory Quality ControlCenter,Zhongshan Hospital Xiamen University, Xiamen 361004, China.
| |
Collapse
|
22
|
Drobek A, Bernaleau L, Delacrétaz M, Calderon Copete S, Royer-Chardon C, Longepierre M, Monguió-Tortajada M, Korzeniowski J, Rotman S, Marquis J, Rebsamen M. The TLR7/9 adaptors TASL and TASL2 mediate IRF5-dependent antiviral responses and autoimmunity in mouse. Nat Commun 2025; 16:967. [PMID: 39856058 PMCID: PMC11759703 DOI: 10.1038/s41467-024-55692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/14/2024] [Indexed: 01/30/2025] Open
Abstract
Endosomal nucleic acid sensing by Toll-like receptors (TLRs) is central to antimicrobial immunity and several autoimmune conditions such as systemic lupus erythematosus (SLE). The innate immune adaptor TASL mediates, via the interaction with SLC15A4, the activation of IRF5 downstream of human TLR7, TLR8 and TLR9, but the pathophysiological functions of this axis remain unexplored. Here we show that SLC15A4 deficiency results in a selective block of TLR7/9-induced IRF5 activation, while loss of TASL leads to a strong but incomplete impairment, which depends on the cell type and TLR engaged. This residual IRF5 activity is ascribed to a previously uncharacterized paralogue, Gm6377, named here TASL2. Double knockout of TASL and TASL2 (TASLDKO) phenocopies SLC15A4-deficient feeble mice showing comparable impairment of innate and humoral responses. Consequently, TASLDKO mice fail to control chronic LCMV infection, while being protected in a pristane-induced SLE disease model. Our study thus demonstrates the critical pathophysiological role of SLC15A4 and TASL/TASL2 for TLR7/9-driven inflammatory responses, further supporting the therapeutic potential of targeting this complex in SLE and related diseases.
Collapse
Affiliation(s)
- Ales Drobek
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Léa Bernaleau
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Sandra Calderon Copete
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Claire Royer-Chardon
- Department of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | - Jakub Korzeniowski
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Samuel Rotman
- Department of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julien Marquis
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
23
|
Lin Y, Zheng L, Xu Y, Wang X, Li J, Zheng L, Liang G, Chen L. Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) Degraders for Treating Inflammatory Diseases: Advances and Prospects. J Med Chem 2025; 68:902-914. [PMID: 39762193 DOI: 10.1021/acs.jmedchem.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is involved in various inflammation-related diseases. Both the kinase and scaffolding functions of IRAK4 initiate pro-inflammatory factor transcription and expression. The scaffolding function of IRAK4 is essential for Myddosome assembly and NF-κB activation. Conventional small-molecule inhibitors effectively inhibit the kinase function of IRAK4 but do not block its scaffolding function. Recently, various IRAK4 degraders have shown promising therapeutic potential in inflammatory diseases. The most advanced IRAK4-selective degrader, KT-474 (SAR444656), significantly reduced inflammatory biomarker levels in patients and demonstrated high safety and tolerability. This perspective introduces and discusses the physiological biology of IRAK4, its associated diseases, and the current development of IRAK4 degraders, thereby offering insights into future research directions.
Collapse
Affiliation(s)
- Yaoxiang Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310000, China
| | - Ying Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinyan Wang
- School of Medicine, Zhejiang University City College, Huzhou Road, Hangzhou 310015, China
| | - Jie Li
- School of Medicine, Zhejiang University City College, Huzhou Road, Hangzhou 310015, China
| | - Lei Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Lingfeng Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
24
|
Lu Y, Wang Y, Ruan T, Wang Y, Ju L, Zhou M, Liu L, Yao D, Yao M. Immunometabolism of Tregs: mechanisms, adaptability, and therapeutic implications in diseases. Front Immunol 2025; 16:1536020. [PMID: 39917294 PMCID: PMC11798928 DOI: 10.3389/fimmu.2025.1536020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Immunometabolism is an emerging field that explores the intricate interplay between immune cells and metabolism. Regulatory T cells (Tregs), which maintain immune homeostasis in immunometabolism, play crucial regulatory roles. The activation, differentiation, and function of Tregs are influenced by various metabolic pathways, such as the Mammalian targets of rapamycin (mTOR) pathway and glycolysis. Correspondingly, activated Tregs can reciprocally impact these metabolic pathways. Tregs also possess robust adaptive capabilities, thus enabling them to adapt to various microenvironments, including the tumor microenvironment (TME). The complex mechanisms of Tregs in metabolic diseases are intriguing, particularly in conditions like MASLD, where Tregs are significantly upregulated and contribute to fibrosis, while in diabetes, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), they show downregulation and reduced anti-inflammatory capacity. These phenomena suggest that the differentiation and function of Tregs are influenced by the metabolic environment, and imbalances in either can lead to the development of metabolic diseases. Thus, moderate differentiation and inhibitory capacity of Tregs are critical for maintaining immune system balance. Given the unique immunoregulatory abilities of Tregs, the development of targeted therapeutic drugs may position them as novel targets in immunotherapy. This could contribute to restoring immune system balance, resolving metabolic dysregulation, and fostering innovation and progress in immunotherapy.
Collapse
|
25
|
Miller CM, Morrison JH, Bankers L, Dran R, Kendrick JM, Briggs E, Ferguson VL, Poeschla EM. ADAR1 haploinsufficiency and sustained viral RdRp dsRNA synthesis synergize to dysregulate RNA editing and cause multi-system interferonopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634124. [PMID: 39896491 PMCID: PMC11785089 DOI: 10.1101/2025.01.21.634124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Sensing of viral double-stranded RNA by MDA5 triggers abundant but transient interferon-stimulated gene (ISGs) expression. If dsRNA synthesis is made persistent by transgenically expressing a picornaviral RNA-dependent RNA polymerase (RdRp) in mice, lifelong MDA5 activation and marked, global ISG upregulation result. This confers robust protection from viral diseases but in contrast to numerous other chronic MDA5 hyperactivation states, the mice suffer no autoimmune consequences. Here we find they further confound expectations by being resistant to a strong autoimmunity (lupus) provocation. However, knockout of one allele of Adar , which by itself is also well-tolerated, breaks the protective state and results in a severe disease that resembles interferonopathies caused by MDA5 gain-of-function mutations. In Adar +/- RdRp transgenic mice, A-to-I editing is both dysregulated and increased (numbers of genes and sites). This dsRNA-driven, MDA5-wild type model establishes that viral polymerase-sourced dsRNA can drive interferonopathy pathogenesis and illuminates the autoimmunity preventing role of ADAR1, while the ADAR1-intact viral RdRp model distinctively uncouples chronic MDA5 hyperactivity and autoinflammatory disease.
Collapse
|
26
|
Ito A, Suganami T. Lipid metabolism in myeloid cell function and chronic inflammatory diseases. Front Immunol 2025; 15:1495853. [PMID: 39911578 PMCID: PMC11794072 DOI: 10.3389/fimmu.2024.1495853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Immune cells adapt their metabolism in response to their differentiation and activation status to meet the energy demands for an appropriate immune response. Recent studies have elucidated that during immune cell metabolic reprogramming, lipid metabolism, including lipid uptake, de novo lipid synthesis and fatty acid oxidation, undergoes significant alteration, resulting in dynamic changes in the quantity and quality of intracellular lipids. Given that lipids serve as an energy source and structural components of cellular membranes, they have important implications for physiological function. Myeloid cells, which are essential in bridging innate and adaptive immunity, are sensitive to these changes. Dysregulation of lipid metabolism in myeloid cells can result in immune dysfunction, chronic inflammation and impaired resolution of inflammation. Understanding the mechanism by which lipids regulate immune cell function might provide novel therapeutic insights into chronic inflammatory diseases, including metabolic diseases, autoimmune diseases and cancer. (143 words).
Collapse
Affiliation(s)
- Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
| |
Collapse
|
27
|
Liao W, Zhang X, Jia C, Chen W, Cai Y, Zhang H, Wei J, Chen T. Lactobacillus rhamnosus LC-STH-13 ameliorates the progression of SLE in MRL/lpr mice by inhibiting the TLR9/NF-κB signaling pathway. Food Funct 2025; 16:475-486. [PMID: 39744924 DOI: 10.1039/d4fo03966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease often treated with glucocorticoids, which can lead to complications such as osteoporosis and an increased infection risk. Hence, identifying safe and effective treatment strategies is crucial. Lactobacillus has shown promise in improving immune disorders. We investigated Lactobacillus rhamnosus LC-STH-13 for its probiotic properties. Female MRL/lpr mice, prone to lupus, were used to assess its impact on SLE development. The results showed that the intervention with L. rhamnosus LC-STH-13 significantly reduced the level of circulating anti-autoantibodies (p < 0.05) and rebalanced Th17/Treg cells (p < 0.05). Kidney tissue analysis revealed reduced immune cell infiltration and immune complex deposition in glomeruli. L. rhamnosus LC-STH-13 mitigated kidney inflammation via the TLR9/NF-κB pathway (p < 0.05) and attenuated complement-induced renal damage (p < 0.05). Furthermore, 16S rRNA sequencing data analysis indicated that L. rhamnosus LC-STH-13 can restore intestinal microecological imbalance caused by the development of SLE. These findings suggested that L. rhamnosus LC-STH-13 improves the development of SLE by regulating the TLR9/NF-κB pathway and intestinal microbiota, offering a foundation for exploring safe and effective treatments.
Collapse
Affiliation(s)
- Wen Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xinyi Zhang
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Chunjian Jia
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Wenjing Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yujie Cai
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, China.
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Tingtao Chen
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
28
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 PMCID: PMC11747513 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Li H, Ju B, Luo J, Zhu L, Zhang J, Hu N, Mo L, Wang Y, Tian J, Li Q, Du X, Liu X, He L. Type I interferon-stimulated genes predict clinical response to belimumab in systemic lupus erythematosus. Eur J Pharmacol 2025; 987:177204. [PMID: 39672224 DOI: 10.1016/j.ejphar.2024.177204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The type I interferon (IFN-I) response is crucial in systemic lupus erythematosus (SLE). The mRNA level of interferon-stimulated genes (ISGs) is widely used for evaluating the activity of IFN in SLE. However, the character of ISGs in belimumab-treated SLE patients has not be reported. In this study, we enrolled 53 SLE patients undergoing belimumab treatment and assessed their clinical responses at 3, 6, and 12 months. The expression levels of 25 ISGs in Peripheral blood mononuclear cells (PBMCs) were quantified at baseline and at 3 months using quantitative real-time PCR. Using Least absolute shrinkage and selection operator (LASSO)-logistic regression, five genes (CXCL10, EPSTI1, HECR6, IFI27, IFIH1) were identified to predict belimumab efficacy. The IFN signature score, a multivariate logistic regression model based on the change rates of these genes, positively predicted the SLE responder index (SRI) at 12 months, with an area under curve of 0.940 in receiver operating characteristic and favorable outcomes in decision curve analysis. Patients with an IFN signature score ≥0 had higher SRI response rates, better clinical markers (including SLE disease activity index 2000 scores, anti-dsDNA, IgG levels, daily doses of prednisone, and higher complement C3 and C4 levels), and faster B cell decline than those with scores <0. In conclusion, after 3 months of belimumab treatment, the expression levels of IFN-I-inducible genes varied, and the IFN signature score reliably forecasted the SRI response at 6 and 12 months.
Collapse
Affiliation(s)
- Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Bomiao Ju
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing Luo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing Zhang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lingfei Mo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Juan Tian
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xinru Du
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xinyi Liu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
30
|
Wang H, Tang R, Pan Q, Yin Q, Feng J, Deng L. Mitochondria dysfunction: A trigger for cardiovascular diseases in systemic lupus erythematosus. Int Immunopharmacol 2025; 144:113722. [PMID: 39622131 DOI: 10.1016/j.intimp.2024.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Cardiovascular disease (CVD), including pericarditis, myocarditis, sudden cardiac death, coronary heart disease, and stroke, are leading contributors to morbidity and mortality in systemic lupus erythematosus (SLE) patients. Emerging evidence highlights mitochondrial dysfunction as a key driver of cardiovascular pathology in SLE, with impaired oxidative phosphorylation, altered membrane potential, and disrupted metabolic processes promoting oxidative stress, inflammatory activation, and endothelial dysfunction. This review critically examines mitochondrial contributions to CVD in SLE, comparing these mechanisms with those in non-SLE CVD to highlight SLE-specific mitochondrial vulnerabilities. Furthermore, we discuss preclinical and clinical findings supporting mitochondrial pathways as potential therapeutic targets, aiming to bridge gaps in current understanding and outline future research directions. By synthesizing current knowledge of mitochondrial dysregulation, this review proposes therapeutic strategies to improve cardiovascular outcomes and advance patient care in SLE.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinyu Pan
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiuyan Yin
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
31
|
Gao S, Yang C, Huang B, Yang L, Lu L, Yang H, Li T, Pan Q. Comparative efficacy and safety of different recommended doses of telitacicept in patients with systemic lupus erythematosus in China: a systematic review and meta-analysis. Front Immunol 2025; 15:1472292. [PMID: 39867893 PMCID: PMC11757125 DOI: 10.3389/fimmu.2024.1472292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Background Telitacicept, a new biological agent, was approved in China for treating systemic lupus erythematosus (SLE) in 2021. Its optimal dosing for treating SLE remains unclear. Therefore, the aim of this meta-analysis is to evaluate the efficacy and safety of various telitacicept doses in SLE treatment. Methods PubMed, EMBASE, Cochrane libraries, Web of science, China National Knowledge Infrastructure (CNKI), VIP, Wanfang, and Sinomed were searched for the controlled trials that studied the efficacy and safety of telitacicept on SLE patients from their initiation to April 30, 2024. The analysis included three randomized controlled trials (RCT) with 606 participants. We used fixed-effects models for meta-analyses and the risk ratios (RRs) and corresponding 95% confidence intervals (CIs) to evaluate the effectiveness and safety. Heterogeneity was assessed and quantified using I2. Results All telitacicept dosages (80 mg, 160 mg, 240 mg) significantly improved SLE Responder Index 4 (SRI4) responses compared to the control group (RR = 2.20, 95%CI:1.50-3.21, p < 0.0001; RR = 2.18, 95%CI: 1.82-2.62, p < 0.00001; RR = 2.44, 95%CI: 1.67-3.56, p < 0.00001, respectively). The 80 mg, 160 mg, and 240 mg groups also showed better improvement on SELENA-SLE Disease Activity Index (SELENA-SLEDAI) scores (RR = 1.63, 95%CI: 1.23-2.17, p = 0.0008; RR = 1.72, 95%CI: 1.45-2.04, p < 0.00001; RR = 1.73, 95%CI: 1.30-2.30, p = 0.0002, respectively) and Physician Global Assessment (PGA) scores (RR = 1.25, 95%CI: 1.09-1.44, p = 0.002; RR = 1.39, 95%CI: 1.25-1.55, p < 0.00001; RR = 1.24, 95%CI: 1.09-1.42, p = 0.002, respectively). Furthermore, 160 mg group exhibited higher British Isles Lupus Assessment Group (BILAG) score than the control group (RR = 1.11, 95%CI: 1.01-1.22, p = 0.03). As for security, 160 mg telitacicept group had higher incidence of adverse events (AEs) than the control group (RR = 1.10, 95%CI: 1.03-1.18, p = 0.007). Conclusion Telitacicept combined with standard therapy presents potential benefits but there are certain safety concerns with certain dosages of telitacicept, warranting further investigation for optimal dosing strategies in SLE management. Systematic review registration INPLASY.COM, identifier INPLASY202440101.
Collapse
Affiliation(s)
- Shenglan Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunlong Yang
- Clinical Research Center, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bitang Huang
- Clinical Research Center, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non−Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lu Lu
- Clinical Research Center, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiting Yang
- Clinical Research Center, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Qingjun Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Shi Y, Qin Y, Li Y, Jiang P, Wei K, Zhao J, Shan Y, Zheng Y, Zhao F, Zhou M, Li L, Shen Y, Lv X, Zheng Y, Guo S, Ding Q, Chang C, He D. Comparative Analysis of CXCR5 Circulating DNA Methylation Levels in Autoimmune Rheumatic Diseases. Immun Inflamm Dis 2025; 13:e70128. [PMID: 39835879 PMCID: PMC11748209 DOI: 10.1002/iid3.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/08/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE To assess CXC chemokine receptor 5 (CXCR5) circulating DNA methylation differences in autoimmune rheumatic diseases and their relation with clinical features. METHODS Targeted methylation sequencing was performed using peripheral blood from 164 rheumatoid arthritis (RA), 30 systemic lupus erythematosus (SLE), 30 ankylosing spondylitis (AS), 30 psoriatic arthritis (PsA), 24 Sjögren's syndrome (SS) patients, and 30 healthy controls (HC). RESULTS Significant differences in CXCR5 cg19599951 methylation were found between RA and HC, as well as AS and SLE. RA patients exhibited higher methylation than HC and AS (p < 0.01) but lower than SLE (p < 0.05). SLE patients showed higher methylation compared to HC, AS, and PsA (p < 0.001, 0.01, and 0.05, respectively). No significant differences were found in patients with SS compared to other autoimmune diseases and HC. Methylation at cg19599951_103 (r = 0.17, p < 0.05) and cg19599951_209 (r = 0.22, p < 0.01), along with the CC haplotype (r = 0.21, p < 0.01), showed significant positive correlations with erythrocyte sedimentation rate (ESR), while the CT (r = -0.27, p < 0.001) and TT haplotypes (r = -0.19, p < 0.05) were negatively correlated. For C-reactive protein (CRP), methylation at cg19599951_103 (r = 0.29, p < 0.001) and cg19599951_209 (r = 0.33, p < 0.0001), and the CC haplotype (r = 0.34, p < 0.0001) was positively correlated, whereas the CT (r = -0.36, p < 0.0001) and TT (r = -0.30, p < 0.0001) haplotypes were negatively correlated. Significant negative correlations were observed between the CT haplotype and rheumatoid factor (r = -0.25, p < 0.01), and anti-citrullinated protein antibody (r = -0.20, p < 0.05). No significant correlations were found in patients with SLE, AS, and SS. Receiver operating characteristic analysis showed CXCR5 methylation could classify patients with RA versus those with AS (AUC: 0.624-0.967). CONCLUSION Differential circulating CXCR5 methylation levels were observed in autoimmune rheumatic diseases, which correlated with inflammatory mediators in RA and may serve as potential biomarkers for RA diagnosis.
Collapse
Affiliation(s)
- Yiming Shi
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yingying Qin
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yunshen Li
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Ping Jiang
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Kai Wei
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Jianan Zhao
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yu Shan
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yixin Zheng
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Fuyu Zhao
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Mi Zhou
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Li Li
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yu Shen
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Xinliang Lv
- Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous RegionInner Mongolia Autonomous RegionHohhotChina
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical SciencesShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shicheng Guo
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qin Ding
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Cen Chang
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Dongyi He
- Department of RheumatologyGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
33
|
Li X, Tang H, Chen C, Niu Q, Zhou Z, Zheng Y, Liu Y, Muñoz LE, Herrmann M, Wu P, Zhao Y. Improved diagnosis of systemic lupus erythematosus with human-derived double-stranded DNA antigen. Biosens Bioelectron 2025; 267:116809. [PMID: 39357495 DOI: 10.1016/j.bios.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Anti-double-stranded DNA antibodies (anti-dsDNA) serve as a crucial serological indicator for systemic lupus erythematosus (SLE). Chemiluminescent immunoassay (CIA) is mainly used in clinical diagnosis of SLE, but suffers from low specificity, partially because the use of dsDNA antigens of varied sources in current CIA kits that sometimes led to controversial results. On the basis that anti-dsDNA in healthy individuals tend to selectively bind with dsDNA originating from pathogens, whereas pathogenic anti-dsDNA in SLE patients bind all forms of dsDNA, here we proposed the use of dsDNA fragment derived from human genome as antigen (synthesized via PCR using the human genomic DNA as the template). A magnetic bead-based immunofluorescence assay (IFA) was thus developed for SLE diagnosis, which exhibited improved sensitivity and specificity over CIA using the WHO reference reagent (15/174) as standard. For clinical serum sample analysis (n = 590), IFA exhibited an accuracy of 71.9% that was higher than CIA (65.3%). Crucially, the IFA results exhibited stronger correlations with the activity of SLE, renal involvement, and its prognosis. Besides the improved clinical diagnosis, the proposed IFA also holds great promise in assay standardization due to the high homogeneity of the synthetic dsDNA.
Collapse
Affiliation(s)
- Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Honghu Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunyan Chen
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yantong Zheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Luis E Muñoz
- Department for Internal Medicine 3, University Hospital Erlangen, and Deutsches Zentrum für Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054, Erlangen, Germany
| | - Martin Herrmann
- Department for Internal Medicine 3, University Hospital Erlangen, and Deutsches Zentrum für Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054, Erlangen, Germany
| | - Peng Wu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Wangriatisak K, de Vries C, Sharma RK, Huang W, Grönwall C, Pisitkun P, Gunnarsson I, Malmström V, Chootong P, Faustini F. Association between peripheral activated naive and double negative 2 B-cell subsets and clinical parameters in lupus nephritis patients. Scand J Immunol 2025; 101:e13427. [PMID: 39592449 PMCID: PMC11631828 DOI: 10.1111/sji.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Altered composition of B-cell compartments is a known feature in patients with systemic lupus erythematosus (SLE). However, deep characterisation of B-cell subsets and their relation to clinical manifestations and disease activity in patients is limited. In this study, we analysed peripheral B-cell subsets phenotype in SLE (n = 35) and healthy controls (HCs, n = 15) by spectral flow cytometry. Disease activity was stratified as inactive (SLEDAI-2 K score 0, n = 2), mild (SLEDAI-2 K score 1-5, n = 12), moderate (SLEDAI-2 K score 6-10, n = 6) or high (SLEDAI-2 K > 10, n = 15). An elevated proportion of activated naive (aNAV), double negative 2 (DN2) and plasmablasts (PB) was observed in patients with high disease activity, compared to other groups of patients and HCs. An upregulation of BTLA was found on both aNAV and DN2 and shifted to lower levels with increasing disease activity. In lupus nephritis (LN) patients (n = 21), aNAV B-cells were especially expanded and positively correlated with DN2 (r = 0.5, p = 0.019) and PB (r = 0.43, p = 0.048). Also, correlation was observed between DN2 and PB (r = 0.6, p = 0.003). Moreover, aNAV frequencies positively correlated with SLEDAI-2 K score, and negatively with the complement fractions C3 and C4. Further, aNAV, DN2 and PB were more expanded in association with positive anti-dsDNA antibodies, rather than other antibody specificities (anti-Sm). These data suggest roles of extrafollicular B cells as key players in disease development of LN. Their association with presence of anti-dsDNA antibodies may indicate their value as candidate biomarkers of kidney involvement in SLE.
Collapse
Affiliation(s)
- Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical TechnologyMahidol UniversityNakhon PathomThailand
- Division of Rheumatology, Department of MedicineKarolinska Institutet, Karolinska University Hospital SolnaStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Charlotte de Vries
- Division of Rheumatology, Department of MedicineKarolinska Institutet, Karolinska University Hospital SolnaStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Ravi Kumar Sharma
- Division of Rheumatology, Department of MedicineKarolinska Institutet, Karolinska University Hospital SolnaStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Wenqi Huang
- Division of Rheumatology, Department of MedicineKarolinska Institutet, Karolinska University Hospital SolnaStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of MedicineKarolinska Institutet, Karolinska University Hospital SolnaStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Iva Gunnarsson
- Division of Rheumatology, Department of MedicineKarolinska Institutet, Karolinska University Hospital SolnaStockholmSweden
- Medicine Unit Dermatology, Gastroenterology, Rheumatology; Unit of RheumatologyKarolinska University Hospital SolnaStockholmSweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of MedicineKarolinska Institutet, Karolinska University Hospital SolnaStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical TechnologyMahidol UniversityNakhon PathomThailand
| | - Francesca Faustini
- Division of Rheumatology, Department of MedicineKarolinska Institutet, Karolinska University Hospital SolnaStockholmSweden
- Medicine Unit Dermatology, Gastroenterology, Rheumatology; Unit of RheumatologyKarolinska University Hospital SolnaStockholmSweden
| |
Collapse
|
35
|
Kong K, Qiao X, Liu T, Wang X, Li R, Fang J, Zhang X. Identification of Novel Hub Genes Associated with Inflammation and Autophagy in Astragaloside Membranaceus ameliorates Lupus Nephritis by Bioinformatics Analysis and Molecular Dynamics Simulation. Comb Chem High Throughput Screen 2025; 28:306-318. [PMID: 38299290 DOI: 10.2174/0113862073255980231113071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Lupus nephritis is an autoimmune disease, and its pathogenesis involves inflammation and autophagy disorders. Studies have demonstrated that Astragalus membranaceus can effectively suppress the progression of LN, but the underlying therapeutic target is still unclear. OBJECTION This study aimed to investigate the therapeutic target whereby AM ameliorates LN. METHOD We downloaded AM and LN-related chips from the TCMSP and GEO databases, respectively. We selected the two compound targets for the subsequent analysis via WGCNA, and constructed protein interaction networks of compound targets and determined the core targets. GO, KEGG analyses were conducted on compound targets to identify enriched functional and genomic pathways. The core genes were further validated in clinical and external datasets. Molecular docking of AS with the core targets was performed using the AutoDock software, and molecular dynamics simulation was conducted for the optimal core protein ligand obtained by molecular docking by Gromacs 2020.6 software. RESULT We obtained 10 core targets, namely IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, PPARγ, AR, CXCL10, and KDR, from the 24 compound targets identified. The results of the GO enrichment analysis mainly included cell growth regulation. The results of the KEGG enrichment analysis showed that 7 out of 23 valid targets were significantly enriched in the mitogen-activated protein kinase pathway (p < 0.01). Combined with the clinical datasets, we found that IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, and PPARγ have high diagnostic values for LN. In the validation dataset, all the core targets were significantly differentially expressed, except for EGF deletion. The molecular docking and molecular dynamics simulation results showed that AM and IL- 1β, CASP3, STAT1, and PPARγ all had binding energies < -5 kJ·mol-1 and good binding properties. CONCLUSION IL-1β, CASP3, STAT1, and PPARγ could be potential biomarkers and therapeutic targets in AM ameliorates LN.
Collapse
Affiliation(s)
- Kaili Kong
- Shanxi Medicial University, Taiyuan, China
| | | | - Ting Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Rui Li
- Shanxi Medicial University, Taiyuan, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
36
|
Sharma U. The SLE Conundrum: A Comprehensive Analysis of Pathogenesis, Recent Developments, and the Future of Therapeutic Interventions. Crit Rev Immunol 2025; 45:41-54. [PMID: 39612276 DOI: 10.1615/critrevimmunol.2024053504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with multifactorial interactions among various susceptibility factors. Significant strides have been made in understanding the pathogenesis of SLE, leading to the development of targeted therapies and the exploration of alternative treatments. The approval of new therapies has expanded patient treatment options, and ongoing clinical trials promise to enhance the treatment landscape further. The future of SLE treatment lies in personalized, targeted therapies that minimize side effects and improve patient outcomes. This review comprehensively analyzes SLE's current status and prospects based on recent studies, patents, clinical trials, and formulations. Continued research and clinical trials are crucial to uncovering new therapeutic options and ultimately transforming the treatment landscape for SLE. With sustained efforts and advancements in medical science, we can offer a better quality of life and improved survival rates for SLE patients.
Collapse
|
37
|
Uribe FR, González-Martínez F, Echeverría-Araya SA, Sepúlveda-Pontigo A, Chávez-Villacreses K, Díaz-Bozo A, Méndez-Pérez I, González VPI, Bohmwald K, Kalergis AM, Soto JA. Characterization of Dendritic Cells and Myeloid-Derived Suppressor Cells Expressing Major Histocompatibility Complex Class II in Secondary Lymphoid Organs in Systemic Lupus Erythematosus-Prone Mice. Int J Mol Sci 2024; 25:13604. [PMID: 39769367 PMCID: PMC11676837 DOI: 10.3390/ijms252413604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by self-antibody production and widespread inflammation affecting various body tissues. This disease is driven by the breakdown of immune tolerance, which promotes the activation of autoreactive B and T cells. A key feature of SLE is dysregulation in antigen presentation, where antigen-presenting cells (APCs) play a central role in perpetuating immune responses. Dendritic cells (DCs) are highly specialized for antigen presentation among APCs. At the same time, myeloid-derived suppressor cells (MDSCs) can also express MHC-II molecules, although their role in SLE is less understood. Utilizing the SLE model, MRL/MpJ-Faslpr/J, we determined the presence of different phenotypes of DCs and MDSCs expressing MHC-II in secondary lymphoid organs, along with the gene expression of ICOSL, CD80 and CD86 in the spleen. Our study determined that the most abundant population of APCs in secondary lymphoid organs corresponds to cDC CD103-CD11b+ MHC-II+ throughout SLE development. Additionally, ICOSL expression increased over time, becoming more preponderant in week 16 in the SLE model, which could indicate that it is a crucial pathway for the development and progression of the pathology. In week 16, we observed a positive correlation between M-MDSC MHC-II and IFN-γ-producing CD4+ T cells.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile; (F.R.U.); (F.G.-M.); (S.A.E.-A.); (A.S.-P.); (K.C.-V.); (A.D.-B.); (I.M.-P.); (V.P.I.G.)
| | - Fabián González-Martínez
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile; (F.R.U.); (F.G.-M.); (S.A.E.-A.); (A.S.-P.); (K.C.-V.); (A.D.-B.); (I.M.-P.); (V.P.I.G.)
| | - Sebastián A. Echeverría-Araya
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile; (F.R.U.); (F.G.-M.); (S.A.E.-A.); (A.S.-P.); (K.C.-V.); (A.D.-B.); (I.M.-P.); (V.P.I.G.)
| | - Alison Sepúlveda-Pontigo
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile; (F.R.U.); (F.G.-M.); (S.A.E.-A.); (A.S.-P.); (K.C.-V.); (A.D.-B.); (I.M.-P.); (V.P.I.G.)
| | - Karissa Chávez-Villacreses
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile; (F.R.U.); (F.G.-M.); (S.A.E.-A.); (A.S.-P.); (K.C.-V.); (A.D.-B.); (I.M.-P.); (V.P.I.G.)
| | - Andrés Díaz-Bozo
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile; (F.R.U.); (F.G.-M.); (S.A.E.-A.); (A.S.-P.); (K.C.-V.); (A.D.-B.); (I.M.-P.); (V.P.I.G.)
| | - Isabel Méndez-Pérez
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile; (F.R.U.); (F.G.-M.); (S.A.E.-A.); (A.S.-P.); (K.C.-V.); (A.D.-B.); (I.M.-P.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile; (F.R.U.); (F.G.-M.); (S.A.E.-A.); (A.S.-P.); (K.C.-V.); (A.D.-B.); (I.M.-P.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8900000, Chile;
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile; (F.R.U.); (F.G.-M.); (S.A.E.-A.); (A.S.-P.); (K.C.-V.); (A.D.-B.); (I.M.-P.); (V.P.I.G.)
| |
Collapse
|
38
|
Guo Q, Li J, Wang J, Li L, Wei J, Zhang L. The advent of chimeric antigen receptor T Cell therapy in recalibrating immune balance for rheumatic autoimmune disease treatment. Front Pharmacol 2024; 15:1502298. [PMID: 39734406 PMCID: PMC11672202 DOI: 10.3389/fphar.2024.1502298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
CAR-T cell therapy, a cutting-edge cellular immunotherapy with demonstrated efficacy in treating hematologic malignancies, also exhibits significant promise for addressing autoimmune diseases. This innovative therapeutic approach holds promise for achieving long-term remission in autoimmune diseases, potentially offering significant benefits to affected patients. Current targets under investigation for the treatment of these conditions include CD19, CD20, and BCMA, among others. However, CAR-T therapy faces difficulties such as time-consuming cell manufacturing, complex and expensive process, and the possibility of severe adverse reactions complicating the treatment, etc. This article examines CAR-T therapy across various rheumatic autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS), systemic sclerosis (SSc), antisynthetase syndrome (ASS), and ANCA-associated vasculitis (AAV), highlighting both therapeutic advancements and ongoing challenges.
Collapse
Affiliation(s)
- Qianyu Guo
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Jie Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Juanjuan Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Linxin Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jia Wei
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
39
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
40
|
Xiao Y, Gao Y, Hu Y, Zhang X, Wang L, Li H, Yu L, Ma Q, Dai J, Ning Z, Liu J, Zhang L, Yang Y, Xiong H, Dong G. FASN contributes to the pathogenesis of lupus by promoting TLR-mediated activation of macrophages and dendritic cells. Int Immunopharmacol 2024; 142:113136. [PMID: 39293316 DOI: 10.1016/j.intimp.2024.113136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Hyper-activations of monocytes/macrophages and dendritic cells (DCs) contribute to the pathogenesis of various autoimmune diseases, such as systemic lupus erythematosus (SLE). Fatty acid synthase (FASN) is essential for the de novo synthesis of long-chain fatty acids, which play a key role in controlling the activation, differentiation, and function of immune cells. However, the role of FASN in regulating the activations of monocytes/macrophages and DCs has not been studied. In this study, we investigated the involvement of the FASN in modulating the activations of macrophages and DCs, as well as the pathogenesis of SLE. Importantly, we observed a significant upregulation of FASN expression in monocytes and DCs from patients with SLE. This increase is strongly correlated with disease severity and activation status of the immune cells. Furthermore, overexpression of FASN significantly boosts the TLR4/7/9-mediated activation of macrophages and DCs, while knockdown of FASN markedly inhibits this activation. Notably, knockdown of FASN alleviates TLR7 agonist imiquimod (IMQ)-induced lupus in mice and the activation of macrophages and DCs. It makes more sense that pharmaceutical targeting of FASN by using TVB-2640 significantly alleviates IMQ-induced lupus in mice and the activation of macrophages and DCs, as well as in spontaneous lupus MRL/lpr mice. Thus, FASN contributes to the TLRs-mediated activation of macrophages and DCs, as well as the pathogenesis of SLE. More importantly, FASN inhibitor TVB-2640 is expected to be an effective drug in the treatment of SLE.
Collapse
Affiliation(s)
- Yucai Xiao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Haochen Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lu Yu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jiakun Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lili Zhang
- Department of Rheumatology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
41
|
Yanginlar C, Rother N, Post TGJM, Jacobs M, Jonkman I, Brouns M, Rinzema S, Martens JHA, Vermeulen M, Joosten LAB, Netea MG, Hilbrands LB, Choudhry ZA, van der Vlag J, Duivenvoorden R. Trained innate immunity in response to nuclear antigens in systemic lupus erythematosus. J Autoimmun 2024; 149:103335. [PMID: 39549487 DOI: 10.1016/j.jaut.2024.103335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease directed against nuclear antigens, including those derived from apoptotic microparticles (MPs) and neutrophil extracellular traps (NETs). Here we investigated whether nuclear autoantigens can induce trained immunity in SLE patients. Trained immunity is a de facto innate immune memory elicited by an initial stimulus that induces a more vigorous long-term inflammatory response to subsequent stimuli. Isolated monocytes were stimulated with SLE-typical nuclear antigens, neutrophil extracellular traps (NETs), and apoptotic microparticles (MPs) or plasma from SLE patients. After five days of rest, cells were restimulated with Toll-like receptor (TLR) agonists, and cytokine production was measured using ELISA. Functional, transcriptomic and epigenetic changes in monocytes from SLE patients were evaluated by ex vivo stimulations, flow cytometric analysis, RNA sequencing, and chromatin immunoprecipitation (ChIP) sequencing for histone 3 lysine 4 trimethylation. We found that in vitro, both MPs and NETs, as well as plasma from SLE patients, can induce trained immunity. Furthermore, circulating monocytes from SLE patients produce increased levels of pro-inflammatory cytokines after stimulation with TLR ligands, indicating trained immunity. This is accompanied by deregulation in histone 3 lysine 4 trimethylation and increased expression of metabolism and inflammation-related genes. Our findings demonstrate that trained immunity can develop against nuclear antigens and that trained immunity is involved in the immunological dysregulation in SLE patients.
Collapse
Affiliation(s)
- Cansu Yanginlar
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Tomas G J M Post
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Montsy Brouns
- Department of Internal Medicine, Dr. Horacio Oduber Hospital, Oranjestad, Aruba
| | - Sybren Rinzema
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Zaheeb A Choudhry
- Department of Internal Medicine, Dr. Horacio Oduber Hospital, Oranjestad, Aruba
| | - Johan van der Vlag
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Heine LK, Rajasinghe LD, Wagner JG, Lewandowski RP, Li QZ, Richardson AL, Tindle AN, Shareef JJ, Harkema JR, Pestka JJ. Subchronic intranasal lipopolysaccharide exposure induces pulmonary autoimmunity and glomerulonephritis in NZBWF1 mice. Autoimmunity 2024; 57:2370536. [PMID: 38976509 PMCID: PMC11289745 DOI: 10.1080/08916934.2024.2370536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Lupus, a systemic autoimmune disease shaped by gene-environment interplay, often progresses to endstage renal failure. While subchronic systemic exposure to bacterial lipopolysaccharide (LPS) triggers autoimmunity and glomerulonephritis in lupus-prone mice, it is unknown if inhaling LPS, which is common in certain occupations, can similarly trigger lupus. Here we determined how subchronic intranasal (IN) LPS instillation influences autoimmunity and glomerulonephritis development in lupusprone NZBWF1 female mice. Briefly, mice were IN-instilled with vehicle or E. coli LPS (0.8 μg/g) twice weekly for 5 wk, followed by necropsy. For systemic comparison, additional cohorts of mice were injected with LPS intraperitoneally (IP) using identical doses/timing. Lungs were assessed for inflammatory and autoimmune responses and then related to systemic autoimmunity and glomerulonephritis. IN/LPS exposure induced in the lung: i) leukocyte infiltration, ii)mRNA signatures for cytokines, chemokines, IFN-regulated, and cell death-related genes, iii) ectopic lymphoid tissue formation, and iv)diverse IgM and IgG autoantibodies (AAbs). Pulmonary effects coincided with enlarged spleens, elevated plasma IgG AAbs, and inflamed IgG-containing kidney glomeruli. In contrast, IP/LPS treatment induced systemic autoimmunity and glomerulonephritis without pulmonary manifestations. Taken together, these preclinical findings suggest the lung could serve as a critical nexus for triggering autoimmunity by respirable LPS in genetically predisposed individuals.
Collapse
Affiliation(s)
- Lauren K. Heine
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alexa L. Richardson
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Ashleigh N. Tindle
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Jenan J. Shareef
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
43
|
Mora VP, Quero FB, Troncoso-Bravo T, Orellana C, Pereira P, Mackern-Oberti JP, Funes SC, Soto JA, Bohmwald K, Bueno SM, Kalergis AM. Partial long-term clinical improvement after a BCG challenge in systemic lupus erythematosus-prone mice. Autoimmunity 2024; 57:2380465. [PMID: 39034498 DOI: 10.1080/08916934.2024.2380465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disorder that causes a breakdown of immune tolerance. Current treatments mainly involve general immunosuppression, increasing the risk of infections. On the other hand, Bacillus Calmette-Guérin (BCG) has been investigated as a potential therapy for autoimmune diseases in recent years, prompting an ongoing investigation. This study aimed to evaluate the effect of BCG vaccination on early and late clinical presentation of SLE in a murine disease model. MRL/MPJ-Faslpr mice were immunized with BCG or treated with PBS as a control. The progress of the disease was evaluated at 27 days post-immunization (dpi) (early) and 56 dpi (late). Clinical parameters and proteinuria were monitored. Blood samples were collected for measurement of antinuclear antibodies (ANAs), anti-double-stranded DNA (anti-dsDNA), and cytokine determination was performed using ELISA. Samples collected from mice were analyzed by flow cytometry and histopathology. We observed a clinical improvement in BCG-treated mice, reduced proteinuria in the latter stages of the disease, and decreased TNF-α. However, BCG did not elicit significant changes in ANAs, anti-dsDNA, histopathological scores, or immune cell infiltration. BCG was only partially beneficial in an SLE mouse model, and further research is needed to determine whether the immunity induced by this vaccine can counteract lupus's autoimmune response.
Collapse
Affiliation(s)
- Valentina P Mora
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisco B Quero
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tays Troncoso-Bravo
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Orellana
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Pereira
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Samanta C Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy. Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
44
|
Yu Z, Zheng Y, Yang J, Xiao G, Luo X, Xu Y, Zheng Z. Characterization of systemic lupus erythematosus subtypes using cluster analysis: insights from lymphocyte subpopulations. Clin Rheumatol 2024; 43:3679-3688. [PMID: 39384721 DOI: 10.1007/s10067-024-07152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, in which lymphocyte subsets were dysregulated. Incorporating lymphocyte subpopulations in cluster analysis offers a pathway for personalized and precise treatment, targeting specific abnormalities for more effective management. METHODS We conducted Gaussian clustering analysis on clinical data, serological data, urine test results, and lymphocyte subpopulations for SLE patients hospitalized from September 2008 to December 2019. RESULTS A total of 1863 SLE patients from Xi'Jing Hospital were included. After excluding those without complete assessments, 1281 patients underwent flow cytometry for lymphocyte subsets. Five SLE clusters emerged: Cluster 1 with severe kidney involvement, high SLEDAI scores, and infection rates, often accompanied by rashes and edema; cluster 2 with high urinary protein but better renal function; cluster 3 with normal lymphocyte count and low positive antibodies; cluster 4 with frequent psychiatric symptoms and pulmonary arterial hypertension (PAH); and cluster 5 with fever, arthritis, hematologic involvement, and high IgG levels despite decreased B cells. CONCLUSION All enrolled SLE patients were ultimately categorized into five distinct clinical phenotype groups, with lymphocyte testing being meaningful for patient stratification. This finding shed light on the intricate heterogeneity of SLE, emphasizing the need for a personalized medicine approach. Targeting specific abnormalities in lymphocyte subsets holds promise for more effective and precise management of SLE. Key Points • A comprehensive analysis of SLE patients, including lymphocyte subpopulations, revealed five distinct clusters with varying clinical characteristics, emphasizing the heterogeneity of the disease. • This heterogeneity underscores the need for a personalized medicine approach in SLE management, targeting specific lymphocyte subset abnormalities for more effective and precise treatment.
Collapse
Affiliation(s)
- Zheng Yu
- Department of Rheumatology, Xi'jing Hospital, Xi'an, Shaanxi, China
| | - Yan Zheng
- Department of Rheumatology, Xi'jing Hospital, Xi'an, Shaanxi, China
| | - Jianping Yang
- Department of General Practice, Xi'jing Hospital, Xi'an, Shaanxi, China
| | - Guangzhi Xiao
- Department of Rheumatology, Xi'jing Hospital, Xi'an, Shaanxi, China
| | - Xing Luo
- Department of Rheumatology, Xi'jing Hospital, Xi'an, Shaanxi, China
| | - Yuemeng Xu
- Department of Rheumatology, Xi'jing Hospital, Xi'an, Shaanxi, China
| | - Zhaohui Zheng
- Department of Rheumatology, Xi'jing Hospital, Xi'an, Shaanxi, China.
| |
Collapse
|
45
|
Mueller MS, Juif P, Charfi H, Dingemanse J. Multiple-dose pharmacokinetics of cenerimod and the effect of charcoal on its elimination. J Clin Pharmacol 2024; 64:1566-1575. [PMID: 39141427 PMCID: PMC11591401 DOI: 10.1002/jcph.6106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Cenerimod is a sphingosine-1-phosphate receptor 1 modulator that reduces tissue availability of circulating lymphocytes. The compound is in Phase 3 development for the treatment of systemic lupus erythematosus. Its pharmacokinetic properties are characterized by slow absorption and multiphasic elimination with a long terminal half-life (t½), potentially caused by enterohepatic circulation (EHC). In this trial in healthy participants, oral cenerimod 0.5 and 4 mg once daily was administered for 50 days, followed by oral administration of activated charcoal (ie, 50 mg every 12 h for 11 days, starting 24 h after the last cenerimod dose), to investigate the potential EHC of cenerimod and assess whether elimination of cenerimod can be accelerated. The multiple-dose pharmacokinetics, pharmacodynamics, safety, and tolerability of cenerimod were also evaluated. For both doses, peak plasma concentrations were reached 6 and 7 h after dosing. Cenerimod accumulated approximately eightfold and (near) steady-state conditions were reached after 50 doses, resembling clinically meaningful exposure to cenerimod. The t½ following 0.5 and 4 mg of cenerimod was 767 and 799 h (ie, 32 and 33 days) and 720 and 780 h (ie, 30 and 33 days) with or without administration of charcoal, respectively, indicating no statistically significant difference. Therefore, charcoal did not accelerate cenerimod elimination suggesting that there is no EHC of cenerimod. A reversible, dose-dependent decrease in total lymphocyte count was observed. No safety concerns were identified; administration of charcoal was well tolerated.
Collapse
Affiliation(s)
- Markus S. Mueller
- Department of Clinical PharmacologyIdorsia Pharmaceuticals LtdAllschwilSwitzerland
| | - Pierre‐Eric Juif
- Department of Clinical PharmacologyIdorsia Pharmaceuticals LtdAllschwilSwitzerland
| | | | - Jasper Dingemanse
- Department of Clinical PharmacologyIdorsia Pharmaceuticals LtdAllschwilSwitzerland
| |
Collapse
|
46
|
Kaan ED, Brunekreef TE, Drylewicz J, van den Hoogen LL, van der Linden M, Leavis HL, van Laar JM, van der Vlist M, Otten HG, Limper M. Association of autoantibodies with the IFN signature and NETosis in patients with systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100246. [PMID: 39027720 PMCID: PMC11254743 DOI: 10.1016/j.jtauto.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a variety of disease symptoms and an unpredictable clinical course. To improve treatment outcome, stratification based on immunological manifestations commonly seen in patients with SLE such as autoantibodies, type I interferon (IFN) signature and neutrophil extracellular trap (NET) release may help. It is assumed that there is an association between these immunological phenomena, since NET release induces IFN production and IFN induces autoantibody formation via B-cell activation. Here we studied the association between autoantibodies, the IFN signature, NET release, and clinical manifestations in patients with SLE. Methods We performed principal component analysis (PCA) and hierarchical clustering of 57 SLE-related autoantibodies in 25 patients with SLE. We correlated each autoantibody to the IFN signature and NET inducing capacity. Results We observed two distinct clusters: one cluster contained mostly patients with a high IFN signature. Patients in this cluster often present with cutaneous lupus, and have higher anti-dsDNA concentrations. Another cluster contained a mix of patients with a high and low IFN signature. Patients with high and low NET inducing capacity were equally distributed between the clusters. Variance between the clusters is mainly driven by antibodies against histones, RibP2, RibP0, EphB2, RibP1, PCNA, dsDNA, and nucleosome. In addition, we found a trend towards increased concentrations of autoantibodies against EphB2, RibP1, and RNP70 in patients with an IFN signature. We found a negative correlation of NET inducing capacity with anti-FcER (r = -0.530; p = 0.007) and anti-PmScl100 (r = -0.445; p = 0.03). Conclusion We identified a subgroup of patients with an IFN signature that express increased concentrations of antibodies against DNA and RNA-binding proteins, which can be useful for further patient stratification and a more targeted therapy. We did not find positive associations between autoantibodies and NET inducing capacity. Our study further strengthens the evidence of a correlation between RNA-binding autoantibodies and the IFN signature.
Collapse
Affiliation(s)
- Ellen D. Kaan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Tammo E. Brunekreef
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lucas L. van den Hoogen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten van der Linden
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Helen L. Leavis
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jacob M. van Laar
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michiel van der Vlist
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Henny G. Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten Limper
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
47
|
Saito T, Takatsuji R, Murayama G, Yamaji Y, Hagiwara Y, Nishioka Y, Kuga T, Miyashita T, Kusaoi M, Tamura N, Yamaji K. Double-filtration plasmapheresis reduces type I interferon bioavailability and inducing activity in systemic lupus erythematosus. Immunol Med 2024; 47:264-274. [PMID: 38952099 DOI: 10.1080/25785826.2024.2372918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024] Open
Abstract
Type I interferons (IFN-Is) play a significant role in systemic lupus erythematosus (SLE) pathogenesis. Double-filtration plasmapheresis (DFPP) is a treatment option for SLE; however, its effect on IFN-Is remains unclear. Therefore, we investigated the effects of DFPP on IFN-Is. Plasma from patients with SLE (n = 11) who regularly underwent DFPP was analysed using a cell-based reporter system to detect the bioavailability and inducing activity of IFN-I. The concentration of plasma dsDNA was measured, and western blotting analysis was used to assess the phosphorylation of the STING pathway. A higher IFN-I bioavailability and inducing activity were observed in patients compared to healthy controls, and both parameters decreased after DFPP. The reduction in IFN-I-inducing activity was particularly prominent in patients with high disease activity. Notably, this reduction was not observed in STING-knockout reporter cells. Additionally, plasma dsDNA levels decreased after DFPP treatment, suggesting that inhibition of the STING pathway was responsible for the observed decrease in activity. Western blotting analysis revealed suppression of STING pathway phosphorylation after DFPP. DFPP reduced IFN-I bioavailability and the inducing activity of plasma. This reduction is likely attributable to the inhibition of the STING pathway through the elimination of dsDNA.
Collapse
Affiliation(s)
- Takumi Saito
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
- Course of Apheresis Therapeutic Technology and Life Science, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Takatsuji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
- Course of Apheresis Therapeutic Technology and Life Science, Juntendo University School of Medicine, Tokyo, Japan
| | - Goh Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
- Course of Apheresis Therapeutic Technology and Life Science, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yukitomo Hagiwara
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yujin Nishioka
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taiga Kuga
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoko Miyashita
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
- Course of Apheresis Therapeutic Technology and Life Science, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
- Course of Apheresis Therapeutic Technology and Life Science, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
49
|
Liu J, Zhao Y, Zhao H. Chimeric antigen receptor T-cell therapy in autoimmune diseases. Front Immunol 2024; 15:1492552. [PMID: 39628482 PMCID: PMC11611814 DOI: 10.3389/fimmu.2024.1492552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
The administration of T cells that have been modified to carry chimeric antigen receptors (CARs) aimed at B cells has been an effective strategy in treating B cell malignancies. This breakthrough has spurred the creation of CAR T cells intended to specifically reduce or alter the faulty immune responses associated with autoimmune disorders. Early positive outcomes from clinical trials involving CAR T cells that target the B cell protein CD19 in patients suffering from autoimmune diseases driven by B cells have been reported. Additional strategies are being developed to broaden the use of CAR T cell therapy and enhance its safety in autoimmune conditions. These include employing chimeric autoantireceptors (CAAR) to specifically eliminate B cells that are reactive to autoantigens, and using regulatory T cells (Tregs) engineered to carry antigen-specific CARs for precise immune modulation. This discussion emphasizes key factors such as choosing the right target cell groups, designing CAR constructs, defining tolerable side effects, and achieving a lasting immune modification, all of which are critical for safely integrating CAR T cell therapy in treating autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Regulatory/immunology
- B-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Autoantigens/immunology
- Antigens, CD19/immunology
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zhao
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
50
|
Peng XC, Ma LL, Miao JY, Xu SQ, Shuai ZW. Differential lncRNA profiles of blood plasma-derived exosomes from systemic lupus erythematosus. Gene 2024; 927:148713. [PMID: 38906394 DOI: 10.1016/j.gene.2024.148713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION Long non-coding RNAs (lncRNAs) dysregulation is key in the pathogenesis of systemic lupus erythematosus (SLE), but the role of exosomal lncRNAs in SLE has not been well studied. We elucidated the profiles of plasma exosomal lncRNAs expression in patients with SLE and predictd their potential clinical significance in SLE. METHODS In the screening stage, six newly diagnosed and untreated patients with SLE and six healthy controls were examined by high-throughput sequencing technology, and differential exosomal lncRNA profiles were constructed. In the validation phase, two differentially selected exosomal lncRNAs from 20 patients each with active and stable SLE and 20 healthy controls were verified with RT-qPCR. The correlation between the selected exosomal lncRNAs and SLE clinical indicators was examined. The diagnostic value of the selected exosomal lncRNAs in SLE was analyzed by the receiver operator characteristic (ROC) curve. RESULTS Exosomes were successfully extracted from the patients and controls. Sequencing-phase sequencing demonstrated 528 upregulated lncRNAs and 7491 downregulated lncRNAs. In the validation stage, exosomal LINC00667 and DANCR were significantly upregulated in the patients, and positively correlated with Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K). Exosomal DANCR expression between the active and stable SLE patients was different. The area under the curve(AUC) of exosomal LINC00667 and DANCR for SLE diagnosis was 0.815 and 0.759, respectively. CONCLUSIONS Exosomal LINC00667 and DANCR were upregulated in SLE, and might be new biomarkers thereof. Exosomal DANCR was associated with SLE activity.
Collapse
Affiliation(s)
- Xin-Chen Peng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Ling-Li Ma
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jie-Yu Miao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Sheng-Qian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|