1
|
Dorogan M, Namballa HK, Harding WW. Natural Product-Inspired Dopamine Receptor Ligands. J Med Chem 2024; 67:12463-12484. [PMID: 39038276 PMCID: PMC11320586 DOI: 10.1021/acs.jmedchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Due to their evolutionary bias as ligands for biologically relevant drug targets, natural products offer a unique opportunity as lead compounds in drug discovery. Given the involvement of dopamine receptors in various physiological and behavioral functions, they are linked to numerous diseases and disorders such as Parkinson's disease, schizophrenia, and substance use disorders. Consequently, ligands targeting dopamine receptors hold considerable therapeutic and investigative promise. As this perspective will highlight, dopamine receptor targeting natural products play a pivotal role as scaffolds with unique and beneficial pharmacological properties, allowing for natural product-inspired drug design and lead optimization. As such, dopamine receptor targeting natural products still have untapped potential to aid in the treatment of disorders and diseases related to central nervous system (CNS) and peripheral nervous system (PNS) dysfunction.
Collapse
Affiliation(s)
- Michael Dorogan
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Hari K. Namballa
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Wayne W. Harding
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
- Program
in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Program
in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
2
|
Yun S, Yang B, Anair JD, Martin MM, Fleps SW, Pamukcu A, Yeh NH, Contractor A, Kennedy A, Parker JG. Antipsychotic drug efficacy correlates with the modulation of D1 rather than D2 receptor-expressing striatal projection neurons. Nat Neurosci 2023; 26:1417-1428. [PMID: 37443282 PMCID: PMC10842629 DOI: 10.1038/s41593-023-01390-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Elevated dopamine transmission in psychosis is assumed to unbalance striatal output through D1- and D2-receptor-expressing spiny-projection neurons (SPNs). Antipsychotic drugs are thought to re-balance this output by blocking D2 receptors (D2Rs). In this study, we found that amphetamine-driven dopamine release unbalanced D1-SPN and D2-SPN Ca2+ activity in mice, but that antipsychotic efficacy was associated with the reversal of abnormal D1-SPN, rather than D2-SPN, dynamics, even for drugs that are D2R selective or lacking any dopamine receptor affinity. By contrast, a clinically ineffective drug normalized D2-SPN dynamics but exacerbated D1-SPN dynamics under hyperdopaminergic conditions. Consistent with antipsychotic effect, selective D1-SPN inhibition attenuated amphetamine-driven changes in locomotion, sensorimotor gating and hallucination-like perception. Notably, antipsychotic efficacy correlated with the selective inhibition of D1-SPNs only under hyperdopaminergic conditions-a dopamine-state-dependence exhibited by D1R partial agonism but not non-antipsychotic D1R antagonists. Our findings provide new insights into antipsychotic drug mechanism and reveal an important role for D1-SPN modulation.
Collapse
Affiliation(s)
- Seongsik Yun
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| | - Ben Yang
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| | - Justin D Anair
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| | - Madison M Martin
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| | - Stefan W Fleps
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| | - Arin Pamukcu
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| | - Nai-Hsing Yeh
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| | - Anis Contractor
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| | - Ann Kennedy
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| | - Jones G Parker
- Department of Neuroscience, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
McCarthy CI, Mustafá ER, Cornejo MP, Yaneff A, Rodríguez SS, Perello M, Raingo J. Chlorpromazine, an Inverse Agonist of D1R-Like, Differentially Targets Voltage-Gated Calcium Channel (Ca V) Subtypes in mPFC Neurons. Mol Neurobiol 2023; 60:2644-2660. [PMID: 36694048 DOI: 10.1007/s12035-023-03221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
The dopamine receptor type 1 (D1R) and the dopamine receptor type 5 (D5R), which are often grouped as D1R-like due to their sequence and signaling similarities, exhibit high levels of constitutive activity. The molecular basis for this agonist-independent activation has been well characterized through biochemical and mutagenesis in vitro studies. In this regard, it was reported that many antipsychotic drugs act as inverse agonists of D1R-like constitutive activity. On the other hand, D1R is highly expressed in the medial prefrontal cortex (mPFC), a brain area with important functions such as working memory. Here, we studied the impact of D1R-like constitutive activity and chlorpromazine (CPZ), an antipsychotic drug and D1R-like inverse agonist, on various neuronal CaV conductances, and we explored its effect on calcium-dependent neuronal functions in the mouse medial mPFC. Using ex vivo brain slices containing the mPFC and transfected HEK293T cells, we found that CPZ reduces CaV2.2 currents by occluding D1R-like constitutive activity, in agreement with a mechanism previously reported by our lab, whereas CPZ directly inhibits CaV1 currents in a D1R-like activity independent manner. In contrast, CPZ and D1R constitutive activity did not affect CaV2.1, CaV2.3, or CaV3 currents. Finally, we found that CPZ reduces excitatory postsynaptic responses in mPFC neurons. Our results contribute to understanding CPZ molecular targets in neurons and describe a novel physiological consequence of CPZ non-canonical action as a D1R-like inverse agonist in the mouse brain.
Collapse
Affiliation(s)
- Clara Inés McCarthy
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - María Paula Cornejo
- Neurophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Neurophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Jesica Raingo
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Matikainen-Ankney BA, Legaria AA, Pan Y, Vachez YM, Murphy CA, Schaefer RF, McGrath QJ, Wang JG, Bluitt MN, Ankney KC, Norris AJ, Creed MC, Kravitz AV. Nucleus Accumbens D 1 Receptor-Expressing Spiny Projection Neurons Control Food Motivation and Obesity. Biol Psychiatry 2023; 93:512-523. [PMID: 36494220 DOI: 10.1016/j.biopsych.2022.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. There is growing recognition that food motivation is altered in people with obesity. However, it remains unclear how brain circuits that control food motivation are altered in obese animals. METHODS Using a novel behavioral assay that quantifies work during food seeking, in vivo and ex vivo cell-specific recordings, and a synaptic blocking technique, we tested the hypothesis that activity of circuits promoting appetitive behavior in the core of the nucleus accumbens (NAc) is enhanced in the obese state, particularly during food seeking. RESULTS We first confirmed that mice made obese with ad libitum exposure to a high fat diet work harder than lean mice to obtain food, consistent with an increase in food motivation in obese mice. We observed greater activation of D1 receptor-expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. This enhanced activity was not observed in D2 receptor-expressing neurons (D2SPNs). Consistent with these in vivo findings, both intrinsic excitability and excitatory drive onto D1SPNs were enhanced in obese mice relative to lean mice, and these measures were selective for D1SPNs. Finally, blocking synaptic transmission from D1SPNs, but not D2SPNs, in the NAc core decreased physical work during food seeking and, critically, attenuated high fat diet-induced weight gain. CONCLUSIONS These experiments demonstrate the necessity of NAc core D1SPNs in food motivation and the development of diet-induced obesity, establishing these neurons as a potential therapeutic target for preventing obesity.
Collapse
Affiliation(s)
| | - Alex A Legaria
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Yiyan Pan
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Yvan M Vachez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Caitlin A Murphy
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Robert F Schaefer
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Quinlan J McGrath
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Justin G Wang
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Maya N Bluitt
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin C Ankney
- Department of Economics, Georgetown University, Washington, DC
| | - Aaron J Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Meaghan C Creed
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
5
|
Gilbert DL, Dubow JS, Cunniff TM, Wanaski SP, Atkinson SD, Mahableshwarkar AR. Ecopipam for Tourette Syndrome: A Randomized Trial. Pediatrics 2023; 151:190459. [PMID: 36628546 DOI: 10.1542/peds.2022-059574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVES All US Food and Drug Administration-approved medications for Tourette syndrome are antipsychotics, and their use is limited by the risk of weight gain, metabolic changes, and drug-induced movement disorders. Several small trials suggest that ecopipam, a first-in-class, selective dopamine 1 receptor antagonist, reduces tics with a low risk for these adverse events. This trial sought to further evaluate the efficacy, safety, and tolerability of ecopipam in children and adolescents with moderate to severe Tourette syndrome. METHODS This was a multicenter, randomized, double-blind, placebo-controlled, phase 2b trial. Subjects aged ≥6 to <18 years with a baseline Yale Global Tic Severity Score Total Tic Score of ≥20 were randomly assigned 1:1 to ecopipam (n = 76) or placebo (n = 77). The primary endpoint was mean change over 12 weeks in the Yale Global Tic Severity Score Total Tic Score. The Clinical Global Impression of Tourette Syndrome Severity was the secondary endpoint. Safety and tolerability were evaluated at each study visit. RESULTS Total tic scores were significantly reduced from baseline to 12 weeks in the ecopipam group compared with placebo (least squares mean differences -3.44, 95% confidence interval -6.09 to -0.79, P = .01). Improvement in Clinical Global Impression of Tourette Syndrome Severity was also greater in the ecopipam group (P = .03). More weight gain was seen in subjects assigned to placebo. No metabolic or electrocardiogram changes were identified. Headache (15.8%), insomnia (14.5%), fatigue (7.9%), and somnolence (7.9%) were the most common adverse events. CONCLUSIONS Among children and adolescents with TS, ecopipam reduces tics to a greater extent than placebo, without observable evidence of common antipsychotic-associated side effects.
Collapse
Affiliation(s)
- Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | | | | | | |
Collapse
|
6
|
Zhou H, Hou T, Gao Z, Guo X, Wang C, Wang J, Liu Y, Liang X. Discovery of eight alkaloids with D1 and D2 antagonist activity in leaves of Nelumbo nucifera Gaertn. Using FLIPR assays. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114335. [PMID: 34139281 DOI: 10.1016/j.jep.2021.114335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dopamine receptors are long-standing primary targets in the treatment of mental diseases and there is growing evidence that suggests relationships between obesity and the dopamine system, especially dopamine D1 and D2 receptors. Leaves of Nelumbo nucifera Gaertn. (lotus leaves) have been medically used for helping long-term maintenance of weight loss. Whether and how components of lotus leaves function through the dopamine receptors remains unclear. AIM OF THE STUDY This work aimed to discover dopamine receptor-active alkaloids isolated from the lotus leaves, to evaluate their potencies and to analyze their structure activity relationship. MATERIALS AND METHODS Dried lotus leaves were prepared and total extract was divided into alkaloids and flavones. Eight alkaloids were separated and characterized by a combination of high-performance liquid chromatography, quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance, and assayed by a fluorometric imaging plate reader platform. Human embryonic kidney 239 cell lines expressing dopamine D1, D2 and serotonin 2A (5-HT2A) receptors, respectively, were cultured and used in the assay. RESULTS Alkaloids in the lotus leaves were the bioactive phytochemicals and inhibited dopamine from accessing the D1 and D2 receptors. All eight compounds functioned as D1-receptor antagonists and except N-nornuciferine, seven alkaloids functioned as D2-receptor antagonists. (S)-coclaurine and (R)-coclaurine are optical isomers and antagonized both D1 and D2 with equivalent potencies, suggesting that the optical rotation of the methylene linker in the monobenzyl isoquinoline backbone did not influence their activity. Among the eight alkaloids, O-nornuciferine was the potent antagonist to both receptors (the lowest IC50 values, D1: 2.09 ± 0.65 μM and D2: 1.14 ± 0.10 μM) while N-nornuciferine was found to be the least potent as it moderately antagonized D1 and was inactive on D2. O-nornuciferine was also a 5-HT2A antagonist (IC50~20 μM) while N-nornuciferine had no activity. These hinted the importance of a methyl group attached to the nitrogen atom in the aporphine backbone. Armepavine showed a nearly 10-fold selectivity to D2. CONCLUSIONS In this work, eight alkaloids were isolated from the leaves of Nelumbo nucifera Gaertn. and assayed on the D1 and D2 receptors. They were D1/D2 antagonists with IC50 values in the mid- to low-micromolar range and O-nornuciferine was the most potent alkaloid among the eight. This family of alkaloids was biochemically evaluated on the dopamine receptors by the same platform for the first time.
Collapse
Affiliation(s)
- Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Zhenhua Gao
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Xiujie Guo
- DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China.
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
7
|
Abi-Dargham A, Javitch JA, Slifstein M, Anticevic A, Calkins ME, Cho YT, Fonteneau C, Gil R, Girgis R, Gur RE, Gur RC, Grinband J, Kantrowitz J, Kohler C, Krystal J, Murray J, Ranganathan M, Santamauro N, Van Snellenberg J, Tamayo Z, Wolf D, Gray D, Lieberman J. Dopamine D1R Receptor Stimulation as a Mechanistic Pro-cognitive Target for Schizophrenia. Schizophr Bull 2021; 48:199-210. [PMID: 34423843 PMCID: PMC8781338 DOI: 10.1093/schbul/sbab095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Decades of research have highlighted the importance of optimal stimulation of cortical dopaminergic receptors, particularly the D1R receptor (D1R), for prefrontal-mediated cognition. This mechanism is particularly relevant to the cognitive deficits in schizophrenia, given the abnormalities in cortical dopamine (DA) neurotransmission and in the expression of D1R. Despite the critical need for D1R-based therapeutics, many factors have complicated their development and prevented this important therapeutic target from being adequately interrogated. Challenges include determination of the optimal level of D1R stimulation needed to improve cognitive performance, especially when D1R expression levels, affinity states, DA levels, and the resulting D1R occupancy by DA, are not clearly known in schizophrenia, and may display great interindividual and intraindividual variability related to cognitive states and other physiological variables. These directly affect the selection of the level of stimulation necessary to correct the underlying neurobiology. The optimal mechanism for stimulation is also unknown and could include partial or full agonism, biased agonism, or positive allosteric modulation. Furthermore, the development of D1R targeting drugs has been complicated by complexities in extrapolating from in vitro affinity determinations to in vivo use. Prior D1R-targeted drugs have been unsuccessful due to poor bioavailability, pharmacokinetics, and insufficient target engagement at tolerable doses. Newer drugs have recently become available, and these must be tested in the context of carefully designed paradigms that address methodological challenges. In this paper, we discuss how a better understanding of these challenges has shaped our proposed experimental design for testing a new D1R/D5R partial agonist, PF-06412562, renamed CVL-562.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA,Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA,Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Cerevel Therapeutics Research and Development, Boston, MA, USA,To whom correspondence should be addressed; Tel: +(631) 885-0814; e-mail:
| | - Jonathan A Javitch
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Clara Fonteneau
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Roberto Gil
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Ragy Girgis
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Grinband
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Joshua Kantrowitz
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Christian Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Krystal
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - John Murray
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | | | - Jared Van Snellenberg
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Daniel Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Gray
- Cerevel Therapeutics Research and Development, Boston, MA, USA
| | - Jeffrey Lieberman
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Neurochemical regulators of food behavior for pharmacological treatment of obesity: current status and future prospects. Future Med Chem 2020; 12:1865-1884. [PMID: 33040605 DOI: 10.4155/fmc-2019-0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent decades, obesity has become a pandemic disease and appears to be an ultimate medical and social problem. Existing antiobesity drugs show low efficiency and a wide variety of side effects. In this review, we discuss possible mechanisms underlying brain-gut-adipose tissue axis, as well as molecular biochemical characteristics of various neurochemical regulators of body weight and appetite. Multiple brain regions are responsible for eating behavior, hedonic eating and food addiction. The existing pharmacological targets for treatment of obesity were reviewed as well.
Collapse
|
9
|
Abstract
This article seeks to summarize the mechanisms of action, clinical trials, and FDA approval status of several psychiatric medications that are either newly available or in the FDA approval process. This article highlights medications that demonstrate novel mechanisms of action, examines nonpsychiatric medications that are being used to augment existing psychiatric treatments, and elucidates treatments for illnesses that have not previously received FDA indications.
Collapse
Affiliation(s)
- Harika M Reddy
- Department of Psychiatry and Neuroscience, University of California Riverside School of Medicine, 14350-1 Meridian Parkway, Riverside, CA 92518, USA.
| | - Joshua S Poole
- Department of Psychiatry and Neuroscience, University of California Riverside School of Medicine, 14350-1 Meridian Parkway, Riverside, CA 92518, USA
| | - Gerald A Maguire
- Department of Psychiatry and Neuroscience, University of California Riverside School of Medicine, 14350-1 Meridian Parkway, Riverside, CA 92518, USA
| | - Stephen M Stahl
- Department of Psychiatry and Neuroscience, University of California Riverside School of Medicine, 14350-1 Meridian Parkway, Riverside, CA 92518, USA; Neuroscience Education Institute, 1917 Palomar Oaks Way, Suite 200, Carlsbad, CA 92008, USA; Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Dopamine Signaling in the Suprachiasmatic Nucleus Enables Weight Gain Associated with Hedonic Feeding. Curr Biol 2020; 30:196-208.e8. [PMID: 31902720 DOI: 10.1016/j.cub.2019.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
Abstract
The widespread availability of energy-dense, rewarding foods is correlated with the increased incidence of obesity across the globe. Overeating during mealtimes and unscheduled snacking disrupts timed metabolic processes, which further contribute to weight gain. The neuronal mechanism by which the consumption of energy-dense food restructures the timing of feeding is poorly understood. Here, we demonstrate that dopaminergic signaling within the suprachiasmatic nucleus (SCN), the central circadian pacemaker, disrupts the timing of feeding, resulting in overconsumption of food. D1 dopamine receptor (Drd1)-null mice are resistant to diet-induced obesity, metabolic disease, and circadian disruption associated with energy-dense diets. Conversely, genetic rescue of Drd1 expression within the SCN restores diet-induced overconsumption, weight gain, and obesogenic symptoms. Access to rewarding food increases SCN dopamine turnover, and elevated Drd1-signaling decreases SCN neuronal activity, which we posit disinhibits downstream orexigenic responses. These findings define a connection between the reward and circadian pathways in the regulation of pathological calorie consumption.
Collapse
|
11
|
Felsing DE, Jain MK, Allen JA. Advances in Dopamine D1 Receptor Ligands for Neurotherapeutics. Curr Top Med Chem 2019; 19:1365-1380. [PMID: 31553283 DOI: 10.2174/1568026619666190712210903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
The dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators. From this, several novel molecules and mechanisms have recently entered clinical studies. Here we review the major classes of D1R selective ligands including antagonists, orthosteric agonists, non-catechol biased agonists and positive allosteric modulators, highlighting their structure-activity relationships and medicinal chemistry. Recent chemistry breakthroughs and innovative approaches to selectively target and activate the D1R also hold promise for creating pharmacotherapy for several neurological diseases.
Collapse
Affiliation(s)
- Daniel E Felsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - Manish K Jain
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - John A Allen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| |
Collapse
|
12
|
Abstract
Despite decades of research, few medications have gained Food and Drug Administration (FDA) approval for the management of substance abuse disorder. The paucity of successful medications can be attributed, in part, to the lack of clearly identified neurobiological targets for addressing the core pathology of addictive behavior. Commonalities in the behavioral and brain processes involved in the rewarding effects of drugs and foods has prompted the evaluation of candidate medications that target neural pathways involved in both drug and eating disorders. Here, pharmacological strategies for the development of novel medications for drug addiction are presented in the context of potential overlapping neurobiological targets identified for eating disorders (e.g., obesity, overeating, binge-eating) and substance abuse. Mechanisms discussed in this chapter include modulators of the gut-brain axis (e.g., leptin, ghrelin, cholecystokinin, cocaine- and amphetamine-regulated transcript, and pancreatic peptides) and neurotransmitter systems (e.g., opioids, cannabinoids, dopamine, serotonin, and acetylcholine).
Collapse
|
13
|
Svensson KA, Hao J, Bruns RF. Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:273-305. [PMID: 31378255 DOI: 10.1016/bs.apha.2019.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dopamine D1 receptor plays an important role in motor activity, reward, and cognition. Efforts to develop D1 agonists have been mixed due to poor drug-like properties, tachyphylaxis, and inverted U-shaped dose-response curves. Recently, positive allosteric modulators (PAMs) for the dopamine D1 receptor were discovered and initial pharmacological profiling has suggested that several of the above issues could be addressed with this mechanism. This paper presents an overview of key findings for DETQ (2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one), which is currently the only D1 PAM for which published in vivo data is available. In vitro studies showed selective potentiation of the human D1 receptor without significant allosteric agonist effects. Due to a species difference in affinity for DETQ, transgenic mice expressing the human D1 receptor (hD1 mice) were used in vivo. In contrast to D1 agonists, DETQ increased locomotor activity over a wide dose-range without inverted U-shaped dose response or tachyphylaxis. DETQ also reversed hypo-activity in mice with dopamine depletion due to reserpine pretreatment, suggesting potential for treatment of motor symptoms in Parkinson's disease. Potential pro-cognitive effects were supported by improved performance in the novel object recognition task, enhanced release of cortical acetylcholine and histamine, and increased phosphorylation of the AMPA receptor (GluR1) and the transcription factor CREB. In addition, DETQ enhanced wakefulness in EEG studies and decreased immobility in the forced-swim test. Together, these results provide support for potential utility of D1 PAMs in the treatment of several neuropsychiatric disorders. LY3154207, a close analog of DETQ, is currently in phase 2 clinical trials.
Collapse
Affiliation(s)
- Kjell A Svensson
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States.
| | - Junliang Hao
- Discovery Chemistry and Research Technologies, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States
| | - Robert F Bruns
- Discovery Chemistry and Research Technologies, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States
| |
Collapse
|
14
|
Psychiatric adverse events and effects on mood with prolonged-release naltrexone/bupropion combination therapy: a pooled analysis. Int J Obes (Lond) 2019; 43:2085-2094. [PMID: 30664661 PMCID: PMC7111229 DOI: 10.1038/s41366-018-0302-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/25/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
Background/objectives Prolonged-release (PR) naltrexone 32 mg/bupropion 360 mg (NB) is approved for chronic weight management as an adjunct to reduced-calorie diet and increased physical activity. Central nervous system-active medications have the potential to affect mood; therefore, post hoc analysis of clinical trial data was conducted to evaluate psychiatric adverse events (PAEs) and effects on mood of NB therapy versus placebo. Subjects/methods Data were pooled from 5 prospective, double-blind, randomized, placebo-controlled clinical trials (duration range, 24–56 weeks) of NB in subjects with overweight or obesity. PAEs were collected via AE preferred terms, organized into major subtopics (e.g., anxiety, depression, sleep disorders), and divided into category terms (e.g., anxiety, potential anxiety symptoms). Additionally, the Inventory of Depressive Symptomatology Self Report (IDS-SR; score range 0–84) and the Columbia Classification Algorithm of Suicide Assessment (C-CASA) evaluated treatment-emergent depressive/anxiety symptoms and suicidal behavior/ideation, respectively. Results Baseline characteristics and comorbidities were comparable for placebo (n = 1515) and NB (n = 2545). Most common PAEs in the NB group (using category grouping; NB vs placebo) were sleep disorders (12.7 vs 7.9%, P < 0.001), anxiety (5.4 vs 3.3%, P = 0.029), and depression (1.8 vs 2.7%, P = 0.014); PAEs were more frequent during dose escalation and generally mild or moderate. Mean (SD) changes in IDS-SR total score from baseline to endpoint were small in both groups: 0.13 (5.83) for NB and −0.45 (5.65) for placebo. Retrospective AE categorization via C-CASA confirmed no completed suicides, suicide attempts, or preparatory acts toward imminent suicidal behavior. Conclusions This large pooled analysis of 5 clinical trials provides additional safety information about the NB PAE profile. Anxiety and sleep disorder-related PAEs were more frequent with NB versus placebo but were mostly mild to moderate and generally occurred early. Depression-related PAEs were less common with NB than placebo, and NB was not associated with suicidal ideation or behavior in this patient population.
Collapse
|
15
|
Abstract
For many years, obesity was believed to be a condition of overeating that could be resolved through counseling and short-term drug treatment. Obesity was not recognized as a chronic disease until 1985 by the scientific community, and 2013 by the medical community. Pharmacotherapy for obesity has advanced remarkably since the first class of drugs, amphetamines, were approved for short-term use. Most amphetamines were removed from the obesity market due to adverse events and potential for addiction, and it became apparent that obesity pharmacotherapies were needed that could safely be administered over the long term. This review of central nervous system (CNS) acting anti-obesity drugs evaluates current therapies such as phentermine/topiramate, which act through multiple neurotransmitter pathways to reduce appetite. In the synergistic mechanism of bupropion/naltrexone, naltrexone blocks the feed-back inhibitory circuit of bupropion to give greater weight loss. Lorcaserin, a selective agonist of a serotonin receptor that regulates food intake, and the glucagon-like-peptide-1 (GLP-1) receptor agonist liraglutide are reviewed. Future drugs include tesofensine, a potent triple reuptake inhibitor in Phase III trials for obesity, and semaglutide, an oral GLP-1 analog approved for diabetes and currently in trials for obesity. Another potential new pharmacotherapy, setmelanotide, is a melanocortin-4 receptor agonist, which is still in an early stage of development. As our understanding of the communication between the CNS, gut, adipose tissue, and other organs evolves, it is anticipated that obesity drug development will move toward new centrally acting combinations and then to drugs acting on peripheral target tissues.
Collapse
Affiliation(s)
- Ann A Coulter
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Candida J Rebello
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
16
|
Mogwitz S, Buse J, Wolff N, Roessner V. Update on the Pharmacological Treatment of Tics with Dopamine-Modulating Agents. ACS Chem Neurosci 2018; 9:651-672. [PMID: 29498507 DOI: 10.1021/acschemneuro.7b00460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 40 years of research and clinical practice have proven the effectiveness of dopamine receptor antagonists in the pharmacological treatment of tics. A blockade of the striatal dopamine-D2 receptors is mainly responsible for their tic-reducing effect. A broad spectrum of dopamine-modulating agents, such as typical and atypical antipsychotics, but also dopamine receptor agonists are used with an immanent discord between experts about which of them should be considered as first choice. The present Review outlines the state of the art on pharmacological treatment of tics with dopamine-modulating agents by giving an systematic overview of studies on their effectiveness and a critical discussion of their specific adverse effects. It is considered as an update of a previous review of our research group published in 2013. The Review closes with a description of the current resulting treatment recommendations including the results of a first published revised survey on European expert's prescription preferences. Based on the enormously growing evidence on its effectiveness and safety, aripiprazole currently seems to be the most promising agent in the pharmacological treatment of tics. Furthermore, benzamides (especially tiapride), which are commonly used in Europe, have proven their excellent effectiveness-tolerability profile over decades in clinical practice and are therefore also highly recommended for the treatment of tics. Nevertheless, pharmacological treatment of tics remains an indiviual choice depending on each patient's own specific needs.
Collapse
Affiliation(s)
- Sabine Mogwitz
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany
| | - Judith Buse
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany
| | - Nicole Wolff
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
17
|
Pan X, Liu Z. Synthesis of 3-aryl-3-benzazepines via aryne [1,2] Stevens rearrangement of 1,2,3,4-tetrahydroisoquinolines. Org Chem Front 2018. [DOI: 10.1039/c8qo00275d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient method for the synthesis of 3-aryl-3-benzazepines via aryne induced [1,2] Stevens rearrangement of 1,2,3,4-tetrahydroisoquinolines is described.
Collapse
Affiliation(s)
- Xuan Pan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
- P. R. China
| | - Zhanzhu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
- P. R. China
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This review examines the food addiction model and the role of food hedonic pathways in the pathogenesis and treatment of obesity. RECENT FINDINGS The hedonic pathway interacts with the obesogenic environment to override homeostatic mechanisms to cause increase in body weight. Weight gain sustained over time leads to "upward setting" of defended level of body-fat mass. There are neurobiological and phenotypic similarities and differences between hedonic pathways triggered by food compared with other addictive substances, and the entity of food addiction remains controversial. Treatment for obesity including pharmacotherapy and bariatric surgery impacts on neural pathways governing appetite and hedonic control of food intake. The food addiction model may also have significant impact on public health policy, regulation of certain foods, and weight stigma and bias. Recent rapid progress in delineation of food hedonic pathways advances our understanding of obesity and facilitates development of effective treatment measures against the disease.
Collapse
Affiliation(s)
- Phong Ching Lee
- Obesity and Metabolism Unit, Department of Endocrinology, Singapore General Hospital, Bukit Merah, Singapore
| | - John B Dixon
- Clinical Obesity Research, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
- Iverson Health Innovation Research Institute, Swinburne University, Melbourne, Australia.
- Primary Care Research Unit, Monash University, Melbourne, Australia.
| |
Collapse
|
19
|
Bruns RF, Mitchell SN, Wafford KA, Harper AJ, Shanks EA, Carter G, O'Neill MJ, Murray TK, Eastwood BJ, Schaus JM, Beck JP, Hao J, Witkin JM, Li X, Chernet E, Katner JS, Wang H, Ryder JW, Masquelin ME, Thompson LK, Love PL, Maren DL, Falcone JF, Menezes MM, Zhang L, Yang CR, Svensson KA. Preclinical profile of a dopamine D1 potentiator suggests therapeutic utility in neurological and psychiatric disorders. Neuropharmacology 2017; 128:351-365. [PMID: 29102759 DOI: 10.1016/j.neuropharm.2017.10.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/24/2017] [Accepted: 10/24/2017] [Indexed: 01/11/2023]
Abstract
DETQ, an allosteric potentiator of the dopamine D1 receptor, was tested in therapeutic models that were known to respond to D1 agonists. Because of a species difference in affinity for DETQ, all rodent experiments used transgenic mice expressing the human D1 receptor (hD1 mice). When given alone, DETQ reversed the locomotor depression caused by a low dose of reserpine. DETQ also acted synergistically with L-DOPA to reverse the strong hypokinesia seen with a higher dose of reserpine. These results indicate potential as both monotherapy and adjunct treatment in Parkinson's disease. DETQ markedly increased release of both acetylcholine and histamine in the prefrontal cortex, and increased levels of histamine metabolites in the striatum. In the hippocampus, the combination of DETQ and the cholinesterase inhibitor rivastigmine increased ACh to a greater degree than either agent alone. DETQ also increased phosphorylation of the AMPA receptor (GluR1) and the transcription factor CREB in the striatum, consistent with enhanced synaptic plasticity. In the Y-maze, DETQ increased arm entries but (unlike a D1 agonist) did not reduce spontaneous alternation between arms at high doses. DETQ enhanced wakefulness in EEG studies in hD1 mice and decreased immobility in the forced-swim test, a model for antidepressant-like activity. In rhesus monkeys, DETQ increased spontaneous eye-blink rate, a measure that is known to be depressed in Parkinson's disease. Together, these results provide support for potential utility of D1 potentiators in the treatment of several neuropsychiatric disorders, including Parkinson's disease, Alzheimer's disease, cognitive impairment in schizophrenia, and major depressive disorder.
Collapse
Affiliation(s)
- Robert F Bruns
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Stephen N Mitchell
- Lilly Research Laboratories, Eli Lilly & Co., Erl Wood Manor, United Kingdom
| | - Keith A Wafford
- Lilly Research Laboratories, Eli Lilly & Co., Erl Wood Manor, United Kingdom
| | - Alex J Harper
- Lilly Research Laboratories, Eli Lilly & Co., Erl Wood Manor, United Kingdom
| | - Elaine A Shanks
- Lilly Research Laboratories, Eli Lilly & Co., Erl Wood Manor, United Kingdom
| | - Guy Carter
- Lilly Research Laboratories, Eli Lilly & Co., Erl Wood Manor, United Kingdom
| | - Michael J O'Neill
- Lilly Research Laboratories, Eli Lilly & Co., Erl Wood Manor, United Kingdom
| | - Tracey K Murray
- Lilly Research Laboratories, Eli Lilly & Co., Erl Wood Manor, United Kingdom
| | - Brian J Eastwood
- Lilly Research Laboratories, Eli Lilly & Co., Erl Wood Manor, United Kingdom
| | - John M Schaus
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - James P Beck
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Junliang Hao
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Xia Li
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Eyassu Chernet
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jason S Katner
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Hong Wang
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - John W Ryder
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Meghane E Masquelin
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Linda K Thompson
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Patrick L Love
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Deanna L Maren
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Julie F Falcone
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Michelle M Menezes
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Linli Zhang
- Shanghai ChemPartner, Pudong, Shanghai 201203, China
| | | | - Kjell A Svensson
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
20
|
The “highs and lows” of the human brain on dopaminergics: Evidence from neuropharmacology. Neurosci Biobehav Rev 2017. [DOI: 10.1016/j.neubiorev.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Moritz AE, Free RB, Sibley DR. Advances and challenges in the search for D 2 and D 3 dopamine receptor-selective compounds. Cell Signal 2017; 41:75-81. [PMID: 28716664 DOI: 10.1016/j.cellsig.2017.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022]
Abstract
Compounds that target D2-like dopamine receptors (DRs) are currently used as therapeutics for several neuropsychiatric disorders including schizophrenia (antagonists) and Parkinson's disease (agonists). However, as the D2R and D3R subtypes are highly homologous, creating compounds with sufficient subtype-selectivity as well as drug-like properties for therapeutic use has proved challenging. This review summarizes the progress that has been made in developing D2R- or D3R-selective antagonists and agonists, and also describes the experimental conditions that need to be considered when determining the selectivity of a given compound, as apparent selectivity can vary widely depending on assay conditions. Future advances in this field may take advantage of currently available structural data to target alternative secondary binding sites through creating bivalent or bitopic chemical structures. Alternatively, the use of high-throughput screening techniques to identify novel scaffolds that might bind to the D2R or D3R in areas other than the highly conserved orthosteric site, such as allosteric sites, followed by iterative medicinal chemistry will likely lead to exceptionally selective compounds in the future. More selective compounds will provide a better understanding of the normal and pathological functioning of each receptor subtype, as well as offer the potential for improved therapeutics.
Collapse
Affiliation(s)
- Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States.
| |
Collapse
|
22
|
Maia TV, Frank MJ. An Integrative Perspective on the Role of Dopamine in Schizophrenia. Biol Psychiatry 2017; 81:52-66. [PMID: 27452791 PMCID: PMC5486232 DOI: 10.1016/j.biopsych.2016.05.021] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/19/2016] [Accepted: 05/19/2016] [Indexed: 12/14/2022]
Abstract
We propose that schizophrenia involves a combination of decreased phasic dopamine responses for relevant stimuli and increased spontaneous phasic dopamine release. Using insights from computational reinforcement-learning models and basic-science studies of the dopamine system, we show that each of these two disturbances contributes to a specific symptom domain and explains a large set of experimental findings associated with that domain. Reduced phasic responses for relevant stimuli help to explain negative symptoms and provide a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with negative symptoms: reduced learning from rewards; blunted activation of the ventral striatum, midbrain, and other limbic regions for rewards and positive prediction errors; blunted activation of the ventral striatum during reward anticipation; blunted autonomic responding for relevant stimuli; blunted neural activation for aversive outcomes and aversive prediction errors; reduced willingness to expend effort for rewards; and psychomotor slowing. Increased spontaneous phasic dopamine release helps to explain positive symptoms and provides a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with positive symptoms: aberrant learning for neutral cues (assessed with behavioral and autonomic responses), and aberrant, increased activation of the ventral striatum, midbrain, and other limbic regions for neutral cues, neutral outcomes, and neutral prediction errors. Taken together, then, these two disturbances explain many findings in schizophrenia. We review evidence supporting their co-occurrence and consider their differential implications for the treatment of positive and negative symptoms.
Collapse
Affiliation(s)
- Tiago V Maia
- Institute for Molecular Medicine, School of Medicine, University of Lisbon, Lisbon, Portugal.
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, the Department of Psychiatry and Human Behavior, and the Brown Institute for Brain Science, Brown University, Providence, Rhode Island
| |
Collapse
|
23
|
Arnsten AF, Girgis RR, Gray DI, Mailman RB. Novel Dopamine Therapeutics for Cognitive Deficits in Schizophrenia. Biol Psychiatry 2017; 81:67-77. [PMID: 26946382 PMCID: PMC4949134 DOI: 10.1016/j.biopsych.2015.12.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/25/2015] [Accepted: 12/31/2015] [Indexed: 11/30/2022]
Abstract
Schizophrenia is characterized by profound cognitive deficits that are not alleviated by currently available medications. Many of these cognitive deficits involve dysfunction of the newly evolved, dorsolateral prefrontal cortex (dlPFC). The brains of patients with schizophrenia show evidence of dlPFC pyramidal cell dendritic atrophy, likely reductions in cortical dopamine, and possible changes in dopamine D1 receptors (D1R). It has been appreciated for decades that optimal levels of dopamine are essential for dlPFC working memory function, with many beneficial actions arising from D1R stimulation. D1R are concentrated on dendritic spines in the primate dlPFC, where their stimulation produces an inverted-U dose response on dlPFC neuronal firing and cognitive performance during working memory tasks. Research in both academia and the pharmaceutical industry has led to the development of selective D1 agonists, e.g., the first full D1 agonist, dihydrexidine, which at low doses improved working memory in monkeys. Dihydrexidine has begun to be tested in patients with schizophrenia or schizotypal disorder. Initial results are encouraging, but studies are limited by the pharmacokinetics of the drug. These data, however, have spurred efforts toward the discovery and development of improved or novel new compounds, including D1 agonists with better pharmacokinetics, functionally selective D1 ligands, and D1R positive allosteric modulators. One or several of these approaches should allow optimization of the beneficial effects of D1R stimulation in the dlPFC that can be translated into clinical practice.
Collapse
Affiliation(s)
- Amy F.T. Arnsten
- Department of Neurobiology, Yale Medical School, New Haven, CT 06510
| | - Ragy R. Girgis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - David I. Gray
- Neuroscience & Pain Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA 02139
| | - Richard B. Mailman
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17036
| |
Collapse
|
24
|
Khasnavis T, Torres RJ, Sommerfeld B, Puig JG, Chipkin R, Jinnah HA. A double-blind, placebo-controlled, crossover trial of the selective dopamine D1 receptor antagonist ecopipam in patients with Lesch-Nyhan disease. Mol Genet Metab 2016; 118:160-166. [PMID: 27179999 DOI: 10.1016/j.ymgme.2016.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/04/2023]
Abstract
Lesch-Nyhan disease (LND) is a genetic disorder that has characteristic metabolic, neurologic, and behavioral features. There are multiple behavioral problems including impulsivity, aggressiveness, and severe recurrent self-injurious behavior (SIB). This last behavior varies considerably across subjects and may encompass self-biting, self-hitting, scratching, head banging, and other injurious actions. Current treatments for SIB involve behavioral extinction, sedatives, physical restraints, and removal of teeth. Because these interventions do not reliably control SIB, better treatments are urgently needed. Animal studies have suggested that D1-dopamine receptor antagonists such as ecopipam may suppress SIB. These observations have led to proposals that such drugs might provide effective treatment for in LND. The current study describes the results of a double-blind, three-period, crossover trial of a single dose of ecopipam in subjects with LND. The study was designed for 20 patients, but it was terminated after recruitment of only 10 patients, because interim analysis revealed unanticipated side effects. These side effects were most likely related to starting with a single large dose without any titration phase. Despite the limited data due to early termination, the drug appeared to reduce SIB in most cases. Subjects who completed the trial were eligible to continue the drug in an open-label extension phase lasting a year, and one patient who elected to continue has maintained a striking reduction in SIB for more than a year with no apparent side effects. These results suggest ecopipam could be a useful treatment for SIB in, but further studies are needed to establish an appropriate dosing regimen.
Collapse
Affiliation(s)
- Tanya Khasnavis
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Rosa J Torres
- Department of Clinical Biochemistry, La Paz University Hospital, IdiPaz, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, ISCIII, Madrid, Spain
| | | | - Juan Garcia Puig
- Department Internal Medicine, La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Richard Chipkin
- Psyadon Pharmaceuticals, 20451 Seneca Meadows Parkway, Germantown, MD, 20876, USA
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
25
|
Li W, Zhang L, Xu L, Yuan C, Du P, Chen J, Zhen X, Fu W. Functional reversal of (-)-Stepholidine analogues by replacement of benzazepine substructure using the ring-expansion strategy. Chem Biol Drug Des 2016; 88:599-607. [PMID: 27232055 DOI: 10.1111/cbdd.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 11/26/2022]
Abstract
(-)-Stepholidine is an active ingredient of the Chinese herb Stephania and naturally occurring tetrahydroprotoberberine alkaloid with mixed dopamine receptor D1 agonistic and dopamine receptor D2 antagonistic activities. In this work, a series of novel hexahydrobenzo[4,5]azepino [2,1-a]isoquinolines were designed and synthesized as ring-expanded analogues of (-)-Stepholidine. Initial pharmacological assays demonstrated that a benzazepine replacement was associated with significant increase in selectivity and functional reversal at dopamine receptor D1 . Compound-(-)-15e (Ki = 5.32 ± 0.01 nm) is more potent than (-)-Stepholidine (Ki = 13 nm) and was identified as a selective dopamine receptor D1 antagonist (IC50 = 0.14 μm). Moreover, molecular modeling suggested that (-)-15e might exert its dopamine receptor D1 antagonistic activities through interacting with the transmembrane helix 7 of dopamine receptor D1 .
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Li Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatricdisorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Xu
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Congmin Yuan
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Peng Du
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiaojiao Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatricdisorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatricdisorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China.
| | - Wei Fu
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Butini S, Nikolic K, Kassel S, Brückmann H, Filipic S, Agbaba D, Gemma S, Brogi S, Brindisi M, Campiani G, Stark H. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142:68-103. [PMID: 27234980 DOI: 10.1016/j.pneurobio.2016.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular.
Collapse
Affiliation(s)
- S Butini
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - K Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Kassel
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Brückmann
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - S Filipic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Gemma
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - S Brogi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - M Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - G Campiani
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - H Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
27
|
Khasnavis T, Reiner G, Sommerfeld B, Nyhan WL, Chipkin R, Jinnah HA. A clinical trial of safety and tolerability for the selective dopamine D1 receptor antagonist ecopipam in patients with Lesch-Nyhan disease. Mol Genet Metab 2016; 117:401-6. [PMID: 26922636 DOI: 10.1016/j.ymgme.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Lesch-Nyhan disease (LND) is an inherited metabolic disorder characterized by the overproduction of uric acid and distinct behavioral, cognitive, and motor abnormalities. The most challenging clinical problem is self-injurious behavior (SIB), which includes self-biting, self-hitting, self-abrasion, and other features. Currently, these behaviors are managed by behavioral extinction, sedatives, physical restraints, and removal of teeth. More effective treatments are needed. Pre-clinical studies have led to the hypothesis that D1-dopamine receptor antagonists may provide useful treatments for SIB in LND. Ecopipam is one such selective D1-dopamine receptor antagonist. This report summarizes results of a dose-escalation study of the safety and tolerability of ecopipam in 5 subjects with LND. The results suggest that ecopipam is well tolerated, with sedation being the most common dose-limiting event. Several exploratory measures also suggest ecopipam might reduce SIB in this population. These results support the hypothesis that D1-dopamine receptor antagonists may be useful for suppressing SIB in LND, and encourage further studies of efficacy.
Collapse
Affiliation(s)
- Tanya Khasnavis
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Gail Reiner
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | - William L Nyhan
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Richard Chipkin
- Psyadon Pharmaceuticals, 20451 Seneca Meadows Parkway, Germantown, MD 20876, USA
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
28
|
Bray GA. Medical treatment of obesity: the past, the present and the future. Best Pract Res Clin Gastroenterol 2014; 28:665-84. [PMID: 25194183 DOI: 10.1016/j.bpg.2014.07.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 01/31/2023]
Abstract
Medications for the treatment of obesity began to appear in the late 19th and early 20th century. Amphetamine-addiction led to the search for similar drugs without addictive properties. Four sympathomimetic drugs currently approved in the US arose from this search, but may not be approved elsewhere. When noradrenergic drugs were combined with serotonergic drugs, additional weight loss was induced. At present there are three drugs (orlistat, phentermine/topiramate and lorcaserin) approved for long-term use and four sympathomimetic drugs approved by the US FDA for short-term treatment of obesity. Leptin produced in fat cells and glucagon-like peptide-1, a gastrointestinal hormone, provide a new molecular basis for treatment of obesity. New classes of agents acting on the melanocortin system in the brain or mimicking GLP-1 have been tried with variable success. Combination therapy can substantially increase weight loss; a promising approach for the future.
Collapse
|
29
|
Ulrich-Lai YM, Ryan KK. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications. Cell Metab 2014; 19:910-25. [PMID: 24630812 PMCID: PMC4047143 DOI: 10.1016/j.cmet.2014.01.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significant comorbidities between obesity-related metabolic disease and stress-related psychological disorders suggest important functional interactions between energy balance and brain stress integration. Largely overlapping neural circuits control these systems, and this anatomical arrangement optimizes opportunities for mutual influence. Here we first review the current literature identifying effects of metabolic neuroendocrine signals on stress regulation, and vice versa. Next, the contributions of reward-driven food intake to these metabolic and stress interactions are discussed. Lastly, we consider the interrelationships between metabolism, stress, and reward in light of their important implications in the development of therapies for metabolism- or stress-related disease.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Karen K Ryan
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA.
| |
Collapse
|
30
|
Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A. Update 1 of: Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem Rev 2013; 113:PR123-78. [DOI: 10.1021/cr300113a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Ye
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - John L. Neumeyer
- Medicinal Chemistry Laboratory,
McLean Hospital, Harvard Medical School, Massachusetts 02478, United States
| | | | - Xuechu Zhen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China 215123
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|
31
|
Termine C, Selvini C, Rossi G, Balottin U. Emerging treatment strategies in Tourette syndrome: what's in the pipeline? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 112:445-80. [PMID: 24295630 DOI: 10.1016/b978-0-12-411546-0.00015-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterized by multiple motor/phonic tics and a wide spectrum of behavioral problems (e.g., complex tic-like symptoms, attention deficit hyperactivity disorder, and obsessive-compulsive disorder). TS can be a challenging condition even for the specialists, because of the complexity of the clinical picture and the potential adverse effects of the most commonly prescribed medications. Expert opinions and consensus guidelines on the assessment and treatment of tic disorders have recently been published in Europe and Canada. All pharmacological treatment options are mere symptomatic treatments that alleviate, but do not cure, the tics. We still lack evidence of their effects on the natural long-term course and on the prognosis of TS and how these treatments may influence the natural course of brain development. The most commonly prescribed drugs are dopamine antagonists, such as typical (e.g., haloperidol, pimozide) and atypical neuroleptics (e.g., risperidone, aripiprazole), and α-2-adrenoreceptor agonists (e.g., clonidine). However, several studies have investigated the efficacy and tolerability of alternative pharmacological agents that may be efficacious, including the newest atypical antipsychotic agents (e.g., paliperidone, sertindole), tetrabenazine, drugs that modulate acetylcholine (e.g., nicotine) and GABA (e.g., baclofen, levetiracetam), tetrahydrocannabinol, botulinum toxin injections, anticonvulsant drugs (e.g., topiramate, carbamazepine), naloxone, lithium, norepinephrine, steroid 5α reductase, and other neuroactive agents (buspirone, metoclopramide, phytostigmine, and spiradoline mesylate). As regards nonpharmacological interventions, some of the more recent treatments that have been studied include electroconvulsive therapy and repetitive transcranial magnetic stimulation. This review focuses primarily on the efficacy and safety of these emerging treatment strategies in TS.
Collapse
Affiliation(s)
- Cristiano Termine
- Child Neuropsychiatry Unit, Department of Experimental Medicine, University of Insubria, Varese, Italy.
| | | | | | | |
Collapse
|
32
|
Abstract
The increasing global prevalence of obesity urgently requires an implementation of efficient preventive and therapeutic measures. Weight loss and its maintenance should be considered one of the most important strategies to reduce the incidence of obesity-related co-morbidities such as diabetes and cardiovascular diseases. Lifestyle modification focused on diet and physical activity represents the essential component of any kind of weight management. However, only an intensive lifestyle intervention can be efficient in terms of long-term weight loss. Anti-obesity drugs affect different targets in the central nervous system or peripheral tissues and improve regulatory and metabolic disturbances that contribute to the development of obesity. Anti-obesity medications provide modest additional fat loss to that achieved by lifestyle modification alone, reduce visceral fat stores, improve programme adherence, weight loss maintenance, diminish obesity-related health risks and improve a quality of life. Anti-obesity drugs do play a role in weight management. Their replacement with placebo is followed by weight regain. Due to adverse events, several anti-obesity drugs were withdrawn from the market over the past few years and currently only orlistat remains available for long-term obesity management. Drug withdrawals, failure of clinical trials with several new anti-obesity compounds as well as inappropriate demands of drug regulating agencies concerning the study protocol led to scepticism about the perspectives in the pharmacotherapy of obesity. However, recently developed anti-obesity medications such as gut hormone analogues and drug combinations provided encouraging results in terms of weight loss, safety and improvement of cardio-metabolic health risks.
Collapse
|
33
|
Fernández-Navarro P, Vaquero-Lorenzo C, Blasco-Fontecilla H, Díaz-Hernández M, Gratacòs M, Estivill X, Costas J, Carracedo Á, Fernández-Piqueras J, Saiz-Ruiz J, Baca-Garcia E. Genetic epistasis in female suicide attempters. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:294-301. [PMID: 22554588 DOI: 10.1016/j.pnpbp.2012.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Complex behaviors such as suicidal behavior likely exhibit gene-gene interactions. The main aim of this study is to explore potential single nucleotide polymorphisms combinations with epistatic effect in suicidal behavior using a data mining tool (Multifactor Dimensionality Reduction). METHODS Genomic DNA from peripheral blood samples was analyzed using SNPlex Technology. Multifactor Dimensionality Reduction was used to detect epistatic interactions between single nucleotide polymorphisms from the main central nervous system (CNS) neurotransmitters (dopamine: 9; noradrenaline: 19; serotonin: 23; inhibitory neurotransmitters: 60) in 889 individuals (417 men and 472 women) aged 18 years or older (585 psychiatric controls without a history of suicide attempts, and 304 patients with a history of suicide attempts). Individual analysis of association between single nucleotide polymorphisms and suicide attempts was estimated using logistic regression models. RESULTS Multifactor Dimensionality Reduction showed significant epistatic interactions involving four single nucleotide polymorphisms in female suicide attempters with a classification test accuracy of 60.7% (59.1%-62.4%, 95% CI): rs1522296, phenylalanine hydroxylase gene (PAH); rs7655090, dopamine receptor D5 gene (DRD5); rs11888528, chromosome 2 open reading frame 76, close to diazepam binding inhibitor gene (DBI); and rs2376481, GABA-A receptor subunit γ3 gene (GABRG3). The multivariate logistic regression model confirmed the relevance of the epistatic interaction [OR(95% CI)=7.74(4.60-13.37)] in females. CONCLUSIONS Our results suggest an epistatic interaction between genes of all monoamines and GABA in female suicide attempters.
Collapse
Affiliation(s)
- Pablo Fernández-Navarro
- Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Avenida Monforte de Lemos, 5, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Siep N, Roefs A, Roebroeck A, Havermans R, Bonte M, Jansen A. Fighting food temptations: the modulating effects of short-term cognitive reappraisal, suppression and up-regulation on mesocorticolimbic activity related to appetitive motivation. Neuroimage 2011; 60:213-20. [PMID: 22230946 DOI: 10.1016/j.neuroimage.2011.12.067] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 12/06/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022] Open
Abstract
The premise of cognitive therapy is that one can overcome the irresistible temptation of highly palatable foods by actively restructuring the way one thinks about food. Testing this idea, participants in the present study were instructed to passively view foods, up-regulate food palatability thoughts, apply cognitive reappraisal (e.g., thinking about health consequences), or suppress food palatability thoughts and cravings. We examined whether these strategies affect self-reported food craving and mesocorticolimbic activity as assessed by functional magnetic resonance imaging. It was hypothesized that cognitive reappraisal would most effectively inhibit the mesocorticolimbic activity and associated food craving as compared to suppression. In addition, it was hypothesized that suppression would lead to more prefrontal cortex activity, reflecting the use of more control resources, as compared to cognitive reappraisal. Self-report results indicated that up-regulation increased food craving compared to the other two conditions, but that there was no difference in craving between the suppression and cognitive reappraisal strategy. Corroborating self-report results, the neuroimaging results showed that up-regulation increased activity in important regions of the mesocorticolimbic circuitry, including the ventral tegmental area, ventral striatum, operculum, posterior insular gyrus, medial orbitofrontal cortex and ventromedial prefrontal cortex. Contrary to our hypothesis, suppression more effectively decreased activity in the core of the mesocorticolimbic circuitry (i.e., ventral tegmental area and ventral striatum) compared to cognitive reappraisal. Overall, the results support the contention that appetitive motivation can be modulated by the application of short-term cognitive control strategies.
Collapse
Affiliation(s)
- Nicolette Siep
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Ariza M, Díaz A, Suau R, Valpuesta M. Synthesis of New Dopamine D1 Antagonist SCH 23390 Analogues by the Stereoselective Stevens Rearrangement. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Abstract
One of the main reasons for drug failures in clinical development, or postmarket launch, is lacking or compromised safety margins at therapeutic doses. Organ toxicity with poorly defined mechanisms and adverse drug reactions associated with on- and off-target effects are the major contributors to safety-related shortfalls of many clinical drug candidates. Therefore, to avoid high attrition rates in clinical trials, it is imperative to test compounds for potential adverse reactions during early drug discovery. Beyond a small number of targets associated with clinically acknowledged adverse drug reactions, there is little consensus on other targets that are important to consider at an early stage for in vitro safety pharmacology assessment. We consider here a limited number of safety-related targets, from different target families, which were selected as part of in vitro safety pharmacology profiling panels integrated in the drug-development process at Novartis. The best way to assess these targets, using a biochemical or a functional readout, is discussed. In particular, the importance of using cell-based profiling assays for the characterization of an agonist action at some GPCRs is highlighted. A careful design of in vitro safety pharmacology profiling panels allows better prediction of potential adverse effects of new chemical entities early in the drug-discovery process. This contributes to the selection of the best candidate for clinical development and, ultimately, should contribute to a decreased attrition rate.
Collapse
|
37
|
Hainer V. Comparative efficiency and safety of pharmacological approaches to the management of obesity. Diabetes Care 2011; 34 Suppl 2:S349-54. [PMID: 21525481 PMCID: PMC3632205 DOI: 10.2337/dc11-s255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Vojtech Hainer
- Institute of Endocrinology, Obesity Management Center, Prague, Czech Republic.
| |
Collapse
|
38
|
|
39
|
Nathan PJ, O'Neill BV, Napolitano A, Bullmore ET. Neuropsychiatric adverse effects of centrally acting antiobesity drugs. CNS Neurosci Ther 2010; 17:490-505. [PMID: 21951371 DOI: 10.1111/j.1755-5949.2010.00172.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Central neurochemical systems including the monoamine, opioid, and cannabinoid systems have been promising targets for antiobesity drugs that modify behavioral components of obesity. In addition to modulating eating behavior, centrally acting antiobesity drugs are also likely to alter emotional behavior and cognitive function due to the high expression of receptors for the neurochemical systems targeted by these drugs within the fronto-striatal and limbic circuitry. METHODS This paper reviewed the neuropsychiatric adverse effects of past and current antiobesity drugs, with a central mechanism of action, linking the adverse effects to their underlying neural substrates and neurochemistry. RESULTS Antiobesity drugs were found to have varying neuropsychiatric adverse event profiles. Insomnia was the most common adverse effect with drugs targeting monoamine systems (sibutramine, bupropion and tesofensine). These drugs had some positive effects on mood and anxiety and may have added therapeutic benefits in obese patients with comorbid depression and anxiety symptoms. Sedation and tiredness were the most common adverse effects reported with drugs targeting the m-opioid receptors (i.e., naltrexone) and combination therapies targeting the opioid and monoamine systems (i.e., Contrave™). Cognitive impairments were most frequently associated with the antiepileptic drugs, topiramate and zonisamide, consistent with their sedative properties. Drugs targeting the cannabinoid system (rimonabant and taranabant) were consistently associated with symptoms of anxiety and depression, including reports of suicidal ideation. Similar adverse events have also been noted for the D₁/D₅ antagonist ecopipam. CONCLUSION These findings highlight the need to assess neuropsychiatric adverse events comprehensively using sensitive and validated methods early in the clinical development of candidate antiobesity drugs with a central mechanism of action.
Collapse
Affiliation(s)
- Pradeep J Nathan
- Experimental Medicine, GlaxoSmithKline, Clinical Unit Cambridge, UK.
| | | | | | | |
Collapse
|
40
|
Qiang L, Sasikumar T, Burnett DA, Su J, Tang H, Ye Y, Mazzola RD, Zhu Z, McKittrick BA, Greenlee WJ, Fawzi A, Smith M, Zhang H, Lachowicz JE. Discovery of new SCH 39166 analogs as potent and selective dopamine D1 receptor antagonists. Bioorg Med Chem Lett 2010; 20:836-40. [DOI: 10.1016/j.bmcl.2009.12.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 11/29/2022]
|
41
|
Sasikumar T, Burnett DA, Greenlee WJ, Smith M, Fawzi A, Zhang H, Lachowicz JE. Remote functionalization of SCH 39166: Discovery of potent and selective benzazepine dopamine D1 receptor antagonists. Bioorg Med Chem Lett 2010; 20:832-5. [DOI: 10.1016/j.bmcl.2009.12.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 11/25/2022]
|
42
|
Robertson HT, Allison DB. Drugs associated with more suicidal ideations are also associated with more suicide attempts. PLoS One 2009; 4:e7312. [PMID: 19798416 PMCID: PMC2749439 DOI: 10.1371/journal.pone.0007312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 09/11/2009] [Indexed: 11/23/2022] Open
Abstract
Context In randomized controlled trials (RCTs), some drugs, including CB1 antagonists for obesity treatment, have been shown to cause increased suicidal ideation. A key question is whether drugs that increase or are associated with increased suicidal ideations are also associated with suicidal behavior, or whether drug–induced suicidal ideations are unlinked epiphenomena that do not presage the more troubling and potentially irrevocable outcome of suicidal behavior. This is difficult to determine in RCTs because of the rarity of suicidal attempts and completions. Objective To determine whether drugs associated with more suicidal ideations are also associated with more suicide attempts in large spontaneous adverse event (AE) report databases. Methodology Generalized linear models with negative binomial distribution were fitted to Food and Drug Administration (FDA) Adverse Event (AE) Reporting System (AERS) data from 2004 to 2008. A total of 1,404,470 AEs from 832 drugs were analyzed as a function of reports of suicidal ideations; other non-suicidal adverse reactions; drug class; proportion of reports from males; and average age of subject for which AE was filed. Drug was treated as the unit of analysis, thus the statistical models effectively had 832 observations. Main Outcome Measures Reported suicide attempts and completed suicides per drug. Results 832 drugs, ranging from abacavir to zopiclone, were evaluated. The 832 drugs, as primary suspect drugs in a given adverse event, accounted for over 99.9% of recorded AERS. Suicidal ideations had a significant positive association with suicide attempts (p<.0001) and had an approximately 131-fold stronger magnitude of association than non-suicidal AERs, after adjusting for drug class, gender, and age. Conclusions In AE reports, drugs that are associated with increased suicidal ideations are also associated with increased suicidal attempts or completions. This association suggests that drug-induced suicidal ideations observed in RCTs plausibly represent harbingers that presage the more serious suicide attempts and completions and should be a cause for concern.
Collapse
Affiliation(s)
- Henry T. Robertson
- Department of Biostatistics, University of Alabama at Birmingham, Ryals School of Public Health, Birmingham, Alabama, United States of America
| | - David B. Allison
- Department of Biostatistics, University of Alabama at Birmingham, Ryals School of Public Health, Birmingham, Alabama, United States of America
- Clinical Nutrition Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zhu Z, Sun ZY, Ye Y, McKittrick B, Greenlee W, Czarniecki M, Fawzi A, Zhang H, Lachowicz JE. Design and discovery of 1,3-benzodiazepines as novel dopamine antagonists. Bioorg Med Chem Lett 2009; 19:5218-21. [DOI: 10.1016/j.bmcl.2009.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/23/2009] [Accepted: 07/02/2009] [Indexed: 11/26/2022]
|
44
|
Abstract
There is growing evidence that receptors that respond to orexigenic and anorexigenic signals of respective neuropeptides are also implicated in cognitive, emotional, sensory and motor functions. How do these signals trigger a particular appetitive function while also acting in so different contexts in controlling non-appetitive behaviours? This perspective seeks an answer in their peculiar modular organization when each module planted in complex networks controlling appetite is also engaged in different domains. Network analysis may be essential in considering pharmacotherapeutic interventions and, in particular, when anticipating untoward central effects of agents explored from a therapeutic point of view.
Collapse
Affiliation(s)
- M Myslobodsky
- Howard University Graduate School, Washington, DC and Clinical Brain Disorders Branch, NIMH/National Institutes of Health, Bethesda, MD 20892-1379, USA.
| |
Collapse
|
45
|
Abstract
BACKGROUND Lipid accretion is one of the major side effects of clozapine pharmacotherapy of schizophrenia that made clozapine into an interesting obesity drug model. METHOD Ingenuity Pathway Analysis (IPA) engine was used for core analysis and building the networks of weight regulation. RESULTS The examination of molecules that were selected into 'clozapine neighborhood' identified them as multifunctional signals that appear to orchestrate vascular and tissue functions plausibly implicated in adiposity side effect. CONCLUSIONS It is hypothesized that clozapine unmasks the functional and morphological phenotype of microvascular deficit that facilitates shunting nutrients from utilization toward storage.
Collapse
|
46
|
|
47
|
Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 2007; 370:1706-13. [PMID: 18022033 DOI: 10.1016/s0140-6736(07)61721-8] [Citation(s) in RCA: 776] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Since the prevalence of obesity continues to increase, there is a demand for effective and safe anti-obesity agents that can produce and maintain weight loss and improve comorbidity. We did a meta-analysis of all published randomised controlled trials to assess the efficacy and safety of the newly approved anti-obesity agent rimonabant. METHODS We searched The Cochrane database and Controlled Trials Register, Medline via Pubmed, Embase via WebSpirs, Web of Science, Scopus, and reference lists up to July, 2007. We collected data from four double-blind, randomised controlled trials (including 4105 participants) that compared 20 mg per day rimonabant with placebo. FINDINGS Patients given rimonabant had a 4.7 kg (95% CI 4.1-5.3 kg; p<0.0001) greater weight reduction after 1 year than did those given placebo. Rimonabant caused significantly more adverse events than did placebo (OR=1.4; p=0.0007; number needed to harm=25 individuals [95% CI 17-58]), and 1.4 times more serious adverse events (OR=1.4; p=0.03; number needed to harm=59 [27-830]). Patients given rimonabant were 2.5 times more likely to discontinue the treatment because of depressive mood disorders than were those given placebo (OR=2.5; p=0.01; number needed to harm=49 [19-316]). Furthermore, anxiety caused more patients to discontinue treatment in rimonabant groups than in placebo groups (OR=3.0; p=0.03; number needed to harm=166 [47-3716]). INTERPRETATION Our findings suggest that 20 mg per day rimonabant increases the risk of psychiatric adverse events--ie, depressed mood disorders and anxiety-despite depressed mood being an exclusion criterion in these trials. Taken together with the recent US Food and Drug Administration finding of increased risk of suicide during treatment with rimonabant, we recommend increased alertness by physicians to these potentially severe psychiatric adverse reactions.
Collapse
Affiliation(s)
- Robin Christensen
- The Parker Institute, Musculoskeletal Statistics Unit, Frederiksberg Hospital, Frederiksberg, Denmark
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- George A Bray
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|