1
|
Tung PW, Thaker VV, Gallagher D, Kupsco A. Mitochondrial Health Markers and Obesity-Related Health in Human Population Studies: A Narrative Review of Recent Literature. Curr Obes Rep 2024; 13:724-738. [PMID: 39287712 DOI: 10.1007/s13679-024-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW This narrative review summarizes current literature on the relationship of mitochondrial biomarkers with obesity-related characteristics, including body mass index and body composition. RECENT FINDINGS Mitochondria, as cellular powerhouses, play a pivotal role in energy production and the regulation of metabolic process. Altered mitochondrial functions contribute to obesity, yet evidence of the intricate relationship between mitochondrial dynamics and obesity-related outcomes in human population studies is scarce and warrants further attention. We discuss emerging evidence linking obesity and related health outcomes to impaired oxidative phosphorylation pathways, oxidative stress and mtDNA variants, copy number and methylation, all hallmark of suboptimal mitochondrial function. We also explore the influence of dietary interventions and metabolic and bariatric surgery procedures on restoring mitochondrial attributes of individuals with obesity. Finally, we report on the potential knowledge gaps in the mitochondrial dynamics for human health for future study.
Collapse
Affiliation(s)
- Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Vidhu V Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dympna Gallagher
- Department of Medicine, Columbia University Irving Medical Center , New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Kettunen S, Suoranta T, Beikverdi S, Heikkilä M, Slita A, Räty I, Ylä-Herttuala E, Öörni K, Ruotsalainen AK, Ylä-Herttuala S. Deletion of the Murine Ortholog of the Human 9p21.3 Locus Leads to Insulin Resistance and Obesity in Hypercholesterolemic Mice. Cells 2024; 13:983. [PMID: 38891115 PMCID: PMC11171903 DOI: 10.3390/cells13110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The 9p21.3 genomic locus is a hot spot for disease-associated single-nucleotide polymorphisms (SNPs), and its strongest associations are with coronary artery disease (CAD). The disease-associated SNPs are located within the sequence of a long noncoding RNA ANRIL, which potentially contributes to atherogenesis by regulating vascular cell stress and proliferation, but also affects pancreatic β-cell proliferation. Altered expression of a neighboring gene, CDKN2B, has been also recognized to correlate with obesity and hepatic steatosis in people carrying the risk SNPs. In the present study, we investigated the impact of 9p21.3 on obesity accompanied by hyperlipidemia in mice carrying a deletion of the murine ortholog for the 9p21.3 (Chr4Δ70/Δ70) risk locus in hyperlipidemic Ldlr-/-ApoB100/100 background. The Chr4Δ70/Δ70 mice showed decreased mRNA expression of insulin receptors in white adipose tissue already at a young age, which developed into insulin resistance and obesity by aging. In addition, the Sirt1-Ppargc1a-Ucp2 pathway was downregulated together with the expression of Cdkn2b, specifically in the white adipose tissue in Chr4Δ70/Δ70 mice. These results suggest that the 9p21.3 locus, ANRIL lncRNA, and their murine orthologues may regulate the key energy metabolism pathways in a white adipose tissue-specific manner in the presence of hypercholesterolemia, thus contributing to the pathogenesis of metabolic syndrome.
Collapse
Affiliation(s)
- Sanna Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Tuisku Suoranta
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Sadegh Beikverdi
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Minja Heikkilä
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Anna Slita
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Iida Räty
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Elias Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
- Imaging Center, Kuopio University Hospital, 70200 Kuopio, Finland
| | | | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| |
Collapse
|
3
|
Kulsange SE, Sharma M, Sonawane B, Jaiswal MR, Kulkarni MJ, Santhakumari B. SWATH-MS reveals that bisphenol A and its analogs regulate pathways leading to disruption in insulin signaling and fatty acid metabolism. Food Chem Toxicol 2024; 188:114667. [PMID: 38653447 DOI: 10.1016/j.fct.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.
Collapse
Affiliation(s)
- Shabda E Kulsange
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Sonawane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - B Santhakumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Centre for Material Characterization, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
4
|
Cilenti L, Di Gregorio J, Mahar R, Liu F, Ambivero CT, Periasamy M, Merritt ME, Zervos AS. Inactivation of mitochondrial MUL1 E3 ubiquitin ligase deregulates mitophagy and prevents diet-induced obesity in mice. Front Mol Biosci 2024; 11:1397565. [PMID: 38725872 PMCID: PMC11079312 DOI: 10.3389/fmolb.2024.1397565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Obesity is a growing epidemic affecting millions of people worldwide and a major risk factor for a multitude of chronic diseases and premature mortality. Accumulating evidence suggests that mitochondria have a profound role in diet-induced obesity and the associated metabolic changes, but the molecular mechanisms linking mitochondria to obesity remain poorly understood. Our studies have identified a new function for mitochondrial MUL1 E3 ubiquitin ligase, a protein known to regulate mitochondrial dynamics and mitophagy, in the control of energy metabolism and lipogenesis. Genetic deletion of Mul1 in mice impedes mitophagy and presents a metabolic phenotype that is resistant to high-fat diet (HFD)-induced obesity and metabolic syndrome. Several metabolic and lipidomic pathways are perturbed in the liver and white adipose tissue (WAT) of Mul1(-/-) animals on HFD, including the one driven by Stearoyl-CoA Desaturase 1 (SCD1), a pivotal regulator of lipid metabolism and obesity. In addition, key enzymes crucial for lipogenesis and fatty acid oxidation such as ACC1, FASN, AMPK, and CPT1 are also modulated in the absence of MUL1. The concerted action of these enzymes, in the absence of MUL1, results in diminished fat storage and heightened fatty acid oxidation. Our findings underscore the significance of MUL1-mediated mitophagy in regulating lipogenesis and adiposity, particularly in the context of HFD. Consequently, our data advocate the potential of MUL1 as a therapeutic target for drug development in the treatment of obesity, insulin resistance, NAFLD, and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lucia Cilenti
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Fei Liu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Camilla T. Ambivero
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Muthu Periasamy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Antonis S. Zervos
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
5
|
Dong H, Guo W, Yue R, Sun X, Zhou Z. Nuclear Nicotinamide Adenine Dinucleotide Deficiency by Nmnat1 Deletion Impaired Hepatic Insulin Signaling, Mitochondrial Function, and Hepatokine Expression in Mice Fed a High-Fat Diet. J Transl Med 2024; 104:100329. [PMID: 38237740 PMCID: PMC10957298 DOI: 10.1016/j.labinv.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Metabolic syndrome (MetS) is a worldwide challenge that is closely associated with obesity, nonalcoholic liver disease, insulin resistance, and type 2 diabetes. Boosting nicotinamide adenine dinucleotide (NAD+) presents great potential in preventing MetS. However, the function of nuclear NAD+ in the development of MetS remains poorly understood. In this study, hepatocyte-specific Nmnat1 knockout mice were used to determine a possible link between nuclear NAD+ and high-fat diet (HFD)-induced MetS. We found that Nmnat1 knockout significantly reduced hepatic nuclear NAD+ levels but did not exacerbate HFD-induced obesity and hepatic triglycerides accumulation. Interestingly, loss of Nmnat1 caused insulin resistance. Further analysis revealed that Nmnat1 deletion promoted gluconeogenesis but inhibited glycogen synthesis in the liver. Moreover, Nmnat1 deficiency induced mitochondrial dysfunction by decreasing mitochondrial DNA (mtDNA)-encoded complexes Ⅰ and Ⅳ, suppressing mtDNA replication and mtRNA transcription and reducing mtDNA copy number. In addition, Nmnat1 depletion affected the expression of hepatokines in the liver, particularly downregulating the expression of follistatin. These findings highlight the importance of nuclear NAD+ in maintaining insulin sensitivity and provide insights into the mechanisms underlying HFD-induced insulin resistance.
Collapse
Affiliation(s)
- Haibo Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wei Guo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina; Department of Nutrition, University of North Carolina at Greensboro, Greensboro, North Carolina.
| |
Collapse
|
6
|
Nasti A, Okumura M, Takeshita Y, Ho TTB, Sakai Y, Sato TA, Nomura C, Goto H, Nakano Y, Urabe T, Nakamura S, Tamura T, Matsubara K, Takamura T, Kaneko S. The declining insulinogenic index correlates with inflammation and metabolic dysregulation in non-obese individuals assessed by blood gene expression. Diabetes Res Clin Pract 2024; 208:111090. [PMID: 38216088 DOI: 10.1016/j.diabres.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
AIMS Diabetes onset is difficult to predict. Since decreased insulinogenic index (IGI) is observed in prediabetes, and blood gene expression correlates with insulin secretion, candidate biomarkers can be identified. METHODS We collected blood from 96 participants (54 males, 42 females) in 2008 (age: 52.5 years) and 2016 for clinical and gene expression analyses. IGI was derived from values of insulin and glucose at fasting and at 30 min post-OGTT. Two subgroups were identified based on IGI variation: "Minor change in IGI" group with absolute value variation between -0.05 and +0.05, and "Decrease in IGI" group with a variation between -20 and -0.05. RESULTS Following the comparison of "Minor change in IGI" and "Decrease in IGI" groups at time 0 (2008), we identified 77 genes correlating with declining IGI, related to response to lipid, carbohydrate, and hormone metabolism, response to stress and DNA metabolic processes. Over the eight years, genes correlating to declining IGI were related to inflammation, metabolic and hormonal dysregulation. Individuals with minor change in IGI, instead, featured homeostatic and regenerative responses. CONCLUSIONS By blood gene expression analysis of non-obese individuals, we identified potential gene biomarkers correlating to declining IGI, associated to a pathophysiology of inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Alessandro Nasti
- Information-Based Medicine Development, Kanazawa University, Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Miki Okumura
- Department of Endocrinology and Metabolism, Kanazawa University, Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University, Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Tuyen Thuy Bich Ho
- Information-Based Medicine Development, Kanazawa University, Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan; Sakai Internal Medicine Clinic, Nonoichi, Ishikawa 921-8825, Japan
| | | | - Chiaki Nomura
- Department of Endocrinology and Metabolism, Kanazawa University, Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University, Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University, Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Urabe
- Department of Gastroenterology, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan
| | | | - Takuro Tamura
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba 305-8550, Japan
| | | | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University, Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Shuichi Kaneko
- Information-Based Medicine Development, Kanazawa University, Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan; Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan.
| |
Collapse
|
7
|
Sithara S, Crowley T, Walder K, Aston-Mourney K. Identification of reversible and druggable pathways to improve beta-cell function and survival in Type 2 diabetes. Islets 2023; 15:2165368. [PMID: 36709757 PMCID: PMC9888462 DOI: 10.1080/19382014.2023.2165368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Targeting β-cell failure could prevent, delay or even partially reverse Type 2 diabetes. However, development of such drugs is limited as the molecular pathogenesis is complex and incompletely understood. Further, while β-cell failure can be modeled experimentally, only some of the molecular changes will be pathogenic. Therefore, we used a novel approach to identify molecular pathways that are not only changed in a diabetes-like state but also are reversible and can be targeted by drugs. INS1E cells were cultured in high glucose (HG, 20 mM) for 72 h or HG for an initial 24 h followed by drug addition (exendin-4, metformin and sodium salicylate) for the remaining 48 h. RNAseq (Illumina TruSeq), gene set enrichment analysis (GSEA) and pathway analysis (using Broad Institute, Reactome, KEGG and Biocarta platforms) were used to identify changes in molecular pathways. HG decreased function and increased apoptosis in INS1E cells with drugs partially reversing these effects. HG resulted in upregulation of 109 pathways while drug treatment downregulated 44 pathways with 21 pathways in common. Interestingly, while hyperglycemia extensively upregulated metabolic pathways, they were not altered with drug treatment, rather pathways involved in the cell cycle featured more heavily. GSEA for hyperglycemia identified many known pathways validating the applicability of our cell model to human disease. However, only a fraction of these pathways were downregulated with drug treatment, highlighting the importance of considering druggable pathways. Overall, this provides a powerful approach and resource for identifying appropriate targets for the development of β-cell drugs.
Collapse
Affiliation(s)
- Smithamol Sithara
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Tamsyn Crowley
- School of Medicine, Bioinformatics Core Research Facility, Deakin University, Geelong, Australia
| | - Ken Walder
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Kathryn Aston-Mourney
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
- CONTACT Kathryn Aston-Mourney Building Nb, 75 Pidgons Rd, Geelong, VIC3216, Australia
| |
Collapse
|
8
|
Dogaru CB, Duță C, Muscurel C, Stoian I. "Alphabet" Selenoproteins: Implications in Pathology. Int J Mol Sci 2023; 24:15344. [PMID: 37895024 PMCID: PMC10607139 DOI: 10.3390/ijms242015344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Selenoproteins are a group of proteins containing selenium in the form of selenocysteine (Sec, U) as the 21st amino acid coded in the genetic code. Their synthesis depends on dietary selenium uptake and a common set of cofactors. Selenoproteins accomplish diverse roles in the body and cell processes by acting, for example, as antioxidants, modulators of the immune function, and detoxification agents for heavy metals, other xenobiotics, and key compounds in thyroid hormone metabolism. Although the functions of all this protein family are still unknown, several disorders in their structure, activity, or expression have been described by researchers. They concluded that selenium or cofactors deficiency, on the one hand, or the polymorphism in selenoproteins genes and synthesis, on the other hand, are involved in a large variety of pathological conditions, including type 2 diabetes, cardiovascular, muscular, oncological, hepatic, endocrine, immuno-inflammatory, and neurodegenerative diseases. This review focuses on the specific roles of selenoproteins named after letters of the alphabet in medicine, which are less known than the rest, regarding their implications in the pathological processes of several prevalent diseases and disease prevention.
Collapse
Affiliation(s)
| | | | - Corina Muscurel
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
9
|
Dewidar B, Mastrototaro L, Englisch C, Ress C, Granata C, Rohbeck E, Pesta D, Heilmann G, Wolkersdorfer M, Esposito I, Reina Do Fundo M, Zivehe F, Yavas A, Roden M. Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases. EBioMedicine 2023; 94:104714. [PMID: 37454552 PMCID: PMC10384226 DOI: 10.1016/j.ebiom.2023.104714] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Disturbed hepatic energy metabolism contributes to non-alcoholic fatty liver (NAFLD), but the development of changes over time and obesity- or diabetes-related mechanisms remained unclear. METHODS Two-day old male C57BL/6j mice received streptozotocin (STZ) or placebo (PLC) and then high-fat (HFD) or regular chow diet (RCD) from week 4 (W4) to either W8 or W16, yielding control [CTRL = PLC + RCD], diabetes [DIAB = STZ + RCD], obesity [OBES = PLC + HFD] and diabetes-related non-alcoholic steatohepatitis [NASH = STZ + HFD] models. Mitochondrial respiration was measured by high-resolution respirometry and insulin-sensitive glucose metabolism by hyperinsulinemic-euglycemic clamps with stable isotope dilution. FINDINGS NASH showed higher steatosis and NAFLD activity already at W8 and liver fibrosis at W16 (all p < 0.01 vs CTRL). Ballooning was increased in DIAB and NASH at W16 (p < 0.01 vs CTRL). At W16, insulin sensitivity was 47%, 58% and 75% lower in DIAB, NASH and OBES (p < 0.001 vs CTRL). Hepatic uncoupled fatty acid oxidation (FAO)-associated respiration was reduced in OBES at W8, but doubled in DIAB and NASH at W16 (p < 0.01 vs CTRL) and correlated with biomarkers of unfolded protein response (UPR), oxidative stress and hepatic expression of certain enzymes (acetyl-CoA carboxylase 2, Acc2; carnitine palmitoyltransferase I, Cpt1a). Tricarboxylic acid cycle (TCA)-driven respiration was lower in OBES at W8 and doubled in DIAB at W16 (p < 0.0001 vs CTRL), which positively correlated with expression of genes related to lipolysis. INTERPRETATION Hepatic mitochondria adapt to various metabolic challenges with increasing FAO-driven respiration, which is linked to dysfunctional UPR, systemic oxidative stress, insulin resistance and altered lipid metabolism. In a diabetes model, higher TCA-linked respiration reflected mitochondrial adaptation to greater hepatic lipid turnover. FUNDING Funding bodies that contributed to this study were listed in the acknowledgements section.
Collapse
Affiliation(s)
- Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Cornelia Englisch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Claudia Ress
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Insulin Resistance, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Cesare Granata
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Elisabeth Rohbeck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Geronimo Heilmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Martin Wolkersdorfer
- Landesapotheke Salzburg, Department of Production, Hospital Pharmacy, Salzburg, Austria
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michelle Reina Do Fundo
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Fariba Zivehe
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Aslihan Yavas
- Institute of Pathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Kamoshita K, Ishii KA, Tahira Y, Kikuchi A, Abuduwaili H, Tajima-Shirasaki N, Li Q, Takayama H, Matsumoto K, Takamura T. Insulin Suppresses Ubiquitination via the Deubiquitinating Enzyme Ubiquitin-Specific Protease 14, Independent of Proteasome Activity in H4IIEC3 Hepatocytes. J Pharmacol Exp Ther 2023; 385:5-16. [PMID: 36328485 DOI: 10.1124/jpet.122.001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-proteasome dysfunction contributes to obesity-related metabolic disorders, such as diabetes and fatty liver disease. However, the regulation of ubiquitin-proteasome activity by insulin remains to be elucidated. Here, we show that prolonged insulin stimulation activates proteasome function even though it reduces the ubiquitinated proteins in H4IIEC3 hepatocytes. Looking for a pathway by which insulin inhibits ubiquitination, we found that hepatic expression of ubiquitin-specific protease 14 (USP14) was upregulated in the liver of patients with insulin resistance. Indeed, the USP14-specific inhibitor IU1 canceled the insulin-mediated reduction of ubiquitinated proteins. Furthermore, insulin-induced endoplasmic reticulum (ER) stress, which was canceled by IU1, suggesting that USP14 activity is involved in insulin-induced ER stress. Co-stimulation with insulin and IU1 for 2 hours upregulated the nuclear translocation of the lipogenic transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), upregulated the expression of the lipogenic gene, fatty acid synthase (Fasn), and repressed the gluconeogenic genes. In conclusion, insulin activates proteasome function even though it inhibits protein ubiquitination by activating USP14 in hepatocytes. USP14 activation by insulin inhibits mature SREBP-1c while upregulating ER stress and the expression of genes involved in gluconeogenesis. Further understanding mechanisms underlying the USP14 activation and its pleiotropic effects may lead to therapeutic development for obesity-associated metabolic disorders, such as diabetes and fatty liver disease. SIGNIFICANCE STATEMENT: This study shows that insulin stimulation inhibits ubiquitination by activating USP14, independent of its effect on proteasome activity in hepatocytes. USP14 also downregulates the nuclear translocation of the lipogenic transcription factor SREBP-1c and upregulates the expression of genes involved in gluconeogenesis. Since USP14 is upregulated in the liver of insulin-resistant patients, understanding mechanisms underlying the USP14 activation and its pleiotropic effects will help develop treatments for metabolic disorders such as diabetes and fatty liver.
Collapse
Affiliation(s)
- Kyoko Kamoshita
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yumiko Tahira
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Halimulati Abuduwaili
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Natsumi Tajima-Shirasaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Qifang Li
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kunio Matsumoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences (K.K., K.A.I., Y.T., A.K., H.A., N.T.S., Q.L., H.T., T.T.); Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences (K.A.I.); Life Sciences Division, Engineering and Technology Department (H.T.); and Division of Tumor Dynamics and Regulation, Cancer Research Institute (K.M.), Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
11
|
Heras-Molina A, Núñez Y, Benítez R, Pesántez-Pacheco JL, García-Contreras C, Vázquez-Gómez M, Astiz S, Isabel B, González-Bulnes A, Óvilo C. Hypothalamic transcriptome analysis reveals male-specific differences in molecular pathways related to oxidative phosphorylation between Iberian pig genotypes. PLoS One 2022; 17:e0272775. [PMID: 35972914 PMCID: PMC9380940 DOI: 10.1371/journal.pone.0272775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
The hypothalamus is implicated in controlling feeding and adiposity, besides many other physiological functions, and thus can be of great importance in explaining productive differences between lean and fatty pig breeds. The present study aimed to evaluate the hypothalamic transcriptome of pure Iberian (IBxIB) and Large White x Iberian crossbreds (IBxLW) at 60 days-old, produced in a single maternal environment. Results showed the implication of gender and genotype in the hypothalamic transcriptome, with 51 differentially expressed genes (DEGs) between genotypes and 10 DEGs between genders. Fourteen genotype by sex interactions were found, due to a higher genotype effect on transcriptome found in males. In fact, just 31 DEGs were identified when using only females but 158 using only males. A higher expression of genes related to mitochondrial activity in IBxIB male animals (ND3, ND4, ND5, UQCRC2 and ATP6) was found, which was related to a higher oxidative phosphorylation and greater reactive oxygen species and nitric oxide production. IBxLW male animals showed higher expression of SIRT3 regulator, also related to mitochondrial function. When females were analysed, such differences were not found, since only some differences in genes related to the tricarboxylic acid cycle. Thus, the results indicate a significant effect and interaction of the breed and the sex on the hypothalamic transcriptome at this early age.
Collapse
Affiliation(s)
- Ana Heras-Molina
- Department of Animal Breeding, INIA-CSIC, Madrid, Spain
- Department of Animal Production, Veterinary Faculty, UCM, Madrid, Spain
- * E-mail:
| | - Yolanda Núñez
- Department of Animal Breeding, INIA-CSIC, Madrid, Spain
| | - Rita Benítez
- Department of Animal Breeding, INIA-CSIC, Madrid, Spain
| | - José Luis Pesántez-Pacheco
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain
- School of Veterinary Medicine and Zootechnics, Faculty of Agricultural Sciences, UC, Cuenca, Ecuador
| | | | - Marta Vázquez-Gómez
- Department of Animal Production, Veterinary Faculty, UCM, Madrid, Spain
- Nutrition and Obesities: Systemic Approaches Research Unit (NutriOmics), INSERM, Sorbonne Université, Paris, France
| | - Susana Astiz
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain
| | - Beatriz Isabel
- Department of Animal Production, Veterinary Faculty, UCM, Madrid, Spain
| | - Antonio González-Bulnes
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain
- Department of Animal Production, Veterinary Faculty, UCH-CEU, Valencia, Spain
| | | |
Collapse
|
12
|
Busa P, Kuthati Y, Huang N, Wong CS. New Advances on Pathophysiology of Diabetes Neuropathy and Pain Management: Potential Role of Melatonin and DPP-4 Inhibitors. Front Pharmacol 2022; 13:864088. [PMID: 35496279 PMCID: PMC9039240 DOI: 10.3389/fphar.2022.864088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Pre-diabetes and diabetes are growing threats to the modern world. Diabetes mellitus (DM) is associated with comorbidities such as hypertension (83.40%), obesity (90.49%), and dyslipidemia (93.43%), creating a substantial burden on patients and society. Reductive and oxidative (Redox) stress level imbalance and inflammation play an important role in DM progression. Various therapeutics have been investigated to treat these neuronal complications. Melatonin and dipeptidyl peptidase IV inhibitors (DPP-4i) are known to possess powerful antioxidant and anti-inflammatory properties and have garnered significant attention in the recent years. In this present review article, we have reviewed the recently published reports on the therapeutic efficiency of melatonin and DPP-4i in the treatment of DM. We summarized the efficacy of melatonin and DPP-4i in DM and associated complications of diabetic neuropathy (DNP) and neuropathic pain. Furthermore, we discussed the mechanisms of action and their efficacy in the alleviation of oxidative stress in DM.
Collapse
Affiliation(s)
- Prabhakar Busa
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Niancih Huang
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Aboulmaouahib B, Kastenmüller G, Suhre K, Zöllner S, Weissensteiner H, Gieger C, Wang-Sattler R, Lichtner P, Strauch K, Flaquer A. First mitochondrial genome wide association study with metabolomics. Hum Mol Genet 2021; 31:3367-3376. [PMID: 34718574 PMCID: PMC9523559 DOI: 10.1093/hmg/ddab312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
In the era of personalized medicine with more and more patient-specific targeted therapies being used, we need reliable, dynamic, faster and sensitive biomarkers both to track the causes of disease and to develop and evolve therapies during the course of treatment. Metabolomics recently has shown substantial evidence to support its emerging role in disease diagnosis and prognosis. Aside from biomarkers and development of therapies, it is also an important goal to understand the involvement of mitochondrial DNA (mtDNA) in metabolic regulation, aging and disease development. Somatic mutations of the mitochondrial genome are also heavily implicated in age-related disease and aging. The general hypothesis is that an alteration in the concentration of metabolite profiles (possibly conveyed by lifestyle and environmental factors) influences the increase of mutation rate in the mtDNA and thereby contributes to a range of pathophysiological alterations observed in complex diseases. We performed an inverted mitochondrial genome-wide association analysis between mitochondrial nucleotide variants (mtSNVs) and concentration of metabolites. We used 151 metabolites and the whole sequenced mitochondrial genome from 2718 individuals to identify the genetic variants associated with metabolite profiles. Because of the high coverage, next-generation sequencing-based analysis of the mitochondrial genome allows for an accurate detection of mitochondrial heteroplasmy and for the identification of variants associated with the metabolome. The strongest association was found for mt715G > A located in the MT-12SrRNA with the metabolite ratio of C2/C10:1 (P-value = 6.82*10−09, β = 0.909). The second most significant mtSNV was found for mt3714A > G located in the MT-ND1 with the metabolite ratio of phosphatidylcholine (PC) ae C42:5/PC ae C44:5 (P-value = 1.02*10−08, β = 3.631). A large number of significant metabolite ratios were observed involving PC aa C36:6 and the variant mt10689G > A, located in the MT-ND4L gene. These results show an important interconnection between mitochondria and metabolite concentrations. Considering that some of the significant metabolites found in this study have been previously related to complex diseases, such as neurological disorders and metabolic conditions, these associations found here might play a crucial role for further investigations of such complex diseases. Understanding the mechanisms that control human health and disease, in particular, the role of genetic predispositions and their interaction with environmental factors is a prerequisite for the development of safe and efficient therapies for complex disorders.
Collapse
Affiliation(s)
- Brahim Aboulmaouahib
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU, Munich, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, State of Qatar
| | - Sebastian Zöllner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Konstantin Strauch
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU, Munich, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Antònia Flaquer
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU, Munich, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
14
|
The Controversial Role of Glucose-6-Phosphate Dehydrogenase Deficiency on Cardiovascular Disease: A Narrative Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529256. [PMID: 34007401 PMCID: PMC8110402 DOI: 10.1155/2021/5529256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disorders (CVD) are highly prevalent and the leading cause of death worldwide. Atherosclerosis is responsible for most cases of CVD. The plaque formation and subsequent thrombosis in atherosclerosis constitute an ongoing process that is influenced by numerous risk factors such as hypertension, diabetes, dyslipidemia, obesity, smoking, inflammation, and sedentary lifestyle. Among the various risk and protective factors, the role of glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common inborn enzyme disorder across populations, is still debated. For decades, it has been considered a protective factor against the development of CVD. However, in the recent years, growing scientific evidence has suggested that this inherited condition may act as a CVD risk factor. The role of G6PD deficiency in the atherogenic process has been investigated using in vitro or ex vivo cellular models, animal models, and epidemiological studies in human cohorts of variable size and across different ethnic groups, with conflicting results. In this review, the impact of G6PD deficiency on CVD was critically reconsidered, taking into account the most recent acquisitions on molecular and biochemical mechanisms, namely, antioxidative mechanisms, glutathione recycling, and nitric oxide production, as well as their mutual interactions, which may be impaired by the enzyme defect in the context of the pentose phosphate pathway. Overall, current evidence supports the notion that G6PD downregulation may favor the onset and evolution of atheroma in subjects at risk of CVD. Given the relatively high frequency of this enzyme deficiency in several regions of the world, this finding might be of practical importance to tailor surveillance guidelines and facilitate risk stratification.
Collapse
|
15
|
Takata N, Ishii KA, Takayama H, Nagashimada M, Kamoshita K, Tanaka T, Kikuchi A, Takeshita Y, Matsumoto Y, Ota T, Yamamoto Y, Yamagoe S, Seki A, Sakai Y, Kaneko S, Takamura T. LECT2 as a hepatokine links liver steatosis to inflammation via activating tissue macrophages in NASH. Sci Rep 2021; 11:555. [PMID: 33436955 PMCID: PMC7804418 DOI: 10.1038/s41598-020-80689-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
It remains unclear how hepatic steatosis links to inflammation. Leukocyte cell-derived chemotaxin 2 (LECT2) is a hepatokine that senses fat in the liver and is upregulated prior to weight gain. The aim of this study was to investigate the significance of LECT2 in the development of nonalcoholic steatohepatitis (NASH). In human liver biopsy samples, elevated LECT2 mRNA levels were positively correlated with body mass index (BMI) and increased in patients who have steatosis and inflammation in the liver. LECT2 mRNA levels were also positively correlated with the mRNA levels of the inflammatory genes CCR2 and TLR4. In C57BL/6J mice fed with a high-fat diet, mRNA levels of the inflammatory cytokines Tnfa and Nos2 were significantly lower in Lect2 KO mice. In flow cytometry analyses, the number of M1-like macrophages and M1/M2 ratio were significantly lower in Lect2 KO mice than in WT mice. In KUP5, mouse kupffer cell line, LECT2 selectively enhanced the LPS-induced phosphorylation of JNK, but not that of ERK and p38. Consistently, LECT2 enhanced the LPS-induced phosphorylation of MKK4 and TAB2, upstream activators of JNK. Hepatic expression of LECT2 is upregulated in association with the inflammatory signature in human liver tissues. The elevation of LECT2 shifts liver residual macrophage to the M1-like phenotype, and contributes to the development of liver inflammation. These findings shed light on the hepatokine LECT2 as a potential therapeutic target that can dissociate liver steatosis from inflammation.
Collapse
Affiliation(s)
- Noboru Takata
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kiyo-Aki Ishii
- Department of Integrative Medicine for Longevity, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
- Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Mayumi Nagashimada
- Technology Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science and Technology, Kanazawa, Ishikawa, 920-0942, Japan
| | - Kyoko Kamoshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takeo Tanaka
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yukako Matsumoto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tsuguhito Ota
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, 920-8640, Japan
| | - Satoshi Yamagoe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akihiro Seki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
16
|
Takamura T. Hepatokine Selenoprotein P-Mediated Reductive Stress Causes Resistance to Intracellular Signal Transduction. Antioxid Redox Signal 2020; 33:517-524. [PMID: 32295394 PMCID: PMC7409583 DOI: 10.1089/ars.2020.8087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Significance: Selenoprotein P functions as a redox protein through its intrinsic thioredoxin domain and by distributing selenium to intracellular glutathione peroxidases, that is, glutathione peroxidase 1 and 4. Recent Advances: Selenoprotein P was rediscovered as a hepatokine that causes the pathology of type 2 diabetes and aging-related diseases, including exercise resistance in the skeletal muscle, insulin secretory failure in pancreatic β cells, angiogenesis resistance in vascular endothelial cells, and myocardial ischemic-reperfusion injury. It was unexpected for the antioxidant selenoprotein P to cause insulin resistance, because oxidative stress associated with obesity and fatty liver is a causal factor for hepatic insulin resistance. Critical Issues: Oxidative stress induced by the accumulation of reactive oxygen species (ROS) has a causal role in the development of insulin resistance, whereas ROS themselves function as intracellular second messengers that promote insulin signal transduction. ROS act both positively and negatively in insulin signaling depending on their concentrations. It might be possible that selenoprotein P causes "reductive stress" by eliminating a physiological ROS burst that is required for insulin signal transduction, thereby causing insulin resistance. In a large-scale intervention study, selenium supplementation that upregulates selenoprotein P was paradoxically associated with an increased risk for diabetes in humans. This review discusses the molecular mechanisms underlying the selenoprotein P-mediated resistance to angiogenesis and to exercise. Future Directions: Selenoprotein P may be the first identified intrinsic factor that induces reductive stress, causing resistance to intracellular signal transduction, which may be the therapeutic target against sedentary-lifestyle-associated diseases, such as diabetes and obesity.
Collapse
Affiliation(s)
- Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
17
|
Azarova IE, Klyosova EY, Kolomoets II, Azarova VA, Ivakin VE, Konoplya AI, Polonikov AV. Polymorphisms of the Gene Encoding Cytochrome b-245 Beta Chain of NADPH Oxidase: Relationship with Redox Homeostasis Markers and Risk of Type 2 Diabetes Mellitus. RUSS J GENET+ 2020; 56:856-862. [DOI: 10.1134/s1022795420070017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 07/28/2024]
|
18
|
Selenium and Selenoproteins in Adipose Tissue Physiology and Obesity. Biomolecules 2020; 10:biom10040658. [PMID: 32344656 PMCID: PMC7225961 DOI: 10.3390/biom10040658] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium (Se) homeostasis is tightly related to carbohydrate and lipid metabolism, but its possible roles in obesity development and in adipocyte metabolism are unclear. The objective of the present study is to review the current data on Se status in obesity and to discuss the interference between Se and selenoprotein metabolism in adipocyte physiology and obesity pathogenesis. The overview and meta-analysis of the studies on blood Se and selenoprotein P (SELENOP) levels, as well as glutathione peroxidase (GPX) activity in obese subjects, have yielded heterogenous and even conflicting results. Laboratory studies demonstrate that Se may modulate preadipocyte proliferation and adipogenic differentiation, and also interfere with insulin signaling, and regulate lipolysis. Knockout models have demonstrated that the selenoprotein machinery, including endoplasmic reticulum-resident selenoproteins together with GPXs and thioredoxin reductases (TXNRDs), are tightly related to adipocyte development and functioning. In conclusion, Se and selenoproteins appear to play an essential role in adipose tissue physiology, although human data are inconsistent. Taken together, these findings do not support the utility of Se supplementation to prevent or alleviate obesity in humans. Further human and laboratory studies are required to elucidate associations between Se metabolism and obesity.
Collapse
|
19
|
The Role of Reactive Oxygen Species in the Life Cycle of the Mitochondrion. Int J Mol Sci 2020; 21:ijms21062173. [PMID: 32245255 PMCID: PMC7139706 DOI: 10.3390/ijms21062173] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, it is known that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. It is also known that mitochondria, because of their capacity to produce free radicals, play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including the stimulation of permeability transition pore opening. This process leads to mitoptosis and mitophagy, two sequential processes that are a universal route of elimination of dysfunctional mitochondria and is essential to protect cells from the harm due to mitochondrial disordered metabolism. To date, there is significant evidence not only that the above processes are induced by enhanced reactive oxygen species (ROS) production, but also that such production is involved in the other phases of the mitochondrial life cycle. Accumulating evidence also suggests that these effects are mediated through the regulation of the expression and the activity of proteins that are engaged in processes such as genesis, fission, fusion, and removal of mitochondria. This review provides an account of the developments of the knowledge on the dynamics of the mitochondrial population, examining the mechanisms governing their genesis, life, and death, and elucidating the role played by free radicals in such processes.
Collapse
|
20
|
Kappler L, Hoene M, Hu C, von Toerne C, Li J, Bleher D, Hoffmann C, Böhm A, Kollipara L, Zischka H, Königsrainer A, Häring HU, Peter A, Xu G, Sickmann A, Hauck SM, Weigert C, Lehmann R. Linking bioenergetic function of mitochondria to tissue-specific molecular fingerprints. Am J Physiol Endocrinol Metab 2019; 317:E374-E387. [PMID: 31211616 DOI: 10.1152/ajpendo.00088.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are dynamic organelles with diverse functions in tissues such as liver and skeletal muscle. To unravel the mitochondrial contribution to tissue-specific physiology, we performed a systematic comparison of the mitochondrial proteome and lipidome of mice and assessed the consequences hereof for respiration. Liver and skeletal muscle mitochondrial protein composition was studied by data-independent ultra-high-performance (UHP)LC-MS/MS-proteomics, and lipid profiles were compared by UHPLC-MS/MS lipidomics. Mitochondrial function was investigated by high-resolution respirometry in samples from mice and humans. Enzymes of pyruvate oxidation as well as several subunits of complex I, III, and ATP synthase were more abundant in muscle mitochondria. Muscle mitochondria were enriched in cardiolipins associated with higher oxidative phosphorylation capacity and flexibility, in particular CL(18:2)4 and 22:6-containing cardiolipins. In contrast, protein equipment of liver mitochondria indicated a shuttling of complex I substrates toward gluconeogenesis and ketogenesis and a higher preference for electron transfer via the flavoprotein quinone oxidoreductase pathway. Concordantly, muscle and liver mitochondria showed distinct respiratory substrate preferences. Muscle respired significantly more on the complex I substrates pyruvate and glutamate, whereas in liver maximal respiration was supported by complex II substrate succinate. This was a consistent finding in mouse liver and skeletal muscle mitochondria and human samples. Muscle mitochondria are tailored to produce ATP with a high capacity for complex I-linked substrates. Liver mitochondria are more connected to biosynthetic pathways, preferring fatty acids and succinate for oxidation. The physiologic diversity of mitochondria may help to understand tissue-specific disease pathologies and to develop therapies targeting mitochondrial function.
Collapse
Affiliation(s)
- Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Chunxiu Hu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | - Jia Li
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Daniel Bleher
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Hoffmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Anja Böhm
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Tuebingen, Germany
| | | | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site, Tuebingen, Germany
| | - Hans-Ulrich Häring
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Tuebingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Tuebingen, Germany
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS, Dortmund, Germany
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Munich, Germany
- German Center for Diabetes Research, Tuebingen, Germany
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Tuebingen, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research, Tuebingen, Germany
| |
Collapse
|
21
|
Kappler L, Kollipara L, Lehmann R, Sickmann A. Investigating the Role of Mitochondria in Type 2 Diabetes - Lessons from Lipidomics and Proteomics Studies of Skeletal Muscle and Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:143-182. [PMID: 31452140 DOI: 10.1007/978-981-13-8367-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is discussed as a key player in the pathogenesis of type 2 diabetes mellitus (T2Dm), a highly prevalent disease rapidly developing as one of the greatest global health challenges of this century. Data however about the involvement of mitochondria, central hubs in bioenergetic processes, in the disease development are still controversial. Lipid and protein homeostasis are under intense discussion to be crucial for proper mitochondrial function. Consequently proteomics and lipidomics analyses might help to understand how molecular changes in mitochondria translate to alterations in energy transduction as observed in the healthy and metabolic diseases such as T2Dm and other related disorders. Mitochondrial lipids integrated in a tool covering proteomic and functional analyses were up to now rarely investigated, although mitochondrial lipids might provide a possible lynchpin in the understanding of type 2 diabetes development and thereby prevention. In this chapter state-of-the-art analytical strategies, pre-analytical aspects, potential pitfalls as well as current proteomics and lipidomics-based knowledge about the pathophysiological role of mitochondria in the pathogenesis of type 2 diabetes will be discussed.
Collapse
Affiliation(s)
- Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tuebingen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany. .,Medical Proteome Centre, Ruhr Universität Bochum, Bochum, Germany. .,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
22
|
Baker PR, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. J Clin Invest 2018; 128:3692-3703. [PMID: 30168806 DOI: 10.1172/jci120846] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic in obese children and adults, and the onset might have fetal origins. A growing body of evidence supports the role of developmental programming, whereby the maternal environment affects fetal and infant development, altering the risk profile for disease later in life. Human and nonhuman primate studies of maternal obesity demonstrate that risk factors for pediatric obesity and NAFLD begin in utero. The pathologic mechanisms for NAFLD are multifactorial but have centered on altered mitochondrial function/dysfunction that might precede insulin resistance. Compared with the adult liver, the fetal liver has fewer mitochondria, low activity of the fatty acid metabolic enzyme carnitine palmitoyl-CoA transferase-1, and little or no gluconeogenesis. Exposure to excess maternal fuels during fetal life uniquely alters hepatic fatty acid oxidation, tricarboxylic acid cycle activity, de novo lipogenesis, and mitochondrial health. These events promote increased oxidative stress and excess triglyceride storage, and, together with altered immune function and epigenetic changes, they prime the fetal liver for NAFLD and might drive the risk for nonalcoholic steatohepatitis in the next generation.
Collapse
Affiliation(s)
- Peter R Baker
- Section of Clinical Genetics and Metabolism, Department of Pediatrics
| | - Jacob E Friedman
- Section of Neonatology, Department of Pediatrics.,Department of Biochemistry and Molecular Genetics, and.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
23
|
Ruegsegger GN, Creo AL, Cortes TM, Dasari S, Nair KS. Altered mitochondrial function in insulin-deficient and insulin-resistant states. J Clin Invest 2018; 128:3671-3681. [PMID: 30168804 DOI: 10.1172/jci120843] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetes profoundly alters fuel metabolism; both insulin deficiency and insulin resistance are characterized by inefficient mitochondrial coupling and excessive production of reactive oxygen species (ROS) despite their association with normal to high oxygen consumption. Altered mitochondrial function in diabetes can be traced to insulin's pivotal role in maintaining mitochondrial proteome abundance and quality by enhancing mitochondrial biogenesis and preventing proteome damage and degradation, respectively. Although insulin enhances gene transcription, it also induces decreases in amino acids. Thus, if amino acid depletion is not corrected, increased transcription will not result in enhanced translation of transcripts to proteins. Mitochondrial biology varies among tissues, and although most studies in humans are performed in skeletal muscle, abnormalities have been reported in multiple organs in preclinical models of diabetes. Nutrient excess, especially fat excess, alters mitochondrial physiology by driving excess ROS emission that impairs insulin action. Excessive ROS irreversibly damages DNA and proteome with adverse effects on cellular functions. In insulin-resistant people, aerobic exercise stimulates both mitochondrial biogenesis and efficiency concurrent with enhancement of insulin action. This Review discusses the association between both insulin-deficient and insulin-resistant diabetes and alterations in mitochondrial proteome homeostasis and function that adversely affect cellular functions, likely contributing to many diabetic complications.
Collapse
|
24
|
Wang J, Xu S, Gao J, Zhang L, Zhang Z, Yang W, Li Y, Liao S, Zhou H, Liu P, Liang B. SILAC-based quantitative proteomic analysis of the livers of spontaneous obese and diabetic rhesus monkeys. Am J Physiol Endocrinol Metab 2018; 315:E294-E306. [PMID: 29664677 DOI: 10.1152/ajpendo.00016.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a severe metabolic disorder that affects more than 10% of the population worldwide. Obesity is a major cause of insulin resistance and contributes to the development of T2DM. Liver is an essential metabolic organ that plays crucial roles in the pathogenesis of obesity and diabetes. However, the underlying mechanisms of liver in the transition of obesity to diabetes are not fully understood. The nonhuman primate rhesus monkey is an appropriate animal for research of human diseases. Here, we first screened and selected three individuals of spontaneously diabetic rhesus monkeys. Interestingly, the diabetic monkeys were obese with a high body mass index at the beginning, but gradually lost their body weight during one year of observation. Furthermore, we performed stable isotope labeling with amino acids in cell culture-based quantitative proteomics to identify proteins and signaling pathways with altered expression in the liver of obese and diabetic monkeys. In total, 3,509 proteins were identified and quantified, of which 185 proteins displayed an altered expression level. Gene ontology analysis revealed that the expression of proteins involved in fatty acids β-oxidation and galactose metabolism was increased in obese monkeys; while proteins involved in oxidative phosphorylation and branched chain amino acid (BCAA) degradation were upregulated in diabetic monkeys. In addition, we observed mild apoptosis in the liver of diabetic monkeys, suggesting liver injury at the late onset of diabetes. Taken together, our liver proteomics may reveal a distinct metabolic transition from fatty acids β-oxidation in obese monkey to BCAA degradation in diabetic monkeys.
Collapse
Affiliation(s)
- Junlong Wang
- College of Pharmaceutical Sciences, Soochow University , Suzhou , China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Shimeng Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Wenhui Yang
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Yunhai Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Shasha Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Bin Liang
- College of Pharmaceutical Sciences, Soochow University , Suzhou , China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
25
|
Maguire D, Talwar D, Shiels PG, McMillan D. The role of thiamine dependent enzymes in obesity and obesity related chronic disease states: A systematic review. Clin Nutr ESPEN 2018; 25:8-17. [DOI: 10.1016/j.clnesp.2018.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
|
26
|
Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord 2018; 23:149-157. [PMID: 29397563 DOI: 10.1007/s40519-018-0481-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Obesity is a major health risk factor, and obesity-induced morbidity and complications account for huge costs for affected individuals, families, healthcare systems, and society at large. In particular, obesity is strongly associated with the development of insulin resistance, which in turn plays a key role in the pathogenesis of obesity-associated cardiometabolic complications, including metabolic syndrome components, type 2 diabetes, and cardiovascular diseases. Insulin sensitive tissues, including adipose tissue, skeletal muscle, and liver, are profoundly affected by obesity both at biomolecular and functional levels. Altered adipose organ function may play a fundamental pathogenetic role once fat accumulation has ensued. Modulation of insulin sensitivity appears to be, at least in part, related to changes in redox balance and oxidative stress as well as inflammation, with a relevant underlying role for mitochondrial dysfunction that may exacerbate these alterations. Nutrients and substrates as well as systems involved in host-nutrient interactions, including gut microbiota, have been also identified as modulators of metabolic pathways controlling insulin action. This review aims at providing an overview of these concepts and their potential inter-relationships in the development of insulin resistance, with particular regard to changes in adipose organ and skeletal muscle.
Collapse
|
27
|
Sugiyama M, Kikuchi A, Misu H, Igawa H, Ashihara M, Kushima Y, Honda K, Suzuki Y, Kawabe Y, Kaneko S, Takamura T. Inhibin βE (INHBE) is a possible insulin resistance-associated hepatokine identified by comprehensive gene expression analysis in human liver biopsy samples. PLoS One 2018; 13:e0194798. [PMID: 29596463 PMCID: PMC5875797 DOI: 10.1371/journal.pone.0194798] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/11/2018] [Indexed: 12/15/2022] Open
Abstract
The liver plays a major role in whole-body energy homeostasis by releasing secretory factors, termed hepatokines. To identify novel target genes associated with insulin resistance, we performed a comprehensive analysis of gene expression profiles using a DNA chip method in liver biopsy samples from humans with varying degrees of insulin resistance. Inhibin βE (INHBE) was identified as a novel putative hepatokine with hepatic gene expression that positively correlated with insulin resistance and body mass index in humans. Quantitative real time-PCR analysis also showed an increase in INHBE gene expression in independent liver samples from insulin-resistant human subjects. Additionally, Inhbe gene expression increased in the livers of db/db mice, a rodent model of type 2 diabetes. To preliminarily screen the role of Inhbe in vivo in whole-body energy metabolic status, hepatic mRNA was knocked down with siRNA for Inhbe (siINHBE) in db/db mice. Treatment with siINHBE suppressed body weight gain during the two-week experimental period, which was attributable to diminished fat rather than lean mass. Additionally, treatment with siINHBE decreased the respiratory quotient and increased plasma total ketone bodies compared with treatment with non-targeting siRNA, both of which suggest enhanced whole-body fat utilization. Our study suggests that INHBE functions as a possible hepatokine to alter the whole-body metabolic status under obese insulin-resistant conditions.
Collapse
Affiliation(s)
- Masakazu Sugiyama
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- * E-mail: (TT); (AK)
| | - Hirofumi Misu
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Hirobumi Igawa
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Motooki Ashihara
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Youichi Kushima
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Kiyofumi Honda
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshiyuki Suzuki
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshiki Kawabe
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- * E-mail: (TT); (AK)
| |
Collapse
|
28
|
Abraham M, Collins CA, Flewelling S, Camazine M, Cahill A, Cade WT, Duncan JG. Mitochondrial inefficiency in infants born to overweight African-American mothers. Int J Obes (Lond) 2018; 42:1306-1316. [PMID: 29568109 PMCID: PMC6054813 DOI: 10.1038/s41366-018-0051-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/05/2018] [Accepted: 01/22/2018] [Indexed: 01/21/2023]
Abstract
Background Currently 20–35% of pregnant women are obese, posing a major health risk for mother and fetus. It is postulated that an abnormal maternal-fetal nutritional environment leads to adverse metabolic programming, resulting in altered substrate metabolism in the offspring and predisposing to risks of obesity and diabetes later in life. Data indicate that oocytes from overweight animals have abnormal mitochondria. We hypothesized that maternal obesity is associated with altered mitochondrial function in healthy neonatal offspring. Methods Overweight and obese (Body mass index, (BMI) ≥ 25 kg/m2, n=14) and lean (BMI < 25 kg/m2, n=8), African American pregnant women carrying male fetuses were recruited from the Barnes Jewish Hospital obstetric clinic. Maternal and infant data were extracted from medical records. Infants underwent body composition testing in the first days of life. Circumcision skin was collected for isolation of fibroblasts. Fibroblast cells were evaluated for mitochondrial function, metabolic gene expression, nutrient uptake and oxidative stress. Results Skin fibroblasts of infants born to overweight mothers had significantly higher mitochondrial respiration without a concurrent increase in ATP production, indicating mitochondrial inefficiency. These fibroblasts had higher levels of reactive oxygen species and evidence of oxidative stress. Evaluation of gene expression in offspring fibroblasts revealed altered expression of multiple genes involved in fatty acid and glucose metabolism and mitochondrial respiration in infants of overweight mothers. Conclusion This study demonstrates altered mitochondrial function and oxidative stress in skin fibroblasts of infants born to overweight mothers. Future studies are needed to determine the long-term impact of this finding on the metabolic health of these children.
Collapse
Affiliation(s)
- Manjusha Abraham
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christina A Collins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott Flewelling
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Maraya Camazine
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison Cahill
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - W Todd Cade
- Department of Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer G Duncan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Wei XB, Guo L, Liu Y, Zhou SR, Liu Y, Dou X, Du SY, Ding M, Peng WQ, Qian SW, Huang HY, Tang QQ. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes. Biochem Biophys Res Commun 2017. [PMID: 28647369 DOI: 10.1016/j.bbrc.2017.06.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM.
Collapse
Affiliation(s)
- Xiang-Bo Wei
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Liang Guo
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Shui-Rong Zhou
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yuan Liu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Dou
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Shao-Yue Du
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Wan-Qiu Peng
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Hai-Yan Huang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
30
|
Yap TWC, Leow AHR, Azmi AN, Callahan DL, Perez-Perez GI, Loke MF, Goh KL, Vadivelu J. Global Fecal and Plasma Metabolic Dynamics Related to Helicobacter pylori Eradication. Front Microbiol 2017; 8:536. [PMID: 28424674 PMCID: PMC5371670 DOI: 10.3389/fmicb.2017.00536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background:Helicobacter pylori colonizes the gastric mucosa of more than half of the world's population. There is increasing evidence H. pylori protects against the development of obesity and childhood asthma/allergies in which the development of these diseases coincide with transient dysbiosis. However, the mechanism underlying the association of H. pylori eradication with human metabolic and immunological disorders is not well-established. In this study, we aimed to investigate the local and systemic effects of H. pylori eradication through untargeted fecal lipidomics and plasma metabolomics approaches by liquid chromatography mass spectrometry (LC-MS). Results: Our study revealed that eradication of H. pylori eradication (i.e., loss of H. pylori and/or H. pylori eradication therapy) changed many global metabolite/lipid features, with the majority being down-regulated. Our findings primarily show that H. pylori eradication affects the host energy and lipid metabolism which may eventually lead to the development of metabolic disorders. Conclusion: These predictive metabolic signatures of metabolic and immunological disorders following H. pylori eradication can provide insights into dynamic local and systemic metabolism related to H. pylori eradication in modulating human health.
Collapse
Affiliation(s)
- Theresa Wan-Chen Yap
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Alex Hwong-Ruey Leow
- Department of Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Ahmad Najib Azmi
- Department of Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia.,Faculty of Medicine and Health Sciences, Universiti Sains Islam MalaysiaKuala Lumpur, Malaysia
| | - Damien L Callahan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin UniversityGeelong, VIC, Australia
| | - Guillermo I Perez-Perez
- Department of Medicine, New York University School of MedicineNew York, NY, USA.,Department of Microbiology, New York University School of MedicineNew York, NY, USA
| | - Mun-Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
31
|
Caloric dose-responsive genes in blood cells differentiate the metabolic status of obese men. J Nutr Biochem 2017; 43:156-165. [PMID: 28319853 DOI: 10.1016/j.jnutbio.2017.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 02/08/2017] [Indexed: 02/03/2023]
Abstract
We have investigated the postprandial transcriptional response of blood cells to increasing caloric doses of a meal challenge to test whether the dynamic response of the human organism to the ingestion of food is dependent on metabolic health. The randomized crossover study included seven normal weight and seven obese men consuming three doses (500/1000/1500 kcal) of a high-fat meal. The blood cell transcriptome was measured before and 2, 4, and 6 h after meal ingestion (168 samples). We applied univariate and multivariate statistics to investigate differentially expressed genes in both study groups. We identified 624 probe sets that were up- or down-regulated after the caloric challenge in a dose-dependent manner. These transcripts were most responsive to the 1500 kcal challenge in the obese group and were associated with postprandial insulin and oxidative phosphorylation. Furthermore, the data revealed a separation of the obese group into individuals whose response was close to the normal weight group and individuals with a transcriptional response indicative of a loss of metabolic flexibility. The molecular signature provided by the postprandial transcriptomic response of blood cells to increasing caloric doses of a high-fat meal challenge may represent a sensitive way to evaluate the qualitative impact of food on human health.
Collapse
|
32
|
Rieusset J. Endoplasmic reticulum-mitochondria calcium signaling in hepatic metabolic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:865-876. [PMID: 28064001 DOI: 10.1016/j.bbamcr.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
The liver plays a central role in glucose homeostasis, and both metabolic inflexibility and insulin resistance predispose to the development of hepatic metabolic diseases. Mitochondria and endoplasmic reticulum (ER), which play a key role in the control of hepatic metabolism, also interact at contact points defined as mitochondria-associated membranes (MAM), in order to exchange metabolites and calcium (Ca2+) and regulate cellular homeostasis and signaling. Here, we overview the role of the liver in the control of glucose homeostasis, mainly focusing on the independent involvement of mitochondria, ER and Ca2+ signaling in both healthy and pathological contexts. Then we focus on recent data highlighting MAM as important hubs for hormone and nutrient signaling in the liver, thus adapting mitochondria physiology and cellular metabolism to energy availability. Lastly, we discuss how chronic ER-mitochondria miscommunication could participate to hepatic metabolic diseases, pointing MAM interface as a potential therapeutic target for metabolic disorders. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Jennifer Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1397, F-69921 Oullins, France.
| |
Collapse
|
33
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Shanmugasundaram K, Block K. Renal Carcinogenesis, Tumor Heterogeneity, and Reactive Oxygen Species: Tactics Evolved. Antioxid Redox Signal 2016; 25:685-701. [PMID: 27287984 PMCID: PMC5069729 DOI: 10.1089/ars.2015.6569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The number of kidney cancers is growing 3-5% each year due to unknown etiologies. Intra- and inter-tumor mediators increase oxidative stress and drive tumor heterogeneity. Recent Advances: Technology advancement in state-of-the-art instrumentation and methodologies allows researchers to detect and characterize global landscaping modifications in genes, proteins, and pathophysiology patterns at the single-cell level. CRITICAL ISSUES We postulate that the sources of reactive oxygen species (ROS) and their activation within subcellular compartments will change over a timeline of tumor evolvement and contribute to tumor heterogeneity. Therefore, the complexity of intracellular changes within a tumor and ROS-induced tumor heterogeneity coupled to the advancement of detecting these events globally are limited at the level of data collection, organization, and interpretation using software algorithms and bioinformatics. FUTURE DIRECTIONS Integrative and collaborative research, combining the power of numbers with careful experimental design, protocol development, and data interpretation, will translate cancer biology and therapeutics to a heightened level or leave the abundant raw data as stagnant and underutilized. Antioxid. Redox Signal. 25, 685-701.
Collapse
Affiliation(s)
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
- South Texas Veterans Health Care System, Audie L. Murphy Memorial Hospital Division, San Antonio, Texas
| |
Collapse
|
35
|
Kikuchi A, Takamura T. Where does liver fat go? A possible molecular link between fatty liver and diabetes. J Diabetes Investig 2016; 8:152-154. [PMID: 27580368 PMCID: PMC5334299 DOI: 10.1111/jdi.12573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 11/28/2022] Open
Abstract
An elevation of fatty acid delivery amplifies the TCA cycle flux with a rise in anaplerosis/cataplerosis, leading to a proportional rise in oxidative stress and inflammation in liver.
Collapse
Affiliation(s)
- Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| |
Collapse
|
36
|
Koliaki C, Roden M. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus. Annu Rev Nutr 2016; 36:337-67. [PMID: 27146012 DOI: 10.1146/annurev-nutr-071715-050656] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial function refers to a broad spectrum of features such as resting mitochondrial activity, (sub)maximal oxidative phosphorylation capacity (OXPHOS), and mitochondrial dynamics, turnover, and plasticity. The interaction between mitochondria and insulin sensitivity is bidirectional and varies depending on tissue, experimental model, methodological approach, and features of mitochondrial function tested. In human skeletal muscle, mitochondrial abnormalities may be inherited (e.g., lower mitochondrial content) or acquired (e.g., impaired OXPHOS capacity and plasticity). Abnormalities ultimately lead to lower mitochondrial functionality due to or resulting in insulin resistance and type 2 diabetes mellitus. Similar mechanisms can also operate in adipose tissue and heart muscle. In contrast, mitochondrial oxidative capacity is transiently upregulated in the liver of obese insulin-resistant humans with or without fatty liver, giving rise to oxidative stress and declines in advanced fatty liver disease. These data suggest a highly tissue-specific interaction between insulin sensitivity and oxidative metabolism during the course of metabolic diseases in humans.
Collapse
Affiliation(s)
- Chrysi Koliaki
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| |
Collapse
|
37
|
Leung A, Trac C, Du J, Natarajan R, Schones DE. Persistent Chromatin Modifications Induced by High Fat Diet. J Biol Chem 2016; 291:10446-55. [PMID: 27006400 DOI: 10.1074/jbc.m115.711028] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 01/14/2023] Open
Abstract
Obesity is a highly heritable complex disease that results from the interaction of multiple genetic and environmental factors. Formerly obese individuals are susceptible to metabolic disorders later in life, even after lifestyle changes are made to mitigate the obese state. This is reminiscent of the metabolic memory phenomenon originally observed for persistent complications in diabetic patients, despite subsequent glycemic control. Epigenetic modifications represent a potential mediator of this observed memory. We previously demonstrated that a high fat diet leads to changes in chromatin accessibility in the mouse liver. The regions of greatest chromatin changes in accessibility are largely strain-dependent, indicating a genetic component in diet-induced chromatin alterations. We have now examined the persistence of diet-induced chromatin accessibility changes upon diet reversal in two strains of mice. We find that a substantial fraction of loci that undergo chromatin accessibility changes with a high fat diet remains in the remodeled state after diet reversal in C57BL/6J mice. In contrast, the vast majority of diet-induced chromatin accessibility changes in A/J mice are transient. Our data also indicate that the persistent chromatin accessibility changes observed in C57BL/6J mice are associated with specific transcription factors and histone post-translational modifications. The persistent loci identified here are likely to be contributing to the overall phenotype and are attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Leung
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and
| | - Candi Trac
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and
| | - Juan Du
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010
| | - Rama Natarajan
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010
| | - Dustin E Schones
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010
| |
Collapse
|
38
|
Fritsch M, Koliaki C, Livingstone R, Phielix E, Bierwagen A, Meisinger M, Jelenik T, Strassburger K, Zimmermann S, Brockmann K, Wolff C, Hwang JH, Szendroedi J, Roden M. Time course of postprandial hepatic phosphorus metabolites in lean, obese, and type 2 diabetes patients. Am J Clin Nutr 2015; 102:1051-8. [PMID: 26423389 DOI: 10.3945/ajcn.115.107599] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/26/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Impaired energy metabolism is a possible mechanism that contributes to insulin resistance and ectopic fat storage. OBJECTIVE We examined whether meal ingestion differently affects hepatic phosphorus metabolites in insulin-sensitive and insulin-resistant humans. DESIGN Young, lean, insulin-sensitive humans (CONs) [mean ± SD body mass index (BMI; in kg/m(2)): 23.2 ± 1.5]; insulin-resistant, glucose-tolerant, obese humans (OBEs) (BMI: 34.3 ± 1.7); and type 2 diabetes patients (T2Ds) (BMI: 32.0 ± 2.4) were studied (n = 10/group). T2Ds (61 ± 7 y old) were older (P < 0.001) than were OBEs (31 ± 7 y old) and CONs (28 ± 3 y old). We quantified hepatic γATP, inorganic phosphate (Pi), and the fat content [hepatocellular lipids (HCLs)] with the use of (31)P/(1)H magnetic resonance spectroscopy before and at 160 and 240 min after a high-caloric mixed meal. In a subset of volunteers, we measured the skeletal muscle oxidative capacity with the use of high-resolution respirometry. Whole-body insulin sensitivity (M value) was assessed with the use of hyperinsulinemic-euglycemic clamps. RESULTS OBEs and T2Ds were similarly insulin resistant (M value: 3.5 ± 1.4 and 1.9 ± 2.5 mg · kg(-1) · min(-1), respectively; P = 0.9) and had 12-fold (P = 0.01) and 17-fold (P = 0.002) higher HCLs, respectively, than those of lean persons. Despite comparable fasting hepatic γATP concentrations, the maximum postprandial increase of γATP was 6-fold higher in OBEs (0.7 ± 0.2 mmol/L; P = 0.03) but only tended to be higher in T2Ds (0.6 ± 0.2 mmol/L; P = 0.09) than in CONs (0.1 ± 0.1 mmol/L). However, in the fasted state, muscle complex I activity was 53% lower (P = 0.01) in T2Ds but not in OBEs (P = 0.15) than in CONs. CONCLUSIONS Young, obese, nondiabetic humans exhibit augmented postprandial hepatic energy metabolism, whereas elderly T2Ds have impaired fasting muscle energy metabolism. These findings support the concept of a differential and tissue-specific regulation of energy metabolism, which can occur independently of insulin resistance. This trial was registered at clinicaltrials.gov as NCT01229059.
Collapse
Affiliation(s)
- Maria Fritsch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; and
| | - Chrysi Koliaki
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Department of Endocrinology and Diabetology, Medical Faculty, and German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Roshan Livingstone
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research
| | - Alessandra Bierwagen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Markus Meisinger
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Klaus Strassburger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine University, Düsseldorf, Germany, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Stefanie Zimmermann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Katharina Brockmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Christina Wolff
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Department of Endocrinology and Diabetology, Medical Faculty, and German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Department of Endocrinology and Diabetology, Medical Faculty, and German Center of Diabetes Research, Partner Düsseldorf, Germany
| |
Collapse
|
39
|
Mitochondrial degradation and energy metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2812-21. [DOI: 10.1016/j.bbamcr.2015.05.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/23/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
|
40
|
Díaz-Ruiz A, Guzmán-Ruiz R, Moreno NR, García-Rios A, Delgado-Casado N, Membrives A, Túnez I, El Bekay R, Fernández-Real JM, Tovar S, Diéguez C, Tinahones FJ, Vázquez-Martínez R, López-Miranda J, Malagón MM. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity. Antioxid Redox Signal 2015; 23:597-612. [PMID: 25714483 PMCID: PMC4554552 DOI: 10.1089/ars.2014.5939] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. RESULTS Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. INNOVATION This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. CONCLUSION Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity.
Collapse
Affiliation(s)
- Alberto Díaz-Ruiz
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - Rocío Guzmán-Ruiz
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - Natalia R Moreno
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - Antonio García-Rios
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,3 Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - Nieves Delgado-Casado
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,3 Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - Antonio Membrives
- 4 Unidad de Gestión Clínica de Cirugía General y Digestivo. Sección de Obesidad, IMIBIC/Reina Sofia University Hospital , Córdoba, Spain
| | - Isaac Túnez
- 5 Department of Biochemistry and Molecular Biology, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - Rajaa El Bekay
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,6 Biomedical Research Laboratory, Endocrinology Department, Hospital Virgen de la Victoria , Málaga, Spain
| | - José M Fernández-Real
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,7 Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomédica de Girona (IdIBGi) , Girona, Spain
| | - Sulay Tovar
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,8 Department of Physiology, School of Medicine-CIMUS-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela , Santiago de Compostela, A Coruña, Spain
| | - Carlos Diéguez
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,8 Department of Physiology, School of Medicine-CIMUS-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela , Santiago de Compostela, A Coruña, Spain
| | - Francisco J Tinahones
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,6 Biomedical Research Laboratory, Endocrinology Department, Hospital Virgen de la Victoria , Málaga, Spain
| | - Rafael Vázquez-Martínez
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - José López-Miranda
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,3 Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - María M Malagón
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| |
Collapse
|
41
|
Abstract
Type 2 diabetes (T2D) has become an increasingly challenging health burden due to its high morbidity, mortality, and heightened prevalence worldwide. Although dietary and nutritional imbalances have long been recognized as key risk factors for T2D, the underlying mechanisms remain unclear. The advent of nutritional systems biology, a field that aims to elucidate the interactions between dietary nutrients and endogenous molecular entities in disease-related tissues, offers unique opportunities to unravel the complex mechanisms underlying the health-modifying capacities of nutritional molecules. The recent revolutionary advances in omics technologies have particularly empowered this incipient field. In this review, we discuss the applications of multi-omics approaches toward a systems-level understanding of how dietary patterns and particular nutrients modulate the risk of T2D. We focus on nutritional studies utilizing transcriptomics, epigenomomics, proteomics, metabolomics, and microbiomics, and integration of diverse omics technologies. We also summarize the potential molecular mechanisms through which nutritional imbalances contribute to T2D pathogenesis based on these studies. Finally, we discuss the remaining challenges of nutritional systems biology and how the field can be optimized to further our understanding of T2D and guide disease management via nutritional interventions.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Rio Elizabeth Barrere-Cain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
42
|
Rieusset J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles? DIABETES & METABOLISM 2015; 41:358-68. [PMID: 25797073 DOI: 10.1016/j.diabet.2015.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/07/2015] [Accepted: 02/01/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria and the endoplasmic reticulum (ER) regulate numerous cellular processes, and are critical contributors to cellular and whole-body homoeostasis. More important, mitochondrial dysfunction and ER stress are both closely associated with hepatic and skeletal muscle insulin resistance, thereby playing crucial roles in altered glucose homoeostasis in type 2 diabetes mellitus (T2DM). The accumulated evidence also suggests a potential interrelationship between alterations in both types of organelles, as mitochondrial dysfunction could participate in activation of the unfolded protein response, whereas ER stress could influence mitochondrial function. The fact that mitochondria and the ER are physically and functionally interconnected via mitochondria-associated membranes (MAMs) supports their interrelated roles in the pathophysiology of T2DM. However, the mechanisms that coordinate the interplay between mitochondrial dysfunction and ER stress, and its relevance to the control of glucose homoeostasis, are still unknown. This review evaluates the involvement of mitochondria and ER independently in the development of peripheral insulin resistance, as well as their potential roles in the disruption of organelle crosstalk at MAM interfaces in the alteration of insulin signalling.
Collapse
Affiliation(s)
- J Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles-Merieux Lyon-Sud medical Universities, 69003 Lyon, France; Endocrinology, diabetology and nutrition service, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France.
| |
Collapse
|
43
|
Wang J, Ma MCJ, Mennie AK, Pettus JM, Xu Y, Lin L, Traxler MG, Jakoubek J, Atanur SS, Aitman TJ, Xing Y, Kwitek AE. Systems biology with high-throughput sequencing reveals genetic mechanisms underlying the metabolic syndrome in the Lyon hypertensive rat. ACTA ACUST UNITED AC 2015; 8:316-26. [PMID: 25573024 DOI: 10.1161/circgenetics.114.000520] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 11/25/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND The metabolic syndrome (MetS) is a collection of co-occurring complex disorders including obesity, hypertension, dyslipidemia, and insulin resistance. The Lyon hypertensive and Lyon normotensive rats are models of MetS sensitivity and resistance, respectively. To identify genetic determinants and mechanisms underlying MetS, an F2 intercross between Lyon hypertensive and Lyon normotensive was comprehensively studied. METHODS AND RESULTS Multidimensional data were obtained including genotypes of 1536 single-nucleotide polymorphisms, 23 physiological traits, and >150 billion nucleotides of RNA-seq reads from the livers of F2 intercross offspring and parental rats. Phenotypic and expression quantitative trait loci (eQTL) were mapped. Application of systems biology methods identified 17 candidate MetS genes. Several putative causal cis-eQTL were identified corresponding with phenotypic QTL loci. We found an eQTL hotspot on rat chromosome 17 that is causally associated with multiple MetS-related traits and found RGD1562963, a gene regulated in cis by this eQTL hotspot, as the most likely eQTL driver gene directly affected by genetic variation between Lyon hypertensive and Lyon normotensive rats. CONCLUSIONS Our study sheds light on the intricate pathogenesis of MetS and demonstrates that systems biology with high-throughput sequencing is a powerful method to study the pathogenesis of complex genetic diseases.
Collapse
Affiliation(s)
- Jinkai Wang
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Man Chun John Ma
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Amanda K Mennie
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Janette M Pettus
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Yang Xu
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Lan Lin
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Matthew G Traxler
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Jessica Jakoubek
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Santosh S Atanur
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Timothy J Aitman
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.)
| | - Yi Xing
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.).
| | - Anne E Kwitek
- From the Department of Internal Medicine (J.W., A.K.M., J.M.P., Y. Xu, L.L., Y. Xing, A.E.K.), Department of Pharmacology (M.C.J.M., A.K.M., J.M.P., Y. Xu, M.G.T., J.J., A.E.K.), and Iowa Institute of Human Genetics (A.E.K.), University of Iowa, Iowa City; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (J.W., L.L., Y. Xing); and Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (S.S.A., T.J.A.).
| |
Collapse
|
44
|
Kutmon M, Evelo CT, Coort SL. A network biology workflow to study transcriptomics data of the diabetic liver. BMC Genomics 2014; 15:971. [PMID: 25399255 PMCID: PMC4246458 DOI: 10.1186/1471-2164-15-971] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/30/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nowadays a broad collection of transcriptomics data is publicly available in online repositories. Methods for analyzing these data often aim at deciphering the influence of gene expression at the process level. Biological pathway diagrams depict known processes and capture the interactions of gene products and metabolites, information that is essential for the computational analysis and interpretation of transcriptomics data.The present study describes a comprehensive network biology workflow that integrates differential gene expression in the human diabetic liver with pathway information by building a network of interconnected pathways. Worldwide, the incidence of type 2 diabetes mellitus is increasing dramatically, and to better understand this multifactorial disease, more insight into the concerted action of the disease-related processes is needed. The liver is a key player in metabolic diseases and diabetic patients often develop non-alcoholic fatty liver disease. RESULTS A publicly available dataset comparing the liver transcriptome from lean and healthy vs. obese and insulin-resistant subjects was selected after a thorough analysis. Pathway analysis revealed seven significantly altered pathways in the WikiPathways human pathway collection. These pathways were then merged into one combined network with 408 gene products, 38 metabolites and 5 pathway nodes. Further analysis highlighted 17 nodes present in multiple pathways, and revealed the connections between different pathways in the network. The integration of transcription factor-gene interactions from the ENCODE project identified new links between the pathways on a regulatory level. The extension of the network with known drug-target interactions from DrugBank allows for a more complete study of drug actions and helps with the identification of other drugs that target proteins up- or downstream which might interfere with the action or efficiency of a drug. CONCLUSIONS The described network biology workflow uses state-of-the-art pathway and network analysis methods to study the rewiring of the diabetic liver. The integration of experimental data and knowledge on disease-affected biological pathways, including regulatory elements like transcription factors or drugs, leads to improved insights and a clearer illustration of the overall process. It also provides a resource for building new hypotheses for further follow-up studies. The approach is highly generic and can be applied in different research fields.
Collapse
Affiliation(s)
- Martina Kutmon
- Department of Bioinformatics - BiGCaT, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Maastricht, The Netherlands.
| | | | | |
Collapse
|
45
|
Jelenik T, Séquaris G, Kaul K, Ouwens DM, Phielix E, Kotzka J, Knebel B, Weiß J, Reinbeck AL, Janke L, Nowotny P, Partke HJ, Zhang D, Shulman GI, Szendroedi J, Roden M. Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes. Diabetes 2014; 63:3856-67. [PMID: 24917575 DOI: 10.2337/db13-1794] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although insulin resistance is known to underlie type 2 diabetes, its role in the development of type 1 diabetes has been gaining increasing interest. In a model of type 1 diabetes, the nonobese diabetic (NOD) mouse, we found that insulin resistance driven by lipid- and glucose-independent mechanisms is already present in the liver of prediabetic mice. Hepatic insulin resistance is associated with a transient rise in mitochondrial respiration followed by increased production of lipid peroxides and c-Jun N-terminal kinase activity. At the onset of diabetes, increased adipose tissue lipolysis promotes myocellular diacylglycerol accumulation. This is paralleled by increased myocellular protein kinase C θ activity and serum fetuin A levels. Muscle mitochondrial oxidative capacity is unchanged at the onset but decreases at later stages of diabetes. In conclusion, hepatic and muscle insulin resistance manifest at different stages and involve distinct cellular mechanisms during the development of diabetes in the NOD mouse.
Collapse
Affiliation(s)
- Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Gilles Séquaris
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - D Margriet Ouwens
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Anna Lena Reinbeck
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Linda Janke
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Peter Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Hans-Joachim Partke
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
46
|
Ishikura K, Misu H, Kumazaki M, Takayama H, Matsuzawa-Nagata N, Tajima N, Chikamoto K, Lan F, Ando H, Ota T, Sakurai M, Takeshita Y, Kato K, Fujimura A, Miyamoto KI, Saito Y, Kameo S, Okamoto Y, Takuwa Y, Takahashi K, Kidoya H, Takakura N, Kaneko S, Takamura T. Selenoprotein P as a diabetes-associated hepatokine that impairs angiogenesis by inducing VEGF resistance in vascular endothelial cells. Diabetologia 2014; 57:1968-76. [PMID: 24989996 DOI: 10.1007/s00125-014-3306-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/30/2014] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS Impaired angiogenesis induced by vascular endothelial growth factor (VEGF) resistance is a hallmark of vascular complications in type 2 diabetes; however, its molecular mechanism is not fully understood. We have previously identified selenoprotein P (SeP, encoded by the SEPP1 gene in humans) as a liver-derived secretory protein that induces insulin resistance. Levels of serum SeP and hepatic expression of SEPP1 are elevated in type 2 diabetes. Here, we investigated the effects of SeP on VEGF signalling and angiogenesis. METHODS We assessed the action of glucose on Sepp1 expression in cultured hepatocytes. We examined the actions of SeP on VEGF signalling and VEGF-induced angiogenesis in HUVECs. We assessed wound healing in mice with hepatic SeP overexpression or SeP deletion. The blood flow recovery after ischaemia was also examined by using hindlimb ischaemia model with Sepp1-heterozygous-knockout mice. RESULTS Treatment with glucose increased gene expression and transcriptional activity for Sepp1 in H4IIEC hepatocytes. Physiological concentrations of SeP inhibited VEGF-stimulated cell proliferation, tubule formation and migration in HUVECs. SeP suppressed VEGF-induced reactive oxygen species (ROS) generation and phosphorylation of VEGF receptor 2 (VEGFR2) and extracellular signal-regulated kinase 1/2 (ERK1/2) in HUVECs. Wound closure was impaired in the mice overexpressing Sepp1, whereas it was improved in SeP (-/-)mice. SeP (+/-)mice showed an increase in blood flow recovery and vascular endothelial cells after hindlimb ischaemia. CONCLUSIONS/INTERPRETATION The hepatokine SeP may be a novel therapeutic target for impaired angiogenesis in type 2 diabetes.
Collapse
Affiliation(s)
- Kazuhide Ishikura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lan F, Misu H, Chikamoto K, Takayama H, Kikuchi A, Mohri K, Takata N, Hayashi H, Matsuzawa-Nagata N, Takeshita Y, Noda H, Matsumoto Y, Ota T, Nagano T, Nakagen M, Miyamoto KI, Takatsuki K, Seo T, Iwayama K, Tokuyama K, Matsugo S, Tang H, Saito Y, Yamagoe S, Kaneko S, Takamura T. LECT2 functions as a hepatokine that links obesity to skeletal muscle insulin resistance. Diabetes 2014; 63:1649-64. [PMID: 24478397 DOI: 10.2337/db13-0728] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent articles have reported an association between fatty liver disease and systemic insulin resistance in humans, but the causal relationship remains unclear. The liver may contribute to muscle insulin resistance by releasing secretory proteins called hepatokines. Here we demonstrate that leukocyte cell-derived chemotaxin 2 (LECT2), an energy-sensing hepatokine, is a link between obesity and skeletal muscle insulin resistance. Circulating LECT2 positively correlated with the severity of both obesity and insulin resistance in humans. LECT2 expression was negatively regulated by starvation-sensing kinase adenosine monophosphate-activated protein kinase in H4IIEC hepatocytes. Genetic deletion of LECT2 in mice increased insulin sensitivity in the skeletal muscle. Treatment with recombinant LECT2 protein impaired insulin signaling via phosphorylation of Jun NH2-terminal kinase in C2C12 myocytes. These results demonstrate the involvement of LECT2 in glucose metabolism and suggest that LECT2 may be a therapeutic target for obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Fei Lan
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lillefosse HH, Clausen MR, Yde CC, Ditlev DB, Zhang X, Du ZY, Bertram HC, Madsen L, Kristiansen K, Liaset B. Urinary loss of tricarboxylic acid cycle intermediates as revealed by metabolomics studies: an underlying mechanism to reduce lipid accretion by whey protein ingestion? J Proteome Res 2014; 13:2560-70. [PMID: 24702026 PMCID: PMC4045150 DOI: 10.1021/pr500039t] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Whey protein intake is associated
with the modulation of energy
metabolism and altered body composition both in human subjects and
in animals, but the underlying mechanisms are not yet elucidated.
We fed obesity-prone C57BL/6J mice high-fat diets with either casein
(HF casein) or whey (HF whey) for 6 weeks. At equal energy intake
and apparent fat and nitrogen digestibility, mice fed HF whey stored
less energy as lipids, evident both as lower white adipose tissue
mass and as reduced liver lipids, compared with HF-casein-fed mice.
Explorative analyses of 48 h urine, both by 1H NMR and
LC–MS metabolomic platforms, demonstrated higher urinary excretion
of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic
acid (identified by both platforms), and cis-aconitic
acid and isocitric acid (identified by LC–MS platform) in the
HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS
analyses revealed higher citric acid and cis-aconitic acid concentrations
in fed state plasma, but not in liver of HF-whey-fed mice. We propose
that enhanced urinary loss of TCA cycle metabolites drain available
substrates for anabolic processes, such as lipogenesis, thereby leading
to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed
mice.
Collapse
Affiliation(s)
- Haldis H Lillefosse
- Department of Biology, University of Copenhagen , Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Franko A, von Kleist-Retzow JC, Neschen S, Wu M, Schommers P, Böse M, Kunze A, Hartmann U, Sanchez-Lasheras C, Stoehr O, Huntgeburth M, Brodesser S, Irmler M, Beckers J, de Angelis MH, Paulsson M, Schubert M, Wiesner RJ. Liver adapts mitochondrial function to insulin resistant and diabetic states in mice. J Hepatol 2014; 60:816-23. [PMID: 24291365 DOI: 10.1016/j.jhep.2013.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS To determine if diabetic and insulin-resistant states cause mitochondrial dysfunction in liver or if there is long term adaptation of mitochondrial function to these states, mice were (i) fed with a high-fat diet to induce obesity and T2D (HFD), (ii) had a genetic defect in insulin signaling causing whole body insulin resistance, but not full blown T2D (IR/IRS-1(+/-) mice), or (iii) were analyzed after treatment with streptozocin (STZ) to induce a T1D-like state. METHODS Hepatic lipid levels were measured by thin layer chromatography. Mitochondrial respiratory chain (RC) levels and function were determined by Western blot, spectrophotometric, oxygen consumption and proton motive force analysis. Gene expression was analyzed by real-time PCR and microarray. RESULTS HFD caused insulin resistance and hepatic lipid accumulation, but RC was largely unchanged. Livers from insulin resistant IR/IRS-1(+/-) mice had normal lipid contents and a normal RC, but mitochondria were less well coupled. Livers from severely hyperglycemic and hypoinsulinemic STZ mice had massively depleted lipid levels, but RC abundance was unchanged. However, liver mitochondria isolated from these animals showed increased abundance and activity of the RC, which was better coupled. CONCLUSIONS Insulin resistance, induced either by obesity or genetic manipulation and steatosis do not cause mitochondrial dysfunction in mouse liver. Also, mitochondrial dysfunction is not a prerequisite for liver steatosis. However, severe insulin deficiency and high blood glucose levels lead to an enhanced performance and better coupling of the RC. This may represent an adaptation to fuel overload and the high energy-requirement of an unsuppressed gluconeogenesis.
Collapse
Affiliation(s)
- Andras Franko
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Köln, 50931 Köln, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jürgen-Christoph von Kleist-Retzow
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Köln, 50931 Köln, Germany; Department of Pediatrics, University of Köln, 50924 Köln, Germany; Center for Molecular Medicine Cologne, CMMC, University of Köln, 50931 Köln, Germany
| | - Susanne Neschen
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Moya Wu
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Philipp Schommers
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Köln, 50931 Köln, Germany
| | - Marlen Böse
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Köln, 50931 Köln, Germany
| | - Alexander Kunze
- Department of Biochemistry, University of Köln, 50931 Köln, Germany
| | - Ursula Hartmann
- Department of Biochemistry, University of Köln, 50931 Köln, Germany
| | - Carmen Sanchez-Lasheras
- Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Köln, 50674 Köln, Germany
| | - Oliver Stoehr
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Köln, 50937 Köln, Germany
| | - Michael Huntgeburth
- Department of Internal Medicine III, University of Köln, 50937 Köln, Germany
| | - Susanne Brodesser
- Institute for Medical Microbiology, Immunology and Hygiene, University of Köln, 50935 Köln, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50674 Köln, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Technische Universität München, WZW - Center of Life and Food Science Weihenstephan, Chair of Experimental Genetics, 85350 Freising-Weihenstephan, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Technische Universität München, WZW - Center of Life and Food Science Weihenstephan, Chair of Experimental Genetics, 85350 Freising-Weihenstephan, Germany
| | - Mats Paulsson
- Center for Molecular Medicine Cologne, CMMC, University of Köln, 50931 Köln, Germany; Department of Biochemistry, University of Köln, 50931 Köln, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50674 Köln, Germany
| | - Markus Schubert
- Center for Molecular Medicine Cologne, CMMC, University of Köln, 50931 Köln, Germany; Center for Endocrinology, Diabetes and Preventive Medicine, University of Köln, 50937 Köln, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50674 Köln, Germany.
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Köln, 50931 Köln, Germany; Center for Molecular Medicine Cologne, CMMC, University of Köln, 50931 Köln, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50674 Köln, Germany.
| |
Collapse
|
50
|
Ectopic fat accumulation and distant organ-specific insulin resistance in Japanese people with nonalcoholic fatty liver disease. PLoS One 2014; 9:e92170. [PMID: 24651470 PMCID: PMC3961287 DOI: 10.1371/journal.pone.0092170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/18/2014] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The aim of this study was to examine the association between ectopic fat and organ-specific insulin resistance (IR) in insulin-target organs in patients with nonalcoholic fatty liver disease (NAFLD). METHODS Organ-specific IR in the liver (hepatic glucose production (HGP) × fasting plasma insulin (FPI) and suppression of HGP by insulin [%HGP]), skeletal muscle (insulin-stimulated glucose disposal [Rd]), and adipose tissue (suppression of FFA by insulin [%FFA]) was measured in 69 patients with NAFLD using a euglycemic hyperinsulinemic clamp with tracer infusion ([6,6-2H2]glucose). Liver fat, intramyocellular lipid (IMCL), and body composition were measured by liver biopsy, proton magnetic resonance spectroscopy, and bioelectrical impedance analysis, respectively. RESULTS HGP × FPI was significantly correlated with Rd (r = -0.57, P<0.001), %HGP with %FFA (r = 0.38, P<0.01), and Rd with %FFA (r = 0.27, P<0.05). Liver steatosis score was negatively associated with Rd (r = -0.47, P<0.001) as well as with HGP × FPI (r = 0.43, P<0.001). Similarly, intrahepatic lipid was negatively associated with Rd (r = -0.32, P<0.05). IMCL was not associated with Rd (r = -0.16, P = 0.26). Fat mass and its percentage were associated with HGP × FPI (r = 0.50, P<0.001; r = 0.48, P<0.001, respectively) and Rd (r = -0.59, P<0.001; r = -0.52, P<0.001, respectively), but not with %FFA (r = -0.21, P = 0.10; r = -0.001, P = 0.99, respectively). CONCLUSION Unexpectedly, fat accumulation in the skeletal muscle and adipose tissue was not associated with organ-specific IR. Instead, liver fat was associated not only with hepatic IR but also with skeletal muscle IR, suggesting a central role of fatty liver in systemic IR and that a network exists between liver and skeletal muscle.
Collapse
|