1
|
Hoornenborg CW, Qomariyah N, González-Ponce HA, Van Beek AP, Moshage H, Van Dijk G. Dracaena trifasciata (Prain) Mabb leaf extract protects MIN6 pancreas-derived beta cells against the diabetic toxin streptozotocin: role of the NF-κB pathway. Front Pharmacol 2025; 16:1485952. [PMID: 40308759 PMCID: PMC12041215 DOI: 10.3389/fphar.2025.1485952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/13/2025] [Indexed: 05/02/2025] Open
Abstract
Background Dracaena trifasciata (Prain) Mabb. [Asparagaceae; also known as Sansevieria trifasciata Prain (ST)] may have health-promoting activities, including resolution of diabetes mellitus (DM). This in vitro study evaluated whether and how a leaf extract of ST could directly protect pancreas-derived MIN6 cells against the diabetogenic toxin streptozotocin (STZ). Methods Composition of the ST extract (by 100% methanol) was investigated using high resolution mass spectrometry, which revealed several compounds with beneficial bioactive efficacy. MIN6 cells were exposed to 50% lethal dose of STZ, with or without ST extract. Cell viability was assessed using the MTT method. Inflammatory activity of ST extract was assessed in MIN6 cells and macrophage-like RAW cells, and addition of TNF-α to combinations of ST and STZ were tested on MIN6 cell viability. The role of the NF-κB pathway in effects of STZ and ST were investigated using the proteosome inhibitor MG132. Results Exposure of MIN6 cells to the ST extract (in concentrations that did not notably affect MIN6 cells: 5-15 mg/mL) was indeed able to minimize STZ-induced toxicity in MIN6 cells. Exposing macrophage-like RAW cells to ST extract (at 10-15 mg/mL) increased TNF-α gene expression, and this response was highly augmented by co-exposure to lipopolysaccharide (LPS, 1.0 mg/mL), indicating that ST extract contained inflammatory compounds too. The implication of this finding was investigated by exposing MIN6 cells to a subthreshold dose (100 ng/mL) of TNF-α, which 1) prevented the protective effect of the ST extract (10-15 mg/mL) against STZ toxicity, and 2) caused ST to become toxic to MIN6 cells even without the presence of STZ. TNF-α is known to activate the NF-κB pathway leading to cell death, however, NF-κB is also known to stimulate cell proliferation and survival. To investigate the relevance of the NF-κB pathway in our findings, we treated MIN6 cells with the proteasome inhibitor MG132 (at doses ≥0.2 μM), and observed that ST extract was no longer able to block STZ toxicity in MIN6 cells (p < 0.05), and to block CIAP2 expression, an anti-apoptotic target downstream from NF-κB. Conclusion These data suggest that a leaf extract of ST has anti-diabetogenic efficacy, which may depend on the integrity of the NF-κB pathway. This protective effect appears to be impeded in a pro-inflammatory environment.
Collapse
Affiliation(s)
- Christiaan Warner Hoornenborg
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nur Qomariyah
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, Indonesia
| | - Herson Antonio González-Ponce
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - André Petrus Van Beek
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gertjan Van Dijk
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Begum R, Roy S, Ripon MAR, Amin MT, Hossain MS. Involvement of COX inhibitor and arachidonic acid in manipulating obesity and obesity-induced bone resorption markers in obese mice. Prostaglandins Other Lipid Mediat 2025; 177:106971. [PMID: 40081613 DOI: 10.1016/j.prostaglandins.2025.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Obesity and bone-loss have remained a focus of research. Obesity stimulates adipose tissue expansion and adipocyte hypertrophy, resulting in chronic low-grade inflammation in the adipocytes. This enlarged adipocyte secretes a variety of pro-inflammatory chemicals. Because of their endocrine signaling, these substances indirectly promote osteoclast activity and bone-loss. However, the role of COX-2 signaling in obesity-induced bone resorption gene expression has yet to be investigated. Thus, we conducted this study in the context of obesity, employing a high-fat diet-induced obese mouse model. Obese mice treated with a selective and non-selective COX-2 inhibitor (celecoxib and aspirin), significantly (p < 0.05) reduced adipogenic markers such as body and fat weight, serum lipids, mRNA expression of pro-inflammatory markers (COX-2, TNF-α, IL-6, and MCP-1) in adipose tissue and bone resorption markers (OPG, RANKL, Cathepsin K, and MMP-9) in tibia bone tissue. In addition, arachidonic acid (AA) supplementation significantly (p < 0.5) increased the expression of obesity-induced inflammatory cytokines in the tibia bone marrow via the COX-2-derived PGE2 signaling pathway, hence increase the osteoclastogenesis. These findings suggested that inhibiting the COX-2 signaling pathway could reduce obesity and inflammatory bone resorption. Although both the selective and non-selective COX inhibitors had similar effects, selective COX-2 was more effective in these events, indicating that COX-2 plays a critical role in obesity-associated inflammatory bone resorption.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Sourav Roy
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Tohidul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| |
Collapse
|
3
|
Tang R, Harasymowicz NS, Wu CL, Choi YR, Lenz K, Oswald SJ, Guilak F. Gene therapy for fat-1 prevents obesity-induced metabolic dysfunction, cellular senescence, and osteoarthritis. Proc Natl Acad Sci U S A 2024; 121:e2402954121. [PMID: 39401356 PMCID: PMC11513907 DOI: 10.1073/pnas.2402954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
Obesity is one of the primary risk factors for osteoarthritis (OA), acting through cross talk among altered biomechanics, metabolism, adipokines, and dietary free fatty acid (FA) composition. Obesity and aging have been linked to cellular senescence in various tissues, resulting in increased local and systemic inflammation and immune dysfunction. We hypothesized that obesity and joint injury lead to cellular senescence that is typically associated with increased OA severity or with aging and that the ratio of omega-6 (ω-6) to omega-3 (ω-3) FAs regulates these pathologic effects. Mice were placed on an ω-6-rich high-fat diet or a lean control diet and underwent destabilization of the medial meniscus to induce OA. Obesity and joint injury significantly increased cellular senescence in subcutaneous and visceral fat as well as joint tissues such as synovium and cartilage. Using adeno-associated virus (AAV) gene therapy for fat-1, a fatty acid desaturase that converts ω-6 to ω-3 FAs, decreasing the serum ω-6:ω-3 FA ratio had a strong senomorphic and therapeutic effect, mitigating metabolic dysfunction, cellular senescence, and joint degeneration. In vitro coculture of bone marrow-derived macrophages and chondrocytes from control and AAV8-fat1-treated mice were used to examine the roles of various FA mediators in regulating chondrocyte senescence. Our results suggest that obesity and joint injury result in a premature "aging" of the joint as measured by senescence markers, and these changes can be ameliorated by altering FA composition using fat-1 gene therapy. These findings support the potential for fat-1 gene therapy to treat obesity- and/or injury-induced OA clinically.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Kristin Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| |
Collapse
|
4
|
Xue Y, Lu J, Liu Y, Gao Y, Gong Y, Yang Y, Xiong Y, Shi X. Dihydroartemisinin modulated arachidonic acid metabolism and mitigated liver inflammation by inhibiting the activation of 5-LOX and COX-2. Heliyon 2024; 10:e33370. [PMID: 39027511 PMCID: PMC11255665 DOI: 10.1016/j.heliyon.2024.e33370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Dihydroartemisinin (DHA), a derivative of Artemisia annua, has been shown to possess anti-inflammatory properties. Besides, Yes-associated protein 1 (YAP1) plays a crucial role in maintaining liver homeostasis. Methods This study used Yap1 Flox/Flox, Albumin-Cre mice with hepatocyte-specific Yap1 knockout (referred to as Yap1 LKO) and their control mice (Yap1 Flox/Flox, referred to as Yap1 Flox). The effect of Yap1 on lipid metabolism homeostasis was investigated through non-targeted metabolomic analysis of mouse liver. Subsequently, DHA was administered to Yap1 LKO mice to assess its potential as a treatment. Liver pathology was evaluated via H&E staining, and the levels of AST, ALT, and TG were quantified using biochemical assays. The contents of arachidonic acid (AA), prostaglandin E1 (PGE1), and leukotrienes (LT) in the liver were measured using ELISA, while the protein expressions of PLIN2, 5-lipoxygenase (5-LOX), and cyclooxygenase-2 (COX-2) were analyzed through IHC staining. Results Hepatocyte-specific Yap1 knockout activated the AA metabolic pathway, resulting in increased elevated levels of AA, PGE1, and LT levels, along with inflammatory cytokine infiltration. DHA mitigated the elevation of metabolites such as PGE1 and LT caused by the AA metabolic pathway activation by down-regulating the levels of COX-2 and 5-LOX in the liver of Yap1 LKO mice. Moreover, it alleviated the accumulation of lipid vacuoles and reduced triglyceride (TG) and perilipin-2 (PLIN2) levels in the liver of Yap1 LKO mice. Conclusions Excessively low YAP1 expression induces liver inflammation and disturbances in lipid metabolism, whereas DHA modulated AA metabolism and mitigated liver inflammation by inhibiting the activation of 5-LOX and COX-2.
Collapse
Affiliation(s)
- Yu Xue
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yanguang Yang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yajun Xiong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| |
Collapse
|
5
|
Ruan X, Zhang X, Liu L, Zhang J. Mechanism of Xiaoyao San in treating non-alcoholic fatty liver disease with liver depression and spleen deficiency: based on bioinformatics, metabolomics and in vivo experiments. J Biomol Struct Dyn 2024; 42:5128-5146. [PMID: 37440274 DOI: 10.1080/07391102.2023.2231544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Xiaoyao san (XYS) plays an important role in treatment of non-alcoholic fatty liver disease (NAFLD) with liver stagnation and spleen deficiency, but its specific mechanism is still unclear. This study aimed to investigate the material basis and mechanism by means of network pharmacology, metabolomics, systems biology and molecular docking methods. On this basis, NAFLD rat model with liver stagnation and spleen deficiency was constructed and XYS was used to intervene, and liver histopathology, biochemical detection, enzyme-linked immunosorbent assay, quantitative PCR assay and western blotting were used to further verify the mechanism. Through the above research methods, network pharmacology study showed that there were 94 targets in total for XYS in the treatment of NAFLD. Metabolomics study showed that NAFLD with liver depression and spleen deficiency had a total of 73 differential metabolites. Systems biology found that PTGS2 and PPARG were the core targets; Quercetin, kaempferol, naringenin, beta-sitosterol and stigmasterol were the core active components; AA, cAMP were the core metabolites. And molecular docking showed that the core active components can act well on the key targets. Animal experiments showed that XYS could improve liver histopathology, increase 5HT and NA, decrease INS and FBG, improve blood lipids and liver function, decrease AA, increase cAMP, down-regulate PTGS2, up-regulate PPARG, and decrease PGE2 and 15d-PGJ2. In conclusion, XYS might treat NAFLD with liver depression and spleen deficiency by down-regulating PTGS2, up-regulating PPARG, reducing AA content, increasing cAMP, improving insulin resistance, affecting glucose and lipid metabolism, inhibiting oxidative stress and inflammatory response.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaofeng Ruan
- School of Acupuncture - Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoming Zhang
- School of Acupuncture - Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Liming Liu
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Liver Medicine, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Liver Medicine, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
6
|
Zyryanov SK, Baybulatova EA. [Current challenges for therapy of comorbid patients: a new look at celecoxib. A review]. TERAPEVT ARKH 2024; 96:531-542. [PMID: 38829816 DOI: 10.26442/00403660.2024.05.202769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) for a wide range of diseases is increasing, in part due to an increasing elderly population. Elderly patients are more vulnerable to adverse drug reactions, including side effects and adverse effects of drug-drug interactions, often occurring in this category of patients due to multimorbidity and polypharmacy. One of the most popular NSAIDs in the world is celecoxib. It is a selective cyclooxygenase (COX)-2 inhibitor with 375 times more COX-2 inhibitory activity than COX-1. As a result, celecoxib has a better gastrointestinal tract safety profile than non-selective NSAIDs. Gastrointestinal tolerance is an essential factor that physicians should consider when selecting NSAIDs for elderly patients. Celecoxib can be used in a wide range of diseases of the musculoskeletal system and rheumatological diseases, for the treatment of acute pain in women with primary dysmenorrhea, etc. It is also increasingly used as part of a multimodal perioperative analgesia regimen. There is strong evidence that COX-2 is actively involved in the pathogenesis of ischemic brain damage, as well as in the development and progression of neurodegenerative diseases, such as Alzheimer's disease. NSAIDs are first-line therapy in the treatment of acute migraine attacks. Celecoxib is well tolerated in patients with risk factors for NSAID-associated nephropathy. It does not decrease the glomerular filtration rate in elderly patients and patients with chronic renal failure. Many meta-analyses and epidemiological studies have not confirmed the increased risk of cardiovascular events reported in previous clinical studies and have not shown an increased risk of cardiovascular events with celecoxib, irrespective of dose. COX-2 activation is one of the key factors contributing to obesity-related inflammation. Specific inhibition of COX-2 by celecoxib increases insulin sensitivity in overweight or obese patients. Combination therapies may be a promising new area of treatment for obesity and diabetes.
Collapse
Affiliation(s)
- S K Zyryanov
- Peoples' Friendship University of Russia named after Patrice Lumumba
| | - E A Baybulatova
- Peoples' Friendship University of Russia named after Patrice Lumumba
| |
Collapse
|
7
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Lopparelli RM, Gelain ME, Capolongo F, Pauletto M, Dacasto M, Giantin M. Establishment and characterization of cytochrome P450 1A1 CRISPR/Cas9 Knockout Bovine Foetal Hepatocyte Cell Line (BFH12). Cell Biol Toxicol 2024; 40:18. [PMID: 38528259 PMCID: PMC10963470 DOI: 10.1007/s10565-024-09856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy.
| |
Collapse
|
9
|
Tan GSQ, Morton JI, Wood S, Trevaskis NL, Magliano DJ, Windsor J, Shaw JE, Ilomäki J. COX2 inhibitor use and type 2 diabetes treatment intensification: A registry-based cohort study. Diabetes Res Clin Pract 2024; 207:111082. [PMID: 38160735 DOI: 10.1016/j.diabres.2023.111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
AIM This study examined the association between cyclooxygenase-2 inhibitor (COX2i) use and diabetes progression in people with type 2 diabetes. METHODS We conducted a nation-wide cohort study using an Australian diabetes registry linked to medication dispensing data. We assessed time to diabetes treatment intensification among new users of COX2i compared to mild opioids. Inverse probability of treatment-weighted Cox regression models were used to adjust for age, sex, time since diabetes diagnosis, comorbidities, and socio-economic disadvantage. We conducted several sensitivity analyses, including per-protocol analyses and comparing use of any NSAID to mild opioids. RESULTS There were 8,071 new users of COX2i and 7,623 of mild opioids with 4,168 diabetes treatment intensifications over a median follow-up of 1.6 years. Use of COX2i was associated with decreased risk of treatment intensification when compared to mild opioids (HR 0.91, 95 %CI 0.85-0.96). The results were not significant in the per-protocol analyses. Use of any NSAID was associated with a lower risk of treatment intensification compared to mild opioids (HR 0.90, 95 %CI 0.85-0.96). CONCLUSIONS Treatment with COX2i may be associated with a modest decreased risk of diabetes treatment intensification compared to mild opioids. Future clinical studies are required to confirm whether COX2 inhibition has clinically significant benefits for glycaemic control.
Collapse
Affiliation(s)
- George S Q Tan
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Jedidiah I Morton
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Stephen Wood
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical, Sciences, Monash University, Melbourne, Victoria, Australia
| | - Dianna J Magliano
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - John Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jenni Ilomäki
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Perumal NL, Do SK, Choi JS, Lee JH, Ban GT, Kim G, Mufida A, Yoo HS, Jang BC. Anti‑adipogenic effect and underlying mechanism of lignan‑enriched nutmeg extract on 3T3‑L1 preadipocytes. Biomed Rep 2024; 20:4. [PMID: 38124767 PMCID: PMC10729302 DOI: 10.3892/br.2023.1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
Nutmeg is the seed derived from Myristica fragrans. Nutmeg seeds contain alkylbenzene derivatives such as myristicin, which are toxic to the human organism, and lignan compounds such as nectandrin B, which possess anti-aging and anti-diabetic properties. However, the anti-adipogenic, prolipolytic and anti-inflammatory effects of lignan-enriched nutmeg extract (LNX) on preadipocytes remain unclear. In the present study, the effects of LNX on lipid accumulation, glycerol release and inflammatory cyclooxygenase-2 (COX-2) expression in differentiated 3T3-L1 preadipocytes were investigated. Oil red O staining demonstrated that treatment with LNX resulted in a concentration-dependent reduction in lipid accumulation in differentiating 3T3-L1 preadipocytes without affecting cell growth. Mechanistically, LNX treatment at 6 µg/ml led to a reduction in phosphorylation levels of signal transducer and activator of transcription 3 (STAT3), whereas it did not influence the peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT enhancer binding protein alpha (C/EBP-α) expression levels during 3T3-L1 preadipocyte differentiation. In addition, LNX treatment at 6 µg/ml led to a decrease in fatty acid synthase (FAS) expression levels on day (D) 2, but not D5 and D8, during preadipocyte differentiation. Treatment with LNX at 6 µg/ml did not affect the expression levels of perilipin A during preadipocyte differentiation. In differentiated 3T3-L1 adipocytes, LNX treatment at 6 µg/ml did not stimulate glycerol release and hormone-sensitive lipase phosphorylation, which are known lipolysis hallmarks. Furthermore, LNX treatment at the doses tested had no effect on tumor necrosis factor alpha-induced COX-2 expression in 3T3-L1 preadipocytes. Collectively, these results demonstrated that LNX has an anti-adipogenic effect on differentiating 3T3-L1 preadipocytes, which is mediated by the downregulation of STAT3 phosphorylation and FAS expression.
Collapse
Affiliation(s)
| | - Sung Kuk Do
- College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Je-Ho Lee
- Geron Biotech Ltd., Daejeon 34133, Republic of Korea
| | - Gyung-Tae Ban
- Geron Biotech Ltd., Daejeon 34133, Republic of Korea
| | - Gyuri Kim
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Amila Mufida
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Hwa Seung Yoo
- College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
11
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
12
|
Mao YJ, Ying MM, Xu G. Identification of hub genes and small molecule therapeutic drugs related to simple steatosis with secondary analysis of existing microarray data. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yi-Jie Mao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Miao-Miao Ying
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Gang Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
13
|
Jiang ST, Liu YG, Zhang L, Sang XT, Xu YY, Lu X. Systems biology approach reveals a common molecular basis for COVID-19 and non-alcoholic fatty liver disease (NAFLD). Eur J Med Res 2022; 27:251. [PMCID: PMC9664052 DOI: 10.1186/s40001-022-00865-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Patients with non-alcoholic fatty liver disease (NAFLD) may be more susceptible to coronavirus disease 2019 (COVID-19) and even more likely to suffer from severe COVID-19. Whether there is a common molecular pathological basis for COVID-19 and NAFLD remains to be identified. The present study aimed to elucidate the transcriptional alterations shared by COVID-19 and NAFLD and to identify potential compounds targeting both diseases.
Methods
Differentially expressed genes (DEGs) for COVID-19 and NAFLD were extracted from the GSE147507 and GSE89632 datasets, and common DEGs were identified using the Venn diagram. Subsequently, we constructed a protein–protein interaction (PPI) network based on the common DEGs and extracted hub genes. Then, we performed gene ontology (GO) and pathway analysis of common DEGs. In addition, transcription factors (TFs) and miRNAs regulatory networks were constructed, and drug candidates were identified.
Results
We identified a total of 62 common DEGs for COVID-19 and NAFLD. The 10 hub genes extracted based on the PPI network were IL6, IL1B, PTGS2, JUN, FOS, ATF3, SOCS3, CSF3, NFKB2, and HBEGF. In addition, we also constructed TFs–DEGs, miRNAs–DEGs, and protein–drug interaction networks, demonstrating the complex regulatory relationships of common DEGs.
Conclusion
We successfully extracted 10 hub genes that could be used as novel therapeutic targets for COVID-19 and NAFLD. In addition, based on common DEGs, we propose some potential drugs that may benefit patients with COVID-19 and NAFLD.
Collapse
|
14
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
15
|
Maciejewska-Markiewicz D, Drozd A, Palma J, Ryterska K, Hawryłkowicz V, Załęska P, Wunsh E, Kozłowska-Petriczko K, Stachowska E. Fatty Acids and Eicosanoids Change during High-Fiber Diet in NAFLD Patients-Randomized Control Trials (RCT). Nutrients 2022; 14:nu14204310. [PMID: 36296994 PMCID: PMC9608825 DOI: 10.3390/nu14204310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a wide spectrum condition characterized by excessive liver fat accumulation in people who do not abuse alcohol. There is no effective medical treatment for NAFLD; therefore, most important recommendations to reduce liver steatosis are diet and lifestyle, including proper physical activity. The aim of our study was to analyze the fatty acids and eicosanoids changes in the serum of patients who consumed high-fiber rolls for 8 weeks. MATERIALS AND METHODS The group of 28 Caucasian participants was randomly divided into two groups, those who received 24 g of fiber/day-from 2 buns of 12 g each (n = 14), and those who received 12 g of fiber/day-from 2 buns of 6 g (n = 14). At the beginning and on the last visit of the 8-week intervention, all patients underwent NAFLD evaluation, biochemical parameter measurements, and fatty acids and eicosanoids evaluation. RESULTS Patients who received 12 g of fiber had significantly reduced liver steatosis and body mass index. In the group who received 24 g of fiber/day, we observed a trend to liver steatosis reduction (p = 0.07) and significant decrease in aspartate aminotransferase (p = 0.03) and total cholesterol (p = 0.03). All changes in fatty acid and eicosanoids profile were similar. Fatty acids analysis revealed that extra fiber intake was associated with a significant increase in monounsaturated fatty acids and decrease in saturated fatty acids. Moreover, both groups showed increased concentration of gamma linoleic acid and docosahexaenoic acid. We also observed reduction in prostaglandin E2. CONCLUSIONS Our study revealed that a high amount of fiber in the diet is associated with a reduction in fatty liver, although this effect was more pronounced in patients in the lower fiber group. However, regardless of the amount of fiber consumed, we observed significant changes in the profile of FAs, which may reflect the positive changes in the lipids liver metabolism. Regardless of the amount of fiber consumed, patients decreased the amount of PGE2, which may indicate the lack of disease progression associated with the development of inflammation.
Collapse
Affiliation(s)
- Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Arleta Drozd
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
- Correspondence: (A.D.); (J.P.)
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
- Correspondence: (A.D.); (J.P.)
| | - Karina Ryterska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Patrycja Załęska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Ewa Wunsh
- Translational Medicine Group, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| |
Collapse
|
16
|
Kahn D, Macias E, Zarini S, Garfield A, Zemski Berry K, MacLean P, Gerszten RE, Libby A, Solt C, Schoen J, Bergman BC. Exploring Visceral and Subcutaneous Adipose Tissue Secretomes in Human Obesity: Implications for Metabolic Disease. Endocrinology 2022; 163:6678177. [PMID: 36036084 PMCID: PMC9761573 DOI: 10.1210/endocr/bqac140] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/19/2022]
Abstract
Adipose tissue secretions are depot-specific and vary based on anatomical location. Considerable attention has been focused on visceral (VAT) and subcutaneous (SAT) adipose tissue with regard to metabolic disease, yet our knowledge of the secretome from these depots is incomplete. We conducted a comprehensive analysis of VAT and SAT secretomes in the context of metabolic function. Conditioned media generated using SAT and VAT explants from individuals with obesity were analyzed using proteomics, mass spectrometry, and multiplex assays. Conditioned media were administered in vitro to rat hepatocytes and myotubes to assess the functional impact of adipose tissue signaling on insulin responsiveness. VAT secreted more cytokines (IL-12p70, IL-13, TNF-α, IL-6, and IL-8), adipokines (matrix metalloproteinase-1, PAI-1), and prostanoids (TBX2, PGE2) compared with SAT. Secretome proteomics revealed differences in immune/inflammatory response and extracellular matrix components. In vitro, VAT-conditioned media decreased hepatocyte and myotube insulin sensitivity, hepatocyte glucose handling, and increased basal activation of inflammatory signaling in myotubes compared with SAT. Depot-specific differences in adipose tissue secretome composition alter paracrine and endocrine signaling. The unique secretome of VAT has distinct and negative impact on hepatocyte and muscle insulin action.
Collapse
Affiliation(s)
- Darcy Kahn
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Macias
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karin Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert E Gerszten
- The Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Libby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Claudia Solt
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan Schoen
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bryan C Bergman
- Correspondence: Bryan Bergman, PhD, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
17
|
da Cruz Nascimento SS, Carvalho de Queiroz JL, Fernandes de Medeiros A, de França Nunes AC, Piuvezam G, Lima Maciel BL, Souza Passos T, Morais AHDA. Anti-inflammatory agents as modulators of the inflammation in adipose tissue: A systematic review. PLoS One 2022; 17:e0273942. [PMID: 36048868 PMCID: PMC9436134 DOI: 10.1371/journal.pone.0273942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022] Open
Abstract
Obesity is characterized by an adipose tissue mass expansion that presents a risk to health, associated with a chronic increase in circulating inflammatory mediators. Anti-inflammatory agents are an obesity alternative treatment. However, the lack of effective agents indicates the need to assess the mechanisms and identify effective therapeutic targets. The present work identified and described the mechanisms of action of anti-inflammatory agents in adipose tissue in experimental studies. The review was registered in the International Prospective Registry of Systematic Reviews (PROSPERO-CRD42020182897). The articles' selection was according to eligibility criteria (PICOS). The research was performed in PubMed, ScienceDirect, Scopus, Web of Science, VHL, and EMBASE. The methodological quality evaluation was assessed using SYRCLE. Initially, 1511 articles were selected, and at the end of the assessment, 41 were eligible. Among the anti-inflammatory agent classes, eight drugs, 28 natural, and five synthetic compounds were identified. Many of these anti-inflammatory agents act in metabolic pathways that culminate in the inflammatory cytokines expression reduction, decreasing the macrophages infiltration in white and adipose tissue and promoting the polarization process of type M1 to M2 macrophages. Thus, the article clarifies and systematizes these anti-inflammatory agents' mechanisms in adipose tissue, presenting targets relevant to future research on these pathways.
Collapse
Affiliation(s)
| | - Jaluza Luana Carvalho de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Amanda Fernandes de Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Clara de França Nunes
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal/RN, Brazil
- Department of Public Health, Center for Health Sciences, Postgraduate Program in Public Health, Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
18
|
Sun CY, Zhao P, Yan PZ, Li J, Zhao DS. Investigation of Lonicera japonica Flos against Nonalcoholic Fatty Liver Disease Using Network Integration and Experimental Validation. Medicina (B Aires) 2022; 58:medicina58091176. [PMID: 36143853 PMCID: PMC9506563 DOI: 10.3390/medicina58091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objective: Lonicera japonica Flos (LJF) is a well-known traditional herbal medicine that has been used as an anti-inflammatory, antibacterial, antiviral, and antipyretic agent. The potent anti-inflammatory and other ethnopharmacological uses of LJF make it a potential medicine for the treatment of nonalcoholic fatty liver disease (NAFLD). This research is to explore the mechanisms involved in the activity of LJF against NAFLD using network integration and experimental pharmacology. Materials and methods: The possible targets of LJF involved in its activity against NAFLD were predicted by matching the targets of the active components in LJF with those targets involved in NAFLD. The analysis of the enrichment of GO functional annotations and KEGG pathways using Metascape, followed by constructing the network of active components–targets–pathways using Cytoscape, were carried out to predict the targets. Molecular docking studies were performed to further support the involvement of these targets in the activity of LJF against NAFLD. The shortlisted targets were confirmed via in vitro studies in an NAFLD cell model. Results: A total of 17 active components in LJF and 29 targets related to NAFLD were predicted by network pharmacology. Molecular docking studies of the main components and the key targets showed that isochlorogenic acid B can stably bind to TNF-α and CASP3. In vitro studies have shown that LJF down-regulated the TNF-α and CASP3 expression in an NAFLD cell model. Conclusions: These results provide scientific evidence for further investigations into the role of LJF in the treatment of NAFLD.
Collapse
|
19
|
El-Malah AA, Gineinah MM, Deb PK, Khayyat AN, Bansal M, Venugopala KN, Aljahdali AS. Selective COX-2 Inhibitors: Road from Success to Controversy and the Quest for Repurposing. Pharmaceuticals (Basel) 2022; 15:827. [PMID: 35890126 PMCID: PMC9318302 DOI: 10.3390/ph15070827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
The introduction of selective COX-2 inhibitors (so-called 'coxibs') has demonstrated tremendous commercial success due to their claimed lower potential of serious gastrointestinal adverse effects than traditional NSAIDs. However, following the repeated questioning on safety concerns, the coxibs 'controversial me-too' saga increased substantially, inferring to the risk of cardiovascular complications, subsequently leading to the voluntary withdrawal of coxibs (e.g., rofecoxib and valdecoxib) from the market. For instance, the makers (Pfizer and Merck) had to allegedly settle individual claims of cardiovascular hazards from celecoxib and valdecoxib. Undoubtedly, the lessons drawn from this saga revealed the flaws in drug surveillance and regulation, and taught science to pursue a more integrated translational approach for data acquisition and interpretation, prompting science-based strategies of risk avoidance in order to sustain the value of such drugs, rather than their withdrawal. Looking forward, coxibs are now being studied for repurposing, given their possible implications in the management of a myriad of diseases, including cancer, epilepsy, psychiatric disorders, obesity, Alzheimer's disease, and so on. This article briefly summarizes the development of COX-2 inhibitors to their market impression, followed by the controversy related to their toxicity. In addition, the events recollected in hindsight (the past lessons), the optimistic step towards drug repurposing (the present), and the potential for forthcoming success (the future) are also discussed.
Collapse
Affiliation(s)
- Afaf A. El-Malah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| | - Magdy M. Gineinah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Ahdab N. Khayyat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Anfal S. Aljahdali
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| |
Collapse
|
20
|
Identification of the Potential Molecular Mechanisms Linking RUNX1 Activity with Nonalcoholic Fatty Liver Disease, by Means of Systems Biology. Biomedicines 2022; 10:biomedicines10061315. [PMID: 35740337 PMCID: PMC9219880 DOI: 10.3390/biomedicines10061315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disease; nevertheless, no definitive diagnostic method exists yet, apart from invasive liver biopsy, and nor is there a specific approved treatment. Runt-related transcription factor 1 (RUNX1) plays a major role in angiogenesis and inflammation; however, its link with NAFLD is unclear as controversial results have been reported. Thus, the objective of this work was to determine the proteins involved in the molecular mechanisms between RUNX1 and NAFLD, by means of systems biology. First, a mathematical model that simulates NAFLD pathophysiology was generated by analyzing Anaxomics databases and reviewing available scientific literature. Artificial neural networks established NAFLD pathophysiological processes functionally related to RUNX1: hepatic insulin resistance, lipotoxicity, and hepatic injury-liver fibrosis. Our study indicated that RUNX1 might have a high relationship with hepatic injury-liver fibrosis, and a medium relationship with lipotoxicity and insulin resistance motives. Additionally, we found five RUNX1-regulated proteins with a direct involvement in NAFLD motives, which were NFκB1, NFκB2, TNF, ADIPOQ, and IL-6. In conclusion, we suggested a relationship between RUNX1 and NAFLD since RUNX1 seems to regulate NAFLD molecular pathways, posing it as a potential therapeutic target of NAFLD, although more studies in this field are needed.
Collapse
|
21
|
Chang CC, Sia KC, Chang JF, Lin CM, Yang CM, Lee IT, Vo TTT, Huang KY, Lin WN. Participation of lipopolysaccharide in hyperplasic adipose expansion: Involvement of NADPH oxidase/ROS/p42/p44 MAPK-dependent Cyclooxygenase-2. J Cell Mol Med 2022; 26:3850-3861. [PMID: 35650335 PMCID: PMC9279599 DOI: 10.1111/jcmm.17419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is a world‐wide problem, especially the child obesity, with the complication of various metabolic diseases. Child obesity can be developed as early as the age between 2 and 6. The expansion of fat mass in child age includes both hyperplasia and hypertrophy of adipose tissue, suggesting the importance of proliferation and adipogenesis of preadipocytes. The changed composition of gut microbiota is associated with obesity, revealing the roles of lipopolysaccharide (LPS) on manipulating adipose tissue development. Studies suggest that LPS enters the circulation and acts as a pro‐inflammatory regulator to facilitate pathologies. Nevertheless, the underlying mechanisms behind LPS‐modulated obesity are yet clearly elucidated. This study showed that LPS enhanced the expression of cyclooxygenase‐2 (COX‐2), an inflammatory regulator of obesity, in preadipocytes. Pretreating preadipocytes with the scavenger of reactive oxygen species (ROS) or the inhibitors of NADPH oxidase or p42/p44 MAPK markedly decreased LPS‐stimulated gene expression of COX‐2 together with the phosphorylation of p47phox and p42/p44 MAPK, separately. LPS activated p42/p44 MAPK via NADPH oxidase‐dependent ROS accumulation in preadipocytes. Reduction of intracellular ROS or attenuation of p42/p44 MAPK activation both reduced LPS‐mediated COX‐2 expression and preadipocyte proliferation. Moreover, LPS‐induced preadipocyte proliferation and adipogenesis were abolished by the inhibition of COX‐2 or PEG2 receptors. Taken together, our results suggested that LPS enhanced the proliferation and adipogenesis of preadipocytes via NADPH oxidase/ROS/p42/p44 MAPK‐dependent COX‐2 expression.
Collapse
Affiliation(s)
- Chao-Chien Chang
- Department of Cardiology, Cathay General Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kee-Chin Sia
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jia-Feng Chang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Internal Medicine, En-Chu-Kong Hospital, New Taipei City, Taiwan.,Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chia-Mo Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Division of Chest Medicine, Shin Kong Hospital, Taipei, Taiwan.,Department of Chemistry, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Yang Huang
- National Defense Medical Center, Graduate Institute of Pathology and Parasitology, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
22
|
Roy S, Ripon MAR, Begum R, Bhowmik DR, Amin MT, Islam MA, Ahmed F, Hossain MS. Arachidonic acid supplementation attenuates adipocyte inflammation but not adiposity in high fat diet induced obese mice. Biochem Biophys Res Commun 2022; 608:90-95. [PMID: 35397428 DOI: 10.1016/j.bbrc.2022.03.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Obesity is associated with low-grade chronic inflammation and has a remarkable role in the pathophysiology of metabolic complications. In triggering these inflammatory responses, the arachidonic acid (AA) cascade plays a key role. However, there is a lack of data on how supplementary AA would affect obesity, adipose tissue inflammation, and the AA cascade in obesity. This study aims to investigate how AA supplementation affects obesity, adipocyte morphology, inflammation, and AA cascade signaling. Male Swiss Albino mice were used in our experiment. The mice were fed high-fat diets to induce obesity, and these obese mice were treated with two different doses of AA for 3 weeks. A normal diet non-obese group and an untreated obese group were kept as controls. Bodyweight and daily food intake data were recorded during that period. After the treatment period, blood serum and white adipose tissue of the experimental mice were collected for colorimetric lipid profile tests, histology, and mRNA extraction. The ΔΔCT method was employed for calculating the relative mRNA expression of target genes. The findings of our study suggest that AA has no significant effects on body weight, visceral adiposity, adipose tissue morphology, and serum lipid profile. However, AA treatment has resulted in a significant down-regulation of pro-inflammatory markers as well as the COX pathway. Besides, up-regulation of 12/15-LOX has been observed, indicating the metabolism pathway of supplementary AA through the LOX pathway. Our findings indicate that AA treatment may not provide significant benefits in terms of body weight, visceral fat mass, or serum lipid profile. However, it has effectively alleviated obesity-induced adipocyte inflammation in high-fat diet-induced obese mice.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Rahima Begum
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Dipty Rani Bhowmik
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Tohidul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Aminul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
23
|
Ale-Ebrahim M, Rahmani R, Faryabi K, Mohammadifar N, Mortazavi P, Karkhaneh L. Atheroprotective and hepatoprotective effects of trans-chalcone through modification of eNOS/AMPK/KLF-2 pathway and regulation of COX-2, Ang-II, and PDGF mRNA expression in NMRI mice fed HCD. Mol Biol Rep 2022; 49:3433-3443. [PMID: 35190927 DOI: 10.1007/s11033-022-07174-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The effects of trans-chalcone on atherosclerosis and NAFLD have been investigated. However, the underlying molecular mechanisms of these effects are not completely understood. This study aimed to deduce the impacts of trans-chalcone on the eNOS/AMPK/KLF-2 pathway in the heart tissues and the expression of Ang-II, PDFG, and COX-2 genes in liver sections of NMRI mice fed HCD. METHODS AND RESULTS Thirty-two male mice were divided into four groups (n = 8): control group; fed normal diet. HCD group; fed HCD (consisted of 2% cholesterol) (12 weeks). TCh groups; received HCD (12 weeks) besides co-treated with trans-chalcone (20 mg/kg and 40 mg/kg b.w. dosages respectively) for 4 weeks. Finally, the blood samples were collected to evaluate the biochemical parameters. Histopathological observations of aorta and liver sections were performed by H&E staining. The real-time PCR method was used for assessing the expression of the aforementioned genes. Histopathological examination demonstrated atheroma plaque formation and fatty liver in mice fed HCD which were accomplished with alteration in biochemical factors and Real-time PCR outcomes. Administration of trans-chalcone significantly modulated the serum of biochemical parameters. These effects were accompanied by significant increasing the expression of eNOS, AMPK, KLF-2 genes in heart sections and significant decrease in COX-2, Ang-II, and PDGF mRNA expression in liver sections. CONCLUSION Our findings propose that the atheroprotective and hepatoprotective effects of trans-chalcone may be attributed to the activation of the eNOS/AMPK/KLF-2 pathway and down-regulation of Ang-II, PDFG, and COX-2 genes, respectively.
Collapse
Affiliation(s)
- Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Raziyeh Rahmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kousar Faryabi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Mohammadifar
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Department of Veterinary Pathology, Faculty of Specialized Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leyla Karkhaneh
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
24
|
Chiang KC, Imig JD, Kalantar-Zadeh K, Gupta A. Kidney in the net of acute and long-haul coronavirus disease 2019: a potential role for lipid mediators in causing renal injury and fibrosis. Curr Opin Nephrol Hypertens 2022; 31:36-46. [PMID: 34846312 DOI: 10.1097/mnh.0000000000000750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Severe COVID-19 disease is often complicated by acute kidney injury (AKI), which may transition to chronic kidney disease (CKD). Better understanding of underlying mechanisms is important in advancing therapeutic approaches. RECENT FINDINGS SARS-CoV-2-induced endothelial injury initiates platelet activation, platelet-neutrophil partnership and release of neutrophil extracellular traps. The resulting thromboinflammation causes ischemia-reperfusion (I/R) injury to end organs. Severe COVID-19 induces a lipid-mediator storm with massive increases in thromboxane A2 (TxA2) and PGD2, which promote thromboinflammation and apoptosis of renal tubular cells, respectively, and thereby enhance renal fibrosis. COVID-19-associated AKI improves rapidly in the majority. However, 15-30% have protracted renal injury, raising the specter of transition from AKI to CKD. SUMMARY In COVID-19, the lipid-mediator storm promotes thromboinflammation, ischemia-reperfusion injury and cytotoxicity. The thromboxane A2 and PGD2 signaling presents a therapeutic target with potential to mitigate AKI and transition to CKD. Ramatroban, the only dual antagonist of the thromboxane A2/TPr and PGD2/DPr2 signaling could potentially mitigate renal injury in acute and long-haul COVID. Urgent studies targeting the lipid-mediator storm are needed to potentially reduce the heavy burden of kidney disease emerging in the wake of the current pandemic.
Collapse
Affiliation(s)
| | - John D Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, California, USA
| | - Ajay Gupta
- KARE Biosciences, Orange, California
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, California, USA
| |
Collapse
|
25
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
26
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Immunomodulatory effects of fish peptides on cardiometabolic syndrome associated risk factors: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2014861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
27
|
Ayyash A, Holloway AC. Fluoxetine-induced hepatic lipid accumulation is mediated by prostaglandin endoperoxide synthase 1 and is linked to elevated 15-deoxy-Δ 12,14 PGJ 2. J Appl Toxicol 2021; 42:1004-1015. [PMID: 34897744 DOI: 10.1002/jat.4272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Major depressive disorder and other neuropsychiatric disorders are often managed with long-term use of antidepressant medication. Fluoxetine, an SSRI antidepressant, is widely used as a first-line treatment for neuropsychiatric disorders. However, fluoxetine has also been shown to increase the risk of metabolic diseases such as non-alcoholic fatty liver disease. Fluoxetine has been shown to increase hepatic lipid accumulation in vivo and in vitro. In addition, fluoxetine has been shown to alter the production of prostaglandins which have also been implicated in the development of non-alcoholic fatty liver disease. The goal of this study was to assess the effect of fluoxetine exposure on the prostaglandin biosynthetic pathway and lipid accumulation in a hepatic cell line (H4-II-E-C3 cells). Fluoxetine treatment increased mRNA expression of prostaglandin biosynthetic enzymes (Ptgs1, Ptgs2, and Ptgds), PPAR gamma (Pparg), and PPAR gamma downstream targets involved in fatty acid uptake (Cd36, Fatp2, and Fatp5) as well as production of 15-deoxy-Δ12,14 PGJ2 a PPAR gamma ligand. The effects of fluoxetine to induce lipid accumulation were attenuated with a PTGS1 specific inhibitor (SC-560), whereas inhibition of PTGS2 had no effect. Moreover, SC-560 attenuated 15-deoxy-Δ12,14 PGJ2 production and expression of PPAR gamma downstream target genes. Taken together these results suggest that fluoxetine-induced lipid abnormalities appear to be mediated via PTGS1 and its downstream product 15d-PGJ2 and suggest a novel therapeutic target to prevent some of the adverse effects of fluoxetine treatment.
Collapse
Affiliation(s)
- Ahmed Ayyash
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Zhao L, Liang J, Chen F, Tang X, Liao L, Liu Q, Luo J, Du Z, Li Z, Luo W, Yang S, Rahimnejad S. High carbohydrate diet induced endoplasmic reticulum stress and oxidative stress, promoted inflammation and apoptosis, impaired intestinal barrier of juvenile largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2021; 119:308-317. [PMID: 34662728 DOI: 10.1016/j.fsi.2021.10.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 05/12/2023]
Abstract
This study assessed the effects of feed carbohydrate content on intestinal physical barrier and immunity in juvenile largemouth bass (Micropterus salmoides). Triplicate groups of juvenile fish (4.1 ± 0.2 g) were fed low (LCD, 7%), medium (MCD, 12%) and high (HCD, 17%) carbohydrate diets for eight weeks. Gut histology revealed the slight infiltration of inflammatory cells and moderate loss of mucous membrane layer in HCD group. Expression of ZO1, occluding, and claudin7 genes and epidermal growth factor receptor (EGFR) gene were significantly decreased in HCD group indicating the impairment of tight junction and epithelial cell regeneration. The results showed the significant (P < 0.05) reduction of antioxidant capacity in HCD group compared to LCD. Furthermore, expression of intestinal ERS-related genes such as IRE1, Eif2α, GRP78, CHOPα and CHOPβ in HCD group was significantly higher than the LCD group. In addition, HCD induced the up-regulated expression of inflammatory (IL-8, IL-1β, TNFα and COX2) and apoptosis (TRAF2, bax, casepase3, caspase8 and casepase9) related genes in fish intestine. The data generated in this study clearly demonstrated that HCD induced ERS and oxidative stress, which promoted intestinal inflammation and apoptosis in juvenile largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Fukai Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
29
|
Liakh I, Janczy A, Pakiet A, Korczynska J, Proczko-Stepaniak M, Kaska L, Sledzinski T, Mika A. One-anastomosis gastric bypass modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation. Int J Obes (Lond) 2021; 46:408-416. [PMID: 34732836 DOI: 10.1038/s41366-021-01013-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Oxylipins are polyunsaturated fatty acid derivatives involved in the regulation of various processes, including chronic inflammation, insulin resistance and hepatic steatosis. They can be synthesized in various tissues, including adipose tissue. There is some evidence that obesity is associated with the deregulation of serum oxylipin levels. The aim of this study was to evaluate the effect of bariatric surgery (one-anastomosis gastric bypass) on the serum levels of selected oxylipins and their fatty acid precursors and to verify the hypothesis that their changes after surgery can contribute to the resolution of inflammation. Moreover, we compared the oxylipin levels (prostaglandin E2, 13-HODE, maresin 1 and resolvin E1), fatty acids and the expression of enzymes that synthesize oxylipins in adipose tissue of lean controls and subjects with severe obesity. SUBJECTS/METHODS The study included 50 patients with severe obesity that underwent bariatric surgery and 41 subjects in lean, control group. Fatty acid content was analyzed by GC-MS, oxylipin concentrations were measured with immunoenzymatic assay kits and real-time PCR analysis was used to assess mRNA levels in adipose tissue. RESULTS Our results show increased expression of some enzymes that synthesize oxylipins in adipose tissue and alterations in the levels of oxylipins in both adipose tissue and serum of subjects with obesity. After bariatric surgery, the levels of anti-inflammatory oxylipins increased, whereas pro-inflammatory oxylipins decreased. CONCLUSIONS In patients with obesity, the metabolism of oxylipins is deregulated in adipose tissue, and their concentrations in serum are altered. Bariatric surgery modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Toxicology, Medical University of Gdansk, Gdansk, Poland
| | - Agata Janczy
- Department of Clinical Nutrition, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Justyna Korczynska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Monika Proczko-Stepaniak
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
30
|
Cao E, Watt MJ, Nowell CJ, Quach T, Simpson JS, De Melo Ferreira V, Agarwal S, Chu H, Srivastava A, Anderson D, Gracia G, Lam A, Segal G, Hong J, Hu L, Phang KL, Escott ABJ, Windsor JA, Phillips ARJ, Creek DJ, Harvey NL, Porter CJH, Trevaskis NL. Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nat Metab 2021; 3:1175-1188. [PMID: 34545251 DOI: 10.1038/s42255-021-00457-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Visceral adipose tissue (VAT) encases mesenteric lymphatic vessels and lymph nodes through which lymph is transported from the intestine and mesentery. Whether mesenteric lymphatics contribute to adipose tissue inflammation and metabolism and insulin resistance is unclear. Here we show that obesity is associated with profound and progressive dysfunction of the mesenteric lymphatic system in mice and humans. We find that lymph from mice and humans consuming a high-fat diet (HFD) stimulates lymphatic vessel growth, leading to the formation of highly branched mesenteric lymphatic vessels that 'leak' HFD-lymph into VAT and, thereby, promote insulin resistance. Mesenteric lymphatic dysfunction is regulated by cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-C-VEGF receptor (R)3 signalling. Lymph-targeted inhibition of COX-2 using a glyceride prodrug approach reverses mesenteric lymphatic dysfunction, visceral obesity and inflammation and restores glycaemic control in mice. Targeting obesity-associated mesenteric lymphatic dysfunction thus represents a potential therapeutic option to treat metabolic disease.
Collapse
Affiliation(s)
- Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Tim Quach
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Jamie S Simpson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Puretech Health, Boston, MA, USA
| | - Vilena De Melo Ferreira
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Sonya Agarwal
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Hannah Chu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Anubhav Srivastava
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Alina Lam
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Gabriela Segal
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Kian Liun Phang
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Alistair B J Escott
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Słupecka-Ziemilska M, Grzesiak P, Kowalczyk P, Wychowański P, Woliński J. Maternal High-Fat Diet Exposure During Gestation and Lactation Affects Intestinal Development in Suckling Rats. Front Physiol 2021; 12:693150. [PMID: 34305647 PMCID: PMC8297660 DOI: 10.3389/fphys.2021.693150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/14/2021] [Indexed: 12/01/2022] Open
Abstract
Maternal health and diet influence metabolic status and play a crucial role in the development of metabolic function in offspring and their susceptibility to metabolic diseases in adulthood. The pathogenesis of various metabolic disorders is often associated with impairment in intestinal structure and function. Thus, the aim of the current study was to determine the effects of maternal exposure to a high fat diet (HFD), during gestation and lactation, on small intestinal growth and maturation in rat pups at 21 days old. Female, Wistar Han rats were fed either a breeding diet (BD) or high fat diet (HFD), from mating until the 21st day of lactation. Maternal HFD exposure increased body weight, BMI and adiposity. Compared to the maternal BD, HFD exposure influenced small intestine histomorphometry in a segment-dependent manner, changed the activity of brush border enzymes and had an impact on intestinal contractility via changes in cholinergic signaling. Moreover, offspring from the maternal HFD group had upregulated mRNA expression of cyclooxygenase (COX)-2, which plays a role in the inflammatory process. These results suggest that maternal HFD exposure, during gestation and lactation, programs the intestinal development of the offspring in a direction toward obesity as observed changes are also commonly reported in models of diet-induced obesity. The results also highlight the importance of maternal diet preferences in the process of developmental programming of metabolic diseases.
Collapse
Affiliation(s)
- Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Grzesiak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Piotr Wychowański
- Department of Oral Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Woliński
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
32
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
33
|
Wang W, Zhong X, Guo J. Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review). Int J Mol Med 2021; 47:114. [PMID: 33907839 PMCID: PMC8083810 DOI: 10.3892/ijmm.2021.4947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, metabolic syndromes are emerging as global epidemics, whose incidence are increasing annually. However, the efficacy of therapy does not increase proportionately with the increased morbidity. Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) are two common metabolic syndromes that are closely associated. The pathogenic mechanisms of T2DM and NAFLD have been studied, and it was revealed that insulin resistance, hyperglycemia, hepatic lipid accumulation and inflammation markedly contribute to the development of these two diseases. The 2-series prostaglandins (PGs), a subgroup of eicosanoids, including PGD2, PGE2, PGF2α and PGI2, are converted from arachidonic acid catalyzed by the rate-limiting enzymes cyclooxygenases (COXs). Considering their wide distribution in almost every tissue, 2-series PG pathways exert complex and interlinked effects in mediating pancreatic β-cell function and proliferation, insulin sensitivity, fat accumulation and lipolysis, as well as inflammatory processes. Previous studies have revealed that metabolic disturbances, such as hyperglycemia and hyperlipidemia, can be improved by treatment with COX inhibitors. At present, an accumulating number of studies have focused on the roles of 2-series PGs and their metabolites in the pathogenesis of metabolic syndromes, particularly T2DM and NAFLD. In the present review, the role of 2-series PGs in the highly intertwined pathogenic mechanisms of T2DM and NAFLD was discussed, and important therapeutic strategies based on targeting 2-series PG pathways in T2DM and NAFLD treatment were provided.
Collapse
Affiliation(s)
- Weixuan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xin Zhong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
34
|
Kim TJ, Lee HJ, Pyun DH, Abd El-Aty AM, Jeong JH, Jung TW. Valdecoxib improves lipid-induced skeletal muscle insulin resistance via simultaneous suppression of inflammation and endoplasmic reticulum stress. Biochem Pharmacol 2021; 188:114557. [PMID: 33844985 DOI: 10.1016/j.bcp.2021.114557] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Valdecoxib (VAL), a non-steroidal anti-inflammatory drug, has been widely used for treatment of rheumatoid arthritis, osteoarthritis, and menstrual pain. It is a selective cyclooxygenase-2 inhibitor. The suppressive effects of VAL on cardiovascular diseases and neuroinflammation have been documented; however, its impact on insulin signaling in skeletal muscle has not been studied in detail. The aim of this study was to investigate the effects of VAL on insulin resistance in mouse skeletal muscle. Treatment of C2C12 myocytes with VAL reversed palmitate-induced aggravation of insulin signaling and glucose uptake. Further, VAL attenuated palmitate-induced inflammation and endoplasmic reticulum (ER) stress in a concentration-dependent manner. Treatment with VAL concentration-dependently upregulated AMP-activated protein kinase (AMPK) and heat shock protein beta 1 (HSPB1) expression. In line with in vitro experiments, treatment with VAL augmented AMPK phosphorylation and HSPB1 expression, thereby alleviating high-fat diet-induced insulin resistance along with inflammation and ER stress in mouse skeletal muscle. However, small interfering RNA-mediated inhibition of AMPK abolished the effects of VAL on insulin resistance, inflammation, and ER stress. These results suggest that VAL alleviates insulin resistance through AMPK/HSPB1-mediated inhibition of inflammation and ER stress in skeletal muscle under hyperlipidemic conditions. Hence, VAL could be used as an effective pharmacotherapeutic agent for management of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Kulkarni A, Bowers LW. The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis. Cell Mol Life Sci 2021; 78:3423-3442. [PMID: 33464384 PMCID: PMC11073382 DOI: 10.1007/s00018-020-03752-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Obesity has been linked to an increased risk of and a worse prognosis for several types of cancer. A number of interrelated mediators contribute to obesity's pro-tumor effects, including chronic adipose inflammation and other perturbations of immune cell development and function. Here, we review studies examining the impact of obesity-induced immune dysfunction on cancer risk and progression. While the role of adipose tissue inflammation in obesity-associated cancer risk has been well characterized, the effects of obesity on immune cell infiltration and activity within the tumor microenvironment are not well studied. In this review, we aim to highlight the impact of both adipose-mediated inflammatory signaling and intratumoral immunosuppressive signaling in obesity-induced cancer risk, progression, and metastasis.
Collapse
Affiliation(s)
- Aneesha Kulkarni
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Laura W Bowers
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
36
|
Chen R, Yang C, Li P, Wang J, Liang Z, Wang W, Wang Y, Liang C, Meng R, Wang HY, Peng S, Sun X, Su Z, Kong G, Wang Y, Zhang L. Long-Term Exposure to Ambient PM 2.5, Sunlight, and Obesity: A Nationwide Study in China. Front Endocrinol (Lausanne) 2021; 12:790294. [PMID: 35069443 PMCID: PMC8777285 DOI: 10.3389/fendo.2021.790294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Accumulated researches revealed that both fine particulate matter (PM2.5) and sunlight exposure may be a risk factor for obesity, while researches regarding the potential effect modification by sunlight exposure on the relationship between PM2.5 and obesity are limited. We aim to investigate whether the effect of PM2.5 on obesity is affected by sunlight exposure among the general population in China. METHODS A sample of 47,204 adults in China was included. Obesity and abdominal obesity were assessed based on body mass index, waist circumference and waist-to-hip ratio, respectively. The five-year exposure to PM2.5 and sunlight were accessed using the multi-source satellite products and a geochemical transport model. The relationship between PM2.5, sunshine duration, and the obesity or abdominal obesity risk was evaluated using the general additive model. RESULTS The proportion of obesity and abdominal obesity was 12.6% and 26.8%, respectively. Levels of long-term PM2.5 ranged from 13.2 to 72.1 μg/m3 with the mean of 46.6 μg/m3. Each 10 μg/m3 rise in PM2.5 was related to a higher obesity risk [OR 1.12 (95% CI 1.09-1.14)] and abdominal obesity [OR 1.10 (95% CI 1.07-1.13)]. The association between PM2.5 and obesity varied according to sunshine duration, with the highest ORs of 1.56 (95% CI 1.28-1.91) for obesity and 1.66 (95% CI 1.34-2.07) for abdominal obesity in the bottom quartile of sunlight exposure (3.21-5.34 hours/day). CONCLUSION Long-term PM2.5 effect on obesity risk among the general Chinese population are influenced by sunlight exposure. More attention might be paid to reduce the adverse impacts of exposure to air pollution under short sunshine duration conditions.
Collapse
Affiliation(s)
- Rui Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ze Liang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wanzhou Wang
- School of Public Health, Peking University, Beijing, China
| | - Yueyao Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Chenyu Liang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ruogu Meng
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Huai-yu Wang
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Suyuan Peng
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Xiaoyu Sun
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Zaiming Su
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Guilan Kong
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Yang Wang
- National Climate Center, China Meteorological Administration, Beijing, China
| | - Luxia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
- National Institute of Health Data Science at Peking University, Beijing, China
- *Correspondence: Luxia Zhang,
| |
Collapse
|
37
|
Kabir F, Nahar K, Rahman MM, Mamun F, Lasker S, Khan F, Yasmin T, Akter KA, Subhan N, Alam MA. Etoricoxib treatment prevented body weight gain and ameliorated oxidative stress in the liver of high-fat diet-fed rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:33-47. [PMID: 32780227 DOI: 10.1007/s00210-020-01960-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The main focus of this study was to determine the role of etoricoxib in counterbalancing the oxidative stress, metabolic disturbances, and inflammation in high-fat (HF) diet-induced obese rats. To conduct this study, 28 male Wistar rats (weighing 190-210 g) were distributed randomly into four groups: control, control + etoricoxib, HF, and HF + etoricoxib. After 8 weeks of treatment with etoricoxib (200 mg/kg), all the animals were sacrificed followed by the collection of blood and tissue samples in order to perform biochemical tests along with histological staining on hepatic tissues. According to this study, etoricoxib treatment prevented the body weight gain in HF diet-fed rats. Furthermore, rats of HF + etoricoxib group exhibited better blood glucose tolerance than the rats of HF diet-fed group. In addition, etoricoxib also markedly normalized HF diet-mediated rise of hepatic enzyme activity. Etoricoxib treatment lowered the level of oxidative stress indicators significantly with a parallel augmentation of antioxidant enzyme activities. Furthermore, etoricoxib administration helped in preventing inflammatory cell invasion, collagen accumulation, and fibrotic catastrophe in HF diet-fed rats. The findings of the present work are suggestive of the helpful role of etoricoxib in deterring the metabolic syndrome as well as other deleterious pathological changes afflicting the HF diet-fed rats.
Collapse
Affiliation(s)
- Fariha Kabir
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Kamrun Nahar
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Fariha Mamun
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Shoumen Lasker
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Tahmina Yasmin
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh.
| |
Collapse
|
38
|
Bianconi V, Pirro M, Moallem SMH, Majeed M, Bronzo P, D'Abbondanza M, Jamialahmadi T, Sahebkar A. The Multifaceted Actions of Curcumin in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:81-97. [PMID: 34981472 DOI: 10.1007/978-3-030-73234-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity remains a pervasive health concern worldwide with concomitant comorbidities such as cardiovascular diseases, diabetes, inflammation, and other metabolic disorders. A wealth of data validates dietary and lifestyle modifications such as restricting caloric intake and increasing physical activity to slow the obesity development. Recently, the advent of phytochemicals such as curcumin, the active ingredient in turmeric, has attracted considerable research interest in tracking down their possible effects in protection against obesity and obesity-related comorbidities. According to the existing literature, curcumin may regulate lipid metabolism and suppress chronic inflammation interacting with white adipose tissue, which plays a central role in the complications associated with obesity. Curcumin also inhibits the differentiation of adipocyte and improves antioxidant properties. In the present review, we sought to deliberate the possible effects of curcumin in downregulating obesity and curtailing the adverse health effects of obesity.
Collapse
Affiliation(s)
- Vanessa Bianconi
- Unit of Internal Medicine, Angiology, and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology, and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | | | - Paola Bronzo
- Unit of Internal Medicine, Angiology, and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Marco D'Abbondanza
- Unit of Internal Medicine, Angiology, and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Binenbaum I, Atamni HAT, Fotakis G, Kontogianni G, Koutsandreas T, Pilalis E, Mott R, Himmelbauer H, Iraqi FA, Chatziioannou AA. Container-aided integrative QTL and RNA-seq analysis of Collaborative Cross mice supports distinct sex-oriented molecular modes of response in obesity. BMC Genomics 2020; 21:761. [PMID: 33143653 PMCID: PMC7640698 DOI: 10.1186/s12864-020-07173-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The Collaborative Cross (CC) mouse population is a valuable resource to study the genetic basis of complex traits, such as obesity. Although the development of obesity is influenced by environmental factors, underlying genetic mechanisms play a crucial role in the response to these factors. The interplay between the genetic background and the gene expression pattern can provide further insight into this response, but we lack robust and easily reproducible workflows to integrate genomic and transcriptomic information in the CC mouse population. RESULTS We established an automated and reproducible integrative workflow to analyse complex traits in the CC mouse genetic reference panel at the genomic and transcriptomic levels. We implemented the analytical workflow to assess the underlying genetic mechanisms of host susceptibility to diet induced obesity and integrated these results with diet induced changes in the hepatic gene expression of susceptible and resistant mice. Hepatic gene expression differs significantly between obese and non-obese mice, with a significant sex effect, where male and female mice exhibit different responses and coping mechanisms. CONCLUSION Integration of the data showed that different genes but similar pathways are involved in the genetic susceptibility and disturbed in diet induced obesity. Genetic mechanisms underlying susceptibility to high-fat diet induced obesity are different in female and male mice. The clear distinction we observed in the systemic response to the high-fat diet challenge and to obesity between male and female mice points to the need for further research into distinct sex-related mechanisms in metabolic disease.
Collapse
Affiliation(s)
- Ilona Binenbaum
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biology, University of Patras, Patras, Greece
| | - Hanifa Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Georgios Fotakis
- Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
- e-NIOS PC, Kallithea, Athens, Greece
| | - Georgia Kontogianni
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodoros Koutsandreas
- e-NIOS PC, Kallithea, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pilalis
- e-NIOS PC, Kallithea, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Richard Mott
- Department of Genetics, University College of London, London, UK
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Life Sciences and Natural Resources, Vienna (BOKU), Vienna, Austria
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Aristotelis A Chatziioannou
- e-NIOS PC, Kallithea, Athens, Greece.
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
40
|
Tans R, Bande R, van Rooij A, Molloy BJ, Stienstra R, Tack CJ, Wevers RA, Wessels HJCT, Gloerich J, van Gool AJ. Evaluation of cyclooxygenase oxylipins as potential biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes using targeted multiple reaction monitoring mass spectrometry. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102157. [PMID: 32629236 DOI: 10.1016/j.plefa.2020.102157] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Obesity is associated with adipose tissue inflammation which in turn drives insulin resistance and the development of type 2 diabetes. Oxylipins are a collection of lipid metabolites, subdivided in different classes, which are involved in inflammatory cascades. They play important roles in regulating adipose tissue homeostasis and inflammation and are therefore putative biomarkers for obesity-associated adipose tissue inflammation and the subsequent risk of type 2 diabetes onset. The objective for this study is to design an assay for a specific oxylipin class and evaluate these as potential prognostic biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes. METHODS An optimized workflow was developed to extract oxylipins from plasma using solid-phase extraction followed by analysis using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer in multiple reaction monitoring mode. This workflow was applied to clinical plasma samples obtained from obese-type 2 diabetes patients and from lean and obese control subjects. RESULTS The assay was analytically validated and enabled reproducible analyses of oxylipins extracted from plasma with acceptable sensitivities. Analysis of clinical samples revealed discriminative values for four oxylipins between the type 2 diabetes patients and the lean and obese control subjects, viz. PGF2α, PGE2, 15-keto-PGE2 and 13,14-dihydro-15-keto-PGE2. The combination of PGF2α and 15-keto-PGE2 had the most predictive value to discriminate type 2 diabetic patients from lean and obese controls. CONCLUSIONS This proof-of-principle study demonstrates the potential value of oxylipins as biomarkers to discriminate obese individuals from obese-type 2 diabetes patients.
Collapse
Affiliation(s)
- Roel Tans
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rieke Bande
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arno van Rooij
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Rinke Stienstra
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alain J van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
41
|
Klauder J, Henkel J, Vahrenbrink M, Wohlenberg AS, Camargo RG, Püschel GP. Direct and indirect modulation of LPS-induced cytokine production by insulin in human macrophages. Cytokine 2020; 136:155241. [PMID: 32799102 DOI: 10.1016/j.cyto.2020.155241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Overweight and obesity are accompanied by insulin resistance, impaired intestinal barrier function resulting in increased lipopolysaccharide (LPS) levels, and a low-grade chronic inflammation that results in macrophage activation. Macrophages produce a range of interleukins as well as prostaglandin E2 (PGE2). To cope with insulin resistance, hyperinsulinemia develops. The purpose of the study was to elucidate how LPS, insulin and PGE2 might interact to modulate the inflammatory response in macrophages. Human macrophages were either derived by differentiation from U937 cells or isolated from blood mononuclear cells. The macrophages were stimulated with LPS, insulin and PGE2. Insulin significantly enhanced the LPS-dependent expression of interleukin-1β and interleukin-8 on both the mRNA and protein levels. Additionally, insulin increased the LPS-dependent induction of enzymes involved in the PGE2-synthesis and the production of PGE2 by macrophages. PGE2 in turn further enhanced the LPS-dependent expression of cytokines via its Gs-coupled receptors EP2 and EP4, the latter of which appeared to be more relevant. The combination of all three stimuli resulted in an even higher induction than the combination of LPS plus insulin or LPS plus PGE2. Thus, the compensatory hyperinsulinemia might directly and indirectly enhance the LPS-dependent cytokine production in obese individuals.
Collapse
Affiliation(s)
- Julia Klauder
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Nuthetal D-14558, Germany.
| | - Janin Henkel
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Nuthetal D-14558, Germany.
| | - Madita Vahrenbrink
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Nuthetal D-14558, Germany.
| | - Anne-Sophie Wohlenberg
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Nuthetal D-14558, Germany.
| | - Rodolfo Gonzalez Camargo
- University of São Paulo, Institute of Biomedical Sciences, Cancer Metabolism Research Group, 1524-Cidade Universitária, São Paulo 05508-000, Brazil.
| | - Gerhard Paul Püschel
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Nuthetal D-14558, Germany.
| |
Collapse
|
42
|
Kang NH, Mukherjee S, Jang MH, Pham HG, Choi M, Yun JW. Ketoprofen alleviates diet-induced obesity and promotes white fat browning in mice via the activation of COX-2 through mTORC1-p38 signaling pathway. Pflugers Arch 2020; 472:583-596. [PMID: 32358780 DOI: 10.1007/s00424-020-02380-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
|
43
|
Fernandez-Travieso JC, Rodriguez-Perez I, Ruenes-Domech C, lIlnait-Ferrer J, Fernandez-Dorta L, Mendoza-Castano S. Benefits of the Therapy With Abexol in Patients With Non-Alcoholic Fatty Liver Disease. Gastroenterology Res 2020; 13:73-80. [PMID: 32362966 PMCID: PMC7188363 DOI: 10.14740/gr1273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diseases ranging from steatosis to steatohepatitis and cirrhosis. Given the increasing incidence of NAFLD and the long-term consequences of this disease, it is important to identify the risk factors and therapeutic measures. Abexol is a mixture of beeswax alcohols with antioxidant, gastro-protective and anti-inflammatory effects. The aim was to conduct a pooled analysis of clinical trials data of the effects of Abexol treatment in patients with NAFLD. Methods The present analysis includes the data of all patients with NAFLD obtained from medium-term randomized, double-blinded, placebo controlled clinical studies with Abexol. One hundred patients with NAFLD received Abexol (100 mg/day) or placebo for 6 months. Significant changes in the ultrasound analysis of the liver were considered a primary efficacy variable. Secondary endpoints were decreased homeostasis model assessment (HOMA) index and insulin levels, and improved clinical symptoms. Statistical analysis of all data was according to the intention-to-treat method. Results Both groups were statistically homogeneous at baseline conditions. At 6 months of treatment, the number of Abexol-treated patients exhibiting a normal liver echo pattern on ultrasonography was greater than that of the placebo patients (P < 0.05). Abexol significantly reduced (P < 0.05) insulin levels and HOMA index. The proportion of Abexol patients showing symptom improvement was higher (P < 0.01) than that of the placebo group. Treatments were safe and well tolerated. Conclusions Treatment of Abexol during 6 months significantly ameliorates liver fat accumulation and insulin resistances, meanwhile improving clinical evolution in patients with NAFLD. The treatment was safe and well tolerated in these patients.
Collapse
|
44
|
Reinicke M, Dorow J, Bischof K, Leyh J, Bechmann I, Ceglarek U. Tissue pretreatment for LC-MS/MS analysis of PUFA and eicosanoid distribution in mouse brain and liver. Anal Bioanal Chem 2020; 412:2211-2223. [PMID: 31865417 PMCID: PMC7118053 DOI: 10.1007/s00216-019-02170-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) and eicosanoids are important mediators of inflammation. The functional role of eicosanoids in metabolic-syndrome-related diseases has been extensively studied. However, their role in neuroinflammation and the development of neurodegenerative diseases is still unclear. The aim of this study was the development of a sample pretreatment protocol for the simultaneous analysis of PUFAs and eicosanoids in mouse liver and brain. Liver and brain samples of male wild-type C57BL/6J mice (11-122 mg) were used to investigate conditions for tissue rinsing, homogenization, extraction, and storage. A targeted liquid chromatography-negative electrospray ionization tandem mass spectrometry method was applied to quantify 7 PUFAs and 94 eicosanoids. The final pretreatment protocol consisted of a 5-min homogenization step by sonication in 650 μL n-hexane/2-propanol (60:40 v/v) containing 2,6-di-tert-butyl-4-methylphenol at 50 μg/mL. Homogenates representing 1 mg tissue were extracted in a single step with n-hexane/2-propanol (60:40 v/v) containing 0.1% formic acid. Autoxidation was prevented by addition of 2,6-di-tert-butyl-4-methylphenol at 50 μg/mL and keeping the samples at 4 °C during sample preparation. Extracts were dried under nitrogen and reconstituted in liquid chromatography eluent before analysis. Recovery was determined to range from 45% to 149% for both liver and brain tissue. Within-run and between-run variability ranged between 7% and 18% for PUFAs and between 1% and 24% for eicosanoids. In liver, 7 PUFAs and 15 eicosanoids were quantified; in brain, 6 PUFAs and 21 eicosanoids had significant differences within the brain substructures. In conclusion, a robust and reproducible sample preparation protocol for the multiplexed analysis of PUFAs and eicosanoids by liquid chromatography-tandem mass spectrometry in liver and discrete brain substructures was developed.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany.
| | - Juliane Dorow
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| | - Karoline Bischof
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| | - Judith Leyh
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
| |
Collapse
|
45
|
Wang Z, Ma C, Shang Y, Yang L, Zhang J, Yang C, Ren C, Liu J, Fan G, Liu J. Simultaneous co-assembly of fenofibrate and ketoprofen peptide for the dual-targeted treatment of nonalcoholic fatty liver disease (NAFLD). Chem Commun (Camb) 2020; 56:4922-4925. [DOI: 10.1039/d0cc00513d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An ingenious co-assembled nanosystem based on fenofibrate and ketoprofen peptide for the dual-targeted treatment of NAFLD by reducing hepatic lipid accumulation and inflammatory responses.
Collapse
|
46
|
Jang SA, Namkoong S, Lee SR, Lee JW, Park Y, So G, Kim SH, Kim MJ, Jang KH, Avolio AP, Gangoda SVS, Koo HJ, Kim MK, Kang SC, Sohn EH. Multi-tissue lipotoxicity caused by high-fat diet feeding is attenuated by the supplementation of Korean red ginseng in mice. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-00056-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Zhang Y, Zheng Y, Fu Y, Wang C. Identification of biomarkers, pathways and potential therapeutic agents for white adipocyte insulin resistance using bioinformatics analysis. Adipocyte 2019; 8:318-329. [PMID: 31407623 PMCID: PMC6768254 DOI: 10.1080/21623945.2019.1649578] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For the better understanding of insulin resistance (IR), the molecular biomarkers in IR white adipocytes and its potential mechanism, we downloaded two mRNA expression profiles from Gene Expression Omnibus (GEO). The white adipocyte samples in two databases were collected from the human omental adipose tissue of IR obese (IRO) subjects and insulin-sensitive obese (ISO) subjects, respectively. We identified 86 differentially expressed genes (DEGs) between the IRO and ISO subjects using limma package in R software. Gene Set Enrichment Analysis (GSEA) provided evidence that the most gene sets enriched in kidney mesenchyme development in the ISO subjects, as compared with the IRO subjects. The Gene Ontology (GO) analysis indicated that the most significantly enriched in cellular response to interferon-gamma. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the DEGs were most significantly enriched in cytokine-cytokine receptor interaction. Protein–Protein Interaction (PPI) network was performed with the STRING, and the top 10 hub genes were identified with the Cytohubba. CMap analysis found several small molecular compounds to reverse the altered DEGs, including dropropizine, aceclofenac, melatonin, and so on. Our outputs could empower the novel potential targets to treat omental white adipocyte insulin resistance, diabetes, and diabetes-related diseases.
Collapse
Affiliation(s)
- Yemin Zhang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yuyang Zheng
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yalin Fu
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
48
|
Carpi S, Scoditti E, Massaro M, Polini B, Manera C, Digiacomo M, Esposito Salsano J, Poli G, Tuccinardi T, Doccini S, Santorelli FM, Carluccio MA, Macchia M, Wabitsch M, De Caterina R, Nieri P. The Extra-Virgin Olive Oil Polyphenols Oleocanthal and Oleacein Counteract Inflammation-Related Gene and miRNA Expression in Adipocytes by Attenuating NF-κB Activation. Nutrients 2019; 11:nu11122855. [PMID: 31766503 PMCID: PMC6950227 DOI: 10.3390/nu11122855] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation of the adipose tissue plays an important role in the development of several chronic diseases associated with obesity. Polyphenols of extra virgin olive oil (EVOO), such as the secoiridoids oleocanthal (OC) and oleacein (OA), have many nutraceutical proprieties. However, their roles in obesity-associated adipocyte inflammation, the NF-κB pathway and related sub-networks have not been fully elucidated. Here, we investigated impact of OC and OA on the activation of NF-κB and the expression of molecules associated with inflammatory and dysmetabolic responses. To this aim, fully differentiated Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were pre-treated with OC or OA before stimulation with TNF-α. EVOO polyphenols significantly reduced the expression of genes implicated in adipocyte inflammation (IL-1β, COX-2), angiogenesis (VEGF/KDR, MMP-2), oxidative stress (NADPH oxidase), antioxidant enzymes (SOD and GPX), leukocytes chemotaxis and infiltration (MCP-1, CXCL-10, MCS-F), and improved the expression of the anti-inflammatory/metabolic effector PPARγ. Accordingly, miR-155-5p, miR-34a-5p and let-7c-5p, tightly connected with the NF-κB pathway, were deregulated by TNF-α in both cells and exosomes. The miRNA modulation and NF-κB activation by TNF-α was significantly counteracted by EVOO polyphenols. Computational studies suggested a potential direct interaction between OC and NF-κB at the basis of its activity. This study demonstrates that OC and OA counteract adipocyte inflammation attenuating NF-κB activation. Therefore, these compounds could be novel dietary tools for the prevention of inflammatory diseases associated with obesity.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219597
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Jasmine Esposito Salsano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Maria Annunziata Carluccio
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, 89075 Ulm, Germany;
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
49
|
Zhang AJX, Zhu H, Chen Y, Li C, Li C, Chu H, Gozali L, Lee ACY, To KKW, Hung IFN, Yuen KY. Prostaglandin E2-Mediated Impairment of Innate Immune Response to A(H1N1)pdm09 Infection in Diet-Induced Obese Mice Could Be Restored by Paracetamol. J Infect Dis 2019; 219:795-807. [PMID: 30202973 DOI: 10.1093/infdis/jiy527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Obesity is associated with increased severity of influenza infection. However, the underlying mechanism is largely unknown. METHODS We employed a mouse model with diet-induced obesity (DIO) to study the innate immune responses induced by influenza virus. RESULTS The lungs of DIO mice were heavily affected by obesity-associated chronic systemic inflammation with a significant increase in inflammatory cytokines/chemokines. Concurrently, lipid immune mediator prostaglandin E2 (PGE2) was also significantly elevated in DIO mice. However, the DIO mice mounted a blunted and delayed upregulation of mRNA and protein concentrations of interferon-β and inflammatory cytokines/chemokines upon A(H1N1)pdm09 virus (H1N1/415742Md) challenge compared with those of lean mice. PGE2 concentrations were significantly higher in the lungs of DIO mice compared to that of lean mice postchallenge. Treatment with paracetamol in challenged DIO mice significantly enhanced the expression of interferon-α/β and cytokine genes at days 1 and 3 postinfection compared with that of untreated DIO mice. Furthermore, paracetamol treatment alone started 3 days before virus challenge and continued until 6 days postchallenge ameliorated the severity of a lethal H1N1/415742Md infection in DIO mice with improved survival. CONCLUSIONS Impaired innate response to influenza in DIO mice is associated with elevated PGE2, which could be restored to some degree by paracetamol treatment.
Collapse
Affiliation(s)
- Anna J X Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Houshun Zhu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yanxia Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chuangen Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Can Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hin Chu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Leonardi Gozali
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Andrew C Y Lee
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kelvin K W To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Ivan F N Hung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Gallic acid regulates adipocyte hypertrophy and suppresses inflammatory gene expression induced by the paracrine interaction between adipocytes and macrophages in vitro and in vivo. Nutr Res 2019; 73:58-66. [PMID: 31841748 DOI: 10.1016/j.nutres.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023]
Abstract
Obesity-induced chronic inflammation in adipose tissue plays a critical role in the development of insulin resistance and various lifestyle-related diseases. Although gallic acid (GA) is known to exert protective effects on obesity-related complications, its function in adipose tissue inflammation has not been elucidated. Recently, we reported that GA exerts protective effects against inflammation. To test our hypothesis that the anti-inflammatory effect of GA partially contributes to the improvement of metabolic diseases, we examined the effect of GA on inflammation caused by adipocyte-macrophage crosstalk in obesity. We showed that GA enhanced adipocyte differentiation in 3 T3-L1 adipocytes. Consistent with the enhancement of adipogenesis, GA decreased the gene expression of monocyte chemoattractant protein-1 and increased that of adiponectin and the upstream mediator peroxisome proliferator-activated receptor gamma. GA also reduced inflammatory mediator expression induced by the co-culture of 3 T3-L1 adipocytes with RAW 264 macrophages. Diet-induced obese mice treated with GA showed decreased serum cholesterol levels and adipocyte size, and improved insulin sensitivity without changes in body weight. Moreover, GA-treated mice had decreased expression of interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2, F4/80, and sterol regulatory element binding transcription factor-1 in their adipose tissue. These results indicate that GA suppresses adipocyte hypertrophy and inflammation caused by the interaction between adipocytes and macrophages, thereby improving metabolic disorders such as insulin resistance and dyslipidemia.
Collapse
|