1
|
Zhou Y, Wang M, Qian Y, Yu D, Zhang J, Fu M, Zhang X, Qin R, Ji R, Zhang X, Gu J. PRDX2 promotes gastric cancer progression by forming a feedback loop with PKM2/STAT3 axis. Cell Signal 2025; 127:111586. [PMID: 39761843 DOI: 10.1016/j.cellsig.2024.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Peroxiredoxin 2 (PRDX2) is an antioxidant enzyme that has been reported to be overexpressed in various cancers. However, the role of PRDX2 in gastric cancer progression and its underlying mechanism remains unclear. Herein, we revealed the function of PRDX2 in gastric cancer progression and explored its molecule mechanism. We identified that PRDX2 was upregulated and associated with poor prognosis in gastric cancer. The knockdown of PRDX2 inhibited the proliferation, migration and invasion of gastric cancer cells in vitro and suppressed tumor growth in vivo. Mechanistically, PRDX2 interacted with PKM2 (pyruvate kinase isozyme type M2) and protected PKM2 from ubiquitination and degradation, which enhanced glycolysis in gastric cancer cells. The interaction between PRDX2 and PKM2 also enhanced the binding affinity between PKM2 and importin α5, which induced PKM2 nuclear translocation and activated STAT3 signaling pathway. In addition, STAT3 (signal transducer and activator of transcription 3) was identified to bind to PRDX2 gene promoter and upregulate PRDX2 expression, which forms a positive regulatory feedback loop in gastric cancer cells. The present study unravels the biological role of PRDX2 in cancer progression and illustrates the underlying molecular mechanism, which may provide a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Rong Qin
- Department of Oncology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China.
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong 226300, China.
| |
Collapse
|
2
|
De Bolòs A, Sureda-Gómez M, Carreras-Caballé M, Rodríguez ML, Clot G, Beà S, Giné E, Campo E, Balsas P, Amador V. SOX11/PRDX2 axis modulates redox homeostasis and chemoresistance in aggressive mantle cell lymphoma. Sci Rep 2024; 14:7863. [PMID: 38570586 PMCID: PMC10991377 DOI: 10.1038/s41598-024-58216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.
Collapse
Affiliation(s)
- Anna De Bolòs
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Patricia Balsas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Alonso-Pérez V, Hernández V, Calzado MA, Vicente-Blázquez A, Gajate C, Soler-Torronteras R, DeCicco-Skinner K, Sierra A, Mollinedo F. Suppression of metastatic organ colonization and antiangiogenic activity of the orally bioavailable lipid raft-targeted alkylphospholipid edelfosine. Biomed Pharmacother 2024; 171:116149. [PMID: 38266621 DOI: 10.1016/j.biopha.2024.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Metastasis is the leading cause of cancer mortality. Metastatic cancer is notoriously difficult to treat, and it accounts for the majority of cancer-related deaths. The ether lipid edelfosine is the prototype of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs, and its antitumor activity involves lipid raft reorganization. In this study, we examined the effect of edelfosine on metastatic colonization and angiogenesis. Using non-invasive bioluminescence imaging and histological examination, we found that oral administration of edelfosine in nude mice significantly inhibited the lung and brain colonization of luciferase-expressing 435-Lung-eGFP-CMV/Luc metastatic cells, resulting in prolonged survival. In metastatic 435-Lung and MDA-MB-231 breast cancer cells, we found that edelfosine also inhibited cell adhesion to collagen-I and laminin-I substrates, cell migration in chemotaxis and wound-healing assays, as well as cancer cell invasion. In 435-Lung and other MDA-MB-435-derived sublines with different organotropism, edelfosine induced G2/M cell cycle accumulation and apoptosis in a concentration- and time-dependent manner. Edelfosine also inhibited in vitro angiogenesis in human and mouse endothelial cell tube formation assays. The antimetastatic properties were specific to cancer cells, as edelfosine had no effects on viability in non-cancerous cells. Edelfosine accumulated in membrane rafts and endoplasmic reticulum of cancer cells, and membrane raft-located CD44 was downregulated upon drug treatment. Taken together, this study highlights the potential of edelfosine as an attractive drug to prevent metastatic growth and organ colonization in cancer therapy. The raft-targeted drug edelfosine displays a potent activity against metastatic organ colonization and angiogenesis, two major hallmarks of tumor malignancy.
Collapse
Affiliation(s)
- Verónica Alonso-Pérez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Vanessa Hernández
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), E-14004 Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, E-14004 Córdoba, Spain; Hospital Universitario Reina Sofía, E-14004 Córdoba, Spain
| | - Alba Vicente-Blázquez
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, C/ Ramiro de Maeztu 9, E-28040 Madrid, Spain; Department of Biology, American University, Washington, DC 20016, USA
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, C/ Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Rafael Soler-Torronteras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), E-14004 Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, E-14004 Córdoba, Spain; Hospital Universitario Reina Sofía, E-14004 Córdoba, Spain
| | | | - Angels Sierra
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain; Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona-FCRB, E-08036 Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), Faculty of Health and Live Sciences, Universitat Pompeu Fabra, E-08036 Barcelona, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, C/ Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
4
|
Balasubramanian P, Vijayarangam V, Deviparasakthi MKG, Palaniyandi T, Ravi M, Natarajan S, Viswanathan S, Baskar G, Wahab MRA, Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol Res Pract 2024; 254:155080. [PMID: 38219498 DOI: 10.1016/j.prp.2023.155080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Peroxiredoxin 2 (PRDX2), a characteristic 2-Cys enzyme is one of the foremost effective scavenger proteins against reactive oxygen species (ROS) and hydrogen peroxide (H2O2) defending cells against oxidative stress. Dysregulation of this antioxidant raises the quantity of ROS and oxidative stress implicated in several diseases. PRDX2 lowers the generation of ROS that takes part in controlling several signalling pathways occurring in neurons, protecting them from stress caused by oxidation and an inflammatory harm. Depending on the aetiological variables, the kind of cancer, and the stage of tumour development, PRDX2 may behave either as an onco-suppressor or a promoter. However, overexpression of PRDX2 may be linked to the development of numerous cancers, including those of the colon, cervix, breast, and prostate. PRDX2 also plays a beneficial effect in inflammatory diseases. PRDX2 being a thiol-specific peroxidase, is known to control proinflammatory reactions. The spilling of PRDX2, on the other hand, accelerates cognitive impairment following a stroke by triggering an inflammatory reflex. PRDX2 expression patterns in vascular cells tend to be crucial to its involvement in cardiovascular diseases. In vascular smooth muscle cells, if the protein tyrosine phosphatase is restricted, PRDX2 could avoid the neointimal thickening which relies on platelet derived growth factor (PDGF), a vital component of vascular remodelling. A proper PRDX2 balance is therefore crucial. The imbalance causes a number of illnesses, including cancers, inflammatory diseases, cardiovascular ailments, and neurological and neurodegenerative problems which are discussed in this review.
Collapse
Affiliation(s)
| | - Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
5
|
Zhan X, Li J, Zeng R, Lei L, Feng A, Yang Z. MiR-92a-2-5p suppresses esophageal squamous cell carcinoma cell proliferation and invasion by targeting PRDX2. Exp Cell Res 2024; 435:113925. [PMID: 38211680 DOI: 10.1016/j.yexcr.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
MicroRNAs (miRNAs) can function as negative regulators of gene expression by binding to the 3'-untranslated region (3'-UTR) of target genes. The aberrant expression of miRNAs in neoplasm is extensively associated with tumorigenesis and cancer progression, including esophageal squamous cell carcinoma (ESCC). Our previous investigation has identified the oncogenic roles of Peroxiredoxin2 (PRDX2) in ESCC progression; however, its upstream regulatory mechanism remains to be elucidated. By merging the prediction results from miRWalk2.0 and miRNA differential expression analysis results based on The Cancer Genome Atlas Esophageal Carcinoma (TCGA-ESCA) database, eight miRNA candidates were predicted to be the potential regulatory miRNAs of PRDX2, followed by further identification of miR-92a-2-5p as the putative miRNA of PRDX2. Subsequent functional studies demonstrated that miR-92a-2-5p can suppress ESCC cell proliferation and migration, as well as tumor growth in subcutaneous tumor xenograft models, which might be mediated by the suppression of AKT/mTOR and Wnt3a/β-catenin signaling pathways upon miR-92a-2-5p mimic transfection condition. These data revealed the tumor suppressive functions of miR-92a-2-5p in ESCC by targeting PRDX2.
Collapse
Affiliation(s)
- Xiang Zhan
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Jixian Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Renya Zeng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Lingli Lei
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Alei Feng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China; Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| |
Collapse
|
6
|
Demicco M, Liu XZ, Leithner K, Fendt SM. Metabolic heterogeneity in cancer. Nat Metab 2024; 6:18-38. [PMID: 38267631 DOI: 10.1038/s42255-023-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
Collapse
Affiliation(s)
- Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
7
|
Matsuo H, Kawakami K, Ohara H, Kaneko T, Mashimo T, Yamada T, Nabika T. Apolipoprotein E-depletion accelerates arterial fat deposition in the spontaneously hypertensive rat. Exp Anim 2023; 72:439-445. [PMID: 37081644 PMCID: PMC10658095 DOI: 10.1538/expanim.23-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension and atherosclerosis are often found in one patient causing serious cardiovascular events. An animal model simultaneously expressing hypertension and atherosclerosis would be useful to study such a complex risk status. We therefore attempted to introduce a null mutation of the apolipoprotein E (ApoE) gene into the spontaneously hypertensive rat (SHR) using CRISPR/Cas9 to establish a genetic model for atherosclerosis with hypertension. We successfully established SHRApoE(-/-) having a 13-bps deletion in the 5'-end of ApoE gene. Deletion of ApoE protein was confirmed by Western blotting. Blood pressure of SHRApoE(-/-) was comparable to that of SHR. Feeding the rats with high fat high cholesterol diet (HFD) caused a significant increase in LDL cholesterol as well as in triglyceride in SHRApoE(-/-). After 8 weeks of HFD loading, superficial fat deposition was observed both in the aorta and the mesenteric arteries of SHRApoE(-/-) instead of mature atheromatous lesions found in humans. In addition, a null mutation of peroxiredoxin 2 (Prdx2) was introduced into SHRApoE(-/-) to examine the effect of increased oxidative stress on the development of atherosclerosis. SHR with the double depletion of ApoE and Prdx2 did not show mature atheroma either. Further, salt loading did not promote development of atheroma although it accelerated the development of fat deposition. These results indicated that when compared with ApoE-knockout mice, SHRApoE(-/-) was more resistant to atherosclerosis even though they have severe hypertension.
Collapse
Affiliation(s)
- Hiroyuki Matsuo
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
- Department of Functional Pathology, Shimane University Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Kohei Kawakami
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Hiroki Ohara
- Department of Functional Pathology, Shimane University Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Takehito Kaneko
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyou-ku, Kyoto 606-8501, Japan
| | - Takaya Yamada
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
8
|
Klement RJ, Sweeney RA. Metabolic factors associated with the prognosis of oligometastatic patients treated with stereotactic body radiotherapy. Cancer Metastasis Rev 2023; 42:927-940. [PMID: 37261610 DOI: 10.1007/s10555-023-10110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Over the past two decades, it has been established that cancer patients with oligometastases, i.e., only a few detectable metastases confined to one or a few organs, may benefit from an aggressive local treatment approach such as the application of high-precision stereotactic body radiotherapy (SBRT). Specifically, some studies have indicated that achieving long-term local tumor control of oligometastases is associated with prolonged overall survival. This motivates investigations into which factors may modify the dose-response relationship of SBRT by making metastases more or less radioresistant. One such factor relates to the uptake of the positron emission tomography tracer 2-deoxy-2-[18F]fluoro-D-glucose (FDG) which reflects the extent of tumor cell glycolysis or the Warburg effect, respectively. Here we review the biological mechanisms how the Warburg effect drives tumor cell radioresistance and metastasis and draw connections to clinical studies reporting associations between high FDG uptake and worse clinical outcomes after SBRT for oligometastases. We further review the evidence for distinct metabolic phenotypes of metastases preferentially seeding to specific organs and their possible translation into distinct radioresistance. Finally, evidence that obesity and hyperglycemia also affect outcomes after SBRT will be presented. While delivered dose is the main determinant of a high local tumor control probability, there might be clinical scenarios when metabolic targeting could make the difference between achieving local control or not, for example when doses have to be compromised in order to spare neighboring high-risk organs, or when tumors are expected to be highly therapy-resistant due to heavy pretreatment such as chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| | - Reinhart A Sweeney
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| |
Collapse
|
9
|
Sun YL, Zhao YX, Guan YN, You X, Zhang Y, Zhang M, Wu HY, Zhang WJ, Yao YZ. Study on the Relationship Between Differentially Expressed Proteins in Breast Cancer and Lymph Node Metastasis. Adv Ther 2023; 40:4004-4023. [PMID: 37422893 DOI: 10.1007/s12325-023-02588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Lymph node metastasis is a cause of poor prognosis in breast cancer. Mass spectrometry-based proteomics aims to map the protein landscapes of biological samples and profile tumors more comprehensively. Here, proteomics was employed to identify differentially expressed proteins (DEPs) that were associated with lymph node metastasis. METHODS Tandem mass tag (TMT) quantitative proteomic approaches were applied for extensive profiling of conditioned medium of MDA-MB-231 and MCF7 cell lines and serums of patients who did or did not have lymph node metastasis, and DEPs were analyzed by bioinformatics. Furthermore, potential secreted or membrane proteins MUC5AC, ITGB4, CTGF, EphA2, S100A4, PRDX2, and PRDX6 were selected for verification in 114 tissue microarray samples of breast cancer using the immunohistochemical method. The relevant data was analyzed and processed by independent sample t test, chi-square test, or Fisher's exact test using SPSS 22.0 software. RESULTS In the conditioned medium of MDA-MB-231 cell lines, 154 proteins were upregulated, while 136 were downregulated compared to those of MCF7. In the serum of patients with breast cancer and lymph node metastasis, 17 proteins were upregulated, and 5 proteins were downregulated compared to those without lymph node metastasis. Furthermore, according to tissue verification, CTGF, EphA2, S100A4, and PRDX2 were associated with breast cancer lymph node metastasis. CONCLUSION Our study provides a new perspective for the understanding of the role of DEPs (especially CTGF, EphA2, S100A4, and PRDX2) in the development and metastasis of breast cancer. They could become potential diagnostic and prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu-Lu Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Yi-Xin Zhao
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yi-Nan Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Xin You
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Yin Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Meng Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Hong-Yan Wu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Wei-Jie Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Yong-Zhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Jekabsons MB, Merrell M, Skubiz AG, Thornton N, Milasta S, Green D, Chen T, Wang YH, Avula B, Khan IA, Zhou YD. Breast cancer cells that preferentially metastasize to lung or bone are more glycolytic, synthesize serine at greater rates, and consume less ATP and NADPH than parent MDA-MB-231 cells. Cancer Metab 2023; 11:4. [PMID: 36805760 PMCID: PMC9940388 DOI: 10.1186/s40170-023-00303-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Gene expression signatures associated with breast cancer metastases suggest that metabolic re-wiring is important for metastatic growth in lungs, bones, and other organs. However, since pathway fluxes depend on additional factors such as ATP demand, allosteric effects, and post-translational modification, flux analysis is necessary to conclusively establish phenotypes. In this study, the metabolic phenotypes of breast cancer cell lines with low (T47D) or high (MDA-MB-231) metastatic potential, as well as lung (LM)- and bone (BoM)-homing lines derived from MDA-MB-231 cells, were assessed by 13C metabolite labeling from [1,2-13C] glucose or [5-13C] glutamine and the rates of nutrient and oxygen consumption and lactate production. MDA-MB-231 and T47D cells produced 55 and 63%, respectively, of ATP from oxidative phosphorylation, whereas LM and BoM cells were more glycolytic, deriving only 20-25% of their ATP from mitochondria. ATP demand by BoM and LM cells was approximately half the rate of the parent cells. Of the anabolic fluxes assessed, nucleotide synthesis was the major ATP consumer for all cell lines. Glycolytic NADH production by LM cells exceeded the rate at which it could be oxidized by mitochondria, suggesting that the malate-aspartate shuttle was not involved in re-oxidation of these reducing equivalents. Serine synthesis was undetectable in MDA-MB-231 cells, whereas 3-5% of glucose was shunted to serine by LM and BoM lines. Proliferation rates of T47D, BoM, and LM lines tightly correlated with their respiration-normalized NADPH production rates. In contrast, MDA-MB-231 cells produced NADPH and GSH at higher rates, suggesting this line is more oxidatively stressed. Approximately half to two-thirds of NADPH produced by T47D, MDA-MB-231, and BoM cells was from the oxidative PPP, whereas the majority in LM cells was from the folate cycle. All four cell lines used the non-oxidative PPP to produce pentose phosphates, although this was most prominent for LM cells. Taken together, the metabolic phenotypes of LM and BoM lines differed from the parent line and from each other, supporting the metabolic re-wiring hypothesis as a feature of metastasis to lung and bone.
Collapse
Affiliation(s)
- Mika B. Jekabsons
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Mollie Merrell
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Anna G. Skubiz
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Noah Thornton
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Sandra Milasta
- grid.240871.80000 0001 0224 711XDepartment of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Douglas Green
- grid.240871.80000 0001 0224 711XDepartment of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Taosheng Chen
- grid.240871.80000 0001 0224 711XDepartment of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Yan-Hong Wang
- grid.251313.70000 0001 2169 2489National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Bharathi Avula
- grid.251313.70000 0001 2169 2489National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Ikhlas A. Khan
- grid.251313.70000 0001 2169 2489National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA ,grid.251313.70000 0001 2169 2489Department of Biomedical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Yu-Dong Zhou
- grid.251313.70000 0001 2169 2489Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
11
|
Räuber S, Schroeter CB, Strippel C, Nelke C, Ruland T, Dik A, Golombeck KS, Regner-Nelke L, Paunovic M, Esser D, Münch C, Rosenow F, van Duijn M, Henes A, Ruck T, Amit I, Leypoldt F, Titulaer MJ, Wiendl H, Meuth SG, Meyer Zu Hörste G, Melzer N. Cerebrospinal fluid proteomics indicates immune dysregulation and neuronal dysfunction in antibody associated autoimmune encephalitis. J Autoimmun 2023; 135:102985. [PMID: 36621173 DOI: 10.1016/j.jaut.2022.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
Autoimmune Encephalitis (AE) spans a group of non-infectious inflammatory conditions of the central nervous system due to an imbalanced immune response. Aiming to elucidate the pathophysiological mechanisms of AE, we applied an unsupervised proteomic approach to analyze the cerebrospinal fluid (CSF) protein profile of AE patients with autoantibodies against N-methyl-d-aspartate receptor (NMDAR) (n = 9), leucine-rich glioma-inactivated protein 1 (LGI1) (n = 9), or glutamate decarboxylase 65 (GAD65) (n = 8) compared to 9 patients with relapsing-remitting multiple sclerosis as inflammatory controls, and 10 patients with somatic symptom disorder as non-inflammatory controls. We found a dysregulation of the complement system, a disbalance between pro-inflammatory and anti-inflammatory proteins on the one hand, and dysregulation of proteins involved in synaptic transmission, synaptogenesis, brain connectivity, and neurodegeneration on the other hand to a different extent in all AE subtypes compared to non-inflammatory controls. Furthermore, elevated levels of several proteases and reduction in protease inhibitors could be detected in all AE subtypes compared to non-inflammatory controls. Moreover, the different AE subtypes showed distinct protein profiles compared to each other and inflammatory controls which may facilitate future identification of disease-specific biomarkers. Overall, CSF proteomics provides insights into the complex pathophysiological mechanisms of AE, including immune dysregulation, neuronal dysfunction, neurodegeneration, and altered protease function.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Christopher Nelke
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tillmann Ruland
- Department of Psychiatry, University of Münster, 48149, Münster, Germany; Department of Psychiatry, Maria Brunn Hospital, 48163, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kristin S Golombeck
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Liesa Regner-Nelke
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuela Paunovic
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, 24105, Kiel, Lübeck, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Faculty of Medicine, Theodor-Stern-Kai 7, Building 75, 60590, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Frankfurt am Main, Germany; Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martijn van Duijn
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Antonia Henes
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, 24105, Kiel, Lübeck, Germany; Department of Neurology, Faculty of Medicine, Kiel University, 24105, Kiel, Germany
| | - Maarten J Titulaer
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
Laoukili J, van Schelven S, Küçükköse E, Verheem A, Goey K, Koopman M, Borel Rinkes I, Kranenburg O. BRAF V600E in colorectal cancer reduces sensitivity to oxidative stress and promotes site-specific metastasis by stimulating glutathione synthesis. Cell Rep 2022; 41:111728. [PMID: 36450250 DOI: 10.1016/j.celrep.2022.111728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022] Open
Abstract
The presence of BRAFV600E in colorectal cancer (CRC) is associated with a higher chance of distant metastasis. Oxidative stress in disseminated tumor cells limits metastatic capacity. To study the relationship between BRAFV600E, sensitivity to oxidative stress, and metastatic capacity in CRC, we use patient-derived organoids (PDOs) and tissue samples. BRAFV600E tumors and PDOs express high levels of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in glutathione synthesis. Deletion of GCL in BRAFV600E PDOs strongly reduces their capacity to form distant liver and lung metastases but does not affect peritoneal metastasis outgrowth. Vice versa, the glutathione precursor N-acetyl-cysteine promotes organ-site-specific metastasis in the liver and the lungs but not in the peritoneum. BRAFV600E confers resistance to pharmacologically induced oxidative stress in vitro, which is partially overcome by treatment with the BRAF-inhibitor vemurafenib. We conclude that GCL-driven glutathione synthesis protects BRAFV600E-expressing tumors from oxidative stress during distant metastasis to the liver and the lungs.
Collapse
Affiliation(s)
- Jamila Laoukili
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands.
| | - Susanne van Schelven
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands
| | - Emre Küçükköse
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands
| | - André Verheem
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands
| | - Kaitlyn Goey
- Department of Medical Oncology, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Inne Borel Rinkes
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands
| | - Onno Kranenburg
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands; Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Ding N, Jiang H, Thapa P, Hao Y, Alshahrani A, Allison D, Izumi T, Rangnekar VM, Liu X, Wei Q. Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. J Biol Chem 2022; 298:102123. [PMID: 35697073 PMCID: PMC9257407 DOI: 10.1016/j.jbc.2022.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
High levels of redox enzymes have been commonly observed in various types of human cancer, although whether and how the enzymes contribute to cancer malignancy and therapeutic resistance have yet to be understood. Peroxiredoxin IV (Prx4) is an antioxidant with bona fide peroxidase and molecular chaperone functions. Here, we report that Prx4 is highly expressed in prostate cancer patient specimens, as well as established prostate cancer cell lines, and that its levels can be further stimulated through the activation of androgen receptor signaling. We used lentivirus-mediated shRNA knockdown and CRISPR-Cas9 based KO techniques to establish Prx4-depleted prostate cancer cells, which showed delayed cell cycle progression, reduced rate of cell proliferation, migration, and invasion compared to control cells. In addition, we used proteome profiler phosphokinase arrays to identify signaling changes in Prx4-depleted cells; we found that loss of Prx4 results in insufficient phosphorylation of both Akt and its downstream kinase GSK3α/β. Moreover, we demonstrate that Prx4-depleted cells are more sensitive to ionizing radiation as they display compromised ability to scavenge reactive oxygen species and increased accumulation of DNA damage. In mouse xenograft models, we show depletion of Prx4 leads to significant suppression of tumor growth, and tumors formed by Prx4-depleted cells respond more effectively to radiation therapy. Our findings suggest that increased levels of Prx4 contribute to the malignancy and radioresistance of prostate cancer through the activation of Akt/GSK3 signaling pathways. Therefore, strategies targeting Prx4 may be utilized to potentially inhibit tumor growth and overcome radioresistance in prostate cancer.
Collapse
Affiliation(s)
- Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Derek Allison
- Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Vivek M Rangnekar
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
14
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
15
|
Dynamic Landscape of Extracellular Vesicle-Associated Proteins Is Related to Treatment Response of Patients with Metastatic Breast Cancer. MEMBRANES 2021; 11:membranes11110880. [PMID: 34832109 PMCID: PMC8619728 DOI: 10.3390/membranes11110880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the leading cause of cancer death in women. The majority of these deaths are due to disease metastasis, in which cancer cells disseminate to multiple organs and disrupt vital physiological functions. It is widely accepted that breast cancer cells secrete extracellular vesicles (EVs), which contain dynamic molecular cargo that act as versatile mediators of intercellular communication. Therefore, Evs. secreted by breast cancer cells could be involved in the development of metastatic disease and resistance to treatment. Moreover, changes in EV cargo could reflect the effects of therapy on their parent tumor cells. The aim of this feasibility study was to quantitatively profile the proteomes of Evs. isolated from blood samples taken from treatment sensitive and resistant metastatic breast cancer patients to identify proteins associated with responses. Three serial blood samples were collected from three patients with metastatic breast cancer receiving systemic therapy including a responder, a non-responder, and a mixed-responder. Evs. were isolated from plasma using size exclusion chromatography and their protein cargo was prepared for tandem mass tag (TMT)-labelling and quantitative analyses using two-dimensional high-performance liquid chromatography followed by tandem mass spectrometry. After filtering, we quantitatively identified 286 proteins with high confidence using a q value of 0.05. Of these, 149 were classified as EV associated candidate proteins and 137 as classical, high abundant plasma proteins. After comparing EV protein abundance between the responder and non-responder, we identified 35 proteins with unique de-regulated abundance patterns that was conserved at multiple time points. We propose that this proof-of-concept approach can be used to identify proteins which have potential as predictors of metastatic breast cancer response to treatment.
Collapse
|
16
|
Ren X, Ma L, Wang N, Zhou R, Wu J, Xie X, Zhang H, Liu D, Ma X, Dang C, Kang H, Zhou Z. Antioxidant Gene Signature Impacts the Immune Infiltration and Predicts the Prognosis of Kidney Renal Clear Cell Carcinoma. Front Genet 2021; 12:721252. [PMID: 34490047 PMCID: PMC8416991 DOI: 10.3389/fgene.2021.721252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Oxidative stress is related to oncogenic transformation in kidney renal clear cell carcinoma (KIRC). We intended to identify a prognostic antioxidant gene signature and investigate its relationship with immune infiltration in KIRC. Methods: With the support of The Cancer Genome Atlas (TCGA) database, we researched the gene expression and clinical data of KIRC patients. Antioxidant related genes with significant differences in expression between KIRC and normal samples were then identified. Through univariate and multivariate Cox analysis, a prognostic gene model was established and all patients were divided into high- and low-risk subgroups. Single sample gene set enrichment analysis was adopted to analyze the immune infiltration, HLA expression, and immune checkpoint genes in different risk groups. Finally, the prognostic nomogram model was established and evaluated. Results: We identified six antioxidant genes significantly correlated with the outcome of KIRC patients as independent predictors, namely DPEP1 (HR = 0.97, P < 0.05), GSTM3 (HR = 0.97, P < 0.05), IYD (HR = 0.33, P < 0.05), KDM3B (HR = 0.96, P < 0.05), PRDX2 (HR = 0.99, P < 0.05), and PRXL2A (HR = 0.96, P < 0.05). The high- and low-risk subgroups of KIRC patients were grouped according to the six-gene signature. Patients with higher risk scores had poorer prognosis, more advanced grade and stage, and more abundance of M0 macrophages, regulatory T cells, and follicular helper T cells. There were statistically significant differences in HLA and checkpoint gene expression between the two risk subgroups. The performance of the nomogram was favorable (concordance index = 0.766) and reliably predicted the 3-year (AUC = 0.792) and 5-year (AUC = 0.766) survival of patients with KIRC. Conclusion: The novel six antioxidant related gene signature could effectively forecast the prognosis of patients with KIRC, supply insights into the interaction between cellular antioxidant mechanisms and cancer, and is an innovative tool for selecting potential patients and targets for immunotherapy.
Collapse
Affiliation(s)
- Xueting Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruina Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianhua Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Di Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Proteome profiling of human placenta reveals developmental stage-dependent alterations in protein signature. Clin Proteomics 2021; 18:18. [PMID: 34372761 PMCID: PMC8351416 DOI: 10.1186/s12014-021-09324-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Placenta is a complex organ that plays a significant role in the maintenance of pregnancy health. It is a dynamic organ that undergoes dramatic changes in growth and development at different stages of gestation. In the first-trimester, the conceptus develops in a low oxygen environment that favors organogenesis in the embryo and cell proliferation and angiogenesis in the placenta; later in pregnancy, higher oxygen concentration is required to support the rapid growth of the fetus. This oxygen transition, which appears unique to the human placenta, must be finely tuned through successive rounds of protein signature alterations. This study compares placental proteome in normal first-trimester (FT) and term human placentas (TP). Methods Normal human first-trimester and term placental samples were collected and differentially expressed proteins were identified using two-dimensional liquid chromatography-tandem mass spectrometry. Results Despite the overall similarities, 120 proteins were differently expressed in first and term placentas. Out of these, 72 were up-regulated and 48 were down-regulated in the first when compared with the full term placentas. Twenty out of 120 differently expressed proteins were sequenced, among them seven showed increased (GRP78, PDIA3, ENOA, ECH1, PRDX4, ERP29, ECHM), eleven decreased (TRFE, ALBU, K2C1, ACTG, CSH2, PRDX2, FABP5, HBG1, FABP4, K2C8, K1C9) expression in first-trimester compared to the full-term placentas and two proteins exclusively expressed in first-trimester placentas (MESD, MYDGF). Conclusion According to Reactome and PANTHER softwares, these proteins were mostly involved in response to chemical stimulus and stress, regulation of biological quality, programmed cell death, hemostatic and catabolic processes, protein folding, cellular oxidant detoxification, coagulation and retina homeostasis. Elucidation of alteration in protein signature during placental development would provide researchers with a better understanding of the critical biological processes of placentogenesis and delineate proteins involved in regulation of placental function during development. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09324-y.
Collapse
|
18
|
Naß J, Abdelfatah S, Efferth T. The triterpenoid ursolic acid ameliorates stress in Caenorhabditis elegans by affecting the depression-associated genes skn-1 and prdx2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153598. [PMID: 34111615 DOI: 10.1016/j.phymed.2021.153598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Depression is one of the leading causes of death worldwide. Lower antioxidant concentrations and increased oxidative stress levels contribute to the development of depression. Effective and tolerable medications are urgently needed. Nrf2 and PRDX2 are promising targets in the treatment of oxidative stress and, therefore, promising for the development of novel antidepressants. Ursolic acid (UA), a natural triterpenoid found in various plants is known to exert neuroprotective and antioxidant effects. Skn-1 (which corresponds to human Nrf2) and prdx2 deficient mutants of the nematode Caenorhabditis elegans are suitable models to study the effect of UA on these targets. Additionally, stress assays are used to mimic stress or depressed state. METHODS We examined the antioxidant activity of UA in Caenorhabditis elegans wildtype and skn-1- and prdx2-deficient strains by H2DCF-DA and juglone assays as well as osmotic and heat stress assays. Additionally, we analyzed the binding of UA to human PRDX2 and Skn-1 proteins by molecular docking and microscale thermophoresis. RESULTS UA exerted strong antioxidant activities. Additionally, induction of stress resistance towards osmotic and heat stress was observed. qRT-PCR revealed that UA upregulated the gene expression of skn-1 and prdx2. Molecular docking studies supported these findings. CONCLUSION Our findings implicate that the strong antioxidant activity of UA may exert anti-depressive effects by its interaction with the Skn-1 transcription factor, which is part of a detoxification network, and the antioxidant PRDX2 protein, which protects the organism from the detrimental effects of radical oxygen species.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
19
|
García-Mulero S, Alonso MH, Pardo J, Santos C, Sanjuan X, Salazar R, Moreno V, Piulats JM, Sanz-Pamplona R. Lung metastases share common immune features regardless of primary tumor origin. J Immunother Cancer 2021; 8:jitc-2019-000491. [PMID: 32591432 PMCID: PMC7319789 DOI: 10.1136/jitc-2019-000491] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 01/13/2023] Open
Abstract
Background Only certain disseminated cells are able to grow in secondary organs to create a metastatic tumor. Under the hypothesis that the immune microenvironment of the host tissue may play an important role in this process, we have categorized metastatic samples based on their immune features. Methods Gene expression data of metastatic samples (n=374) from four secondary sites (brain, bone, liver and lung) were used to characterize samples based on their immune and stromal infiltration using gene signatures and cell quantification tools. A clustering analysis was done that separated metastatic samples into three different immune categories: high, medium and low. Results Significant differences were found between the immune profiles of samples metastasizing in distinct organs. Metastases in lung showed a higher immunogenic score than metastases in brain, liver or bone, regardless of their primary site of origin. Also, they preferentially clustered in the high immune group. Samples in this cluster exhibited a clear inflammatory phenotype, higher levels of immune infiltrate, overexpression of programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) pathways and upregulation of genes predicting clinical response to programmed cell death protein 1 (PD-1) blockade (T-cell inflammatory signature). A decision tree algorithm was used to select CD74 as a biomarker that identify samples belonging to this high-immune subtype of metastases, having specificity of 0.96 and sensitivity of 1. Conclusions We have found a group of lung-enriched metastases showing an inflammatory phenotype susceptible to be treated with immunotherapy.
Collapse
Affiliation(s)
- Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - M Henar Alonso
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer Group, Aragón Health Research Institute (IIS Aragón), Aragón i + D Foundation (ARAID), Zaragoza, Spain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Sanjuan
- Department of Pathology, University Hospital Bellvitge (HUB-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramón Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Josep María Piulats
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
20
|
Wang C, Luo D. The metabolic adaptation mechanism of metastatic organotropism. Exp Hematol Oncol 2021; 10:30. [PMID: 33926551 PMCID: PMC8082854 DOI: 10.1186/s40164-021-00223-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Metastasis is a complex multistep cascade of cancer cell extravasation and invasion, in which metabolism plays an important role. Recently, a metabolic adaptation mechanism of cancer metastasis has been proposed as an emerging model of the interaction between cancer cells and the host microenvironment, revealing a deep and extensive relationship between cancer metabolism and cancer metastasis. However, research on how the host microenvironment affects cancer metabolism is mostly limited to the impact of the local tumour microenvironment at the primary site. There are few studies on how differences between the primary and secondary microenvironments promote metabolic changes during cancer progression or how secondary microenvironments affect cancer cell metastasis preference. Hence, we discuss how cancer cells adapt to and colonize in the metabolic microenvironments of different metastatic sites to establish a metastatic organotropism phenotype. The mechanism is expected to accelerate the research of cancer metabolism in the secondary microenvironment, and provides theoretical support for the generation of innovative therapeutic targets for clinical metastatic diseases.
Collapse
Affiliation(s)
- Chao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
21
|
Tarragó-Celada J, Cascante M. Targeting the Metabolic Adaptation of Metastatic Cancer. Cancers (Basel) 2021; 13:cancers13071641. [PMID: 33915900 PMCID: PMC8036928 DOI: 10.3390/cancers13071641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The search for new therapeutic opportunities to target cancer metastasis is crucial for the improvement of cancer treatment. One of the characteristics of tumoral and metastatic cells is the capacity to reorganize their metabolism, together with the ability to grow faster, migrate and form new tumours in distant sites. Therefore, the pharmaceutical inhibition of metabolic pathways represents a promising strategy to specifically target metastatic cells, especially in colorectal cancer metastasis. Abstract Metabolic adaptation is emerging as an important hallmark of cancer and metastasis. In the last decade, increasing evidence has shown the importance of metabolic alterations underlying the metastatic process, especially in breast cancer metastasis but also in colorectal cancer metastasis. Being the main cause of cancer-related deaths, it is of great importance to developing new therapeutic strategies that specifically target metastatic cells. In this regard, targeting metabolic pathways of metastatic cells is one of the more promising windows for new therapies of metastatic colorectal cancer, where still there are no approved inhibitors against metabolic targets. In this study, we review the recent advances in the field of metabolic adaptation of cancer metastasis, focusing our attention on colorectal cancer. In addition, we also review the current status of metabolic inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Josep Tarragó-Celada
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of Universitat de Barcelona (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of Universitat de Barcelona (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28020 Madrid, Spain
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934-021-593
| |
Collapse
|
22
|
The critical role of peroxiredoxin-2 in colon cancer stem cells. Aging (Albany NY) 2021; 13:11170-11187. [PMID: 33819194 PMCID: PMC8109100 DOI: 10.18632/aging.202784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Colon cancer stem cells (CCSCs) play an important role in facilitating colon cancer occurrence, metastasis and drug resistance. The results of our previous studies confirmed that the well-studied antioxidant gene peroxiredoxin-2 (PRDX2) promotes colon cancer progression. However, the underlying function and mechanisms associated with PRDX2 remodeling in the context of CCSCs have remained poorly studied. In our present study, we demonstrated that PRDX2 is highly expressed in CD133/CD44-positive colon cancer tissues and spheroid CD133+CD44+ CCSCs. PRDX2 overexpression was shown to be closely correlated with CD133+CD44+ CCSCs in colon cancer. Furthermore, PRDX2 depletion markedly suppressed CD133+CD44+ CCSC stemness maintenance, tumor initiation, migration and invasion and liver metastasis. Furthermore, the expression of various EMT markers and Wnt/β-catenin signaling proteins was altered after PRDX2 inhibition. In addition, PRDX2 knockdown led to increased ROS production in CD133+CD44+ CCSCs, sensitizing CCSCs to oxidative stress and chemotherapy. These results suggest that PRDX2 could be a possible therapeutic target in CCSCs.
Collapse
|
23
|
Kim EJ, Kim YJ, Lee HI, Jeong SH, Nam HJ, Cho JH. Upregulation of Peroxiredoxin-2 in Well-Differentiated Pancreatic Neuroendocrine Tumors and Its Utility as a Biomarker for Predicting the Response to Everolimus. Antioxidants (Basel) 2020; 9:antiox9111104. [PMID: 33182509 PMCID: PMC7696978 DOI: 10.3390/antiox9111104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/12/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) account for 2–3% of pancreatic malignancies. Peroxiredoxins (Prdxs), which are major cellular antioxidants, are involved in multiple oncogenic signaling pathways. We investigated the role of peroxiredoxin-2 in QGP-1 human pNEN cell line and patient-derived pNEN tissue. To validate the cancer stem cell-like cell characteristics of QGP-1 cells in spheroid culture, in vitro analyses and xenografting were performed. Furthermore, immunohistochemical staining was conducted to verify the overexpression of Prdx2 in pNEN tissue. Prdx2 expression was high at the mRNA and protein levels in QGP-1 cells. Prdx2 was also overexpressed in patient-derived pNEN tissue. Silencing of Prdx2 using siRNA induced overexpression and phosphorylation of ERK and AKT in QGP-1. Cell proliferation was increased by treating QGP-1 cells with siPrdx2, and the IC50 of everolimus increased suggesting resistance to everolimus. Interestingly, QGP-1 spheroid cells, which exhibited cancer stem cell-like features, exhibited lower expression of Prdx2 and mTOR. The results suggest that Prdx2 expression level and its activity may be a potential predictive biomarker for therapeutic response or resistance to everolimus in pNEN.
Collapse
Affiliation(s)
- Eui Joo Kim
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, College of Medicine Gachon University, Incheon 21565, Korea; (E.J.K.); (Y.J.K.); (H.J.N.)
| | - Yoon Jae Kim
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, College of Medicine Gachon University, Incheon 21565, Korea; (E.J.K.); (Y.J.K.); (H.J.N.)
| | - Hye In Lee
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Seok-Hoo Jeong
- Division of Gastroenterology, Department of Internal Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea;
| | - Hyo Jung Nam
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, College of Medicine Gachon University, Incheon 21565, Korea; (E.J.K.); (Y.J.K.); (H.J.N.)
| | - Jae Hee Cho
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: ; Tel.: +82-2-2019-3310
| |
Collapse
|
24
|
Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D. The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity. Front Oncol 2020; 10:578418. [PMID: 33117715 PMCID: PMC7575731 DOI: 10.3389/fonc.2020.578418] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
During tumorigenesis, cancer cells are exposed to a wide variety of intrinsic and extrinsic stresses that challenge homeostasis and growth. Cancer cells display activation of distinct mechanisms for adaptation and growth even in the presence of stress. Autophagy is a catabolic mechanism that aides in the degradation of damaged intracellular material and metabolite recycling. This activity helps meet metabolic needs during nutrient deprivation, genotoxic stress, growth factor withdrawal and hypoxia. However, autophagy plays a paradoxical role in tumorigenesis, depending on the stage of tumor development. Early in tumorigenesis, autophagy is a tumor suppressor via degradation of potentially oncogenic molecules. However, in advanced stages, autophagy promotes the survival of tumor cells by ameliorating stress in the microenvironment. These roles of autophagy are intricate due to their interconnection with other distinct cellular pathways. In this review, we present a broad view of the participation of autophagy in distinct phases of tumor development. Moreover, autophagy participation in important cellular processes such as cell death, metabolic reprogramming, metastasis, immune evasion and treatment resistance that all contribute to tumor development, is reviewed. Finally, the contribution of the hypoxic and nutrient deficient tumor microenvironment in regulation of autophagy and these hallmarks for the development of more aggressive tumors is discussed.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
25
|
Jakopovic B, Horvatić A, Klobučar M, Gelemanović A, Grbčić P, Oršolić N, Jakopovich I, Kraljević Pavelić S. Treatment With Medicinal Mushroom Extract Mixture Inhibits Translation and Reprograms Metabolism in Advanced Colorectal Cancer Animal Model as Evidenced by Tandem Mass Tags Proteomics Analysis. Front Pharmacol 2020; 11:1202. [PMID: 32973493 PMCID: PMC7472604 DOI: 10.3389/fphar.2020.01202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer type in both males and females, with about 35% of patients being diagnosed in stage IV metastatic disease. Despite advancements in treatment, life expectancy in patients with metastatic disease is still not satisfying. Due to frequent drug resistance during conventional and targeted cancer treatments, the development and testing of multi-target therapies is an important research field. Medicinal mushrooms specific isolated compounds as well as complex extract mixtures have been studied in depth, and many mushroom species have been proven to be non-toxic multi-target inhibitors of specific oncogenic pathways, as well as potent immunomodulators. In this study, we have performed a tandem mass tags qualitative and quantitative proteomic analyses of CT26.WT colon cancer tumor tissues from Balb/c mice treated with the studied medicinal mushroom extract mixture, with or without 5-fluorouracil. Besides significantly improved survival, obtained results reveal that Agarikon.1 alone, and in combination with 5-fluorouracil exert their anticancer effects by affecting several fundamental processes important in CRC progression. Bioinformatic analysis of up- and downregulated proteins revealed that ribosomal biogenesis and translation is downregulated in treatment groups, while the unfolded protein response (UPR), lipid metabolism and tricarboxylic acid cycle (TCA) are upregulated. Moreover, we found that many known clinical biomarkers and protein clusters important in CRC progression and prognosis are affected, which are a good basis for an expanded translational study of the herein presented treatment.
Collapse
Affiliation(s)
| | - Anita Horvatić
- Proteomics Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Klobučar
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | - Petra Grbčić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
26
|
Quan X, Zhang N, Chen Y, Zeng H, Deng J. Development of an immune-related prognostic model for pediatric acute lymphoblastic leukemia patients. Mol Genet Genomic Med 2020; 8:e1404. [PMID: 32666718 PMCID: PMC7507390 DOI: 10.1002/mgg3.1404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy in pediatrics, and immune‐related genes (IRGs) play crucial role in its development. Our study aimed to identify prognostic immune biomarkers of pediatric ALL and construct a risk assessment model. Methods Pediatric ALL patients’ gene expression data were downloaded from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. We screened differentially expressed IRGs (DEIRGs) between the relapse and non‐relapse groups. Cox regression analysis was used to identify optimal prognostic genes, then, a risk model was constructed, and its accuracy was verified in different cohorts. Results We screened 130 DEIRGs from 251 pediatric ALL samples. The top three pathways that DEIRGs may influence tumor progression are NABA matrisome‐associated, chemotaxis, and antimicrobial humoral response. A set of 84 prognostic DEIRGs was identified by using univariate Cox analysis. Then, Lasso regression and multivariate Cox regression analysis screened four optimal genes (PRDX2, S100A10, RORB, and SDC1), which were used to construct the prognostic risk model. The risk score was calculated and the survival analysis results showed that high‐risk score was associated with poor overall survival (OS) (p = 3.195 × 10−7). The time‐dependent survival receiver operating characteristic curves showed good prediction accuracy (Area Under Curves for 3‐year, 5‐year OS were 0.892 and 0.89, respectively). And the predictive performance of our risk model was successfully verified in testing cohort and entire cohort. Conclusions Our prognostic risk model can effectively divide pediatric ALL patients into high‐risk and low‐risk groups, which may help predict clinical prognosis and optimize individualized treatment.
Collapse
Affiliation(s)
- Xi Quan
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Nan Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Ying Chen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
27
|
Silencing of PRDX2 Inhibits the Proliferation and Invasion of Non-Small Cell Lung Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1276328. [PMID: 32337219 PMCID: PMC7157786 DOI: 10.1155/2020/1276328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 2 (PRDX2), a member of the peroxiredoxin family of antioxidant enzymes, has been revealed to be an important player in cancer progression. However, the biological role of PRDX2 in the progression of non-small cell lung cancer (NSCLC) is poor reported. In the present study, the loss-of-function experiments were performed to investigate the specific role of PRDX2 in the growth and invasion of NSCLC. The results revealed that knockdown of PRDX2 by siRNA interference significantly suppressed the proliferation, migration, and invasion of A549 and H1299 cells, as well as diminished the activity of MMP9. Additionally, the decrease in PRDX2 expression significantly promoted apoptosis in NSCLC cells by downregulating expression of Bcl-2 and upregulating the expression of Bax, cleaved caspase 3 and cleaved caspase 9, but had no significant effect on the apoptosis of normal lung epithelial cells BEAS-2B. Moreover, PRDX2 inhibitor also inhibited the proliferation, migration, and invasion of A549 cells and promoted apoptosis. Further, our data demonstrated that silencing of PRDX2 markedly reduced the phosphorylation of Akt and mTOR and expression of downstream proteins Cyclin D1 and p70S6k. In conclusion, our findings indicate that PRDX2 exerts a prooncogenic role in the progression of NSCLC and might be a potential therapeutic target for NSCLC treatment.
Collapse
|
28
|
Najafi Z, Mohamadnia A, Ahmadi R, Mahmoudi M, Bahrami N, Khosravi A, Jamaati H, Tabarsi P, Kazem Pour Dizaji M, Shirian S. Proteomic and genomic biomarkers for Non-Small Cell Lung Cancer: Peroxiredoxin, Haptoglobin, and Alpha-1 antitrypsin. Cancer Med 2020; 9:3974-3982. [PMID: 32232956 PMCID: PMC7286458 DOI: 10.1002/cam4.3019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022] Open
Abstract
Background The development of lung cancer is a multifactorial process that involves the environmental and genetic factors. The mortality rate of this cancer is higher than breast, colorectal, and prostate cancers. In this study, we try to analyze the proteome of patients with Non‐Small Cell Lung Cancer (NSCLC) and compare it with the healthy samples. Methods This study has compared 30 lung tissue samples from patients with NSCLC and 30 healthy samples using proteomics and RT‐PCR. Hence, tissue samples were obtained from the surgical ward in sterile conditions, and then, protein extraction applied to them. At the next stage, two‐dimensional electrophoresis and mass spectrometry LCMS/MS were performed for protein isolation and sequencing, respectively. Results The proteome analysis identified more than 40 differences in proteomic pattern of normal lung tissues compared to lung tissues with NSCLC. Peroxiredoxin, Haptoglobin, and Alpha‐1 antitrypsin proteins were identified. Molecularly, it has also been shown that the two main proteins of Peroxiredoxin‐2 and Alpha‐1 antitrypsin were upregulated, and the expression of Haptoglobin protein was downregulated in cancer tissue. Conclusion The results of this study showed that there are some differences in term of protein content between the normal and cancerous lung tissues. Further studies are needed to evaluate these proteins that investigate whether these proteins can candidate as biomarkers to use in the early diagnosis of patients with NSCLC.
Collapse
Affiliation(s)
- Zahra Najafi
- Department of Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rahim Ahmadi
- Department of Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Minoo Mahmoudi
- Department of Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Naghmeh Bahrami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Craniomaxillofacial Research Center, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Adnan Khosravi
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Kazem Pour Dizaji
- Biostatistics Department, Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran.,Shefa Neuroscience Research Center, Tehran, Iran
| |
Collapse
|
29
|
Feng AL, Han X, Meng X, Chen Z, Li Q, Shu W, Dai H, Zhu J, Yang Z. PRDX2 plays an oncogenic role in esophageal squamous cell carcinoma via Wnt/β-catenin and AKT pathways. Clin Transl Oncol 2020; 22:1838-1848. [PMID: 32130676 DOI: 10.1007/s12094-020-02323-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the role of PRDX2 in esophageal carcinoma (ESCA). METHODS The expression of PRDX2 was detected in ESCA tissues. And PRDX2 expression in two ESCA cell lines was knocked down. Cell proliferation, metastasis and invasion were detected in these cells. RESULTS Here, we found that PRDX2 expression was significantly increased in ESCA tissues and was associated with a poor prognosis in ESCA patients. In addition, PRDX2 expression was significantly associated with pathological grading, infiltration degree and 5-year survival time in ESCA patients. Next, we knocked down PRDX2 expression by PRDX2-shRNA transfection in two ESCA cell lines, Eca-109 and TE-1. Proliferation analysis indicated that in vitro PRDX2 knockdown decreased growth and clone formation of ESCA cells. Scratch and transwell assays indicated that cell migration and invasion were significantly inhibited by PRDX2 knockdown. In addition, PRDX2 knockdown inhibited cell cycle of ESCA cells and down-regulated Cyclin D1-CDK4/6. Moreover, PRDX2 knockdown regulated proteins involved in mitochondrial-dependent apoptosis, including increased Bax and Caspase9/3 and decreased Bcl2. Mechanism investigation indicated that PRDX2 knockdown led to inactivation of Wnt/β-catenin and AKT pathways. CONCLUSIONS Our data suggest that PRDX2 may function as an oncogene in the development of ESCA via regulating Wnt/β-catenin and AKT pathways. Our study fills a gap in the understanding of the role of PRDX2 in ESCA and provides a potential target for ESCA treatment.
Collapse
Affiliation(s)
- A L Feng
- Department of Oncology, Shandong Provincial Hospital Affiliated To Shandong University, 324# Jing 5 Road, Jinan, 250021, People's Republic of China
| | - X Han
- Experimental Department, Affiliated Tumor Hospital of Guangxi Medical University, 71# Hedi Road, Nanning, 530021, People's Republic of China
| | - X Meng
- Department of Oncology, Shandong Provincial Hospital Affiliated To Shandong University, 324# Jing 5 Road, Jinan, 250021, People's Republic of China
| | - Z Chen
- Department of Oncology, Shandong Provincial Hospital Affiliated To Shandong University, 324# Jing 5 Road, Jinan, 250021, People's Republic of China
| | - Q Li
- Department of Oncology, Shandong Provincial Hospital Affiliated To Shandong University, 324# Jing 5 Road, Jinan, 250021, People's Republic of China
| | - W Shu
- Department of Oncology, Shandong Provincial Hospital Affiliated To Shandong University, 324# Jing 5 Road, Jinan, 250021, People's Republic of China
| | - H Dai
- Department of Oncology, Shandong Provincial Hospital Affiliated To Shandong University, 324# Jing 5 Road, Jinan, 250021, People's Republic of China
| | - J Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, 16766# Jingshi Road, Jinan, 250014, People's Republic of China.
| | - Z Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated To Shandong University, 324# Jing 5 Road, Jinan, 250021, People's Republic of China.
| |
Collapse
|
30
|
Kreuzaler P, Panina Y, Segal J, Yuneva M. Adapt and conquer: Metabolic flexibility in cancer growth, invasion and evasion. Mol Metab 2020; 33:83-101. [PMID: 31668988 PMCID: PMC7056924 DOI: 10.1016/j.molmet.2019.08.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been known for close to a century that, on average, tumors have a metabolism that is different from those found in healthy tissues. Typically, tumors show a biosynthetic metabolism that distinguishes itself by engaging in large scale aerobic glycolysis, heightened flux through the pentose phosphate pathway, and increased glutaminolysis among other means. However, it is becoming equally clear that non tumorous tissues at times can engage in similar metabolism, while tumors show a high degree of metabolic flexibility reacting to cues, and stresses in their local environment. SCOPE OF THE REVIEW In this review, we want to scrutinize historic and recent research on metabolism, comparing and contrasting oncogenic and physiological metabolic states. This will allow us to better define states of bona fide tumor metabolism. We will further contextualize the stress response and the metabolic evolutionary trajectory seen in tumors, and how these contribute to tumor progression. Lastly, we will analyze the implications of these characteristics with respect to therapy response. MAJOR CONCLUSIONS In our review, we argue that there is not one single oncogenic state, but rather a diverse set of oncogenic states. These are grounded on a physiological proliferative/wound healing program but distinguish themselves due to their large scale of proliferation, mutations, and transcriptional changes in key metabolic pathways, and the adaptations to widespread stress signals within tumors. We find evidence for the necessity of metabolic flexibility and stress responses in tumor progression and how these responses in turn shape oncogenic progression. Lastly, we find evidence for the notion that the metabolic adaptability of tumors frequently frustrates therapeutic interventions.
Collapse
|
31
|
Chuerduangphui J, Ekalaksananan T, Heawchaiyaphum C, Vatanasapt P, Pientong C. Peroxiredoxin 2 is highly expressed in human oral squamous cell carcinoma cells and is upregulated by human papillomavirus oncoproteins and arecoline, promoting proliferation. PLoS One 2020; 15:e0242465. [PMID: 33332365 PMCID: PMC7746188 DOI: 10.1371/journal.pone.0242465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/02/2020] [Indexed: 01/19/2023] Open
Abstract
Peroxiredoxin 2 (PRDX2) is upregulated in various cancers including oral squamous cell carcinoma (OSCC). It is a known tumor promoter in some cancers, but its role in OSCC is unclear. This study aimed to investigate the effect of arecoline, an alkaloid of the betel nut, and human papillomavirus type 16 (HPV16) E6/E7 oncoproteins on induction of PRDX2 expression, and also the effects of PRDX2 overexpression in oral cell lines. Levels of PRDX2 protein were determined using western blot analysis of samples of exfoliated normal oral cells (n = 75) and oral lesion cells from OSCC cases (n = 75). Some OSCC cases were positive for HPV infection and some patients had a history of betel quid chewing. To explore the level of PRDX2 by western blot, the proteins were extracted from oral cell lines that were treated with arecoline or retroviruses containing HPV16 E6 gene and HPV16 E6/E7 expressing vector. For analysis of PRDX2 functions, cell proliferation, cell-cycle progression, apoptosis and migration was compared between oral cells overexpressing PRDX2 and cells with PRDX2-knockdown. PRDX2 expression levels tended to be higher in OSCC samples that were positive for HPV infection and had history of betel quid chewing. Arecoline treatment in vitro at low concentrations and overexpression of HPV16 E6 or E6/E7 in oral cells induced PRDX2 overexpression. Interestingly, in oral cells, PRDX2 promoted cell proliferation, cell-cycle progression (G2/M phase), cell migration and inhibited apoptosis. Upregulation of PRDX2 in oral cells was induced by arecoline and HPV16 oncoproteins and promoted growth of OSCC cells.
Collapse
Affiliation(s)
- Jureeporn Chuerduangphui
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chukkris Heawchaiyaphum
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patravoot Vatanasapt
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
32
|
Wang G, Zhong WC, Bi YH, Tao SY, Zhu H, Zhu HX, Xu AM. The Prognosis Of Peroxiredoxin Family In Breast Cancer. Cancer Manag Res 2019; 11:9685-9699. [PMID: 31814764 PMCID: PMC6861534 DOI: 10.2147/cmar.s229389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose PRDX (Peroxiredoxin) family has involved in breast cancer tumorigenesis from the evidence obtained from cell lines, human tissues and mouse models. Nonetheless, the diversified expression patterns, coupled with the prognostic values of PRDX family, still require explanation. This study aimed at investigating the clinical importance and biological of PRDXs in breast cancer. Patients and methods Specimens of paraffin sections used for immunohistochemistry were collected from the hospital and the remaining patient information was retrieved from online databases. The expression and survival data of PRDXs in patients with breast cancer were from ONCOMINE, GEPIA, Kaplan–Meier Plotter. cBioPortal, Metascape, String, Cytoscape and DAVID were used to predict functions and pathways of the changes in PRDXs and their frequently altered neighbor genes. Immunohistochemistry was used to detect the expression of PRDXs in breast cancer. Results We discovered the expression levels of PRDX1-5 were higher in breast cancer tissues than in normal tissues, whereas the expression level of PRDX6 was observed as lower in the former one in comparison with that of the latter one. There existed a correlation between the expression levels of PRDX4, 5 and the advanced tumor stage. Survival analysis revealed that the expression of PRDXs were all associated with relapse-free survival (RFS) in all of the patients with breast cancer. Eventually, we discovered significant regulation of the cellular oxidant detoxification and detoxification of ROS by the PRDX changes, together with obtaining the core modules of genes (TXN, TXN2, TXNRD1, TXNRD2, GPX1 and GPX2) linked to the PRDX family of genes in breast cancer. Conclusion The PRDX family is widely involved in the development of breast cancer and affects the prognosis of patients. The functions and pathways of the changes in PRDXs and their frequently altered neighbor genes can be further verified by wet experiments.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Wan-Chao Zhong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yi-Hui Bi
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei 230001, People's Republic of China
| | - Si-Yue Tao
- Department of Orthopaedics, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, Anhui 230001, People's Republic of China
| | - Hai Zhu
- Department of Gastrointestinal Surgery, Department Of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Hai-Xing Zhu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei 230001, People's Republic of China
| | - A-Man Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| |
Collapse
|
33
|
Wang S, Chen Z, Zhu S, Lu H, Peng D, Soutto M, Naz H, Peek R, Xu H, Zaika A, Xu Z, El-Rifai W. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer. Redox Biol 2019; 28:101319. [PMID: 31536951 PMCID: PMC6811995 DOI: 10.1016/j.redox.2019.101319] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the main risk factor for gastric cancer. The role of antioxidant enzyme peroxiredoxin 2 (PRDX2) in gastric tumorigenesis remains unknown. In vitro (AGS and SNU-1 cell lines) and in vivo mouse models were utilized to investigate the role of PRDX2 in response to H. pylori infection (7.13, J166 or PMSS1 strain). We detected high levels of PRDX2 expression in gastric cancer tissues. Gastric cancer patients with high expression levels of PRDX2 had significantly worse overall and progression-free survival than those with low levels. H. pylori infection induced activation of NF-κB with increased expression of PRDX2, in in vitro and in vivo models. The knockdown of PRDX2 led to an increase in the levels of reactive oxygen species (ROS), oxidative DNA damage, and double-strand DNA breaks, in response to H. pylori infection, as measured by H2DCFDA, 8-oxoguanine, and p-H2AXγ assays. Luciferase reporter and ChIP assays confirmed the presence of a putative binding site of NF-κB-p65 on PRDX2 promoter region. The inhibition of PRDX2 significantly sensitized AGS and SNU-1 cells to cisplatin treatment. Our data suggest that the future development of therapeutic approaches targeting PRDX2 may be useful in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Mohammed Soutto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Huma Naz
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Richard Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Alexander Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA.
| |
Collapse
|
34
|
Mei J, Hao L, Liu X, Sun G, Xu R, Wang H, Liu C. Comprehensive analysis of peroxiredoxins expression profiles and prognostic values in breast cancer. Biomark Res 2019; 7:16. [PMID: 31402980 PMCID: PMC6683561 DOI: 10.1186/s40364-019-0168-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The peroxiredoxins (PRDXs) gene family has been demonstrated to participate in carcinogenesis and development of numerous cancers and the prognostic values in several cancers have been evaluated already. Purpose of our research is to explore the expression profiles and prognostic values of PRDXs in breast cancer (BrCa). METHODS The transcriptional levels of PDRX family members in primary BrCa tissues and their association with intrinsic subclasses were analyzed using UALCAN database. Then, the genetic alterations of PDRXs were examined by cBioPortal database. Moreover, the prognostic values of PRDXs in BrCa patients were investigated via the Kaplan-Meier plotter. RESULTS The transcriptional levels of most PRDXs family members in BrCa tissues were significantly elevated compared with normal breast tissues. Meanwhile, dysregulated PRDXs expression was associated with intrinsic subclasses of BrCa. Besides, copy number alterations (CNA) of PRDXs positively regulated their mRNA expressions. Furthermore, high mRNA expression of PRDX4/6 was significantly associated with poor overall survival (OS) in BrCa patients, while high mRNA expression of PRDX3 was notably related to favorable OS. Simultaneously, high mRNA expression of PRDX1/2/4/5/6 was significantly associated with shorter relapse-free survival (RFS) in BrCa patients, while high mRNA expression of PRDX3 was notably related to favorable RFS. In addition, the prognostic value of PRDXs in the different clinicopathological features based on intrinsic subclasses and chemotherapeutic treatment of BrCa patients was further assessed in the KM plotter database. CONCLUSION Our findings systematically elucidate the expression profiles and distinct prognostic values of PRDXs in BrCa, which might provide novel therapeutic targets and potential prognostic biomarkers for BrCa patients.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214023 China
| | - Leiyu Hao
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Xiaorui Liu
- School of Pediatrics, Nanjing Medical University, Nanjing, 211166 China
| | - Guangshun Sun
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214023 China
| | - Rui Xu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Huiyu Wang
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214023 China
| | - Chaoying Liu
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214023 China
| |
Collapse
|
35
|
Ma Y, Guan L, Han Y, Zhou Y, Li X, Liu Y, Zhang X, Zhang W, Li X, Wang S, Lu W. siPRDX2-elevated DNM3 inhibits the proliferation and metastasis of colon cancer cells via AKT signaling pathway. Cancer Manag Res 2019; 11:5799-5811. [PMID: 31388312 PMCID: PMC6607199 DOI: 10.2147/cmar.s193805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: We have previously reported that PRDX2 plays an oncogenic role in colon cancer. In this study, the mRNA expression profile of PRDX2 in HCT116 cells was investigated. Furthermore, we selected Dynamin 3 (DNM3), which is up-regulated by siPRDX2, to investigate its expression pattern and functions in colon cancer. Patients and methods: PRDX2 siRNA was transfected into HCT116 cells and the mRNA profile was tested by RNA-Sequencing. The expression of interest proteins was determined by Western blot. DNM3 expression in colon cancer tissues and para-carcinoma tissues was evaluated by Western blot and immunohistochemistry assays. Full-length cDNA of DNM3 was cloned into pcDNA3.1 and introduced into HCT116 and HT29 cells. Cell proliferation was tested by CCK-8 and colony formation assays. Cell invasion and migration were tested by transwell assays. Gelatin zymography was utilized for detection of MMP9 activity. Cell apoptosis was investigated with Annexin V/PI staining and flow cytometry and visualized with Hoechst/PI staining assay. All statistical analysis was performed with SPSS 17.0 software. Results: PRDX2 knockdown led to 210 up-regulated genes and 16 down-regulated genes in HCT116 cells. We also found that DNM3 expression was up-regulated following PRDX2 silencing in HCT116 and HT29 cells. In colon cancer patients, DNM3 was down-regulated and showed a significant association with pathologic grading. DNM3 overexpression inhibited cell proliferation and induced apoptosis in HCT116 and HT29 cells. Cell migration and invasion were also down-regulated in DNM3 overexpressing colon cancer cells, which might be due to the inhibition of MMP9 proteolytic activities. After thorough investigation of the potential mechanism involved, we hypothesized that DNM3 overexpression induced activation of the mitochondrial apoptosis pathway and inhibition of the AKT pathway. Conclusion: These data suggest that DNM3 is down-regulated in colon cancer, serving as a tumor suppressor. Our study provides new sights into the prognostic value and therapeutic application of DNM3 in colon cancer.
Collapse
Affiliation(s)
- Yini Ma
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Department of Nephrology, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan 250031, People's Republic of China
| | - Liying Guan
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Yanxin Han
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Yi Zhou
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Xiaoming Li
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Yumei Liu
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Xiujuan Zhang
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Weiying Zhang
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Xiaohong Li
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Shuhua Wang
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Weidong Lu
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| |
Collapse
|
36
|
Peroxiredoxin II negatively regulates BMP2-induced osteoblast differentiation and bone formation via PP2A Cα-mediated Smad1/5/9 dephosphorylation. Exp Mol Med 2019; 51:1-11. [PMID: 31160554 PMCID: PMC6546700 DOI: 10.1038/s12276-019-0263-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxin II (Prx II), an antioxidant enzyme in the Prx family, reduces oxidative stress by decreasing the intracellular ROS levels. Osteoblast differentiation is promoted by bone morphogenetic protein 2 (BMP2), which upregulates the expression of osteoblast differentiation marker genes, through Smad1/5/9 phosphorylation. We found that Prx II expression was increased by a high dose of lipopolysaccharide (LPS) but was not increased by a low dose of LPS. Prx II itself caused a decrease in the osteogenic gene expression, alkaline phosphatase (ALP) activity, and Smad1/5/9 phosphorylation induced by BMP2. In addition, BMP2-induced osteogenic gene expression and ALP activity were higher in Prx II knockout (KO) cells than they were in wild-type (WT) cells. These inhibitory effects were mediated by protein phosphatase 2A Cα (PP2A Cα), which was increased and is known to induce the dephosphorylation of Smad1/5/9. The overexpression of Prx II increased the expression of PP2A Cα, and PP2A Cα was not expressed in Prx II KO cells. Moreover, PP2A Cα reduced the level of BMP2-induced osteogenic gene expression and Smad1/5/9 phosphorylation. LPS inhibited BMP2-induced Smad1/5/9 phosphorylation and the suppressed phosphorylation was restored by the PP2A inhibitor okadaic acid (OA). Bone phenotype analyses using microcomputed tomography (μCT) revealed that the Prx II KO mice had higher levels of bone mass than the levels of the WT mice. We hypothesize that Prx II has a negative role in osteoblast differentiation through the PP2A-dependent dephosphorylation of Smad1/5/9. An antioxidant enzyme actively works to reduce bone synthesis under oxidative stress conditions in order to protect bone cells from damage and cell death. Bone is generated by cells called osteoblasts, which differentiate from stem cells. In osteoporosis and diabetes, excessive reactive oxygen species (ROS) within cells can disrupt osteoblast differentiation. South Korean researchers led by Eun-jung Kim at Kyungpook National University, Daegu, and Won-Gu Jang at Daegu University, Gyeongbuk, have shown that an antioxidant enzyme, peroxiredoxin II (PrxII), helps regulate bone formation under oxidative stress. The team generated PrxII-deficient mice and compared them with healthy normal mice. Under oxidative stress conditions, the mice had higher bone mass and higher expression of genes related to bone formation than the normal mice. PrxII limits osteoblast differentiation during elevated ROS by influencing associated protein activity and signalling pathways.
Collapse
|
37
|
Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis Organotropism: Redefining the Congenial Soil. Dev Cell 2019; 49:375-391. [PMID: 31063756 PMCID: PMC6506189 DOI: 10.1016/j.devcel.2019.04.012] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the most devastating stage of cancer progression and causes the majority of cancer-related deaths. Clinical observations suggest that most cancers metastasize to specific organs, a process known as "organotropism." Elucidating the underlying mechanisms may help identify targets and treatment strategies to benefit patients. This review summarizes recent findings on tumor-intrinsic properties and their interaction with unique features of host organs, which together determine organ-specific metastatic behaviors. Emerging insights related to the roles of metabolic changes, the immune landscapes of target organs, and variation in epithelial-mesenchymal transitions open avenues for future studies of metastasis organotropism.
Collapse
Affiliation(s)
- Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Lee TH, Jin JO, Yu KJ, Kim HS, Lee PCW. Inhibition of peroxiredoxin 2 suppresses Wnt/β-catenin signaling in gastric cancer. Biochem Biophys Res Commun 2019; 512:250-255. [DOI: 10.1016/j.bbrc.2019.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 01/09/2023]
|
39
|
Basnet H, Tian L, Ganesh K, Huang YH, Macalinao DG, Brogi E, Finley LWS, Massagué J. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 2019; 8:e43627. [PMID: 30912515 PMCID: PMC6440742 DOI: 10.7554/elife.43627] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Metastasis-initiating cells dynamically adapt to the distinct microenvironments of different organs, but these early adaptations are poorly understood due to the limited sensitivity of in situ transcriptomics. We developed fluorouracil-labeled RNA sequencing (Flura-seq) for in situ analysis with high sensitivity. Flura-seq utilizes cytosine deaminase (CD) to convert fluorocytosine to fluorouracil, metabolically labeling nascent RNA in rare cell populations in situ for purification and sequencing. Flura-seq revealed hundreds of unique, dynamic organ-specific gene signatures depending on the microenvironment in mouse xenograft breast cancer micrometastases. Specifically, the mitochondrial electron transport Complex I, oxidative stress and counteracting antioxidant programs were induced in pulmonary micrometastases, compared to mammary tumors or brain micrometastases. We confirmed lung metastasis-specific increase in oxidative stress and upregulation of antioxidants in clinical samples, thus validating Flura-seq's utility in identifying clinically actionable microenvironmental adaptations in early metastasis. The sensitivity, robustness and economy of Flura-seq are broadly applicable beyond cancer research.
Collapse
Affiliation(s)
- Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Lin Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Karuna Ganesh
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Department of MedicineSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Yun-Han Huang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Edi Brogi
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Lydia WS Finley
- Cell Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
40
|
Gu C, Luo J, Lu X, Tang Y, Ma Y, Yun Y, Cao J, Cao J, Huang Z, Zhou X, Zhang S. REV7 confers radioresistance of esophagus squamous cell carcinoma by recruiting PRDX2. Cancer Sci 2019; 110:962-972. [PMID: 30657231 PMCID: PMC6398896 DOI: 10.1111/cas.13946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy has been widely used for the clinical management of esophageal squamous cell carcinoma. However, radioresistance remains a serious concern that prevents the efficacy of esophageal squamous cell carcinoma (ESCC) radiotherapy. REV7, the structural subunit of eukaryotic DNA polymerase ζ, has multiple functions in bypassing DNA damage and modulating mitotic arrest in human cell lines. However, the expression and molecular function of REV7 in ESCC progression remains unclear. In this study, we first examined the expression of REV7 in clinical ESCC samples, and we found higher expression of REV7 in ESCC tissues compared to matched adjacent or normal tissues. Knockdown of REV7 resulted in decreased colony formation and increased apoptosis in irradiated Eca‐109 and TE‐1 cells coupled with decreased tumor weight in a xenograft nude mouse model postirradiation. Conversely, overexpression of REV7 resulted in radioresistance in vitro and in vivo. Moreover, silencing of REV7 induced increased reactive oxygen species levels postirradiation. Proteomic analysis of REV7‐interacting proteins revealed that REV7 interacted with peroxiredoxin 2 (PRDX2), a well‐known antioxidant protein. Existence of REV7‐PRDX2 complex and its augmentation postirradiation were further validated by immunoprecipitation and immunofluorescence assays. REV7 knockdown significantly disrupted the presence of nuclear PRDX2 postirradiation, which resulted in oxidative stress. REV7‐PRDX2 complex also assembled onto DNA double‐strand breaks, whereas REV7 knockdown evidently increased double‐strand breaks that were unmerged by PRDX2. Taken together, the present study sheds light on REV7‐modulated radiosensitivity through interacting with PRDX2, which provides a novel target for ESCC radiotherapy.
Collapse
Affiliation(s)
- Cheng Gu
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Judong Luo
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xujing Lu
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Yiting Tang
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Yan Ma
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Yifei Yun
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Jianping Cao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Juhua Cao
- Department of Internal Medicine, Changzhou No. 1 People's Hospital, Soochow University, Changzhou, China
| | - Zeyu Huang
- Department of Science and Education, Changzhou No. 3 People's Hospital, Changzhou, China
| | - Xifa Zhou
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
41
|
Ye L, Wang H, Li H, Liu H, Lv T, Song Y, Zhang F. Eosinophil peroxidase over-expression predicts the clinical outcome of patients with primary lung adenocarcinoma. J Cancer 2019; 10:1032-1038. [PMID: 30854109 PMCID: PMC6400814 DOI: 10.7150/jca.24314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/14/2018] [Indexed: 01/05/2023] Open
Abstract
Eosinophil peroxidase (EPO), a heme protein abundantly expressed in eosinophils, involves in the catalysis of cytotoxic oxidants associated with the pathogenesis of cancer, asthma, and allergic inflammatory disorders. To date, its roles in the pathogenesis of lung cancer are still not known. We determined the expression of EPO in the lung adenocarcinoma tissues and the normal adjacent lung tissues using Real-time PCR and Western blotting analysis, respectively. Also, EPO protein expression in 90 lung adenocarcinoma (AD) samples were confirmed with immunohistochemistry (IHC) using tissue microarrays. Meanwhile, we investigated the association between EPO and the clinicopathological characteristics and disease prognosis in the pulmonary adenocarcinoma patients, which demonstrated that EPO mRNA and protein were significantly higher in lung AD tissues that those of the adjacent normal lung tissues (P<0.05). EPO overexpression was significantly correlated with pathologic-tumour nodes metastasen stage (p-TNM stage, P=0.017) and lymph node metastasis (P=0.027). Patients with EPO overexpression showed shorter survival time than those with low EPO levels (P=0.017), according to the Kaplan-Meier survival curve. Furthermore, a multivariate Cox regression model was utilized to analyze the prognostic factors, which indicated that N stage (HR=0.965, 95% CI=0.328-1.359, P=0.008), p-TNM Stage (HR=3.127, 95% CI =2.463-5.015, P=0.021) and high EPO protein expression (HR=3.145, 95% CI=2.016-5.519, P=0.018) were independent factors for the prognosis of lung AD. In conclusion, increased EPO expression could be used as a biomarker for lung AD patients with poor prognosis.
Collapse
Affiliation(s)
- Liang Ye
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongying Wang
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing 210002, China
| | - Huijuan Li
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Fang Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Bai B, Lin Y, Hu J, Wang H, Li L, Zhao S, Zhang J, Meng W, Yue P, Bai Z, Li X. Peroxiredoxin2 downregulation enhances hepatocellular carcinoma proliferation and migration, and is associated with unfavorable prognosis in patients. Oncol Rep 2019; 41:1539-1548. [PMID: 30747220 PMCID: PMC6365706 DOI: 10.3892/or.2019.6977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
It has been revealed by our previous proteomic study that the expression profile is different between well-differentiated and poorly differentiated hepatocellular carcinoma (HCC). Among those differently expressed proteins, peroxiredoxin2 (PRDX2) was our protein of interest. The present study aimed to further investigate the value of PRDX2 as a prognostic factor in HCC. Tissue microarrays were used to investigate the expression difference between HCC tissues and their adjacent normal liver tissues. The expression of PRDX2 at both mRNA and protein levels was examined by q-RT-PCR, western blotting and immunohistochemical assessment in HCC tissues and cell line HCCLM3. Silencing of PRDX2 in HCCLM3 was achieved usingpGMLV-SC1 lentiviral vectors. Cell Counting Kit-8 (CCK-8) and Transwell migration assays were used to assess cell proliferation and migration, respectively. Categorical variables were assessed using the Chi-square test, and ordinal variables were examined using the Mann-Whitney U test. The difference of continuous variables between groups were compared with t-tests. The Kaplan-Meier method was used to calculate the overall survival (OS) and disease-free survival (DFS) of patients, and the log-rank test was used to analyze the differences between groups. The results revealed that the expression of PRDX2 was decreased at both the mRNA and protein levels in an HCC cell line compared to that of a normal human liver cell line. PRDX2 protein expression levels were significantly downregulated in HCC tissues and were positively linked to overall survival (OS) and disease-free survival (DFS) of HCC patients. Patients with high PRDX2 expression levels had longer OS and DFS times than those with lower PRDX2 expression. Silencing of PRDX2 in the HCC cell line HCCLM3 promoted cancer cell proliferation and migration. Our findings indicated that PRDX2 may play an important role in HCC development; PRDX2 may serve as a useful prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Bing Bai
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yanyan Lin
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jinjing Hu
- Clinical Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Haiping Wang
- Clinical Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lu Li
- Clinical Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Sheng Zhao
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jinduo Zhang
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenbo Meng
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ping Yue
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhongtian Bai
- Clinical Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
43
|
Genetic and Epigenetic Perturbations by DNMT3A-R882 Mutants Impaired Apoptosis through Augmentation of PRDX2 in Myeloid Leukemia Cells. Neoplasia 2018; 20:1106-1120. [PMID: 30245403 PMCID: PMC6153424 DOI: 10.1016/j.neo.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/02/2023] Open
Abstract
DNA methyltransferase 3A (DNMT3A) is mutated in various myeloid neoplasms including acute myeloid leukemia (AML), especially at the Arg882 and associated with inferior outcomes. Here, we report that the DNMT3A-Arg882His/Cys (R882H/C) mutations led to inactivation of apoptosis through DNA damage signaling following the impairment of differentiation of myeloid leukemia cells. Gene expression profiling analysis revealed aberrant expression of several cell-cycle and apoptosis-related genes, and the DNA methylation assay identified both hypo- and hypermethylation features in different regions throughout the whole genome of DNMT3A mutants-transduced myeloid cells. We found that DNMT3A-R882H/C mutations upregulated the expression of an antioxidant protein, pyroxiredoxin-2 (PRDX2), at the mRNA and protein levels with decreased accumulation of reactive oxygen species (ROS). Augmentation of ROS generation by ROS accumulating agent or by knockdown of PRDX2 from myeloid cells effectively increased drug sensitivity and apoptosis as a consequence of reduced cell proliferation. DNMT3A-R882C/H mutations decreased apoptosis induction in part by increasing the antioxidant capacity of the cell owing to upregulation of PRDX2. Molecularly, both DNMT3A-WT and R882H/C mutants interacted with PRDX2; and R882C/H mutation-induced hypomethylation increased PRDX2 expression which enhanced cell proliferation and growth with impairment of apoptosis, thereby contributing to leukemogenesis.
Collapse
|
44
|
Chandimali N, Jeong DK, Kwon T. Peroxiredoxin II Regulates Cancer Stem Cells and Stemness-Associated Properties of Cancers. Cancers (Basel) 2018; 10:cancers10090305. [PMID: 30177619 PMCID: PMC6162743 DOI: 10.3390/cancers10090305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) represent a sub-population of cancer cells with the ability to regulate stemness-associated properties which are specifically responsible for unlimited growth of cancers, generation of diverse cancer cells in differentiated state and resistance to existing chemotherapy and radiotherapy. Even though, current therapies destroy majority of cancer cells, it is believed to leave CSCs without eradicating which may be the conceptualization for chemoresistance and radio-resistance. Reactive oxygen species (ROS) maintain stem cells and regulate the stemness-associated properties of cancers. Beyond the maximum limit, ROS can damage cellular functions of cancers by subjecting them to oxidative stress. Thus, maintenance of ROS level plays an important role in cancers to regulate stemness-associated properties. Peroxiredoxin II (Prx II) is a member of peroxiredoxin antioxidant enzyme family which considers as a regulator of ROS in cellular environments by modulating redox status to maintain CSC phenotype and stemness properties. Prx II has cell type-dependent expression in various types of cancer cells and overexpression or silenced expression of Prx II in cancers is associated with stem cell phenotype and stemness-associated properties via activation or deactivation of various signaling pathways. In this review, we summarized available studies on Prx II expression in cancers and the mechanisms by which Prx II takes parts to regulate CSCs and stemness-associated properties. We further discussed the potential therapeutic effects of altering Prx II expression in cancers for better anticancer strategies by sensitizing cancer cells and stem cells to oxidative stress and inhibiting stemness-associated properties.
Collapse
Affiliation(s)
- Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
45
|
Marro M, Nieva C, de Juan A, Sierra A. Unravelling the Metabolic Progression of Breast Cancer Cells to Bone Metastasis by Coupling Raman Spectroscopy and a Novel Use of Mcr-Als Algorithm. Anal Chem 2018; 90:5594-5602. [PMID: 29589914 DOI: 10.1021/acs.analchem.7b04527] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Raman spectroscopy (RS) has shown promise as a tool to reveal biochemical changes that occur in cancer processes at the cellular level. However, when analyzing clinical samples, RS requires improvements to be able to resolve biological components from the spectra. We compared the strengths of Multivariate Curve Resolution (MCR) versus Principal Component Analysis (PCA) to deconvolve meaningful biological components formed by distinct mixtures of biological molecules from a set of mixed spectra. We exploited the flexibility of the MCR algorithm to easily accommodate different initial estimates and constraints. We demonstrate the ability of MCR to resolve undesired background signals from the RS that can be subtracted to obtain clearer cancer cell spectra. We used two triple negative breast cancer cell lines, MDA-MB 231 and MDA-MB 435, to illustrate the insights obtained by RS that infer the metabolic changes required for metastasis progression. Our results show that increased levels of amino acids and lower levels of mitochondrial signals are attributes of bone metastatic cells, whereas lung metastasis tropism is characterized by high lipid and mitochondria levels. Therefore, we propose a method based on the MCR algorithm to achieve unique biochemical insights into the molecular progression of cancer cells using RS.
Collapse
Affiliation(s)
- Monica Marro
- ICFO- Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels (Barcelona) , Spain
| | - Claudia Nieva
- IDIBELL-Institut d'Investigació Biomèdica de Bellvitge , Av. Castelldefels, Km 2.7 , 08907 L'Hospitalet de Llobregat, Barcelona , Spain
| | - Anna de Juan
- Department of Chemical Engineering and Analytical Chemistry , Universitat de Barcelona , Diagonal 645 , 08028 Barcelona , Spain
| | - Angels Sierra
- Molecular and Translational Oncology Laboratory, Biomedical Research Center CELLEX-CRBC, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS , Centre de Recerca Biomèdica CELLEX , 08036 Barcelona , Spain.,Faculty of Sciences , Universitat de VIC-Universitat Central de Catalunya , 08500 Vic, Barcelona , Spain
| |
Collapse
|
46
|
Abstract
Metastases arising from tumors have the proclivity to colonize specific organs, suggesting that they must rewire their biology to meet the demands of the organ colonized, thus altering their primary properties. Each metastatic site presents distinct metabolic challenges to a colonizing cancer cell, ranging from fuel and oxygen availability to oxidative stress. Here, we discuss the organ-specific metabolic adaptations that cancer cells must undergo, which provide the ability to overcome the unique barriers to colonization in foreign tissues and establish the metastatic tissue tropism phenotype.
Collapse
Affiliation(s)
- Tanya Schild
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Ana P Gomes
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
47
|
Angrisani A, Matrone N, Belli V, Vicidomini R, Di Maio N, Turano M, Scialò F, Netti PA, Porcellini A, Furia M. A functional connection between dyskerin and energy metabolism. Redox Biol 2017; 14:557-565. [PMID: 29132127 PMCID: PMC5684492 DOI: 10.1016/j.redox.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
The human DKC1 gene encodes dyskerin, an evolutionarily conserved nuclear protein whose overexpression represents a common trait of many types of aggressive sporadic cancers. As a crucial component of the nuclear H/ACA snoRNP complexes, dyskerin is involved in a variety of essential processes, including telomere maintenance, splicing efficiency, ribosome biogenesis, snoRNAs stabilization and stress response. Although multiple minor dyskerin splicing isoforms have been identified, their functions remain to be defined. Considering that low-abundance splice variants could contribute to the wide functional repertoire attributed to dyskerin, possibly having more specialized tasks or playing significant roles in changing cell status, we investigated in more detail the biological roles of a truncated dyskerin isoform that lacks the C-terminal nuclear localization signal and shows a prevalent cytoplasmic localization. Here we show that this dyskerin variant can boost energy metabolism and improve respiration, ultimately conferring a ROS adaptive response and a growth advantage to cells. These results reveal an unexpected involvement of DKC1 in energy metabolism, highlighting a previously underscored role in the regulation of metabolic cell homeostasis. Human dyskerin is an evolutionary conserved component of nuclear H/ACA snoRNPs. The functional role of a truncated dyskerin isoform (Iso3) is analyzed. Iso3 overexpression boosts energy metabolism and induces a ROS adaptive response. Iso3 connects dyskerin with mitochondrial functionality and redox homeostasis.
Collapse
Affiliation(s)
- Alberto Angrisani
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy.
| | - Nunzia Matrone
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Valentina Belli
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Rosario Vicidomini
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Nunzia Di Maio
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Mimmo Turano
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Filippo Scialò
- Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, University of Newcastle, Newcastle-upon-Tyne NE4 5PL, United Kingdom
| | - Paolo Antonio Netti
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy
| | - Antonio Porcellini
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Maria Furia
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy; Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
48
|
Peng L, Wang R, Shang J, Xiong Y, Fu Z. Peroxiredoxin 2 is associated with colorectal cancer progression and poor survival of patients. Oncotarget 2017; 8:15057-15070. [PMID: 28125800 PMCID: PMC5362467 DOI: 10.18632/oncotarget.14801] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/10/2017] [Indexed: 12/21/2022] Open
Abstract
The present study was to investigate the clinical significance of peroxiredoxin 2 (PRDX2), an oncoenzyme, in the development and progression of colorectal cancer(CRC).We found levels of PRDX2 mRNA and protein were higher in CRC cell lines than in normal human colonic epithelial cells. PRDX2 expression was significantly up-regulated in CRC lesions compared with that in the adjacent noncancerous tissues. CRC tissues from 148 of 226 (65.5%) patients revealed high level of PRDX2 protein expression in contrast to only 13 of 226 (5.8%) PRDX2 strong staining cases in the adjacent noncancerous tissues. Increased expression of PRDX2 protein was significantly associated with poor tumor differentiation (p = 0.001), advanced local invasion (p = 0.046), increased lymph node metastasis (p = 0.008), and advanced TNM stage (p = 0.020). Patients with higher PRDX2 expression had a significantly shorter disease-free survival and worse disease-specific survival than those with low expression. Importantly, PRDX2 up-regulation was an independent prognostic indicator for stage I–III, early stage (stage I-II) and advanced stage (stage III) patients. In conclusion, our findings suggest PRDX2 up-regulation correlates with tumor progression and could serve as a useful marker for the prognosis of CRC.
Collapse
Affiliation(s)
- LingLong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Rong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - JingKun Shang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - YongFu Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - ZhongXue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
49
|
PRDX2 in Myocyte Hypertrophy and Survival is Mediated by TLR4 in Acute Infarcted Myocardium. Sci Rep 2017; 7:6970. [PMID: 28765537 PMCID: PMC5539327 DOI: 10.1038/s41598-017-06718-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/16/2017] [Indexed: 01/04/2023] Open
Abstract
Peroxiredoxin 2 (PRDX2) is an antioxidant and molecular chaperone that can be secreted from tumor cells. But the role of PRDX2 in acute myocardial infarction (AMI) is not clear. In the current study, we demonstrate the role of PRDX2 from clinical trials, H9c2 cells and in a mouse model. ELISA analysis shows that serum concentrations of VEGF and inflammatory factor IL-1β, TNF-α and IL-6 were increased in AMI patients compared to a control group. The expression of PRDX2 was also upregulated. In vivo experiments show that the expression of PRDX2 inhibits hypoxia-induced oxidative stress injury to H9c2 cells. However, PRDX2 expression promotes TLR4 mediated inflammatory factor expression and VEGF expression under hypoxia conditions. PRDX2 overexpression in H9c2 cells also promotes human endothelial cell migration, vasculogenic mimicry formation and myocardial hypertrophy related protein expression. The overexpression of PRDX2 inhibits ROS level and myocardial injury after AMI but promotes inflammatory responses in vivo. Immunocytochemistry and immunofluorescence analysis show that overexpression of PRDX2 promotes angiogenesis and myocardial hypertrophy. Taken together, our results indicate that PRDX2 plays two roles in acute infarction – the promotion of cell survival and inflammatory myocardial hypertrophy.
Collapse
|
50
|
Wang Y, Han X, Li YD, Wang Y, Zhao SY, Zhang DJ, Lu Y. Lentinan dose dependence between immunoprophylaxis and promotion of the murine liver cancer. Oncotarget 2017; 8:95152-95162. [PMID: 29221118 PMCID: PMC5707012 DOI: 10.18632/oncotarget.19808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/21/2017] [Indexed: 11/25/2022] Open
Abstract
Lentinan could exhibit significant biological activity favorable for human health and disease control such as the recovery of patients with liver cancer. In order to investigate the effect of lentinan dose dependence between immunoprophylaxis and promotion of cancer cell proliferation of the murine liver cancer, different concentrations of lentinan were prepared for the test in vitro (MTT assay) and in vivo (cumulative survival assay, spleen lymphocyte proliferation tests and peritoneal macrophage phagocytosis assays). New emerging proteins of the H22 cell incubated with lentinan was demonstrated by MS analysis and protein database searching. Lentinan was non-toxic for HL7702 cells but inhibited H22 cells proliferation obviously in a dose-dependent manner. In vivo, the proliferation of H22 hepatocarcinoma cells was inhibited by lentinan 0.4mg/kg body weight (L2, survival rate, 20%, PPP<0.01). Six proteins 60Sacidic ribosomal protein P2, Peroxiredoxin-2, Annexin A5, PDZ and LIM domain protein 1, Src substrate cortactin and Moesin were found as emerging proteins of the H22 cell incubated with high dose lentinan which related to cancer promotion closely. In conclusion, Thelentinan was relatively safe and could inhibit the proliferation of H22 cancer cells through immunity improvement when it's intake was in proper quantity.
Collapse
Affiliation(s)
- Ying Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.,National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Xue Han
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yan Dong Li
- Hebei Institute of Veterinary Drugs Control, Shijiazhuang 050000, PR China
| | - Yabing Wang
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Shi Yang Zhao
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Dong Jie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yu Lu
- Huabei Petroleum Administration Bureau, Huasheng Integrated Service, Tianjin 300000, PR China
| |
Collapse
|