1
|
Zhou J, Cui M, Liang J, Zhao J, Guo Y. ZYG11B participates in the modulation of colorectal cancer cell proliferation and immune infiltration and is a prognostic biomarker. BMC Cancer 2024; 24:1203. [PMID: 39350118 PMCID: PMC11440697 DOI: 10.1186/s12885-024-12963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
PROPOSE The biological function of ZYG11B is still unclear, and few studies on ZYG11B in colorectal cancer were reported. The purpose of our research is to detect the biological functions of ZYG11B in colorectal cancer through The Cancer Genome Atlas (TCGA) database online and the vitro cell experiments. METHODS The information of ZYG11B in colorectal cancer were downloaded from TCGA database. The bioinformatics analysis has been utilized to examine the expression, functional enrichment, association of immune, clinicopathological characteristics and diagnostic prognostic value. CCK-8 and apoptosis assays have been utilized to identify the abilities of progression and apoptosis. The abilities of invasion and migration were detected by transwell assay. RESULTS In contrast to adjacent normal tissues, colorectal cancer tissues exhibited a notably diminished expression of ZYG11B (p < 0.001). Further examination through functional enrichment analysis unveiled the enrichment of various pathways associated with tumor proliferation and apoptosis. The implementation of CCK-8 and apoptosis assays validated the suppressive impact of ZYG11B on the progression of colorectal cancer cells (p < 0.001). A significant positive correlation was found between ZYG11B and Tcm and T helper cells (R ≥ 0.3, p < 0.001). Moreover, the expression of ZYG11B demonstrated a prominent presence among subjects without previous experience of colon polyps (p < 0.05), devoid of lymphatic infiltration (p < 0.01), and age ≤ 65 years (p < 0.01). Additionally, ZYG11B exhibited higher expression levels among patients diagnosed with colorectal adenocarcinoma (p < 0.05). Following the analysis of survival prognosis, it became evident that increased ZYG11B expression correlated with enhanced survival rates (p < 0.01) and the ability to accurately forecast the prognosis and survival of COAD/READ patients. CONCLUSION ZYG11B plays a tumor suppressive role in the proliferation process of colorectal cancer and may have a broad application prospect in the diagnosis and prognosis evaluation of colorectal cancer with more study.
Collapse
Affiliation(s)
- Jinchi Zhou
- Department of Gastroenterology, Joint Logistic Support Force of PLA, 962 Hospital, Harbin City, 150080, China
| | - Mengmeng Cui
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Junrong Liang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Zhao
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, China.
| | - Yanjie Guo
- Department of Cardiology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Wang Z, Qiao X, Chen Y, Peng N, Niu C, Wang Y, Li C, Hu Z, Zhang C, Cheng C. SVIP reduces IGFBP-2 expression and inhibits glioblastoma progression via stabilizing PTEN. Cell Death Discov 2024; 10:362. [PMID: 39138166 PMCID: PMC11322382 DOI: 10.1038/s41420-024-02130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Glioblastoma (GBM) presents significant challenges due to its invasive nature and genetic heterogeneity. In this study, we investigated the impact of Small VCP/P97-Interacting Protein (SVIP) on GBM progression. Our results revealed elevated expression of Insulin-like Growth Factor Binding Protein 2 (IGFBP-2) and STIP1 homology and U-box containing protein 1 (STUB1), coupled with reduced SVIP levels in GBM samples. Notably, high IGFBP-2 expression correlated with poor prognosis. Mechanistically, SVIP competitively inhibited STUB1, selectively binding to VCP/p97, thereby reducing PTEN degradation. This SVIP-mediated regulation exerted influence on the PTEN/PI3K/AKT/mTOR pathway, leading to the suppression of GBM progression. Co-localization experiments demonstrated that SVIP hindered PTEN ubiquitination and degradation by outcompeting STUB1 for VCP/p97 binding. Moreover, SVIP overexpression resulted in reduced activation of AKT/mTOR signaling and facilitated autophagy. In vivo experiments using a GBM xenograft model substantiated the tumor-suppressive effects of SVIP, evident by suppressed tumor growth, decreased IGFBP-2 expression, and improved survival rates. Collectively, our findings underscore the functional significance of SVIP in GBM progression. By inhibiting STUB1 and stabilizing PTEN, SVIP modulates the expression of IGFBP-2 and attenuates the activation of the PI3K/AKT/mTOR pathway, thereby emerging as a promising therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Xiaolong Qiao
- Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Yinan Chen
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Nan Peng
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chaoshi Niu
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yang Wang
- Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Cong Li
- Dalian Medical University, Dalian, Liaoning, 116000, China.
| | - Zengchun Hu
- Department of Neurosurgery, 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116023, China.
| | - Caihua Zhang
- Dalian Medical University, Dalian, Liaoning, 116000, China.
| | - Chuandong Cheng
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
3
|
Quesnel MJ, Labonté A, Picard C, Zetterberg H, Blennow K, Brinkmalm A, Villeneuve S, Poirier J. Insulin-like growth factor binding protein-2 in at-risk adults and autopsy-confirmed Alzheimer brains. Brain 2024; 147:1680-1695. [PMID: 37992295 PMCID: PMC11068109 DOI: 10.1093/brain/awad398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signalling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein in the CSF, IGFBP2. CSF was collected from 109 asymptomatic members of the parental history-positive PREVENT-AD cohort. CSF levels of IGFBP2, core AD and synaptic biomarkers were measured using proximity extension assay, ELISA and mass spectrometry. Cortical amyloid-beta (Aβ) and tau deposition were examined using 18F-NAV4694 and flortaucipir. Cognitive assessments were performed during up to 8 years of follow-up, using the Repeatable Battery for the Assessment of Neuropsychological Status. T1-weighted structural MRI scans were acquired, and neuroimaging analyses were performed on pre-specified temporal and parietal brain regions. Next, in an independent cohort, we allocated 241 dementia-free ADNI-1 participants into four stages of AD progression based on the biomarkers CSF Aβ42 and total-tau (t-tau). In this analysis, differences in CSF and plasma IGFBP2 levels were examined across the pathological stages. Finally, IGFBP2 mRNA and protein levels were examined in the frontal cortex of 55 autopsy-confirmed AD and 31 control brains from the Quebec Founder Population (QFP) cohort, a unique population isolated from Eastern Canada. CSF IGFBP2 progressively increased over 5 years in asymptomatic PREVENT-AD participants. Baseline CSF IGFBP2 was positively correlated with CSF AD biomarkers and synaptic biomarkers, and negatively correlated with longitudinal changes in delayed memory (P = 0.024) and visuospatial abilities (P = 0.019). CSF IGFBP2 was negatively correlated at a trend-level with entorhinal cortex volume (P = 0.082) and cortical thickness in the piriform (P = 0.039), inferior temporal (P = 0.008), middle temporal (P = 0.014) and precuneus (P = 0.033) regions. In ADNI-1, CSF (P = 0.009) and plasma (P = 0.001) IGFBP2 were significantly elevated in Stage 2 [CSF Aβ(+)/t-tau(+)]. In survival analyses in ADNI-1, elevated plasma IGFBP2 was associated with a greater rate of AD conversion (hazard ratio = 1.62, P = 0.021). In the QFP cohort, IGFBP2 mRNA was reduced (P = 0.049); however, IGFBP2 protein levels did not differ in the frontal cortex of autopsy-confirmed AD brains (P = 0.462). Nascent AD pathology may induce an upregulation in IGFBP2 in asymptomatic individuals. CSF and plasma IGFBP2 may be valuable markers for identifying CSF Aβ(+)/t-tau(+) individuals and those with a greater risk of AD conversion.
Collapse
Affiliation(s)
- Marc James Quesnel
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792-2420, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75646 Cedex 13, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230026, P.R. China
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Sylvia Villeneuve
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Judes Poirier
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| |
Collapse
|
4
|
Zhang X, Sun X, Guo C, Li J, Liang G. Cancer-associated fibroblast-associated gene IGFBP2 promotes glioma progression through induction of M2 macrophage polarization. Am J Physiol Cell Physiol 2024; 326:C252-C268. [PMID: 37982173 DOI: 10.1152/ajpcell.00234.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
We elucidated the molecular mechanism of cancer-associated fibroblast (CAF)-associated gene insulin-like growth factor binding protein-2 (IGFBP2)-induced M2 macrophage polarization in the tumor microenvironment involved in glioma progression. The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) provided bulk RNA-sequencing datasets, ESTIMATE scores for glioma stromal cells, and overall survival-clinicopathological correlation analyses. TIMER provided CAF abundance in the TCGA glioma-related dataset, differential gene analysis was performed for high- and low-CAF groups, and weighted gene coexpression network analysis identified CAF-related genes. Univariate and multifactorial cyclooxygenase (COX) regression analyses created the CAF risk models single sample gene set enrichment analysis, CIBERSORT, and GSE84465. Mice were implanted with gliomas, and Western blot and RT-quantitative PCR showed IGFBP2 in tumor tissues. Adeno-associated virus (AAV) decreased IGFBP2, flow cytometry measured M1 and M2 macrophage ratios, and immunohistochemistry detected markers. TCGA and CGGA transcriptome data showed malignant gliomas had higher stromal cell scores and worse prognoses. Low- and high-CAF TCGA gliomas were detected, and differential expression, WGCNA, and multifactorial COX identified 132 CAF-related genes and seven high-risk genes (CPQ, EFEMP2, IGFBP2, RAB42, TNFRSF12A, and VASN). Neither CAF risk score, grade, nor 1p/19q affected glioma prognosis. CAF only enriched EFEMP2 and IGFBP2. Gene Expression Profiling Interactive Analysis compared EFEMP2 and IGFBP2 expression in normal brain tissue and gliomas. Low-grade glioma and malignant glioblastoma highly expressed IGFBP2 and EFEMP2. GSEA raised IGFBP2. CIBERSORT linked M2 macrophage infiltration to TCGA glioma immune cell subpopulation IGFBP2 expression. IGFBP2 knockdown stopped mouse glioma and M2 macrophage polarization. CAF plays a procarcinogenic role in glioma, and the CAF-related gene IGFBP2 could promote glioma progression by inducing M2 macrophage polarization.NEW & NOTEWORTHY The cancer-associated fibroblast (CAF)-related gene insulin-like growth factor binding protein-2 (IGFBP2) is highly expressed in gliomas and is associated with poor prognosis. CAF-related gene IGFBP2 promotes glioma progression by inducing polarization of M2 macrophages. This study provides a new basis for an in-depth investigation of the functional mechanisms of the glioma tumor microenvironment and the search for key genes involved in immune regulation in CAF.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People's Liberation Army, Shenyang, China
| | - Xiaolin Sun
- Department of Radiation, Affiliated Central Hospital of Shenyang Medical College, Shenyang, China
| | - Chen Guo
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People's Liberation Army, Shenyang, China
| | - Jianan Li
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People's Liberation Army, Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People's Liberation Army, Shenyang, China
| |
Collapse
|
5
|
Alrashid MH, Al-Serri AE, Hussain RF, Al-Bustan SA, Al-Barrak J. Association Study of IGF-1 rs35767 and rs6214 Gene Polymorphisms with Cancer Susceptibility and Circulating Levels of IGF-1, IGFBP-2, and IGFBP-3 in Colorectal Cancer Patients. Biomedicines 2023; 11:3166. [PMID: 38137390 PMCID: PMC10740888 DOI: 10.3390/biomedicines11123166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Early detection of colorectal cancer (CRC) increases the 5-year survival rate by 90%; therefore, non-invasive biomarkers such as measurable circulating proteins for early detection and prognosis are crucial. Insulin-like growth factor-1 (IGF-1) is involved in the regulation of cell proliferation and apoptosis. IGF binding proteins (IGFBPs) bind and inhibit the activity of IGF-1. It was inconsistently reported that high IGF-1 and IGFBP-2 and low IGFBP-3 circulating levels are associated with high cancer risk, poor prognosis, and tumor metastasis in several cancers. A total of 175 patients with CRC and 429 controls were enrolled in this study. We genotyped for IGF-1 rs35767 and rs6214 gene polymorphisms and assessed their association with circulating levels of IGF-1 and/or the risk for CRC. We also determined plasma levels of IGF-1, IGFBP-2, and IGFBP-3. Neither rs35767 nor rs2614 were associated with cancer risk or IGF-1 levels in our study cohort. IGF-1 and IGFBP-3 levels were higher in controls than in patients, whereas IGFBP-2 was higher in patients than in controls. Only IGFBP-2 was associated with increased tumor grade but not stage. Therefore, IGF-1, IGFBP-2, and IGFBP-3 may be useful as early detection and prognostic biomarkers in CRC.
Collapse
Affiliation(s)
- Maryam H. Alrashid
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait City 13060, Kuwait; (R.F.H.); (S.A.A.-B.)
| | - Ahmad E. Al-Serri
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Safat, Kuwait City 13060, Kuwait;
| | - Rubina F. Hussain
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait City 13060, Kuwait; (R.F.H.); (S.A.A.-B.)
| | - Suzanne A. Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait City 13060, Kuwait; (R.F.H.); (S.A.A.-B.)
| | | |
Collapse
|
6
|
Zhang N, Yang F, Zhao P, Jin N, Wu H, Liu T, Geng Q, Yang X, Cheng L. MrGPS: an m6A-related gene pair signature to predict the prognosis and immunological impact of glioma patients. Brief Bioinform 2023; 25:bbad498. [PMID: 38171932 PMCID: PMC10782913 DOI: 10.1093/bib/bbad498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is the predominant epigenetic modification for mRNAs that regulates various cancer-related pathways. However, the prognostic significance of m6A modification regulators remains unclear in glioma. By integrating the TCGA lower-grade glioma (LGG) and glioblastoma multiforme (GBM) gene expression data, we demonstrated that both the m6A regulators and m6A-target genes were associated with glioma prognosis and activated various cancer-related pathways. Then, we paired m6A regulators and their target genes as m6A-related gene pairs (MGPs) using the iPAGE algorithm, among which 122 MGPs were significantly reversed in expression between LGG and GBM. Subsequently, we employed LASSO Cox regression analysis to construct an MGP signature (MrGPS) to evaluate glioma prognosis. MrGPS was independently validated in CGGA and GEO glioma cohorts with high accuracy in predicting overall survival. The average area under the receiver operating characteristic curve (AUC) at 1-, 3- and 5-year intervals were 0.752, 0.853 and 0.831, respectively. Combining clinical factors of age and radiotherapy, the AUC of MrGPS was much improved to around 0.90. Furthermore, CIBERSORT and TIDE algorithms revealed that MrGPS is indicative for the immune infiltration level and the response to immune checkpoint inhibitor therapy in glioma patients. In conclusion, our study demonstrated that m6A methylation is a prognostic factor for glioma and the developed prognostic model MrGPS holds potential as a valuable tool for enhancing patient management and facilitating accurate prognosis assessment in cases of glioma.
Collapse
Affiliation(s)
- Ning Zhang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Fengxia Yang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Pengfei Zhao
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Nana Jin
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Haonan Wu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Tao Liu
- International Digital Economy Academy, Shenzhen, China
| | - Qingshan Geng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Xiaojun Yang
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Lixin Cheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| |
Collapse
|
7
|
Patiño-Morales CC, Jaime-Cruz R, Ramírez-Fuentes TC, Villavicencio-Guzmán L, Salazar-García M. Technical Implications of the Chicken Embryo Chorioallantoic Membrane Assay to Elucidate Neuroblastoma Biology. Int J Mol Sci 2023; 24:14744. [PMID: 37834193 PMCID: PMC10572838 DOI: 10.3390/ijms241914744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The chorioallantoic membrane (CAM) can be used as a valuable research tool to examine tumors. The CAM can be used to investigate processes such as migration, invasion, and angiogenesis and to assess novel antitumor drugs. The CAM can be used to establish tumors in a straightforward, rapid, and cost-effective manner via xenotransplantation of cells or tumor tissues with reproducible results; furthermore, the use of the CAM adheres to the three "R" principle, i.e., replace, reduce, and refine. To achieve successful tumor establishment and survival, several technical aspects should be taken into consideration. The complexity and heterogeneity of diseases including neuroblastoma and cancers in general and their impact on human health highlight the importance of preclinical models that help us describe tumor-specific biological processes. These models will not only help in understanding tumor biology, but also allow clinicians to explore therapeutic alternatives that will improve current treatment strategies. In this review, we summarize the technical characteristics as well as the main findings regarding the use of this model to study neuroblastoma for angiogenesis, metastasis, drug sensitivity, and drug resistance.
Collapse
Affiliation(s)
- Carlos César Patiño-Morales
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Cell Biology Laboratory, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico
| | - Ricardo Jaime-Cruz
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Department of Health Sciences, Universidad Tecnológica de México-UNITEC México-Campus Sur, Mexico City 09810, Mexico
| | - Tania Cristina Ramírez-Fuentes
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Section of Graduate Studies and Research, School of Medicine of the National Polytechnic Institute, Mexico City 11340, Mexico
| | - Laura Villavicencio-Guzmán
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
| | - Marcela Salazar-García
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| |
Collapse
|
8
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
9
|
Zhao Y, Che Y, Liu Q, Zhou S, Xiao Y. Analyses of m6A regulatory genes and subtype classification in atrial fibrillation. Front Cell Neurosci 2023; 17:1073538. [PMID: 37435047 PMCID: PMC10330950 DOI: 10.3389/fncel.2023.1073538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Objective To explore the role of m6A regulatory genes in atrial fibrillation (AF), we classified atrial fibrillation patients into subtypes by two genotyping methods associated with m6A regulatory genes and explored their clinical significance. Methods We downloaded datasets from the Gene Expression Omnibus (GEO) database. The m6A regulatory gene expression levels were extracted. We constructed and compared random forest (RF) and support vector machine (SVM) models. Feature genes were selected to develop a nomogram model with the superior model. We identified m6A subtypes based on significantly differentially expressed m6A regulatory genes and identified m6A gene subtypes based on m6A-related differentially expressed genes (DEGs). Comprehensive evaluation of the two m6A modification patterns was performed. Results The data of 107 samples from three datasets, GSE115574, GSE14975 and GSE41177, were acquired from the GEO database for training models, comprising 65 AF samples and 42 sinus rhythm (SR) samples. The data of 26 samples from dataset GSE79768 comprising 14 AF samples and 12 SR samples were acquired from the GEO database for external validation. The expression levels of 23 regulatory genes of m6A were extracted. There were correlations among the m6A readers, erasers, and writers. Five feature m6A regulatory genes, ZC3H13, YTHDF1, HNRNPA2B1, IGFBP2, and IGFBP3, were determined (p < 0.05) to establish a nomogram model that can predict the incidence of atrial fibrillation with the RF model. We identified two m6A subtypes based on the five significant m6A regulatory genes (p < 0.05). Cluster B had a lower immune infiltration of immature dendritic cells than cluster A (p < 0.05). On the basis of six m6A-related DEGs between m6A subtypes (p < 0.05), two m6A gene subtypes were identified. Both cluster A and gene cluster A scored higher than the other clusters in terms of m6A score computed by principal component analysis (PCA) algorithms (p < 0.05). The m6A subtypes and m6A gene subtypes were highly consistent. Conclusion The m6A regulatory genes play non-negligible roles in atrial fibrillation. A nomogram model developed by five feature m6A regulatory genes could be used to predict the incidence of atrial fibrillation. Two m6A modification patterns were identified and evaluated comprehensively, which may provide insights into the classification of atrial fibrillation patients and guide treatment.
Collapse
Affiliation(s)
- Yingliang Zhao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanyun Che
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Kunhiraman H, McSwain L, Shahab SW, Gershon TR, MacDonald TJ, Kenney AM. IGFBP2 promotes proliferation and cell migration through STAT3 signaling in Sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2023; 11:62. [PMID: 37029430 PMCID: PMC10082504 DOI: 10.1186/s40478-023-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/25/2023] [Indexed: 04/09/2023] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain malignancy and is divided into four molecularly distinct subgroups: WNT, Sonic Hedgehog (SHHp53mut and SHHp53wt), Group 3, and Group 4. Previous reports suggest that SHH MB features a unique tumor microenvironment compared with other MB groups. To better understand how SHH MB tumor cells interact with and potentially modify their microenvironment, we performed cytokine array analysis of culture media from freshly isolated MB patient tumor cells, spontaneous SHH MB mouse tumor cells and mouse and human MB cell lines. We found that the SHH MB cells produced elevated levels of IGFBP2 compared to non-SHH MBs. We confirmed these results using ELISA, western blotting, and immunofluorescence staining. IGFBP2 is a pleiotropic member of the IGFBP super-family with secreted and intracellular functions that can modulate tumor cell proliferation, metastasis, and drug resistance, but has been understudied in medulloblastoma. We found that IGFBP2 is required for SHH MB cell proliferation, colony formation, and cell migration, through promoting STAT3 activation and upregulation of epithelial to mesenchymal transition markers; indeed, ectopic STAT3 expression fully compensated for IGFBP2 knockdown in wound healing assays. Taken together, our findings reveal novel roles for IGFBP2 in SHH medulloblastoma growth and metastasis, which is associated with very poor prognosis, and they indicate an IGFBP2-STAT3 axis that could represent a novel therapeutic target in medulloblastoma.
Collapse
Affiliation(s)
- Haritha Kunhiraman
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Leon McSwain
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Shubin W Shahab
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Timothy R Gershon
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Anna Marie Kenney
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Chin C, Ravichandran R, Sanborn K, Fleming T, Wheatcroft SB, Kearney MT, Tokman S, Walia R, Smith MA, Flint DJ, Mohanakumar T, Bremner RM, Sureshbabu A. Loss of IGFBP2 mediates alveolar type 2 cell senescence and promotes lung fibrosis. Cell Rep Med 2023; 4:100945. [PMID: 36787736 PMCID: PMC10040381 DOI: 10.1016/j.xcrm.2023.100945] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Accumulation of senescent cells contributes to age-related diseases including idiopathic pulmonary fibrosis (IPF). Insulin-like growth factor binding proteins (IGFBPs) regulate many biological processes; however, the functional contributions of IGFBP2 in lung fibrosis remain largely unclear. Here, we report that intranasal delivery of recombinant IGFBP2 protects aged mice from weight loss and demonstrated antifibrotic effects after bleomycin lung injury. Notably, aged human-Igfbp2 transgenic mice reveal reduced senescence and senescent-associated secretory phenotype factors in alveolar epithelial type 2 (AEC2) cells and they ameliorated bleomycin-induced lung fibrosis. Finally, we demonstrate that IGFBP2 expression is significantly suppressed in AEC2 cells isolated from fibrotic lung regions of patients with IPF and/or pulmonary hypertension compared with patients with hypersensitivity pneumonitis and/or chronic obstructive pulmonary disease. Altogether, our study provides insights into how IGFBP2 regulates AEC2-cell-specific senescence and that restoring IGFBP2 levels in fibrotic lungs can prove effective for patients with IPF.
Collapse
Affiliation(s)
- Chiahsuan Chin
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ranjithkumar Ravichandran
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Kristina Sanborn
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Rajat Walia
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - David J Flint
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thalachallour Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA.
| |
Collapse
|
12
|
Du H, Zhou Y, Du X, Zhang P, Cao Z, Sun Y. Insulin-like growth factor binding protein 5b of Trachinotus ovatus and its heparin-binding motif play a critical role in host antibacterial immune responses via NF-κB pathway. Front Immunol 2023; 14:1126843. [PMID: 36865533 PMCID: PMC9972581 DOI: 10.3389/fimmu.2023.1126843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Insulin-like growth factor binding protein 5 (IGFBP5) exerts an essential biological role in many processes, including apoptosis, cellular differentiation, growth, and immune responses. However, compared to mammalians, our knowledge of IGFBP5 in teleosts remains limited. Methods In this study, TroIGFBP5b, an IGFBP5 homologue from golden pompano (Trachinotus ovatus) was identified. Quantitative real-time PCR (qRT-PCR) was used to check its mRNA expression level in healthy condition and after stimulation. In vivo overexpression and RNAi knockdown method were performed to evaluate the antibacterial profile. We constructed a mutant in which HBM was deleted to better understand the mechanism of its role in antibacterial immunity. Subcellular localization and nuclear translocation were verified by immunoblotting. Further, proliferation of head kidney lymphocytes (HKLs) and phagocytic activity of head kidney macrophages (HKMs) were detected through CCK-8 assay and flow cytometry. Immunofluorescence microscopy assay (IFA) and dual luciferase reporter (DLR) assay were used to evaluate the activity in nuclear factor-κB (NF-κβ) pathway. Results The TroIGFBP5b mRNA expression level was upregulated after bacterial stimulation. In vivo, TroIGFBP5b overexpression significantly improved the antibacterial immunity of fish. In contrast, TroIGFBP5b knockdown significantly decreased this ability. Subcellular localization results showed that TroIGFBP5b and TroIGFBP5b-δHBM were both present in the cytoplasm of GPS cells. After stimulation, TroIGFBP5b-δHBM lost the ability to transfer from the cytoplasm to the nucleus. In addition, rTroIGFBP5b promoted the proliferation of HKLs and phagocytosis of HKMs, whereas rTroIGFBP5b-δHBM, suppressed these facilitation effects. Moreover, the in vivo antibacterial ability of TroIGFBP5b was suppressed and the effects of promoting expression of proinflammatory cytokines in immune tissues were nearly lost after HBM deletion. Furthermore, TroIGFBP5b induced NF-κβ promoter activity and promoted nuclear translocation of p65, while these effects were inhibited when the HBM was deleted. Discussion Taken together, our results suggest that TroIGFBP5b plays an important role in golden pompano antibacterial immunity and activation of the NF-κβ signalling pathway, providing the first evidence that the HBM of TroIGFBP5b plays a critical role in these processes in teleosts.
Collapse
Affiliation(s)
- Hehe Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China.,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Xiangyu Du
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Panpan Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Zhenjie Cao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China.,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
13
|
Dya GA, Klychnikov OI, Adasheva DA, Vladychenskaya EA, Katrukha AG, Serebryanaya DV. IGF-Binding Proteins and Their Proteolysis as a Mechanism of Regulated IGF Release in the Nervous Tissue. BIOCHEMISTRY (MOSCOW) 2023; 88:S105-S122. [PMID: 37069117 DOI: 10.1134/s0006297923140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) play a key role in the maintenance of the nervous tissue viability. IGF-1 and IGF-2 exhibit the neuroprotective effects by stimulating migration and proliferation of nervous cells, activating cellular metabolism, inducing regeneration of damaged cells, and regulating various stages of prenatal and postnatal development of the nervous system. The availability of IGFs for the cells is controlled via their interaction with the IGF-binding proteins (IGFBPs) that inhibit their activity. On the contrary, the cleavage of IGFBPs by specific proteases leads to the IGF release and activation of its cellular effects. The viability of neurons in the nervous tissue is controlled by a complex system of trophic factors secreted by auxiliary glial cells. The main source of IGF for the neurons are astrocytes. IGFs can accumulate as an extracellular free ligand near the neuronal membranes as a result of proteolytic degradation of IGFBPs by proteases secreted by astrocytes. This mechanism promotes interaction of IGFs with their genuine receptors and triggers intracellular signaling cascades. Therefore, the release of IGF by proteolytic cleavage of IGFBPs is an important mechanism of neuronal protection. This review summarizes the published data on the role of IGFs and IGFBPs as the key players in the neuroprotective regulation with a special focus on the specific proteolysis of IGFBPs as a mechanism for the regulation of IGF bioavailability and viability of neurons.
Collapse
Affiliation(s)
- German A Dya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg I Klychnikov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elizaveta A Vladychenskaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey G Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
14
|
Zhou Y, Zhang Y, Li F, Lian X, Zhu Q, Zhu F, Qiu Y. SISPRO: signature identification for spatial proteomics. J Mol Biol 2023. [DOI: 10.1016/j.jmb.2022.167944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Wang W, Lu Z, Wang M, Liu Z, Wu B, Yang C, Huan H, Gong P. The cuproptosis-related signature associated with the tumor environment and prognosis of patients with glioma. Front Immunol 2022; 13:998236. [PMID: 36110851 PMCID: PMC9468372 DOI: 10.3389/fimmu.2022.998236] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022] Open
Abstract
Background Copper ions are essential for cellular physiology. Cuproptosis is a novel method of copper-dependent cell death, and the cuproptosis-based signature for glioma remains less studied. Methods Several glioma datasets with clinicopathological information were collected from TCGA, GEO and CGGA. Robust Multichip Average (RMA) algorithm was used for background correction and normalization, cuproptosis-related genes (CRGs) were then collected. The TCGA-glioma cohort was clustered using ConsensusClusterPlus. Univariate Cox regression analysis and the Random Survival Forest model were performed on the differentially expressed genes to identify prognostic genes. The cuproptosis-signature was constructed by calculating CuproptosisScore using Multivariate Cox regression analysis. Differences in terms of genomic mutation, tumor microenvironment, and enrichment pathways were evaluated between high- or low-CuproptosisScore. Furthermore, drug response prediction was carried out utilizing pRRophetic. Results Two subclusters based on CRGs were identified. Patients in cluster2 had better clinical outcomes. The cuproptosis-signature was constructed based on CuproptosisScore. Patients with higher CuproptosisScore had higher WHO grades and worse prognosis, while patients with lower grades were more likely to develop IDH mutations or MGMT methylation. Univariate and Multivariate Cox regression analysis demonstrated CuproptosisScore was an independent prognostic factor. The accuracy of the signature in prognostic prediction was further confirmed in 11 external validation datasets. In groups with high-CuproptosisScore, PIK3CA, MUC16, NF1, TTN, TP53, PTEN, and EGFR showed high mutation frequency. IDH1, TP53, ATRX, CIC, and FUBP1 demonstrated high mutation frequency in low-CuproptosisScore group. The level of immune infiltration increased as CuproptosisScore increased. SubMap analysis revealed patients with high-CuproptosisScore may respond to anti-PD-1 therapy. The IC50 values of Bexarotene, Bicalutamide, Bortezomib, and Cytarabine were lower in the high-CuproptosisScore group than those in the low-CuproptosisScore group. Finally, the importance of IGFBP2 in TCGA-glioma cohort was confirmed. Conclusion The current study revealed the novel cuproptosis-based signature might help predict the prognosis, biological features, and appropriate treatment for patients with glioma.
Collapse
|
16
|
Zhang B, Hong C, Luo Y, Wei L, Luo Y, Peng Y, Xu Y. Prognostic value of IGFBP2 in various cancers: a systematic review and meta-analysis. Cancer Med 2022; 11:3035-3047. [PMID: 35546443 PMCID: PMC9385590 DOI: 10.1002/cam4.4680] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prognostic significance of insulin-like growth factor binding protein 2 (IGFBP2) expression has been explored in plenty of studies in human cancers. Because of the controversial results, the meta-analysis was carried out to evaluate the relevance of IGFBP2 expression with the prognosis in various tumors. METHODS The data searched from four databases (Pubmed, Embase, Cochrane library, and Web of science) was used to calculate pooled hazard ratios (HRs) in this meta-analysis. Subgroup analyses were stratified by ethnicity, cancer type, publication year, Newcastle-Ottawa Scale score, treatments, and populations. RESULTS Twenty-one studies containing 5560 patients finally met inclusion criteria. IGFBP2 expression was associated with lower overall survival (HR = 1.57, 95% CI = 1.31-1.88) and progression-free survival (HR = 1.18, 95% CI = 1.04-1.34) in cancer patients, but not with disease-free survival (HR = 1.50, 95% CI = 0.91-2.46) or recurrence-free survival (HR = 1.50, 95% CI = 0.93-2.40). The subgroup analyses indicated IGFBP2 overexpression was significantly correlated with overall survival in Asian patients (HR = 1.42, 95% CI = 1.18-1.72), Caucasian patients (HR = 2.20, 95% CI = 1.31-3.70), glioma (HR = 1.36, 95% CI = 1.03-1.79), and colorectal cancer (HR = 2.52, 95% CI = 1.43-4.44) and surgery subgroups (HR = 1.97, 95% CI = 1.50-2.58). CONCLUSION The meta-analysis showed that IGFBP2 expression was associated with worse prognosis in several tumors, and may serve as a potential prognostic biomarker in cancer patients.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| | - Chao‐Qun Hong
- Provincial Key Laboratory of Guangdong Breast Cancer Diagnosis and TreatmentCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yu‐Hao Luo
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
| | - Lai‐Feng Wei
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yun Luo
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yu‐Hui Peng
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yi‐Wei Xu
- Department of Clinical Laboratory MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
- Precision Medicine Research Center, Shantou University Medical CollegeShantouChina
- Guangdong Esophageal Cancer Institutethe Cancer Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
17
|
Walterskirchen N, Müller C, Ramos C, Zeindl S, Stang S, Herzog D, Sachet M, Schimek V, Unger L, Gerakopoulos V, Hengstschläger M, Bachleitner-Hofmann T, Bergmann M, Dolznig H, Oehler R. Metastatic colorectal carcinoma-associated fibroblasts have immunosuppressive properties related to increased IGFBP2 expression. Cancer Lett 2022; 540:215737. [PMID: 35569697 DOI: 10.1016/j.canlet.2022.215737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
Abstract
Fibroblasts are the most abundant stromal constituents of the tumour microenvironment in primary as well as metastatic colorectal cancer (CRC). Their supportive effect on tumour cells is well established. There is growing evidence that stromal fibroblasts also modulate the immune microenvironment in tumours. Here, we demonstrate a difference in fibroblast-mediated immune modulation between primary CRC and peritoneal metastasis. Cancer-associated fibroblasts (CAFs) were isolated from primary cancer and from peritoneal metastases (MAFs) from a total of 17 patients. The ectoenzyme CD38 was consistently expressed on the surface of all MAFs, while it was absent from CAFs. Furthermore, MAFs secreted higher levels of IGFBP2, CXCL2, CXCL6, CXCL12, PDGF-AA, FGFb, and IL-6. This was associated with a decreased activation of macrophages and a suppression of CD25 expression and proliferation of co-cultivated T-cells. Downregulation of IGFBP2 abolished these immunosuppressive effects of MAFs. Taken together, these results show that MAFs contribute to an immunosuppressive tumour microenvironment in CRC metastases by modulating the phenotype of immune cells through an IGFBP2-dependent mechanism.
Collapse
Affiliation(s)
- Natalie Walterskirchen
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Catharina Müller
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Stephan Zeindl
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Simone Stang
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, A-1090, Vienna, Austria
| | - Daniela Herzog
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Monika Sachet
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Vanessa Schimek
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Lukas Unger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Vasileios Gerakopoulos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, A-1090, Vienna, Austria
| | - Thomas Bachleitner-Hofmann
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Michael Bergmann
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, A-1090, Vienna, Austria.
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
| |
Collapse
|
18
|
Wang S, Chi K, Wu D, Hong Q. Insulin-Like Growth Factor Binding Proteins in Kidney Disease. Front Pharmacol 2022; 12:807119. [PMID: 35002740 PMCID: PMC8728008 DOI: 10.3389/fphar.2021.807119] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
The seven members of the insulin-like growth factor (IGF) binding protein family (IGFBPs) were initially considered to be the regulatory proteins of IGFs in the blood circulation, mainly as the subsequent reserve for bidirectional regulation of IGF function during environmental changes. However, in recent years, IGFBPs has been found to have many functions independent of IGFs. The role of IGFBPs in regulating transcription, inducing cell migration and apoptosis is closely related to the occurrence and development of kidney disease. IGFBP-1, IGFBP-3, IGFBP-4 are closely associated with diabetes and diabetic nephropathy. IGFBP-3, IGFBP-4, IGFBP-5, IGFBP-6 are involved in different kidney disease such as diabetes, FSGS and CKD physiological process as apoptosis proteins, IGFBP-7 has been used in clinical practice as a biomarker for early diagnosis and prognosis of AKI. This review focuses on the differential expression and pathogenesis of IGFBPs in kidney disease.
Collapse
Affiliation(s)
- Shuqiang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China.,Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kun Chi
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Di Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
19
|
Zbinden JC, Mirhaidari GJM, Blum KM, Musgrave AJ, Reinhardt JW, Breuer CK, Barker JC. The lysosomal trafficking regulator is necessary for normal wound healing. Wound Repair Regen 2021; 30:82-99. [PMID: 34837653 DOI: 10.1111/wrr.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Non-healing wounds are a major threat to public health throughout the United States. Tissue healing is complex multifactorial process that requires synchronicity of several cell types. Endolysosomal trafficking, which contributes to various cell functions from protein degradation to plasma membrane repair, is an understudied process in the context of wound healing. The lysosomal trafficking regulator protein (LYST) is an essential protein of the endolysosomal system through an indeterminate mechanism. In this study, we examine the impact of impaired LYST function both in vitro with primary LYST mutant fibroblasts as well as in vivo with an excisional wound model. The wound model shows that LYST mutant mice have impaired wound healing in the form of delayed epithelialization and collagen deposition, independent of macrophage infiltration and polarisation. We show that LYST mutation confers a deficit in MCP-1, IGF-1, and IGFBP-2 secretion in beige fibroblasts, which are critical factors in normal wound healing. Identifying the mechanism of LYST function is important for understanding normal wound biology, which may facilitate the development of strategies to address problem wound healing.
Collapse
Affiliation(s)
- Jacob C Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andrew J Musgrave
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jenny C Barker
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
20
|
Shimizu M, Koma YI, Sakamoto H, Tsukamoto S, Kitamura Y, Urakami S, Tanigawa K, Kodama T, Higashino N, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. Metallothionein 2A Expression in Cancer-Associated Fibroblasts and Cancer Cells Promotes Esophageal Squamous Cell Carcinoma Progression. Cancers (Basel) 2021; 13:4552. [PMID: 34572779 PMCID: PMC8464741 DOI: 10.3390/cancers13184552] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Esophageal cancer has the sixth highest mortality rate worldwide. Cancer-associated fibroblasts (CAFs) are involved in the progression of various cancers. Previously, we demonstrated an association between high expression of the CAF marker, fibroblast activation protein, and poor prognosis of esophageal squamous cell carcinoma (ESCC). We also established CAF-like cells by indirect co-culture of bone marrow-derived mesenchymal stem cells with ESCC cell lines and found metallothionein 2A (MT2A) to be highly expressed in them. Here, to explore the function of MT2A in CAFs, we silenced MT2A in the CAF-like cells and ESCC cell lines using small interfering RNA. MT2A knockdown in the CAF-like cells suppressed expression and secretion of insulin-like growth factor binding protein 2 (IGFBP2); recombinant IGFBP2 promoted migration and invasiveness of ESCC cells via NFκB, Akt, and Erk signaling pathways. Furthermore, MT2A knockdown in the ESCC cell lines inhibited their growth, migration, and invasiveness. Immunohistochemistry demonstrated that high MT2A expression in the cancer stroma and cancer nest of ESCC tissues correlated with poor prognosis of ESCC patients. Hence, we report that MT2A in CAFs and cancer cells contributes to ESCC progression. MT2A and IGFBP2 are potential novel therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Masaki Shimizu
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Hiroki Sakamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Yu Kitamura
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kohei Tanigawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Nobuhide Higashino
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| | - Yoshihiro Kakeji
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.S.); (H.S.); (S.T.); (Y.K.); (S.U.); (K.T.); (T.K.); (N.H.); (M.N.); (M.S.); (H.Y.)
| |
Collapse
|
21
|
The IGF-1 Signaling Pathway in Viral Infections. Viruses 2021; 13:v13081488. [PMID: 34452353 PMCID: PMC8402757 DOI: 10.3390/v13081488] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 01/29/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) and the IGF-1 receptor (IGF-1R) belong to the insulin-like growth factor family, and IGF-1 activates intracellular signaling pathways by binding specifically to IGF-1R. The interaction between IGF-1 and IGF-1R transmits a signal through a number of intracellular substrates, including the insulin receptor substrate (IRS) and the Src homology collagen (Shc) proteins, which activate two major intracellular signaling pathways: the phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) pathways, specifically the extracellular signal-regulated kinase (ERK) pathways. The PI3K/AKT kinase pathway regulates a variety of cellular processes, including cell proliferation and apoptosis. IGF1/IGF-1R signaling also promotes cell differentiation and proliferation via the Ras/MAPK pathway. Moreover, upon IGF-1R activation of the IRS and Shc adaptor proteins, Shc stimulates Raf through the GTPase Ras to activate the MAPKs ERK1 and ERK2, phosphorylate and several other proteins, and to stimulate cell proliferation. The IGF-1 signaling pathway is required for certain viral effects in oncogenic progression and may be induced as an effect of viral infection. The mechanisms of IGF signaling in animal viral infections need to be clarified, mainly because they are involved in multifactorial signaling pathways. The aim of this review is to summarize the current data obtained from virological studies and to increase our understanding of the complex role of the IGF-1 signaling axis in animal virus infections.
Collapse
|
22
|
Morimoto-Kamata R, Tsuji D, Yui S. Cathepsin G-Induced Insulin-Like Growth Factor (IGF) Elevation in MCF-7 Medium Is Caused by Proteolysis of IGF Binding Protein (IGFBP)-2 but Not of IGF-1. Biol Pharm Bull 2021; 43:1678-1686. [PMID: 33132312 DOI: 10.1248/bpb.b20-00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cathepsin G (CG), a neutrophil serine protease, induces cell migration and multicellular aggregation of human breast cancer MCF-7 cells. It has been suggested that tumor cell aggregates are associated with tumor embolism, thus CG-induced cell aggregation may promote tumor metastasis. We have revealed that cell aggregation is caused by elevated free insulin-like growth factor (IGF)-1 in the medium, followed by activation of IGF-1 receptor (IGF-1R). However, the molecular mechanism underlying IGF-1 elevation induced by CG remains unclear. Here, we aimed to elucidate the mechanism by examining the degradative effects of CG on IGF-1, and the IGF binding proteins (IGFBPs), which interfere with the binding of IGF-1 to its receptor. CG specifically evoked MCF-7 cell aggregation at less than 1 nM in a dose-dependent manner, however, neutrophil elastase (NE), chymotrypsin, and trypsin did not. Free IGF-1 concentration was continuously elevated in the medium of cells treated with CG, whereas treatments with other serine proteases resulted in only a transient or slight increase. IGFBP-2, the predominant IGFBP in MCF-7 cells, was gradually digested by CG. CG did not cleave IGF-1 for at least 48 h, whereas other proteases completely digested it. Moreover, CG induced continuous phosphorylation of IGF-1R and Akt, whereas NE-induced phosphorylation was transient, possibly due to insulin receptor substrate (IRS)-1 digestion. These results indicated that CG-specific IGF-1 elevation in the medium is caused by digestion of IGFBP-2, not IGF-1. Hence, this study clarifies the molecular mechanism of CG-specific cell aggregation.
Collapse
Affiliation(s)
| | - Daiki Tsuji
- Laboratory of Host Defense, Faculty of Pharma-Science, Teikyo University
| | - Satoru Yui
- Laboratory of Host Defense, Faculty of Pharma-Science, Teikyo University
| |
Collapse
|
23
|
Kalya M, Kel A, Wlochowitz D, Wingender E, Beißbarth T. IGFBP2 Is a Potential Master Regulator Driving the Dysregulated Gene Network Responsible for Short Survival in Glioblastoma Multiforme. Front Genet 2021; 12:670240. [PMID: 34211498 PMCID: PMC8239365 DOI: 10.3389/fgene.2021.670240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Only 2% of glioblastoma multiforme (GBM) patients respond to standard therapy and survive beyond 36 months (long-term survivors, LTS), while the majority survive less than 12 months (short-term survivors, STS). To understand the mechanism leading to poor survival, we analyzed publicly available datasets of 113 STS and 58 LTS. This analysis revealed 198 differentially expressed genes (DEGs) that characterize aggressive tumor growth and may be responsible for the poor prognosis. These genes belong largely to the Gene Ontology (GO) categories “epithelial-to-mesenchymal transition” and “response to hypoxia.” In this article, we applied an upstream analysis approach that involves state-of-the-art promoter analysis and network analysis of the dysregulated genes potentially responsible for short survival in GBM. Binding sites for transcription factors (TFs) associated with GBM pathology like NANOG, NF-κB, REST, FRA-1, PPARG, and seven others were found enriched in the promoters of the dysregulated genes. We reconstructed the gene regulatory network with several positive feedback loops controlled by five master regulators [insulin-like growth factor binding protein 2 (IGFBP2), vascular endothelial growth factor A (VEGFA), VEGF165, platelet-derived growth factor A (PDGFA), adipocyte enhancer-binding protein (AEBP1), and oncostatin M (OSMR)], which can be proposed as biomarkers and as therapeutic targets for enhancing GBM prognosis. A critical analysis of this gene regulatory network gives insights into the mechanism of gene regulation by IGFBP2 via several TFs including the key molecule of GBM tumor invasiveness and progression, FRA-1. All the observations were validated in independent cohorts, and their impact on overall survival has been investigated.
Collapse
Affiliation(s)
- Manasa Kalya
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.,geneXplain GmbH, Wolfenbüttel, Germany
| | - Alexander Kel
- geneXplain GmbH, Wolfenbüttel, Germany.,Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Darius Wlochowitz
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | | | - Tim Beißbarth
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Nassar E, Hassan N, El-Ghonaimy EA, Hassan H, Abdullah MS, Rottke TV, Kiesel L, Greve B, Ibrahim SA, Götte M. Syndecan-1 Promotes Angiogenesis in Triple-Negative Breast Cancer through the Prognostically Relevant Tissue Factor Pathway and Additional Angiogenic Routes. Cancers (Basel) 2021; 13:cancers13102318. [PMID: 34066023 PMCID: PMC8150756 DOI: 10.3390/cancers13102318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Triple-negative breast cancer is an aggressive subtype of breast cancer characterized by tumor angiogenesis and poor patient survival. Here, we analyzed the function of the cell surface molecule Syndecan-1 in tumor angiogenesis in a 3D cell culture system. As a novel finding, we demonstrate that downregulation of Syndecan-1 reduces angiogenesis by decreasing the amount of angiogenesis factors of the tissue factor pathway. Furthermore, we show that the components of this pathway are associated with the prognosis of breast cancer patients. Our study identifies Syndecan-1 and the tissue factor pathway as novel potential therapeutic targets in the aggressive triple-negative subtype of breast cancer, for which no targeted therapies are currently available. Abstract Triple-negative breast cancer (TNBC) is characterized by increased angiogenesis, metastasis, and poor survival. Dysregulation of the cell surface heparan sulfate proteoglycan and signaling co-receptor Syndecan-1 is linked to poor prognosis. To study its role in angiogenesis, we silenced Syndecan-1 in TNBC cell lines using a 3D human umbilical vein endothelial cell (HUVEC) co-culture system. Syndecan-1 siRNA depletion in SUM-149, MDA-MB-468, and MDA-MB-231 cells decreased HUVEC tubule network formation. Angiogenesis array revealed reduced VEGF-A and tissue factor (TF) in the Syndecan-1-silenced secretome. qPCR independently confirmed altered expression of F3, F7, F2R/PAR1, F2RL1/PAR2, VEGF-A, EDN1, IGFBP1, and IGFBP2 in SUM-149, MDA-MB-231, and MDA-MB-468 cells. ELISA revealed reduced secreted endothelin-1 (SUM-149, MDA-MB-468) and TF (all cell lines) upon Syndecan-1 depletion, while TF pathway inhibitor treatment impaired angiogenesis. Survival analysis of 3951 patients demonstrated that high expression of F3 and F7 are associated with better relapse-free survival, whereas poor survival was observed in TNBC and p53 mutant basal breast cancer (F3) and in ER-negative and HER2-positive breast cancer (F2R, F2RL1). STRING protein network analysis revealed associations of Syndecan-1 with VEGF-A and IGFBP1, further associated with the TF and ET-1 pathways. Our study suggests that TNBC Syndecan-1 regulates angiogenesis via the TF and additional angiogenic pathways and marks its constituents as novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Eyyad Nassar
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Eslam A. El-Ghonaimy
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Mahmoud Salah Abdullah
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Theresa V. Rottke
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Burkhard Greve
- Department of Radiotherapy and Radiooncology, University Hospital Münster, 48149 Münster, Germany;
| | - Sherif Abdelaziz Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
- Correspondence: (S.A.I.); (M.G.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Correspondence: (S.A.I.); (M.G.)
| |
Collapse
|
25
|
Bleach R, Sherlock M, O'Reilly MW, McIlroy M. Growth Hormone/Insulin Growth Factor Axis in Sex Steroid Associated Disorders and Related Cancers. Front Cell Dev Biol 2021; 9:630503. [PMID: 33816477 PMCID: PMC8012538 DOI: 10.3389/fcell.2021.630503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
To date, almost all solid malignancies have implicated insulin-like growth factor (IGF) signalling as a driver of tumour growth. However, the remarkable level of crosstalk between sex hormones, the IGF-1 receptor (IGF-1R) and its ligands IGF-1 and 2 in endocrine driven cancers is incompletely understood. Similar to the sex steroids, IGF signalling is essential in normal development as well as growth and tissue homoeostasis, and undergoes a steady decline with advancing age and increasing visceral adiposity. Interestingly, IGF-1 has been found to play a compensatory role for both estrogen receptor (ER) and androgen receptor (AR) by augmenting hormonal responses in the absence of, or where low levels of ligand are present. Furthermore, experimental, and epidemiological evidence supports a role for dysregulated IGF signalling in breast and prostate cancers. Insulin-like growth factor binding protein (IGFBP) molecules can regulate the bioavailability of IGF-1 and are frequently expressed in these hormonally regulated tissues. The link between age-related disease and the role of IGF-1 in the process of ageing and longevity has gained much attention over the last few decades, spurring the development of numerous IGF targeted therapies that have, to date, failed to deliver on their therapeutic potential. This review will provide an overview of the sexually dimorphic nature of IGF signalling in humans and how this is impacted by the reduction in sex steroids in mid-life. It will also explore the latest links with metabolic syndromes, hormonal imbalances associated with ageing and targeting of IGF signalling in endocrine-related tumour growth with an emphasis on post-menopausal breast cancer and the impact of the steroidal milieu.
Collapse
Affiliation(s)
- Rachel Bleach
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mark Sherlock
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Michael W O'Reilly
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
26
|
Boughanem H, Yubero-Serrano EM, López-Miranda J, Tinahones FJ, Macias-Gonzalez M. Potential Role of Insulin Growth-Factor-Binding Protein 2 as Therapeutic Target for Obesity-Related Insulin Resistance. Int J Mol Sci 2021; 22:ijms22031133. [PMID: 33498859 PMCID: PMC7865532 DOI: 10.3390/ijms22031133] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Evidence from observational and in vitro studies suggests that insulin growth-factor-binding protein type 2 (IGFBP2) is a promising protein in non-communicable diseases, such as obesity, insulin resistance, metabolic syndrome, or type 2 diabetes. Accordingly, great efforts have been carried out to explore the role of IGFBP2 in obesity state and insulin-related diseases, which it is typically found decreased. However, the physiological pathways have not been explored yet, and the relevance of IGFBP2 as an important pathway integrator of metabolic disorders is still unknown. Here, we review and discuss the molecular structure of IGFBP2 as the first element of regulating the expression of IGFBP2. We highlight an update of the association between low serum IGFBP2 and an increased risk of obesity, type 2 diabetes, metabolic syndrome, and low insulin sensitivity. We hypothesize mechanisms of IGFBP2 on the development of obesity and insulin resistance in an insulin-independent manner, which meant that could be evaluated as a therapeutic target. Finally, we cover the most interesting lifestyle modifications that regulate IGFBP2, since lifestyle factors (diet and/or physical activity) are associated with important variations in serum IGFBP2.
Collapse
Affiliation(s)
- Hatim Boughanem
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| |
Collapse
|
27
|
Thomas D, Radhakrishnan P. Role of Tumor and Stroma-Derived IGF/IGFBPs in Pancreatic Cancer. Cancers (Basel) 2020; 12:E1228. [PMID: 32414222 PMCID: PMC7281733 DOI: 10.3390/cancers12051228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is the utmost stroma-rich cancer, which is accompanied by fibrotic reactions that stimulate interactions between tumor cells and stroma to promote tumor progression. Considerable research evidence denotes that insulin-like growth factor (IGF)/IGF binding proteins (IGFBP) signaling axis facilitate tumor growth, metastasis, drug resistance, and thereby facilitate PC into an advanced stage. The six members of IGFBPs were initially considered as passive carriers of free IGFs; however, current evidence revealed their functions beyond the endocrine role in IGF transport. Though numerous efforts have been made in blocking IGF/IGFBPs, the targeted therapies remain unsuccessful due to the complexity of tumor-stromal interactions in the pancreas. In this review, we explore the emerging evidence of the various roles of the tumor as well as stroma derived IGF/IGFBPs and highlight as a novel therapeutic target against PC progression.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA;
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
28
|
Włodarczyk B, Borkowska A, Włodarczyk P, Małecka-Panas E, Gąsiorowska A. Insulin-like growth factor 1 and insulin-like growth factor binding protein 2 serum levels as potential biomarkers in differential diagnosis between chronic pancreatitis and pancreatic adenocarcinoma in reference to pancreatic diabetes. PRZEGLAD GASTROENTEROLOGICZNY 2020; 16:36-42. [PMID: 33986886 PMCID: PMC8112262 DOI: 10.5114/pg.2020.95091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Insulin-like growth factor 1 (IGF-1) has been connected with development of pancreatic ductal adenocarcinoma (PDAC). AIM To evaluate the serum concentration levels of IGF-1 and insulin-like growth factor binding protein 2 (IGFBP-2) in patients with chronic pancreatitis (CP) and PDAC. Their values in diabetes mellitus (DM) were also assessed. MATERIAL AND METHODS The study included 83 patients with CP, 92 patients with PDAC, and 20 subjects as a control group. The concentrations of IGF-1 and IGFBP-2 were estimated with ELISA (Corgenix UK Ltd, R&D Systems). RESULTS The IGF-1 was higher in CP compared with PDAC (81.11 ±57.18 ng/ml vs. 53.18 ±36.05 ng/ml, p < 0.001), and both CP and PDAC were different from controls (81.11 ±57.18 ng/ml vs. 70.66 ±16.57 ng/ml, p < 0.001 and 53.18 ±36.05 ng/ml vs. 70.66 ±16.57 ng/ml, p < 0.001). CP without cysts have lower IGF-1 compared to those with CP and cysts (60.35 ±34.68 ng/ml vs. 93.55 ±64.78 ng/ml, p < 0.05). IGF-1 in CP without DM was higher compared to IGF-1 in PDAC without DM (91.13 ±65.48 ng/ml vs. 54.75 ±40.41 ng/ml, p < 0.001). In CP and DM the IGF-1 was elevated in comparison to PDAC and DM (62.20 ±32.38 ng/ml vs. 48.45 ±24.88 ng/ml, p < 0.05). IGFBP-2 was higher in CP compared to PDAC (512.42 ±299.77 ng/ml vs 301.59 ±190.36 ng/ml, p < 0.001). In CP and PDAC the IGFBP-2 level was elevated compared to the control group (512.42 ±299.77 ng/ml vs. 51.92 ±29.40 ng/ml, p < 0.001 and 301.59 ±190.36 ng/ml vs. 51.92 ±29.40 ng/ml, p < 0.001). IGFBP-2 in CP without DM was higher compared to PDAC without DM (559.39 ±281.43 vs. 296.53 ±196.93, p < 0.001). CONCLUSIONS IGF-1 and IGFBP-2 may be biomarkers of CP and PDAC. IGF-1 may be an indicator that signals whether pancreatic diabetes is from CP or PDAC.
Collapse
Affiliation(s)
- Barbara Włodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Anna Borkowska
- Department of Internal Medicine and Diabetology, Medical University of Lodz, Lodz, Poland
| | | | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Anita Gąsiorowska
- Clinic of Gastroenterology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
29
|
Dabrosin N, Dabrosin C. Postmenopausal Dense Breasts Maintain Premenopausal Levels of GH and Insulin-like Growth Factor Binding Proteins in Vivo. J Clin Endocrinol Metab 2020; 105:5695904. [PMID: 31900484 DOI: 10.1210/clinem/dgz323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022]
Abstract
CONTEXT Dense breast tissue is associated with 4 to 6 times higher risk of breast cancer by poorly understood mechanisms. No preventive therapy for this high-risk group is available. After menopause, breast density decreases due to involution of the mammary gland. In dense breast tissue, this process is haltered by undetermined biological actions. Growth hormone (GH) and insulin-like binding proteins (IGFBPs) play major roles in normal mammary gland development, but their roles in maintaining breast density are unknown. OBJECTIVE To reveal in vivo levels of GH, IGFBPs, and other pro-tumorigenic proteins in the extracellular microenvironment in breast cancer, in normal breast tissue with various breast density in postmenopausal women, and premenopausal breasts. We also sought to determine possible correlations between these determinants. SETTING AND DESIGN Microdialysis was used to collect extracellular in vivo proteins intratumorally from breast cancers before surgery and from normal human breast tissue from premenopausal women and postmenopausal women with mammographic dense or nondense breasts. RESULTS Estrogen receptor positive breast cancers exhibited increased extracellular GH (P < .01). Dense breasts of postmenopausal women exhibited similar levels of GH as premenopausal breasts and significantly higher levels than in nondense breasts (P < .001). Similar results were found for IGFBP-1, -2, -3, and -7 (P < .01) and for IGFBP-6 (P <.05). Strong positive correlations were revealed between GH and IGFBPs and pro-tumorigenic matrix metalloproteinases, urokinase-type plasminogen activator, Interleukin 6, Interleukin 8, and vascular endothelial growth factor in normal breast tissue. CONCLUSIONS GH pathways may be targetable for cancer prevention therapeutics in postmenopausal women with dense breast tissue.
Collapse
Affiliation(s)
- Nina Dabrosin
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
30
|
Intracellular Insulin-like growth factor binding protein 2 (IGFBP2) contributes to the senescence of keratinocytes in psoriasis by stabilizing cytoplasmic p21. Aging (Albany NY) 2020; 12:6823-6851. [PMID: 32302288 PMCID: PMC7202509 DOI: 10.18632/aging.103045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Psoriasis is a chronic Th1/Th17 lymphocytes-mediated inflammatory skin disease, in which epidermal keratinocytes exhibit a peculiar senescent state, resistance to apoptosis and the acquisition of senescence-associated secretory phenotype (SASP). SASP consists of the release of soluble factors, including IGFBPs, that exert extracellular and intracellular functions in IGF-dependent or independent manner.In this report, we investigated the expression and function of IGFBP2 in senescent keratinocytes isolated from the skin of patients with plaque psoriasis. We found that IGFBP2 is aberrantly expressed and released by these cells in vivo, as well as in vitro in keratinocyte cultures undergoing progressive senescence, and it associates with the cyclin-dependent kinase inhibitors p21 and p16 expression. For the first time, we provide evidence for a dual action of IGFBP2 in psoriatic keratinocytes during growth and senescence processes. While extracellular IGFBP2 counter-regulates IGF-induced keratinocyte hyper-proliferation, intracellular IGFBP2 inhibits apoptosis by interacting with p21 and protecting it from ubiquitin-dependent degradation. Indeed, we found that cytoplasmic p21 sustains anti-apoptotic processes, by inhibiting pro-caspase 3 cleavage and JNK phosphorylation in senescent psoriatic keratinocytes. As a consequence, abrogation of p21, as well as that of IGFBP2, found to stabilize cytoplasmic p21 levels, lead to the restoration of apoptosis mechanisms in psoriatic keratinocytes, commonly observed in healthy cells.
Collapse
|
31
|
Poreba E, Durzynska J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108307. [PMID: 32430099 DOI: 10.1016/j.mrrev.2020.108307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor (IGF) system stimulates growth, proliferation, and regulates differentiation of cells in a tissue-specific manner. It is composed of two insulin-like growth factors (IGF-1 and IGF-2), six insulin-like growth factor-binding proteins (IGFBPs), and two insulin-like growth factor receptors (IGF-1R and IGF-2R). IGF actions take place mostly through the activation of the plasma membrane-bound IGF-Rs by the circulating ligands (IGFs) released from the IGFBPs that stabilize their levels in the serum. This review focuses on the IGF-1 part of the system. The IGF-1 gene, which is expressed mainly in the liver as well as in other tissues, comprises six alternatively spliced exons that code for three protein isoforms (pro-IGF-1A, pro-IGF-1B, and pro-IGF-1C), which are processed to mature IGF-1 and E-peptides. The IGF-1R undergoes autophosphorylation, resulting in a signaling cascade involving numerous cytoplasmic proteins such as AKT and MAPKs, which regulate the expression of target genes. However, a more complex picture of the axis has recently emerged with all its components being translocated to the nuclear compartment. IGF-1R takes part in the regulation of gene expression by forming transcription complexes, modifying the activity of chromatin remodeling proteins, and participating in DNA damage tolerance mechanisms. Four IGFBPs contain a nuclear localization signal (NLS), which targets them to the nucleus, where they regulate gene expression (IGFBP-2, IGFBP-3, IGFBP-5, IGFBP-6) and DNA damage repair (IGFBP-3 and IGFBP-6). Last but not least, the IGF-1B isoform has been reported to be localized in the nuclear compartment. However, no specific molecular actions have been assigned to the nuclear pro-IGF-1B or its derivative EB peptide. Therefore, further studies are needed to shed light on their nuclear activity. These recently uncovered nuclear actions of different components of the IGF-1 axis are relevant in cancer cell biology and are discussed in this review.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Julia Durzynska
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
32
|
IGFBP2: integrative hub of developmental and oncogenic signaling network. Oncogene 2020; 39:2243-2257. [PMID: 31925333 DOI: 10.1038/s41388-020-1154-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) was discovered and identified as an IGF system regulator, controlling the distribution, function, and activity of IGFs in the pericellular space. IGFBP2 is a developmentally regulated gene that is highly expressed in embryonic and fetal tissues and markedly decreases after birth. Studies over the last decades have shown that in solid tumors, IGFBP2 is upregulated and promotes several key oncogenic processes, such as epithelial-to-mesenchymal transition, cellular migration, invasion, angiogenesis, stemness, transcriptional activation, and epigenetic programming via signaling that is often independent of IGFs. Growing evidence indicates that aberrant expression of IGFBP2 in cancer acts as a hub of an oncogenic network, integrating multiple cancer signaling pathways and serving as a potential therapeutic target for cancer treatment.
Collapse
|
33
|
Kaur G, Balasubramaniam SD, Lee YJ. IGFBP-2 in cervical cancer development. Exp Mol Pathol 2019; 113:104362. [PMID: 31870856 DOI: 10.1016/j.yexmp.2019.104362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/27/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Increased expression of insulin-like growth factor binding protein 2, IGFBP-2, is associated with many cancers, though its role in cervical cancer is unclear. The aim of this study was to investigate the expression of IGFBP-2 protein and the transcriptomics profile of genes involved in the IGF signaling pathway during cervical cancer development. DESIGN Immunohistochemical expression of IGFBP-2 protein was semi-quantitatively assessed in tissue microarrays containing 9 normal cervix, 10 low grade cervical intraepithelial neoplasia (LGCIN), 10 high grade cervical intraepithelial neoplasia (HGCIN) and 42 squamous cell carcinoma (SCC) cases. The gene expression profiles of IGFBP-2, IGF-1, IGF-1R, PTEN, MDM2, AKT1 and TP53 were determined in three cervical tissue samples each from normal cervix, human papillomavirus (HPV)-infected LGCIN, HGCIN and SCC, using Human Transcriptome Array 2.0. RESULTS IGFBP-2 protein was highly expressed in the cytoplasm of SCC cells compared to normal cervix (p = .013). The expression was not significantly associated with CIN grade or SCC stage. Transcriptomics profiling demonstrated upregulation of IGFBP-2 and TP53 in HGCIN and SCC compared to normal cervix. IGF-1, IGF-1R and PTEN genes were downregulated in all histological groups. IGF-1 gene was significantly downregulated in SCC (p = .031), while PTEN gene was significantly downregulated in HGCIN (p = .012), compared to normal cervix. MDM2 and AKT1 genes were downregulated in LGCIN and HGCIN, while upregulated in SCC. CONCLUSION In cervical carcinogenesis, IGFBP-2 appears to play an oncogenic role, probably through an IGF-independent mechanism.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| | | | - Yung Jen Lee
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| |
Collapse
|
34
|
Khan S. IGFBP-2 Signaling in the Brain: From Brain Development to Higher Order Brain Functions. Front Endocrinol (Lausanne) 2019; 10:822. [PMID: 31824433 PMCID: PMC6883226 DOI: 10.3389/fendo.2019.00822] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-binding protein-2 (IGFBP-2) is a pleiotropic polypeptide that functions as autocrine and/or paracrine growth factors. IGFBP-2 is the most abundant of the IGFBPs in the cerebrospinal fluid (CSF), and developing brain showed the highest expression of IGFBP-2. IGFBP-2 expressed in the hippocampus, cortex, olfactory lobes, cerebellum, and amygdala. IGFBP-2 mRNA expression is seen in meninges, blood vessels, and in small cell-body neurons (interneurons) and astrocytes. The expression pattern of IGFBP-2 is often developmentally regulated and cell-specific. Biological activities of IGFBP-2 which are independent of their abilities to bind to insulin-like growth factors (IGFs) are mediated by the heparin binding domain (HBD). To execute IGF-independent functions, some IGFBPs have shown to bind with their putative receptors or to translocate inside the cells. Thus, IGFBP-2 functions can be mediated both via insulin-like growth factor receptor-1 (IGF-IR) and independent of IGF-Rs. In this review, I suggest that IGFBP-2 is not only involved in the growth, development of the brain but also with the regulation of neuronal plasticity to modulate high-level cognitive operations such as spatial learning and memory and information processing. Hence, IGFBP-2 serves as a neurotrophic factor which acts via metaplastic signaling from embryonic to adult stages.
Collapse
|
35
|
Effect of IGFBP2 Overexpression on the Expression of Fatty Acid Synthesis Genes in Primary Cultured Chicken Hepatocytes. J Poult Sci 2019; 56:177-185. [PMID: 32055212 PMCID: PMC7005387 DOI: 10.2141/jpsa.0180114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The effects of insulin-like growth factor binding protein 2 (IGFBP2) on the expression of fatty acid synthesis regulators and triglyceride production were investigated in primary cultured chicken hepatocytes. The full-length chicken IGFBP2 coding region was synthesized by overlap extension PCR and cloned into the pcDNA3.1 vector. An in situ digestion method was used to prepare the chicken hepatocytes. Primary chicken hepatocytes were maintained in monolayer culture. Real-time PCR was used to detect changes in the expression of IGFBP2, PPARG, IGF1, IGF1R, APOAI, and LFABP, after the overexpression of IGFBP2 in chicken hepatocytes. Triglyceride production and glucose content were also evaluated using triglyceride and glucose analysis methods. The expression level of IGFBP2 increased after transfection of the IGFBP2-containing vector. The expression levels of PPARG, IGF1, and IGF1R also increased in cultured chicken hepatocytes after the overexpression of IGFBP2, whereas the expression of LFABP and APOAI decreased. Triglyceride production in primary cultured chicken hepatocytes increased after the overexpression of IGFBP2. These results suggest that IGFBP2 is involved in lipogenesis, increasing both the expression of fatty acid synthesis regulators, and triglyceride production in primary cultured chicken hepatocytes.
Collapse
|
36
|
Ceccarini G, Pelosini C, Ferrari F, Magno S, Vitti J, Salvetti G, Moretto C, Marioni A, Buccianti P, Piaggi P, Maffei M, Santini F. Serum IGF-binding protein 2 (IGFBP-2) concentrations change early after gastric bypass bariatric surgery revealing a possible marker of leptin sensitivity in obese subjects. Endocrine 2019; 65:86-93. [PMID: 30945111 DOI: 10.1007/s12020-019-01915-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Expression of IGFBP-2 in mice is regulated by leptin. Over-expression of IGFBP-2 is associated with reduced caloric intake and resistance to weight gain. Hormonal variations contributing to weight loss occur very early after bariatric surgery but have not been fully elucidated. We evaluated IGFBP-2 serum changes after bariatric surgery and their relationship with leptin variations to test the hypothesis that an increase of leptin sensitivity may explain some of the effects of gastric bypass. METHODS This is a historical prospective study. Fifty-one obese patients (41 women e 10 men), 9 non-obese surgical controls and 41 lean matched controls were studied. Serum IGFBP-2 and leptin were measured after bariatric bypass surgery at various time points up to 18 months, after non-bariatric laparoscopic surgery in a control group, and in lean matched controls. RESULTS Compared to lean controls, serum IGFBP-2 levels were lower in obese patients. After gastric bypass, IGFBP-2 significantly increased at 3 days and became normal before the occurrence of relevant changes in body weight, remaining stable up to 18 months after surgery. IGFBP-2/leptin ratio increased early after surgery and became normal after one year. CONCLUSIONS After gastric bypass, serum IGFBP-2 increases in a window of time when variations of hormones mediating the effects of bariatric surgery occur. Our results suggest that IGFBP-2, a leptin-regulated protein, may be an in-vivo marker of leptin action. If this is the case, an early improvement of leptin sensitivity might contribute to the anorectic effect of gastric bypass.
Collapse
Affiliation(s)
- Giovanni Ceccarini
- Obesity Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy.
| | - Caterina Pelosini
- Obesity Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Federica Ferrari
- Obesity Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Silvia Magno
- Obesity Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Jacopo Vitti
- Obesity Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Guido Salvetti
- Obesity Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Carlo Moretto
- Unit of Bariatric Surgery, University Hospital of Pisa, Pisa, Italy
| | | | | | - Paolo Piaggi
- Obesity Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Margherita Maffei
- Obesity Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
- Institute of Clinical Physiology, Italian National Research Council, Pisa, Italy
| | - Ferruccio Santini
- Obesity Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
37
|
MiR-34b-5p Mediates the Proliferation and Differentiation of Myoblasts by Targeting IGFBP2. Cells 2019; 8:cells8040360. [PMID: 30999686 PMCID: PMC6523632 DOI: 10.3390/cells8040360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/12/2022] Open
Abstract
As key post-transcriptional regulators, microRNAs (miRNAs) play an indispensable role in skeletal muscle development. Our previous study suggested that miR-34b-5p and IGFBP2 could have a potential role in skeletal muscle growth. Our goal in this study is to explore the function and regulatory mechanism of miR-34b-5p and IGFBP2 in myogenesis. In this study, the dual-luciferase reporter assay and Western blot analysis showed that IGFBP2 is a direct target of miR-34b-5p. Flow cytometric analysis and EdU assay showed that miR-34b-5p could repress the cell cycle progression of myoblasts, and miR-34b-5p could promote the formation of myotubes by promoting the expression of MyHC. On the contrary, the overexpression of IGFBP2 significantly facilitated the proliferation of myoblasts and hampered the formation of myotubes. Together, our results indicate that miR-34b-5p could mediate the proliferation and differentiation of myoblasts by targeting IGFBP2.
Collapse
|
38
|
Slater T, Haywood NJ, Matthews C, Cheema H, Wheatcroft SB. Insulin-like growth factor binding proteins and angiogenesis: from cancer to cardiovascular disease. Cytokine Growth Factor Rev 2019; 46:28-35. [PMID: 30954375 DOI: 10.1016/j.cytogfr.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
Abstract
Angiogenesis is a tightly regulated activity that is vital during embryonic development and for normal physiological repair processes and reproduction in healthy adults. Pathological angiogenesis is a driving force behind a variety of diseases including cancer and retinopathies, and inhibition of angiogenesis is a therapeutic option that has been the subject of much research, with several inhibitory agents now available for medical therapy. Conversely, therapeutic angiogenesis has been mooted as having significant potential in the treatment of ischemic conditions such as angina pectoris and peripheral arterial disease, but so far there has been less translation from lab to bedside. The insulin-like growth factor binding proteins (IGFBP) are a family of seven proteins essential for the binding and transport of the insulin-like growth factors (IGF). It is being increasingly recognised that IGFBPs have a significant role beyond simply modulating IGF activity, with evidence of both IGF dependent and independent actions through a variety of mechanisms. Moreover, the action of the IGFBPs can be stimulatory or inhibitory depending on the cell type and environment. Specifically the IGFBPs have been heavily implicated in angiogenesis, both pathological and physiological, and they have significant promise as targeted cell therapy agents for both pathological angiogenesis inhibition and therapeutic angiogenesis following ischemic injury. In this short review we will explore the current understanding of the individual impact of each IGFBP on angiogenesis, and the pathways through which these effects occur.
Collapse
Affiliation(s)
- Thomas Slater
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Connor Matthews
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Harneet Cheema
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom.
| |
Collapse
|
39
|
Zhou Z, Lu H, Zhu S, Gomaa A, Chen Z, Yan J, Washington K, El-Rifai W, Dang C, Peng D. Activation of EGFR-DNA-PKcs pathway by IGFBP2 protects esophageal adenocarcinoma cells from acidic bile salts-induced DNA damage. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:13. [PMID: 30626422 PMCID: PMC6327430 DOI: 10.1186/s13046-018-1021-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
Background The incidence of esophageal adenocarcinoma (EAC) is rising rapidly in the US and Western countries. The development of Barrett’s esophagus (BE) and its progression to EAC have been linked to chronic gastroesophageal reflux disease (GERD). Exposure of BE and EAC cells to acidic bile salts (ABS) in GERD conditions induces high levels of oxidative stress and DNA damage. In this study, we investigated the role of insulin-like growth factor binding protein 2 (IGFBP2) in regulating ABS-induced DNA double-strand breaks. Methods Real-time RT-PCR, western blot, immunohistochemistry, immunofluorescence, co-immunoprecipitation, flow cytometry, and cycloheximide (CHX) chase assays were used in this study. To mimic GERD conditions, a cocktail of acidic bile salts (pH 4) was used in 2D and 3D organotypic culture models. Overexpression and knockdown of IGFBP2 in EAC cells were established to examine the functional and mechanistic roles of IGFBP2 in ABS-induced DNA damage. Results Our results demonstrated high levels of IGFBP2 mRNA and protein in EAC cell lines as compared to precancerous Barrett’s cell lines, and IGFBP2 is frequently overexpressed in EACs (31/57). Treatment of EAC cells with ABS, to mimic GERD conditions, induced high levels of IGFBP2 expression. Knocking down endogenous IGFBP2 in FLO1 cells (with constitutive high levels of IGFBP2) led to a significant increase in DNA double-strand breaks and apoptosis, following transient exposure to ABS. On the other hand, overexpression of exogenous IGFBP2 in OE33 cells (with low endogenous levels of IGFBP2) had a protective effect against ABS-induced double-strand breaks and apoptosis. We found that IGFBP2 is required for ABS-induced nuclear accumulation and phosphorylation of EGFR and DNA-PKcs, which are necessary for DNA damage repair activity. Using co-immunoprecipitation assay, we detected co-localization of IGFBP2 with EGFR and DNA-PKcs, following acidic bile salts treatment. We further demonstrated, using cycloheximide chase assay, that IGFBP2 promotes EGFR protein stability in response to ABS exposure. Conclusions IGFBP2 protects EAC cells against ABS-induced DNA damage and apoptosis through stabilization and activation of EGFR - DNA-PKcs signaling axis. Electronic supplementary material The online version of this article (10.1186/s13046-018-1021-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangjian Zhou
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta W. Road, Xi'an, 710061, Shaanxi, China.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Ahmed Gomaa
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Jin Yan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Chengxue Dang
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta W. Road, Xi'an, 710061, Shaanxi, China.
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.
| |
Collapse
|
40
|
Semelakova M, Grauzam S, Betadthunga P, Tiedeken J, Coaxum S, Neskey DM, Rosenzweig SA. Vimentin and Non-Muscle Myosin IIA are Members of the Neural Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9) Interactome in Head and Neck Squamous Cell Carcinoma Cells. Transl Oncol 2019; 12:49-61. [PMID: 30267961 PMCID: PMC6160858 DOI: 10.1016/j.tranon.2018.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
Here we demonstrate an interaction between neural precursor cell expressed, developmentally-downregulated 9 (NEDD9) and the cytoskeletal proteins vimentin and non-muscle myosin IIA (NMIIA), based on co-immunoprecipitation and mass spectrometric sequence identification. Vimentin was constitutively phosphorylated at Ser56 but vimentin associated with NEDD9-was not phosphorylated at Ser56. In contrast, NMIIA bound to NEDD9 was phosphorylated on S1943 consistent with its function in invasion and secretion. Treatment of cells with the vimentin-targeting steroidal lactone withaferin A had no effect on vimentin turnover as previously reported, instead causing NEDD9 cleavage and cell death. The NMIIA-selective inhibitor blebbistatin induced cells to form long extensions and attenuated secretion of matrix metalloproteinases (MMPs) 2 and 9. While the site of vimentin interaction on NEDD9 was not defined, NMIIA was found to interact with NEDD9 at its substrate domain. NEDD9 interactions with vimentin and NMIIA are consistent with these proteins having roles in MMP secretion and cell invasion. These findings suggest that a better understanding of NEDD9 signaling is likely to reveal novel therapeutic targets for the prevention of invasion and metastasis.
Collapse
Affiliation(s)
- Martina Semelakova
- Institute of Biology and Ecology, Department of Cell Biology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Stèphane Grauzam
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Prabhakar Betadthunga
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Post Graduate-Studies and Research in Biotechnology, Sahydri Science College, Kuvempu University, Shimoga, Karnataka, India, 577203
| | - Jessica Tiedeken
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Sonya Coaxum
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina
| | - David M Neskey
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue MSC 550, Charleston, SC 29425-5050
| | - Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue MSC 550, Charleston, SC 29425-5050.
| |
Collapse
|
41
|
Loessner D, Rockstroh A, Shokoohmand A, Holzapfel BM, Wagner F, Baldwin J, Boxberg M, Schmalfeldt B, Lengyel E, Clements JA, Hutmacher DW. A 3D tumor microenvironment regulates cell proliferation, peritoneal growth and expression patterns. Biomaterials 2018; 190-191:63-75. [PMID: 30396040 DOI: 10.1016/j.biomaterials.2018.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
Abstract
Peritoneal invasion through the mesothelial cell layer is a hallmark of ovarian cancer metastasis. Using tissue engineering technologies, we recreated an ovarian tumor microenvironment replicating this aspect of disease progression. Ovarian cancer cell-laden hydrogels were combined with mesothelial cell-layered melt electrospun written scaffolds and characterized with proliferation and transcriptomic analyses and used as intraperitoneal xenografts. Here we show increased cancer cell proliferation in these 3D co-cultures, which we validated using patient-derived cells and linked to peritoneal tumor growth in vivo. Transcriptome-wide expression analysis identified IGFBP7, PTGS2, VEGFC and FGF2 as bidirectional factors deregulated in 3D co-cultures compared to 3D mono-cultures, which we confirmed by immunohistochemistry of xenograft and patient-derived tumor tissues and correlated with overall and progression-free survival. These factors were further increased upon expression of kallikrein-related proteases. This clinically predictive model allows us to mimic the complexity and processes of the metastatic disease that may lead to therapies that protect from peritoneal invasion or delay the development of metastasis.
Collapse
Affiliation(s)
- Daniela Loessner
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Anja Rockstroh
- Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Ali Shokoohmand
- Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Boris M Holzapfel
- Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany
| | - Ferdinand Wagner
- Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstr. 4, 80337 Munich, Germany
| | - Jeremy Baldwin
- Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Melanie Boxberg
- Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Barbara Schmalfeldt
- Gynecologic Department, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, 5841 South Maryland Avenue, MC2050, Chicago, IL 60637, USA
| | - Judith A Clements
- Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Dietmar W Hutmacher
- Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332-0405, USA; Institute for Advanced Study, Technical University Munich, Lichtenbergstr. 2a, 85748 Garching, Germany.
| |
Collapse
|
42
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
43
|
Aleksic T, Gray N, Wu X, Rieunier G, Osher E, Mills J, Verrill C, Bryant RJ, Han C, Hutchinson K, Lambert AG, Kumar R, Hamdy FC, Weyer-Czernilofsky U, Sanderson MP, Bogenrieder T, Taylor S, Macaulay VM. Nuclear IGF1R Interacts with Regulatory Regions of Chromatin to Promote RNA Polymerase II Recruitment and Gene Expression Associated with Advanced Tumor Stage. Cancer Res 2018; 78:3497-3509. [PMID: 29735545 PMCID: PMC6031306 DOI: 10.1158/0008-5472.can-17-3498] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/28/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Internalization of ligand-activated type I IGF receptor (IGF1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF1R reportedly associates with clinical response to IGF1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here, we investigated the significance of nuclear IGF1R in clinical cancers and cell line models. In prostate cancers, IGF1R was predominantly membrane localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF1R, and nuclear IGF1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF1R-binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF1 also enriched RNAPol2 on promoters containing IGF1R-binding sites. These functions were inhibited by IGF1/II-neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected IGF1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF1R, with evidence of correlation between nuclear IGF1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs.Significance: These findings reveal a noncanonical nuclear role for IGF1R in tumorigenesis, with implications for therapeutic evaluation of IGF inhibitory drugs. Cancer Res; 78(13); 3497-509. ©2018 AACR.
Collapse
Affiliation(s)
- Tamara Aleksic
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Eliot Osher
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard J Bryant
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cheng Han
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| | | | - Adam G Lambert
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rajeev Kumar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse, Munich, Germany
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
44
|
Yao X, Wang Y, Duan Y, Zhang Q, Li P, Jin R, Tao Y, Zhang W, Wang X, Jing C, Zhou X. IGFBP2 promotes salivary adenoid cystic carcinoma metastasis by activating the NF-κB/ZEB1 signaling pathway. Cancer Lett 2018; 432:38-46. [PMID: 29885520 DOI: 10.1016/j.canlet.2018.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 06/01/2018] [Indexed: 12/24/2022]
Abstract
Metastasis is a major cause of poor prognosis in patients suffered with salivary adenoid cystic carcinoma (SACC), in which many factors are implicated. In this study, we identified that IGFBP2, overexpressed in SACC, correlated positively with perineural invasion or metastasis and indicated worse outcome. Moreover, IGFBP2 overexpression could dramatically improve motility and invasion capacity of SACC cells in vitro. Mechanically, IGFBP2 enhanced expression of ZEB1 in a NF-κB (p65)-dependent manner and then promoted epithelial-mesenchymal transition (EMT) in SACC. In addition, IGFBP2 mutation in the nuclear localization signal could impede nuclear translocation of p65, lower ZEB1 expression, and abrogate the EMT process. In xenograft models, IGFBP2 overexpression promoted lung and liver metastases of SACC cells; while if nuclear IGFBP2 was reduced, the formation of metastases in lung and liver was weakened. Together, these results for the first time demonstrate that IGFBP2 plays an important role in invasion and metastasis of SACC through the NF-κB/ZEB1 signaling pathway and IGFBP2 may be a novel biomarker and target for SACC.
Collapse
Affiliation(s)
- Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Qiang Zhang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Ping Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Rui Jin
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yingjie Tao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Wenchao Zhang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China.
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China.
| |
Collapse
|
45
|
Insulin growth factor binding protein 2 mediates the progression of lymphangioleiomyomatosis. Oncotarget 2018; 8:36628-36638. [PMID: 28410230 PMCID: PMC5482682 DOI: 10.18632/oncotarget.16695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease that almost exclusively affects women. LAM cells migrate to the lungs, where they cause cystic destruction of lung parenchyma. Mutations in TSC1 or TSC2 lead to the activation of the mammalian target of rapamycin complex-1, a kinase that regulates growth factor-dependent protein translation, cell growth, and metabolism. Insulin-like growth factor binding protein 2 (IGFBP2) binds insulin, IGF1 and IGF2 in circulation, thereby modulating cell survival, migration, and invasion in neoplasms. In this study, we identified that IGFBP2 primarily localized in the nucleus of TSC2-null LAM patient-derived cells in vitro and in vivo. We also showed that nuclear accumulation of IGFBP2 is closely associated with estrogen receptor alpha (ERa) expression. Furthermore, estrogen treatment induced IGFBP2 nuclear translocation in TSC2-null LAM patient-derived cells. Importantly, depletion of IGFBP2 by siRNA reduced cell proliferation, enhanced apoptosis, and decreased migration and invasion of TSC2-null LAM patient-derived cells. More interestingly, depletion of IGFBP2 markedly decreased the phosphorylation of MAPK in LAM patient-derived TSC2-null cells. Collectively, these results suggest that IGFBP2 plays an important role in promoting tumorigenesis, through estrogen and ERalpha signaling pathway. Thus, targeting IGFBP2 may serve as a potential therapeutic strategy for women with LAM and other female gender specific neoplasms.
Collapse
|
46
|
Das SK, Pradhan AK, Bhoopathi P, Talukdar S, Shen XN, Sarkar D, Emdad L, Fisher PB. The MDA-9/Syntenin/IGF1R/STAT3 Axis Directs Prostate Cancer Invasion. Cancer Res 2018; 78:2852-2863. [PMID: 29572229 DOI: 10.1158/0008-5472.can-17-2992] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/26/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022]
Abstract
Although prostate cancer is clinically manageable during several stages of progression, survival is severely compromised once cells invade and metastasize to distant organs. Comprehending the pathobiology of invasion is required for developing efficacious targeted therapies against metastasis. Based on bioinformatics data, we predicted an association of melanoma differentiation-associated gene-9 [syntenin, or syndecan binding protein (SDCBP)] in prostate cancer progression. Using tissue samples from various Gleason stage prostate cancer patients with adjacent normal tissue, a series of normal prostate and prostate cancer cell lines (with differing tumorigenic/metastatic properties), mda-9/syntenin-manipulated variants (including loss-of-function and gain-of-function cell lines), and CRISPR/Cas9 stable MDA-9/Syntenin knockout cells, we now confirm the relevance of and dependence on MDA-9/syntenin in prostate cancer invasion. MDA-9/Syntenin physically interacted with insulin-like growth factor-1 receptor following treatment with insulin-like growth factor binding protein-2 (IGFBP2), regulating downstream signaling processes that enabled STAT3 phosphorylation. This activation enhanced expression of MMP2 and MMP9, two established enzymes that positively regulate invasion. In addition, MDA-9/syntenin-mediated upregulation of proangiogenic factors including IGFBP2, IL6, IL8, and VEGFA also facilitated migration of prostate cancer cells. Collectively, our results draw attention to MDA-9/Syntenin as a positive regulator of prostate cancer metastasis, and the potential application of targeting this molecule to inhibit invasion and metastasis in prostate cancer and potentially other cancers.Significance: This study provides new mechanistic insight into the proinvasive role of MDA-9/Syntenin in prostate cancer and has potential for therapeutic application to prevent prostate cancer metastasis. Cancer Res; 78(11); 2852-63. ©2018 AACR.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
47
|
Abstract
Insulinlike growth factor (IGF) binding proteins (IGFBPs) 1 to 6 are high-affinity regulators of IGF activity. They generally inhibit IGF actions by preventing binding to the IGF-I receptor but can also enhance their actions under some conditions. Posttranslational modifications such as glycosylation and phosphorylation modulate IGFBP properties, and IGFBP proteolysis results in IGF release. IGFBPs have more recently been shown to have IGF-independent actions. A number of mechanisms are involved, including modulation of other growth factor pathways, nuclear localization and transcriptional regulation, interaction with the sphingolipid pathway, and binding to non-IGF biomolecules in the extracellular space and matrix, on the cell surface and intracellularly. IGFBPs modulate important biological processes, including cell proliferation, survival, migration, senescence, autophagy, and angiogenesis. Their actions have been implicated in growth, metabolism, cancer, stem cell maintenance and differentiation, and immune regulation. Recent studies have shown that epigenetic mechanisms are involved in the regulation of IGFBP abundance. A more complete understanding of IGFBP biology is necessary to further define their cellular roles and determine their therapeutic potential.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Kesten D, Horovitz-Fried M, Brutman-Barazani T, Sampson SR. Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:551-559. [PMID: 29317261 DOI: 10.1016/j.bbamcr.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/02/2023]
Abstract
Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance.
Collapse
Affiliation(s)
- Dov Kesten
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | - Sanford R Sampson
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
49
|
Holly JMP, Broadhurst J, Mansor R, Bahl A, Perks CM. Hyperglycemia Promotes TMPRSS2-ERG Gene Fusion in Prostate Cancer Cells via Upregulating Insulin-Like Growth Factor-Binding Protein-2. Front Endocrinol (Lausanne) 2017; 8:305. [PMID: 29163372 PMCID: PMC5681733 DOI: 10.3389/fendo.2017.00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/20/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Epidemiologic evidence shows that obesity is associated with a greater risk of aggressive prostate cancer (PCa) and PCa-specific mortality and this is observed mainly in men with the TMPRSS2-ERG gene fusion. Obesity is often associated with comorbid conditions such as type 2 diabetes and hyperglycemia: we investigated whether some of the exposures associated with disturbed metabolism can also affect the frequency of this gene fusion. METHODS Fusion was induced in LNCaP PCa cells in normal or high levels of glucose, with or without insulin-like growth factor binding protein-2 (IGFBP-2) silenced or the presence of insulin-like growth factor-1 (IGF-I), insulin, or epidermal growth factor (EGF). RNA was extracted for analysis by nested PCR. Abundance of IGFBP-2, γH2AX, DNA-dependent protein kinase catalytic subunit (DNAPKcs), and β-actin were analyzed by Western immunoblotting. RESULTS Our data suggest that hyperglycemia-induced IGFBP-2 increased the frequency of the gene fusion that was accompanied by decreased levels of DNAPKcs implying that they were mediated by alterations in the rate of repair of double-strand breaks. In contrast insulin, IGF-I and EGF all decreased gene fusion events. CONCLUSION These novel observations may represent a further mechanism by which obesity can exert an effect aggravating PCa progression.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences, Southmead Hospital, Bristol, United Kingdom
| | - Jessica Broadhurst
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences, Southmead Hospital, Bristol, United Kingdom
| | - Rehanna Mansor
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences, Southmead Hospital, Bristol, United Kingdom
| | - Amit Bahl
- Department of Clinical Oncology, Bristol Haematology and Oncology Centre, University Hospitals Bristol, Bristol, United Kingdom
| | - Claire M. Perks
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences, Southmead Hospital, Bristol, United Kingdom
| |
Collapse
|
50
|
Meyer Z, Höflich C, Wirthgen E, Olm S, Hammon HM, Hoeflich A. Analysis of the IGF-system in milk from farm animals - Occurrence, regulation, and biomarker potential. Growth Horm IGF Res 2017; 35:1-7. [PMID: 28544872 DOI: 10.1016/j.ghir.2017.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022]
Abstract
IGFs and IGF-binding proteins (IGFBPs) are abundantly present in milk and in dairy products. Compared to the IGFs, the IGFBP have received less attention in milk, although truncated IGFBPs and IGFBP-glycosylation have been described in milk. Thereby, complex control of local IGF-effects can be assumed on the levels of IGFBPs, proteases, and protease inhibitors. The present review collects the current knowledge both on presence and regulation of IGFs and IGFBPs in milk particularly from dairy animal species. As a rule higher levels of IGF-I, IGF-II, and IGFBPs are measured around parturition if compared to later time-points of lactation. In all farm animal species included in this review, it is found that the relative abundancies of IGFBPs in milk and serum are similar, with IGFBP-3 and -2 characterized by higher concentrations if compared to IGFBP-4 or -5. The concentrations of IGFs and IGFBPs in milk or dairy products can be altered by hormones, dairy processing, or fermentation. Because milk can be used for non-invasive biomarker research, quality management, and health monitoring, we discuss novel directions of IGF-analysis and potential on-site biomarker research in milk.
Collapse
Affiliation(s)
- Zianka Meyer
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Elisa Wirthgen
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; Ligandis GbR, Gülzow-Prüzen, Germany
| | - Sven Olm
- MQD M-V mbH, Institut für Analytik und Hygiene, Güstrow, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| |
Collapse
|