1
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Gu Y, Wang Z, Wang Y. Bispecific antibody drug conjugates: Making 1+1>2. Acta Pharm Sin B 2024; 14:1965-1986. [PMID: 38799638 PMCID: PMC11119582 DOI: 10.1016/j.apsb.2024.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024] Open
Abstract
Bispecific antibody‒drug conjugates (BsADCs) represent an innovative therapeutic category amalgamating the merits of antibody‒drug conjugates (ADCs) and bispecific antibodies (BsAbs). Positioned as the next-generation ADC approach, BsADCs hold promise for ameliorating extant clinical challenges associated with ADCs, particularly pertaining to issues such as poor internalization, off-target toxicity, and drug resistance. Presently, ten BsADCs are undergoing clinical trials, and initial findings underscore the imperative for ongoing refinement. This review initially delves into specific design considerations for BsADCs, encompassing target selection, antibody formats, and the linker-payload complex. Subsequent sections delineate the extant progress and challenges encountered by BsADCs, illustrated through pertinent case studies. The amalgamation of BsAbs with ADCs offers a prospective solution to prevailing clinical limitations of ADCs. Nevertheless, the symbiotic interplay among BsAb, linker, and payload necessitates further optimizations and coordination beyond a simplistic "1 + 1" to effectively surmount the extant challenges facing the BsADC domain.
Collapse
Affiliation(s)
- Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijia Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
3
|
Thomas BJ, Guldenpfennig C, Guan Y, Winkler C, Beecher M, Beedy M, Berendzen AF, Ma L, Daniels MA, Burke DH, Porciani D. Targeting lung cancer with clinically relevant EGFR mutations using anti-EGFR RNA aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102046. [PMID: 37869258 PMCID: PMC10589377 DOI: 10.1016/j.omtn.2023.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
A significant fraction of non-small cell lung cancer (NSCLC) cases are due to oncogenic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Anti-EGFR antibodies have shown limited clinical benefit for NSCLC, whereas tyrosine kinase inhibitors (TKIs) are effective, but resistance ultimately occurs. The current landscape suggests that alternative ligands that target wild-type and mutant EGFRs are desirable for targeted therapy or drug delivery development. Here we evaluate NSCLC targeting using an anti-EGFR aptamer (MinE07). We demonstrate that interaction sites of MinE07 overlap with clinically relevant antibodies targeting extracellular domain III and that MinE07 retains binding to EGFR harboring the most common oncogenic and resistance mutations. When MinE07 was linked to an anti-c-Met aptamer, the EGFR/c-Met bispecific aptamer (bsApt) showed superior labeling of NSCLC cells in vitro relative to monospecific aptamers. However, dual targeting in vivo did not improve the recognition of NSCLC xenografts compared to MinE07. Interestingly, biodistribution of Cy7-labeled bsApt differed significantly from Alexa Fluor 750-labeled bsApt. Overall, our findings demonstrate that aptamer formulations containing MinE07 can target ectopic lung cancer without additional stabilization or PEGylation and highlights the potential of MinE07 as a targeting reagent for the recognition of NSCLC harboring clinically relevant EGFRs.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Caitlyn Guldenpfennig
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Yue Guan
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Calvin Winkler
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Margaret Beecher
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Michaela Beedy
- Department of Biochemistry, Westminster College, Fulton, MO 65251, USA
| | - Ashley F. Berendzen
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Lixin Ma
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Cho BC, Simi A, Sabari J, Vijayaraghavan S, Moores S, Spira A. Amivantamab, an Epidermal Growth Factor Receptor (EGFR) and Mesenchymal-epithelial Transition Factor (MET) Bispecific Antibody, Designed to Enable Multiple Mechanisms of Action and Broad Clinical Applications. Clin Lung Cancer 2023; 24:89-97. [PMID: 36481319 DOI: 10.1016/j.cllc.2022.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Substantial therapeutic advancements have been made in identifying and treating activating mutations in advanced non-small cell lung cancer (NSCLC); however, resistance to epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) inhibitors remains common with current targeted therapies. Amivantamab, a fully human bispecific antibody targeting EGFR and MET, is approved in the United States and other countries for the treatment of patients with advanced NSCLC with EGFR exon 20 insertion mutations, for whom disease has progressed on or after platinum-based chemotherapy. Preliminary efficacy and safety have also been demonstrated in patients with common EGFR- or MET-mutated NSCLC. Amivantamab employs 3 distinct potential mechanisms of action (MOAs) including ligand blocking, receptor degradation, and immune cell-directing activity, such as antibody-dependent cellular cytotoxicity and trogocytosis. Notably, efficacy with amivantamab does not require all 3 MOAs to occur simultaneously, broadening applicability by using diverse antitumor mechanisms. This review focuses on the molecular characteristics of amivantamab and its unique MOAs leading to in vitro and in vivo efficacy and safety in preclinical and clinical studies.
Collapse
Affiliation(s)
- Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro Sinchon-dong, Seodaemun-gu, Seoul, South Korea.
| | - Allison Simi
- Janssen Scientific Affairs, LLC, 800 Ridgeview Drive, Horsham, PA
| | - Joshua Sabari
- NYU Langone Health, 160 E 34th St 8th floor, New York, NY
| | | | - Sheri Moores
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA
| | | |
Collapse
|
5
|
Lee J, Piotrowska Z, Soo R, Cho BC, Lim SM. Combatting acquired resistance to osimertinib in EGFR-mutant lung cancer. Ther Adv Med Oncol 2022; 14:17588359221144099. [PMID: 36544540 PMCID: PMC9761802 DOI: 10.1177/17588359221144099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
The discovery of activating mutations in epidermal growth factor receptor (EGFR) in non-small-cell lung cancer transformed the care and prognosis of patients and heralded the era of 'personalized medicine' in thoracic oncology. Osimertinib, a third-generation EGFR inhibitor, has been established as the preferred EGFR inhibitor for newly diagnosed patients which urged the need to develop treatment options for patients progressing on first-line osimertinib. However, acquired resistance invariably emerges and numerous efforts have been attempted to delay or overcome acquired resistance. In this article, we thoroughly reviewed the current understanding of osimertinib resistance mechanisms and explored the established and emerging treatment options. Newer treatment strategies targeting EGFR-dependent or -independent resistance mechanisms, novel approaches using bispecific antibodies and antibody-drug conjugates will be discussed. Moreover, what to do with brain only progression, and how to incorporate immunotherapy in EGFR-mutant lung cancer will be discussed. Lastly, future perspectives on the ongoing clinical trials and combination of front-line therapy will be introduced.
Collapse
Affiliation(s)
| | | | - Ross Soo
- Department of Haematology-Oncology, National
University Cancer Institute, Singapore, Singapore
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer
Center, Yonsei University College of Medicine, Seoul, Korea
| | | |
Collapse
|
6
|
Segués A, Huang S, Sijts A, Berraondo P, Zaiss DM. Opportunities and challenges of bi-specific antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:45-70. [PMID: 35777864 DOI: 10.1016/bs.ircmb.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The recent clinical approval of different Bi-specific antibodies (BsAbs) has revealed the great therapeutic potential of this novel class of biologicals. For example, the bispecific T-cell engager (BiTE), Blinatumomab, demonstrated the unique capacity of BsAbs to link T-cells with tumor cells, inducing targeted tumor cell removal. Additionally, Amivantamab, recognizing the EGFR and cMet in cis, revealed a substantial improvement of therapeutic efficacy by concomitantly targeting two tumor antigens. Cis-targeting BsAbs furthermore allow discerning cell populations which concurrently express two antigens, for which each antigen expression pattern in itself might not be selective. In this way, BsAbs harbor the great prospect of being more specific and showing fewer side effects than monoclonal antibodies. Nevertheless, BsAbs have also faced major obstacles, for instance, in ensuring reliable assembly and clinical-grade purification. In this review, we summarize the different available antibody platforms currently used for the generation of IgG-like and non-IgG-like BsAbs and explain which approaches have been used to assemble those BsAbs which are currently approved for clinical application. By focusing on the example of regulatory T-cells (Tregs) and the different, ongoing approaches to develop BsAbs specifically targeting Tregs within the tumor microenvironment, our review highlights the huge potential as well as the pitfalls BsAb face in order to emerge as one of the most effective therapeutic biologicals targeting desired cell populations in a highly selective way. Such BsAb may improve treatment efficacy and reduce side effects, thereby opening novel treatment opportunities for a range of different diseases, such as cancer or autoimmune diseases.
Collapse
Affiliation(s)
- Aina Segués
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Shuyu Huang
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Alice Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Dietmar M Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Department of Immune Medicine, University Regensburg, Regensburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany; Institute of Pathology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Targeting EGFR in melanoma - The sea of possibilities to overcome drug resistance. Biochim Biophys Acta Rev Cancer 2022; 1877:188754. [PMID: 35772580 DOI: 10.1016/j.bbcan.2022.188754] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 12/21/2022]
Abstract
Melanoma is considered one of the most aggressive skin cancers. It spreads and metastasizes quickly and is intrinsically resistant to most conventional chemotherapeutics, thereby presenting a challenge to researchers and clinicians searching for effective therapeutic strategies to treat patients with melanoma. The use of inhibitors of mutated serine/threonine-protein kinase B-RAF (BRAF), e.g., vemurafenib and dabrafenib, has revolutionized melanoma chemotherapy. Unfortunately, the response to these drugs lasts a limited time due to the development of acquired resistance. One of the proteins responsible for this process is epidermal growth factor receptor (EGFR). In this review, we summarize the role of EGFR signaling in the multidrug resistance of melanomas and discuss possible applications of EGFR inhibitors to overcome the development of drug resistance in melanoma cells during therapy.
Collapse
|
8
|
Lim SM, Pyo KH, Soo RA, Cho BC. The promise of bispecific antibodies: Clinical applications and challenges. Cancer Treat Rev 2021; 99:102240. [PMID: 34119803 DOI: 10.1016/j.ctrv.2021.102240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
The development of cancer therapies using monoclonal antibodies has been successful during the last 30 years. Recently much progress was achieved with technologies involving bispecific and multi-specific antibodies. Bispecific antibodies (BsAbs) are antibodies that bind two distinct epitopes, and a large number of potential clinical applications of BsAbs have been described. Here we review mechanism of action, clinical development and future challenges of BsAbs which could be a serve as a valuable arsenal in cancer patients.
Collapse
Affiliation(s)
- Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Yao HP, Tong XM, Wang MH. Oncogenic mechanism-based pharmaceutical validation of therapeutics targeting MET receptor tyrosine kinase. Ther Adv Med Oncol 2021; 13:17588359211006957. [PMID: 33868463 PMCID: PMC8020248 DOI: 10.1177/17588359211006957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression and/or activation of the MET receptor tyrosine kinase is
characterized by genomic recombination, gene amplification, activating mutation,
alternative exon-splicing, increased transcription, and their different
combinations. These dysregulations serve as oncogenic determinants contributing
to cancerous initiation, progression, malignancy, and stemness. Moreover,
integration of the MET pathway into the cellular signaling network as an
addiction mechanism for survival has made this receptor an attractive
pharmaceutical target for oncological intervention. For the last 20 years,
MET-targeting small-molecule kinase inhibitors (SMKIs), conventional therapeutic
monoclonal antibodies (TMABs), and antibody-based biotherapeutics such as
bispecific antibodies, antibody–drug conjugates (ADC), and dual-targeting ADCs
have been under intensive investigation. Outcomes from preclinical studies and
clinical trials are mixed with certain successes but also various setbacks. Due
to the complex nature of MET dysregulation with multiple facets and underlying
mechanisms, mechanism-based validation of MET-targeting therapeutics is crucial
for the selection and validation of lead candidates for clinical trials. In this
review, we discuss the importance of various types of mechanism-based
pharmaceutical models in evaluation of different types of MET-targeting
therapeutics. The advantages and disadvantages of these mechanism-based
strategies for SMKIs, conventional TMABs, and antibody-based biotherapeutics are
analyzed. The demand for establishing new strategies suitable for validating
novel biotherapeutics is also discussed. The information summarized should
provide a pharmaceutical guideline for selection and validation of MET-targeting
therapeutics for clinical application in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Yang H, Kuo YH, Smith ZI, Spangler J. Targeting cancer metastasis with antibody therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1698. [PMID: 33463090 DOI: 10.1002/wnan.1698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Cancer metastasis, the spread of disease from a primary to a distal site through the circulatory or lymphatic systems, accounts for over 90% of all cancer related deaths. Despite significant progress in the field of cancer therapy in recent years, mortality rates remain dramatically higher for patients with metastatic disease versus those with local or regional disease. Although there is clearly an urgent need to develop drugs that inhibit cancer spread, the overwhelming majority of anticancer therapies that have been developed to date are designed to inhibit tumor growth but fail to address the key stages of the metastatic process: invasion, intravasation, circulation, extravasation, and colonization. There is growing interest in engineering targeted therapeutics, such as antibody drugs, that inhibit various steps in the metastatic cascade. We present an overview of antibody therapeutic approaches, both in the pipeline and in the clinic, that disrupt the essential mechanisms that underlie cancer metastasis. These therapies include classes of antibodies that indirectly target metastasis, including anti-integrin, anticadherin, and immune checkpoint blocking antibodies, as well as monoclonal and bispecific antibodies that are specifically designed to interrupt disease dissemination. Although few antimetastatic antibodies have achieved clinical success to date, there are many promising candidates in various stages of development, and novel targets and approaches are constantly emerging. Collectively, these efforts will enrich our understanding of the molecular drivers of metastasis, and the new strategies that arise promise to have a profound impact on the future of cancer therapeutic development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zion I Smith
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jamie Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Modica C, Basilico C, Chiriaco C, Borrelli N, Comoglio PM, Vigna E. A receptor-antibody hybrid hampering MET-driven metastatic spread. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:32. [PMID: 33446252 PMCID: PMC7807714 DOI: 10.1186/s13046-020-01822-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Background The receptor encoded by the MET oncogene and its ligand Hepatocyte Growth Factor (HGF) are at the core of the invasive-metastatic behavior. In a number of instances genetic alterations result in ligand-independent onset of malignancy (MET addiction). More frequently, ligand stimulation of wild-type MET contributes to progression toward metastasis (MET expedience). Thus, while MET inhibitors alone are effective in the first case, combination therapy with ligand inhibitors is required in the second condition. Methods In this paper, we generated hybrid molecules gathering HGF and MET inhibitory properties. This has been achieved by ‘head-to-tail’ or ‘tail-to-head’ fusion of a single chain Fab derived from the DN30 MET antibody with a recombinant ‘ad-hoc’ engineered MET extracellular domain (decoyMET), encompassing the HGF binding site but lacking the DN30 epitope. Results The hybrid molecules correctly bind MET and HGF, inhibit HGF-induced MET downstream signaling, and quench HGF-driven biological responses, such as growth, motility and invasion, in cancer cells of different origin. Two metastatic models were generated in mice knocked-in by the human HGF gene: (i) orthotopic transplantation of pancreatic cancer cells; (ii) subcutaneous injection of primary cells derived from a cancer of unknown primary. Treatment with hybrid molecules strongly affects time of onset, number, and size of metastatic lesions. Conclusion These results provide a strategy to treat metastatic dissemination driven by the HGF/MET axis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01822-5.
Collapse
Affiliation(s)
- Chiara Modica
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Cristina Basilico
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy.
| | - Cristina Chiriaco
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Nicla Borrelli
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Paolo M Comoglio
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy.,Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Surowka M, Schaefer W, Klein C. Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. MAbs 2021; 13:1967714. [PMID: 34491877 PMCID: PMC8425689 DOI: 10.1080/19420862.2021.1967714] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies have recently attracted intense interest. CrossMab technology was described in 2011 as novel approach enabling correct antibody light-chain association with their respective heavy chain in bispecific antibodies, together with methods enabling correct heavy-chain association using existing pairs of antibodies. Since the original description, CrossMab technology has evolved in the past decade into one of the most mature, versatile, and broadly applied technologies in the field, and nearly 20 bispecific antibodies based on CrossMab technology developed by Roche and others have entered clinical trials. The most advanced of these are the Ang-2/VEGF bispecific antibody faricimab, currently undergoing regulatory review, and the CD20/CD3 T cell bispecific antibody glofitamab, currently in pivotal Phase 3 trials. In this review, we introduce the principles of CrossMab technology, including its application for the generation of bi-/multispecific antibodies with different geometries and mechanisms of action, and provide an overview of CrossMab-based therapeutics in clinical trials.
Collapse
|
13
|
Huang S, van Duijnhoven SMJ, Sijts AJAM, van Elsas A. Bispecific antibodies targeting dual tumor-associated antigens in cancer therapy. J Cancer Res Clin Oncol 2020; 146:3111-3122. [PMID: 32989604 PMCID: PMC7679314 DOI: 10.1007/s00432-020-03404-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Bispecific antibodies (BsAbs) have emerged as a leading drug class for cancer therapy and are becoming increasingly of interest for therapeutic applications. As of April 2020, over 123 BsAbs are under clinical evaluation for use in oncology (including the two marketed BsAbs Blinatumomab and Catumaxomab). The majority (82 of 123) of BsAbs under clinical evaluation can be categorized as bispecific immune cell engager whereas a second less well-discussed subclass of BsAbs targets two tumor-associated antigens (TAAs). In this review, we summarize the clinical development of dual TAAs targeting BsAbs and provide an overview of critical considerations when designing dual TAA targeting BsAbs. METHODS Herein the relevant literature and clinical trials published in English until April 1st 2020 were searched using PubMed and ClinicalTrials.gov database. BsAbs were considered to be active in clinic if their clinical trials were not terminated, withdrawn or completed before 2018 without reporting results. Data missed by searching ClinicalTrials.gov was manually curated. RESULTS Dual TAAs targeting BsAbs offer several advantages including increased tumor selectivity, potential to concurrently modulate two functional pathways in the tumor cell and may yield improved payload delivery. CONCLUSIONS Dual TAAs targeting BsAbs represent a valuable class of biologics and early stage clinical studies have demonstrated promising anti-tumor efficacy in both hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Shuyu Huang
- Aduro Biotech Europe, Oss, The Netherlands
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | | - Alice J A M Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Pharmaceutical strategies in the emerging era of antibody-based biotherapeutics for the treatment of cancers overexpressing MET receptor tyrosine kinase. Drug Discov Today 2020; 26:106-121. [PMID: 33171292 DOI: 10.1016/j.drudis.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Pharmaceutical innovation in the development of novel antibody-based biotherapeutics with increased therapeutic indexes makes MET-targeted cancer therapy a clinical reality.
Collapse
|
15
|
Yao HP, Hudson R, Wang MH. Progress and challenge in development of biotherapeutics targeting MET receptor for treatment of advanced cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188425. [PMID: 32961258 DOI: 10.1016/j.bbcan.2020.188425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Advanced epithelial cancers such as gastric, lung, and pancreatic tumors are featured by invasive proliferation, distant metastasis, acquired chemoresistance, and tumorigenic stemness. For the last decade, molecular-targeted therapies using therapeutic antibodies, small molecule kinase inhibitors and immune-checkpoint blockades have been applied for these diseases with significant clinical benefits. Nevertheless, there is still a large gap to achieve curative outcomes. MET (mesenchymal-epithelial transition protein), a receptor tyrosine kinase, is a tumorigenic determinant that regulates epithelial cancer initiation, progression, and malignancy. Increased MET expression also has prognostic value for cancer progression and patient survival. These features provide the rationale to target MET for cancer treatment. In this review, we discuss the importance of MET in epithelial tumorigenesis and the development of antibody-based biotherapeutics, including bispecific antibodies and antibody-drug conjugates, for clinical application. The findings from both preclinical and clinical studies highlight the potential of MET-targeted biotherapeutics for cancer therapy in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Rachel Hudson
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
16
|
Bispecific Antibodies and Antibody-Drug Conjugates for Cancer Therapy: Technological Considerations. Biomolecules 2020; 10:biom10030360. [PMID: 32111076 PMCID: PMC7175114 DOI: 10.3390/biom10030360] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/07/2023] Open
Abstract
The ability of monoclonal antibodies to specifically bind a target antigen and neutralize or stimulate its activity is the basis for the rapid growth and development of the therapeutic antibody field. In recent years, traditional immunoglobulin antibodies have been further engineered for better efficacy and safety, and technological developments in the field enabled the design and production of engineered antibodies capable of mediating therapeutic functions hitherto unattainable by conventional antibody formats. Representative of this newer generation of therapeutic antibody formats are bispecific antibodies and antibody–drug conjugates, each with several approved drugs and dozens more in the clinical development phase. In this review, the technological principles and challenges of bispecific antibodies and antibody–drug conjugates are discussed, with emphasis on clinically validated formats but also including recent developments in the fields, many of which are expected to significantly augment the current therapeutic arsenal against cancer and other diseases with unmet medical needs.
Collapse
|
17
|
Kotani N, Yamaguchi A, Ohnishi T, Kuwahara R, Nakano T, Nakano Y, Ida Y, Murakoshi T, Honke K. Proximity proteomics identifies cancer cell membrane cis-molecular complex as a potential cancer target. Cancer Sci 2019; 110:2607-2619. [PMID: 31228215 PMCID: PMC6676139 DOI: 10.1111/cas.14108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer‐specific antigens expressed in the cell membrane have been used as targets for several molecular targeted strategies in the last 20 years with remarkable success. To develop more effective cancer treatments, novel targets and strategies for targeted therapies are needed. Here, we examined the cancer cell membrane‐resident “cis‐bimolecular complex” as a possible cancer target (cis‐bimolecular cancer target: BiCAT) using proximity proteomics, a technique that has attracted attention in the last 10 years. BiCAT were detected using a previously developed method termed the enzyme‐mediated activation of radical source (EMARS), to label the components proximal to a given cell membrane molecule. EMARS analysis identified some BiCAT, such as close homolog of L1 (CHL1), fibroblast growth factor 3 (FGFR3) and α2 integrin, which are commonly expressed in mouse primary lung cancer cells and human lung squamous cell carcinoma cells. Analysis of cancer specimens from 55 lung cancer patients revealed that CHL1 and α2 integrin were highly co–expressed in almost all cancer tissues compared with normal lung tissues. As an example of BiCAT application, in vitro simulation of effective drug combinations used for multiple drug treatment strategies was performed using reagents targeted to BiCAT molecules. The combination treatment based on BiCAT information moderately suppressed cancer cell proliferation compared with single administration, suggesting that the information about BiCAT in cancer cells is useful for the appropriate selection of the combination among molecular targeted reagents. Thus, BiCAT has the potential to contribute to several molecular targeted strategies in future.
Collapse
Affiliation(s)
- Norihiro Kotani
- Department of Biochemistry, Saitama Medical University, Saitama, Japan
| | - Arisa Yamaguchi
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| | - Tomoko Ohnishi
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| | - Ryusuke Kuwahara
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Takanari Nakano
- Department of Biochemistry, Saitama Medical University, Saitama, Japan
| | - Yuka Nakano
- Department of Biochemistry, Saitama Medical University, Saitama, Japan
| | - Yui Ida
- Department of Biochemistry, Saitama Medical University, Saitama, Japan
| | | | - Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| |
Collapse
|
18
|
Runcie K, Budman DR, John V, Seetharamu N. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol Med 2018; 24:50. [PMID: 30249178 PMCID: PMC6154901 DOI: 10.1186/s10020-018-0051-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Antibody-based therapy has revitalized the world of cancer therapeutics since rituximab was first approved for the treatment of Non-Hodgkin's Lymphoma. Monoclonal antibodies against cancer antigens have been successful strategies for only a handful of cancer types due to many reasons including lack of antibody specificity and complex nature of tumor milieu which interfere with antibody efficacy. Polyspecific antibodies are promising class of anti-cancer agents which can be directed at multiple tumor antigens to eradicate tumor cells more precisely and effectively. They may overcome some of these limitations and have already changed treatment landscape for some malignancies such as B cell acute lymphoblastic leukemia. Pre-clinical studies and early phase clinical trials have demonstrated that this approach may be an effective strategy even for solid tumors. This review focuses on the development of bispecific and trispecific antibody therapy for the treatment of solid tumor malignancies and highlights the potential they hold for future therapies to come.
Collapse
Affiliation(s)
- Karie Runcie
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
| | - Daniel R. Budman
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
- Division of Hematology and Medical Oncology, Hofstra-Northwell School of Medicine, Hempstead, USA
| | - Veena John
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
- Division of Hematology and Medical Oncology, Hofstra-Northwell School of Medicine, Hempstead, USA
| | - Nagashree Seetharamu
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
- Division of Hematology and Medical Oncology, Hofstra-Northwell School of Medicine, Hempstead, USA
| |
Collapse
|
19
|
Mabfilin and Fabfilin - New antibody-scaffold fusion formats for multispecific targeting concepts. Protein Expr Purif 2018; 149:51-65. [DOI: 10.1016/j.pep.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/16/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023]
|
20
|
Patnaik A, Gordon M, Tsai F, Papadopoulos KP, Rasco D, Beeram M, Fu S, Janku F, Hynes SM, Gundala SR, Willard MD, Zhang W, Lin AB, Hong D. A phase I study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother Pharmacol 2018; 82:407-418. [PMID: 29926131 PMCID: PMC6105165 DOI: 10.1007/s00280-018-3623-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE The phase I study characterized the safety, pharmacokinetics, anti-tumor activity, and recommended phase II dose/schedule of LY3164530 in patients with advanced or metastatic cancer. METHODS Patients received LY3164530 on days 1 and 15 (Schedule 1: 300, 600, 1000, and 1250 mg) or Days 1, 8, 15, and 22 (Schedule 2: 500 and 600 mg) of each 28 days cycle. Dose escalation used a modified toxicity probability interval model. RESULTS Dose escalation defined a maximum tolerated dose (MTD) of 1000 mg on Schedule 1 and 500 mg on Schedule 2. Treatment-emergent adverse events related to study treatment were consistent with epidermal growth factor receptor (EGFR) inhibition and included maculopapular rash/dermatitis acneiform (83%, Grade 3/4 17%), hypomagnesemia (55%, Grade 3/4 7%), paronychia (35%), fatigue (28%, Grade 3/4 3%), skin fissures (24%), and hypokalemia (21%, Grade 3/4 7%). Partial response was achieved in three patients on Schedule 2 with colorectal cancer (n = 2) or squamous cell cancer. Overall response rate (ORR) was 10.3%, disease control rate (ORR + stable disease [SD]) was 51.7 and 17.2% of patients had SD ≥ 4 months. The in vivo stability of the bispecific antibody was confirmed. Schedule 2 provided greater and more consistent inhibition of mesenchymal-epithelial transition (MET)/EGFR throughout the dosing interval than Schedule 1. CONCLUSIONS Although this study defined the LY3164530 MTD and pharmacokinetics on both schedules, significant toxicities associated with EGFR inhibition and lack of a potential predictive biomarker limit future development. Nonetheless, the results provide insight into the development of bispecific antibody therapy.
Collapse
Affiliation(s)
- Amita Patnaik
- South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, Suite 4026, San Antonio, TX, USA.
| | | | - Frank Tsai
- HonorHealth Research Institute, Scottsdale, AZ, USA
| | - Kyriakos P Papadopoulos
- South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, Suite 4026, San Antonio, TX, USA
| | - Drew Rasco
- South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, Suite 4026, San Antonio, TX, USA
| | - Muralidhar Beeram
- South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, Suite 4026, San Antonio, TX, USA
| | - Siqing Fu
- Cancer Medicine Division, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Filip Janku
- Cancer Medicine Division, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | | | | | | | - Wei Zhang
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - David Hong
- Cancer Medicine Division, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| |
Collapse
|
21
|
Sun ZJ, Wu Y, Hou WH, Wang YX, Yuan QY, Wang HJ, Yu M. A novel bispecific c-MET/PD-1 antibody with therapeutic potential in solid cancer. Oncotarget 2018; 8:29067-29079. [PMID: 28404966 PMCID: PMC5438713 DOI: 10.18632/oncotarget.16173] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
The bispecific antibody is a novel antibody, which can target two different antigens and mediate specific killing effects by selectively redirecting effector cells to the target cells. Here, we designed and synthesized a bispecific antibody (BsAb) that can bind cellular-mesenchymal to epithelial transition factor (c-MET, overexpressed in several human solid tumor), and programmed death-1 (PD-1, involved in cancer cell immune evasion) with high affinity and specificity. We found that BsAb can induce the degradation of c-MET protein in cancer cells, including MKN45, a gastric cancer cell line, and A549, a lung cancer cell line. BsAb inhibited hepatocyte growth factor (HGF)-mediated proliferation, migration, and antiapoptosis, and downregulated HGF-stimulated phosphorylation of c-MET, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK1/2). BsAb can also rescue T cell activation. Furthermore, xenograft analysis revealed that BsAb markedly inhibits the growth of subcutaneously implanted tumors and chronic inflammation. On the basis of these results, we have identified a potential bispecific drug, which can effectively target c-MET and PD-1 for the treatment of human solid cancers.
Collapse
Affiliation(s)
- Zu-Jun Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yi Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wei-Hua Hou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yu-Xiong Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qing-Yun Yuan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Hui-Jie Wang
- Department of Medical Oncology, Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| |
Collapse
|
22
|
The Prognostic Significance of c-MET and EGFR Overexpression in Resected Gastric Adenocarcinomas. Am J Clin Oncol 2017; 40:543-551. [PMID: 26125303 DOI: 10.1097/coc.0000000000000202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Epidermal growth factor receptor (EGFR) and c-MET are tyrosine kinase growth factor receptors implicated in gastric cancer (GC), and their pathways appear to be interdependent. The aim of this study was to investigate the prognostic value of EGFR and c-MET protein overexpression by immunohistochemistry in Canadian patients with resected GC and correlate it with clinicopathologic characteristics and overall survival (OS). MATERIALS AND METHODS Tissue microarray blocks were constructed from 120 resected GCs stained with EGFR and c-MET and scored semiquantitatively (0 to 3+). Each receptor's expression was compared with clinicopathologic characteristics and survival. Descriptive statistics, Kaplan-Meyer, and Cox regression were used for statistical analyses. RESULTS Of the 113 interpretable cases, overexpression of EGFR and c-MET was noted in 17 (15%) and 65 (57%), respectively; coexpression of EGFR and c-MET was observed in 12 (10%) of GC. EGFR and c-MET overexpression correlated with poor OS: median 13 versus 30 months in EGFR positive versus negative GC (hazard ratio [HR]=1.67, P=0.11); 27 versus 49 months in c-MET positive versus negative GC (HR=1.17, P=0.49), respectively. GC coexpressing EGFR and c-MET was significantly correlated with poor survival: 12 versus 29 months in double-positive versus rest of tumors both in univariate (HR=2.62, P=0.003) and multivariate analyses (HR=2.58, P=0.01). CONCLUSIONS This study describes the prevalence and prognostic value of EGFR and c-MET in a Canadian population of patients undergoing curative intent resection for GC. Both c-MET and EGFR overexpression trended toward poor OS, but only the group with EGFR+/c-MET+ GC reached statistical significance on multivariate analysis.
Collapse
|
23
|
Nam S. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:217-224. [PMID: 28388297 PMCID: PMC5393410 DOI: 10.1089/omi.2016.0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.
Collapse
Affiliation(s)
- Seungyoon Nam
- 1 Department of Genome Medicine and Science, College of Medicine, Gachon University , Incheon, Korea.,2 Department of Life Sciences, Gachon University , Seongnam, Korea.,3 Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center , Incheon, Korea
| |
Collapse
|
24
|
Al-Saad S, Richardsen E, Kilvaer TK, Donnem T, Andersen S, Khanehkenari M, Bremnes RM, Busund LT. The impact of MET, IGF-1, IGF1R expression and EGFR mutations on survival of patients with non-small-cell lung cancer. PLoS One 2017; 12:e0181527. [PMID: 28742836 PMCID: PMC5526580 DOI: 10.1371/journal.pone.0181527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/03/2017] [Indexed: 01/10/2023] Open
Abstract
Introduction To compare the efficacy of silver in situ hybridization (SISH) and immunohistochemistry (IHC) in detecting MET and IGF1R alterations and to investigate their prevalence and prognostic significance. A possible correlation between MET receptor expression, MET gene alterations and the two most frequent occurring EGFR gene mutations was also investigated. Materials and methods Stage I to IIIA tumors from 326 patients with NSCLC were immunohistochemically tested for protein expression of MET and IGF-1. Their cytoplasmic expression was compared with the gene copy number of the MET and IGF1Rgenes by SISH in paraffin-embedded, formalin-fixed material. Correlations were made with the immunohistochemical expression of two frequent EGFR mutations and clinicopathological variables. Univariate and multivariate survival analyses was used to evaluate the prognostic efficacy of the tested markers. Results In univariate analyses, high cytoplasmic MET expression showed a significant negative prognostic effect in adenocarcinoma patients (p = 0.026). MET gene to chromosome 7 ratio was a significant positive prognostic marker (p = 0.005), probably only due to the highly negative prognostic significance of chromosome 7 polysomy (p = 0.002). High IGF1R gene copy number was a negative prognostic marker for all NSCLC patients (p = 0.037). In the multivariate analysis, polysomy of chromosome 7 in tumor cells correlated significantly and independently with a poor prognosis (p = 0.011). In patients with adenocarcinoma, a high cytoplasmic MET expression was an independent negative prognostic marker (p = 0.013). In males a high IGF1R gene copy number to chromosome 15 count ratio was significantly and independently correlated to a poor prognosis (p = 0.018). Conclusion MET protein expression provides superior prognostic information compared with SISH. Polysomy of chromosome 7 is an independent negative prognostic factor in NSCLC patients. This finding has an important implication while examining genes located on chromosome 7 by means of SISH. High IGF1R gene copy number to chromosome 15 count ratio is an independent predictor of inferior survival in male patients with primary NSCLC.
Collapse
Affiliation(s)
- Samer Al-Saad
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of Northern Norway, Tromso, Norway
- * E-mail:
| | - Elin Richardsen
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of Northern Norway, Tromso, Norway
| | - Thomas K. Kilvaer
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Department of Oncology, University Hospital of Northern Norway, Tromso, Norway
| | - Tom Donnem
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Department of Oncology, University Hospital of Northern Norway, Tromso, Norway
| | - Sigve Andersen
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Department of Oncology, University Hospital of Northern Norway, Tromso, Norway
| | - Mehrdad Khanehkenari
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Roy M. Bremnes
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Department of Oncology, University Hospital of Northern Norway, Tromso, Norway
| | - Lill-Tove Busund
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of Northern Norway, Tromso, Norway
| |
Collapse
|
25
|
Gong S, Ren F, Wu D, Wu X, Wu C. Fabs-in-tandem immunoglobulin is a novel and versatile bispecific design for engaging multiple therapeutic targets. MAbs 2017; 9:1118-1128. [PMID: 28692328 DOI: 10.1080/19420862.2017.1345401] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, the development of bispecific antibody (bsAb) has become a major trend in the biopharmaceutical industry. By simultaneously engaging 2 molcular targets, bsAbs show unique mechanisms of action that could lead to clinical benefits unattainable by conventional monoclonal antibodies. Various bsAb generation formats have been described, and several are being investigated in clinical development. However, some bsAb constructs have proven to be problematic due to their unfavorable physicochemical and pharmacokinetic properties, as well as poor manufacturing efficiencies. We describe here a new bispecific design, Fabs-in-tandem immunoglobulin (FIT-Ig), in which 2 antigen-binding fragments are fused directly in a crisscross orientation without any mutations or use of peptide linkers. This unique design provides a symmetric IgG-like bispecific molecule with correct association of 2 sets of VH/VL pairs. We show that FIT-Ig molecules exhibit favorable drug-like properties, in vitro and in vivo functions, as well as manufacturing efficiency for commercial development.
Collapse
Affiliation(s)
| | - Fang Ren
- a EpimAb Biotherapeutics , Shanghai , China
| | - Danqing Wu
- a EpimAb Biotherapeutics , Shanghai , China
| | - Xuan Wu
- a EpimAb Biotherapeutics , Shanghai , China
| | | |
Collapse
|
26
|
Bi-specific molecule against EGFR and death receptors simultaneously targets proliferation and death pathways in tumors. Sci Rep 2017; 7:2602. [PMID: 28572590 PMCID: PMC5454031 DOI: 10.1038/s41598-017-02483-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
Abstract
Developing therapeutics that target multiple receptor signaling pathways in tumors is critical as therapies targeting single specific biomarker/pathway have shown limited efficacy in patients with cancer. In this study, we extensively characterized a bi-functional molecule comprising of epidermal growth factor receptor (EGFR) targeted nanobody (ENb) and death receptor (DR) targeted ligand TRAIL (ENb-TRAIL). We show that ENb-TRAIL has therapeutic efficacy in tumor cells from different cancer types which do not respond to either EGFR antagonist or DR agonist monotherapies. Utilizing pharmacological inhibition, genetic loss of function and FRET studies, we show that ENb-TRAIL blocks EGFR signalling via the binding of ENb to EGFR which in turn induces DR5 clustering at the plasma membrane and thereby primes tumor cells to caspase-mediated apoptosis. In vivo, using a clinically relevant orthotopic resection model of primary glioblastoma and engineered stem cells (SC) expressing ENb-TRAIL, we show that the treatment with synthetic extracellular matrix (sECM) encapsulated SC-ENb-TRAIL alleviates tumor burden and significantly increases survival. This study is the first to report novel mechanistic insights into simultaneous targeting of receptor-mediated proliferation and cell death signaling pathways in different tumor types and presents a promising approach for translation into the clinical setting.
Collapse
|
27
|
Kintzing JR, Filsinger Interrante MV, Cochran JR. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment. Trends Pharmacol Sci 2016; 37:993-1008. [PMID: 27836202 PMCID: PMC6238641 DOI: 10.1016/j.tips.2016.10.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Protein-based therapeutics have been revolutionizing the oncology space since they first appeared in the clinic two decades ago. Unlike traditional small-molecule chemotherapeutics, protein biologics promote active targeting of cancer cells by binding to cell-surface receptors and other markers specifically associated with or overexpressed on tumors versus healthy tissue. While the first approved cancer biologics were monoclonal antibodies, the burgeoning field of protein engineering is spawning research on an expanded range of protein formats and modifications that allow tuning of properties such as target-binding affinity, serum half-life, stability, and immunogenicity. In this review we highlight some of these strategies and provide examples of modified and engineered proteins under development as preclinical and clinical-stage drug candidates for the treatment of cancer.
Collapse
Affiliation(s)
- James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Maria V Filsinger Interrante
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Grugan KD, Dorn K, Jarantow SW, Bushey BS, Pardinas JR, Laquerre S, Moores SL, Chiu ML. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs 2016; 9:114-126. [PMID: 27786612 PMCID: PMC5240640 DOI: 10.1080/19420862.2016.1249079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.
Collapse
Affiliation(s)
- Katharine D Grugan
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Keri Dorn
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Stephen W Jarantow
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Barbara S Bushey
- b Oncology, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Jose R Pardinas
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Sylvie Laquerre
- b Oncology, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Sheri L Moores
- b Oncology, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Mark L Chiu
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| |
Collapse
|
29
|
Sobani ZA, Sawant A, Jafri M, Correa AK, Sahin IH. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer. World J Clin Oncol 2016; 7:340-351. [PMID: 27777877 PMCID: PMC5056326 DOI: 10.5306/wjco.v7.i5.340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/14/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade.
Collapse
|
30
|
Sellmann C, Doerner A, Knuehl C, Rasche N, Sood V, Krah S, Rhiel L, Messemer A, Wesolowski J, Schuette M, Becker S, Toleikis L, Kolmar H, Hock B. Balancing Selectivity and Efficacy of Bispecific Epidermal Growth Factor Receptor (EGFR) × c-MET Antibodies and Antibody-Drug Conjugates. J Biol Chem 2016; 291:25106-25119. [PMID: 27694443 DOI: 10.1074/jbc.m116.753491] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/22/2016] [Indexed: 01/29/2023] Open
Abstract
Bispecific antibodies (bsAbs) and antibody-drug conjugates (ADCs) have already demonstrated benefits for the treatment of cancer in several clinical studies, showing improved drug selectivity and efficacy. In particular, simultaneous targeting of prominent cancer antigens, such as EGF receptor (EGFR) and c-MET, by bsAbs has raised increasing interest for potentially circumventing receptor cross-talk and c-MET-mediated acquired resistance during anti-EGFR monotherapy. In this study, we combined the selectivity of EGFR × c-MET bsAbs with the potency of cytotoxic agents via bispecific antibody-toxin conjugation. Affinity-attenuated bispecific EGFR × c-MET antibody-drug conjugates demonstrated high in vitro selectivity toward tumor cells overexpressing both antigens and potent anti-tumor efficacy. Due to basal EGFR expression in the skin, ADCs targeting EGFR in general warrant early safety assessments. Reduction in EGFR affinity led to decreased toxicity in keratinocytes. Thus, the combination of bsAb affinity engineering with the concept of toxin conjugation may be a viable route to improve the safety profile of ADCs targeting ubiquitously expressed antigens.
Collapse
Affiliation(s)
- Carolin Sellmann
- From the Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Protein Engineering and Antibody Technologies and
| | | | - Christine Knuehl
- Merck Research and Development, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany, and
| | | | - Vanita Sood
- the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821
| | - Simon Krah
- From the Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Protein Engineering and Antibody Technologies and
| | - Laura Rhiel
- Protein Engineering and Antibody Technologies and
| | - Annika Messemer
- From the Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - John Wesolowski
- the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821
| | | | | | | | - Harald Kolmar
- From the Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany,
| | - Bjoern Hock
- Protein Engineering and Antibody Technologies and
| |
Collapse
|
31
|
Castoldi R, Schanzer J, Panke C, Jucknischke U, Neubert NJ, Croasdale R, Scheuer W, Auer J, Klein C, Niederfellner G, Kobold S, Sustmann C. TetraMabs: simultaneous targeting of four oncogenic receptor tyrosine kinases for tumor growth inhibition in heterogeneous tumor cell populations. Protein Eng Des Sel 2016; 29:467-475. [PMID: 27578890 PMCID: PMC5036864 DOI: 10.1093/protein/gzw037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 11/14/2022] Open
Abstract
Monoclonal antibody-based targeted tumor therapy has greatly improved treatment options for patients. Antibodies against oncogenic receptor tyrosine kinases (RTKs), especially the ErbB receptor family, are prominent examples. However, long-term efficacy of such antibodies is limited by resistance mechanisms. Tumor evasion by a priori or acquired activation of other kinases is often causative for this phenomenon. These findings led to an increasing number of combination approaches either within a protein family, e.g. the ErbB family or by targeting RTKs of different phylogenetic origin like HER1 and cMet or HER1 and IGF1R. Progress in antibody engineering technology enabled generation of clinical grade bispecific antibodies (BsAbs) to design drugs inherently addressing such resistance mechanisms. Limited data are available on multi-specific antibodies targeting three or more RTKs. In the present study, we have evaluated the cloning, eukaryotic expression and purification of tetraspecific, tetravalent Fc-containing antibodies targeting HER3, cMet, HER1 and IGF1R. The antibodies are based on the combination of single-chain Fab and Fv fragments in an IgG1 antibody format enhanced by the knob-into-hole technology. They are non-agonistic and inhibit tumor cell growth comparable to the combination of four parental antibodies. Importantly, TetraMabs show improved apoptosis induction and tumor growth inhibition over individual monospecific or BsAbs in cellular assays. In addition, a mimicry assay to reflect heterogeneous expression of antigens in a tumor mass was established. With this novel in vitro assay, we can demonstrate the superiority of a tetraspecific antibody to bispecific tumor antigen-binding antibodies in early pre-clinical development.
Collapse
Affiliation(s)
- Raffaella Castoldi
- pRED, Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Jürgen Schanzer
- pRED, Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Christian Panke
- pRED, Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Ute Jucknischke
- pRED, Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Natalie J Neubert
- pRED, Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Rebecca Croasdale
- pRED, Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Werner Scheuer
- pRED, Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Johannes Auer
- pRED, Roche Pharma Research & Early Development, Roche Large Molecule Research, Roche Innovation Center, Munich, Nonnenwald 2, 82377 Penzberg, Germany
| | - Christian Klein
- pRED, Roche Pharma Research & Early Development, Roche Innovation Center, Zuerich, Switzerland, Wagistrasse 18, 8952 Schlieren
| | - Gerhard Niederfellner
- pRED, Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Lindwurmstraße 2a, 80337 Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Claudio Sustmann
- pRED, Roche Pharma Research & Early Development, Roche Large Molecule Research, Roche Innovation Center, Munich, Nonnenwald 2, 82377 Penzberg, Germany
| |
Collapse
|
32
|
Feiner RC, Müller KM. Recent progress in protein-protein interaction study for EGFR-targeted therapeutics. Expert Rev Proteomics 2016; 13:817-32. [PMID: 27424502 DOI: 10.1080/14789450.2016.1212665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) expression is upregulated in many tumors and its aberrant signaling drives progression of many cancer types. Consequently, EGFR has become a clinically validated target as extracellular tumor marker for antibodies as well as for tyrosine kinase inhibitors. Within the last years, new mechanistic insights were uncovered and, based on clinical experience as well as progress in protein engineering, novel bio-therapeutic approaches were developed and tested. AREAS COVERED The potential therapeutic targeting arsenal in the fight against cancer now encompasses bispecific or biparatopic antibodies, DARPins, Adnectins, Affibodies, peptides and combinations of these binding molecules with viral- and nano-particles. We review past and recent binding proteins from the literature and include a brief description of the various targeting approaches. Special attention is given to the binding modes with the EGFR. Expert commentary: Clinical data from the three approved anti EGFR antibodies indicate that there is room for improved therapeutic efficacy. Having choices in size, affinity, avidity and the mode of EGFR binding as well as the possibility to combine various effector functions opens the possibility to rationally design more effective therapeutics.
Collapse
Affiliation(s)
- Rebecca Christine Feiner
- a Cellular and Molecular Biotechnology group, Faculty of Technology , Bielefeld University , Bielefeld , Germany
| | - Kristian Mark Müller
- a Cellular and Molecular Biotechnology group, Faculty of Technology , Bielefeld University , Bielefeld , Germany
| |
Collapse
|
33
|
Klein C, Schaefer W, Regula JT. The use of CrossMAb technology for the generation of bi- and multispecific antibodies. MAbs 2016; 8:1010-20. [PMID: 27285945 PMCID: PMC4968094 DOI: 10.1080/19420862.2016.1197457] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The major challenge in the generation of bispecific IgG antibodies is enforcement of the correct heavy and light chain association. The correct association of generic light chains can be enabled using immunoglobulin domain crossover, known as CrossMAb technology, which can be combined with approaches enabling correct heavy chain association such as knobs-into-holes (KiH) technology or electrostatic steering. Since its development, this technology has proven to be very versatile, allowing the generation of various bispecific antibody formats, not only heterodimeric/asymmetric bivalent 1+1 CrossMAbs, but also tri- (2+1), tetravalent (2+2) bispecific and multispecific antibodies. Numerous CrossMAbs have been evaluated in preclinical studies, and, so far, 4 different tailor-made bispecific antibodies based on the CrossMAb technology have entered clinical studies. Here, we review the properties and activities of bispecific CrossMAbs and give an overview of the variety of CrossMAb-enabled antibody formats that differ from heterodimeric 1+1 bispecific IgG antibodies.
Collapse
Affiliation(s)
- Christian Klein
- a Roche Innovation Center Zurich , Roche Pharmaceutical Research & Early Development, Wagistrasse , Schlieren , Switzerland
| | - Wolfgang Schaefer
- b Roche Innovation Center Munich , Roche Pharmaceutical Research & Early Development, Nonnenwald , Penzberg , Germany
| | - Jörg T Regula
- b Roche Innovation Center Munich , Roche Pharmaceutical Research & Early Development, Nonnenwald , Penzberg , Germany
| |
Collapse
|
34
|
Tepper SR, Zuo Z, Khattri A, Heß J, Seiwert TY. Growth factor expression mediates resistance to EGFR inhibitors in head and neck squamous cell carcinomas. Oral Oncol 2016; 56:62-70. [PMID: 27086488 DOI: 10.1016/j.oraloncology.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 03/02/2016] [Accepted: 03/12/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Epidermal growth factor receptor (EGFR)-targeted therapy is frequently used in the treatment of advanced head and neck squamous cell carcinoma (HNSCC). However, constitutive or acquired resistance is common and underlying resistance mechanisms remain poorly understood. We investigated the expression levels of growth factors (GF) in tumor-associated stroma and tumor from HNSCC patients and determined the influence of GFs on EGFR inhibitor efficacy in vitro. MATERIALS AND METHODS The Chicago HNC Genomic Cohort (CHGC) was queried for GF and receptor tyrosine kinase (RTK) expression. Viability assays were used to evaluate the effect of EGFR inhibition (gefitinib), GF treatment, or both in HNSCC cell lines. Caspase-based assays were used to measure apoptotic activity. Expression of RTKs was determined and correlated with GF treatment effects. RESULTS Amphiregulin (AREG), transforming growth factor (TGFβ1), insulin like growth factor (IGF1), fibroblast growth factors (FGF1/FGF2) and the corresponding RTKs were highly expressed in 30-50% of HNSCC, and expression was usually concurrent. While EGFR inhibition was markedly efficacious in HNC cell lines (HN5/HN13/H400/SCC61), co-treatment with most GFs increased viability up to 100%. Only TGFβ1 treatment was additive to EGFR inhibition. GFs also reduced apoptotic effects of EGFR inhibition. RTK expression showed strong positive correlation with respective GF treatment effect for IGF1-IGF1R, less strong for HGF-MET/AREG-EGFR and a moderate negative correlation for TGFβ1-TGFBR1/2. CONCLUSION High expression of GFs/RTKs occurs in HNSCC. Co-expression is common. GF expression contributes to EGFR inhibition resistance in our model system, and may be a common mechanism of constitutive or acquired resistance to EGFR inhibition in HNSCC.
Collapse
Affiliation(s)
- Susanne R Tepper
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Section Translational and Experimental Head and Neck Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Zhixiang Zuo
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Arun Khattri
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Jochen Heß
- Section Translational and Experimental Head and Neck Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Tanguy Y Seiwert
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Finisguerra V, Prenen H, Mazzone M. Preclinical and clinical evaluation of MET functions in cancer cells and in the tumor stroma. Oncogene 2016; 35:5457-5467. [PMID: 26996670 DOI: 10.1038/onc.2016.36] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
A lot of attention has been dedicated to investigate the role of the tyrosine kinase receptor MET in tumors. The acquired notion that cancer cells from different histological origin strictly rely on the engagement of this specific oncogene for their growth and survival has certainly justified the development and the use of MET-targeted therapies in the clinic. However, the function and involvement of this pathway in the stroma (that often constitutes >50% of the global cellularity of the tumor) may offer the opportunity to conceive new patient stratification criteria, rational drug design and guided trials of new combination treatments. In this review, we will summarize and discuss the role of MET in cancer cells but especially in different stromal compartments, in light of the results showed by past and recent preclinical and clinical trials with anti-MET drugs.
Collapse
Affiliation(s)
- V Finisguerra
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - H Prenen
- Digestive Oncology, University Hospitals Leuven and Department of Oncology, KU Leuven, Leuven, Belgium
| | - M Mazzone
- Lab of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Lab of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Schanzer JM, Wartha K, Moessner E, Hosse RJ, Moser S, Croasdale R, Trochanowska H, Shao C, Wang P, Shi L, Weinzierl T, Rieder N, Bacac M, Ries CH, Kettenberger H, Schlothauer T, Friess T, Umana P, Klein C. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer. MAbs 2016; 8:811-27. [PMID: 26984378 PMCID: PMC4966845 DOI: 10.1080/19420862.2016.1160989] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Juergen M Schanzer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Katharina Wartha
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Ekkehard Moessner
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Ralf J Hosse
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Samuel Moser
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Rebecca Croasdale
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Halina Trochanowska
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Cuiying Shao
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Peng Wang
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Lei Shi
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Tina Weinzierl
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Natascha Rieder
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Marina Bacac
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Carola H Ries
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Hubert Kettenberger
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Tilman Schlothauer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Thomas Friess
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Pablo Umana
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Christian Klein
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| |
Collapse
|
37
|
Lee JM, Lee SH, Hwang JW, Oh SJ, Kim B, Jung S, Shim SH, Lin PW, Lee SB, Cho MY, Koh YJ, Kim SY, Ahn S, Lee J, Kim KM, Cheong KH, Choi J, Kim KA. Novel strategy for a bispecific antibody: induction of dual target internalization and degradation. Oncogene 2016; 35:4437-46. [PMID: 26853467 DOI: 10.1038/onc.2015.514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Activation of the extensive cross-talk among the receptor tyrosine kinases (RTKs), particularly ErbB family-Met cross-talk, has emerged as a likely source of drug resistance. Notwithstanding brilliant successes were attained while using small-molecule inhibitors or antibody therapeutics against specific RTKs in multiple cancers over recent decades, a high recurrence rate remains unsolved in patients treated with these targeted inhibitors. It is well aligned with multifaceted properties of cancer and cross-talk and convergence of signaling pathways of RTKs. Thereby many therapeutic interventions have been actively developed to overcome inherent or acquired resistance. To date, no bispecific antibody (BsAb) showed complete depletion of dual RTKs from the plasma membrane and efficient dual degradation. In this manuscript, we report the first findings of a target-specific dual internalization and degradation of membrane RTKs induced by designed BsAbs based on the internalizing monoclonal antibodies and the therapeutic values of these BsAbs. Leveraging the anti-Met mAb able to internalize and degrade by a unique mechanism, we generated the BsAbs for Met/epidermal growth factor receptor (EGFR) and Met/HER2 to induce an efficient EGFR or HER2 internalization and degradation in the presence of Met that is frequently overexpressed in the invasive tumors and involved in the resistance against EGFR- or HER2-targeted therapies. We found that Met/EGFR BsAb ME22S induces dissociation of the Met-EGFR complex from Hsp90, followed by significant degradation of Met and EGFR. By employing patient-derived tumor models we demonstrate therapeutic potential of the BsAb-mediated dual degradation in various cancers.
Collapse
Affiliation(s)
- J M Lee
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S H Lee
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - J-W Hwang
- Bioassay Group, Quality Evaluation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S J Oh
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - B Kim
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S Jung
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S-H Shim
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - P W Lin
- Cell Engineering Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - S B Lee
- Cell Engineering Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| | - M-Y Cho
- Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - Y J Koh
- Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - S Y Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - S Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - J Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - K-M Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - K H Cheong
- Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - J Choi
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology (SAIT), Gyeonggi-do, South Korea
| | - K-A Kim
- Open Innovation Team, Samsung Bioepis Co., Ltd., Incheon, South Korea
| |
Collapse
|
38
|
Donzelli S, Cioce M, Muti P, Strano S, Yarden Y, Blandino G. MicroRNAs: Non-coding fine tuners of receptor tyrosine kinase signalling in cancer. Semin Cell Dev Biol 2016; 50:133-42. [PMID: 26773212 DOI: 10.1016/j.semcdb.2015.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022]
Abstract
Emerging evidence point to a crucial role for non-coding RNAs in modulating homeostatic signaling under physiological and pathological conditions. MicroRNAs, the best-characterized non-coding RNAs to date, can exquisitely integrate spatial and temporal signals in complex networks, thereby confer specificity and sensitivity to tissue response to changes in the microenvironment. MicroRNAs appear as preferential partners for Receptor Tyrosine Kinases (RTKs) in mediating signaling under stress conditions. Stress signaling can be especially relevant to disease. Here we focus on the ability of microRNAs to mediate RTK signaling in cancer, by acting as both tumor suppressors and oncogenes. We will provide a few general examples of microRNAs modulating specific tumorigenic functions downstream of RTK signaling and integrate oncogenic signals from multiple RTKs. A special focus will be devoted to epidermal growth factor receptor (EGFR) signaling, a system offering relatively rich information. We will explore the role of selected microRNAs as bidirectional modulators of EGFR functions in cancer cells. In addition, we will present the emerging evidence for microRNAs being specifically modulated by oncogenic EGFR mutants and we will discuss how this impinges on EGFRmut driven chemoresistance, which fits into the tumor heterogeneity-driven cancer progression. Finally, we discuss how other non-coding RNA species are emerging as important modulators of cancer progression and why the scenario depicted herein is destined to become increasingly complex in the future.
Collapse
Affiliation(s)
- Sara Donzelli
- Translational Oncogenomics, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Mario Cioce
- Translational Oncogenomics, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Paola Muti
- Dept of Oncology, McMaster University, Hamilton, On L8V1C3, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Units, Regina Elena National Cancer Institute, 00144 Rome, Italy; Dept of Oncology, McMaster University, Hamilton, On L8V1C3, Canada
| | - Yosef Yarden
- Dept of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giovanni Blandino
- Translational Oncogenomics, Regina Elena National Cancer Institute, 00144 Rome, Italy; Dept of Oncology, McMaster University, Hamilton, On L8V1C3, Canada.
| |
Collapse
|
39
|
Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, Maurer J, Nölting S, Göke B, Auernhammer CJ. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology 2016; 103:383-401. [PMID: 26338447 DOI: 10.1159/000439431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/15/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The hepatocyte growth factor/transmembrane tyrosine kinase receptor c-Met has been defined as a potential target in antitumoral treatment of various carcinomas. We aimed to investigate the direct effect of c-Met inhibition on neuroendocrine tumor cells in vitro. METHODS The effects of the multi-tyrosine kinase inhibitors cabozantinib and tivantinib and of the highly specific c-Met inhibitor INC280 were investigated in human pancreatic neuroendocrine BON1, bronchopulmonary NCI-H727 and midgut GOT1 cells in vitro. RESULTS INC280, cabozantinib and tivantinib inhibited c-Met phosphorylation, respectively. However, while equimolar concentrations (10 μM) of cabozantinib and tivantinib inhibited cell viability and cell migration, INC280 had no inhibitory effect. Knockdown experiments with c-Met siRNA also did not demonstrate effects on cell viability. Cabozantinib and tivantinib caused a G2 arrest in neuroendocrine tumor cells. CONCLUSIONS Our in vitro data suggest that c-Met inhibition alone is not sufficient to exert direct antitumoral or antimigratory effects in neuroendocrine tumor cells. The multi-tyrosine kinase inhibitors cabozantinib and tivantinib show promising antitumoral and antimigratory effects in neuroendocrine tumor cells, which are most probably 'off-target' effects, not mediated by c-Met.
Collapse
Affiliation(s)
- Clemens Reuther
- Department of Internal Medicine II, Campus Grosshadern, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhu Y, Choi SH, Shah K. Multifunctional receptor-targeting antibodies for cancer therapy. Lancet Oncol 2015; 16:e543-e554. [DOI: 10.1016/s1470-2045(15)00039-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/29/2022]
|
41
|
Jarantow SW, Bushey BS, Pardinas JR, Boakye K, Lacy ER, Sanders R, Sepulveda MA, Moores SL, Chiu ML. Impact of Cell-surface Antigen Expression on Target Engagement and Function of an Epidermal Growth Factor Receptor × c-MET Bispecific Antibody. J Biol Chem 2015; 290:24689-704. [PMID: 26260789 PMCID: PMC4598982 DOI: 10.1074/jbc.m115.651653] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 11/06/2022] Open
Abstract
The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design.
Collapse
Affiliation(s)
- Stephen W Jarantow
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477 and
| | - Barbara S Bushey
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477 and
| | - Jose R Pardinas
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477 and
| | - Ken Boakye
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477 and
| | - Eilyn R Lacy
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477 and
| | - Renouard Sanders
- Janssen Diagnostics, Janssen Research and Development, Huntingdon Valley, Pennsylvania 19104
| | - Manuel A Sepulveda
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477 and
| | - Sheri L Moores
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477 and
| | - Mark L Chiu
- From Janssen Research and Development, LLC, Spring House, Pennsylvania 19477 and
| |
Collapse
|
42
|
Abstract
Chemotherapy and targeted therapy have opened new avenues in clinical oncology. However, there is a lack of response in a substantial percentage of cancer patients and diseases frequently relapse in those who even initially respond. Resistance is, at present, the major barrier to conquering cancer, the most lethal age-related pathology. Identification of mechanisms underlying resistance and development of effective strategies to circumvent treatment pitfalls thereby improving clinical outcomes remain overarching tasks for scientists and clinicians. Growing bodies of data indicate that stromal cells within the genetically stable but metabolically dynamic tumor microenvironment confer acquired resistance against anticancer therapies. Further, treatment itself activates the microenvironment by damaging a large population of benign cells, which can drastically exacerbate disease conditions in a cell nonautonomous manner, and such off-target effects should be well taken into account when establishing future therapeutic rationale. In this review, we highlight relevant biological mechanisms through which the tumor microenvironment drives development of resistance. We discuss some unsolved issues related to the preclinical and clinical trial paradigms that need to be carefully devised, and provide implications for personalized medicine. In the long run, an insightful and accurate understanding of the intricate signaling networks of the tumor microenvironment in pathological settings will guide the design of new clinical interventions particularly combinatorial therapies, and it might help overcome, or at least prevent, the onset of acquired resistance.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, 200031, China
- School of Medicine, Shanghai Jiaotong UniversityShanghai, 200025, China
- VA Seattle Medical CenterSeattle, WA, 98108
- Department of Medicine, University of WashingtonSeattle, WA, 98195
| |
Collapse
|
43
|
Prat M, Oltolina F, Basilico C. Monoclonal Antibodies against the MET/HGF Receptor and Its Ligand: Multitask Tools with Applications from Basic Research to Therapy. Biomedicines 2014; 2:359-383. [PMID: 28548076 PMCID: PMC5344273 DOI: 10.3390/biomedicines2040359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies can be seen as valuable tools for many aspects of basic as well as applied sciences. In the case of MET/HGFR, they allowed the identification of truncated isoforms of the receptor, as well as the dissection of different epitopes, establishing structure-function relationships. Antibodies directed against MET extracellular domain were found to be full or partial receptor agonists or antagonists. The agonists can mimic the effects of the different isoforms of the natural ligand, but with the advantage of being more stable than the latter. Thus, some agonist antibodies promote all the biological responses triggered by MET activation, including motility, proliferation, morphogenesis, and protection from apoptosis, while others can induce only a migratory response. On the other hand, antagonists can inhibit MET-driven biological functions either by competing with the ligand or by removing the receptor from the cell surface. Since MET/HGFR is often over-expressed and/or aberrantly activated in tumors, monoclonal antibodies can be used as probes for MET detection or as "bullets" to target MET-expressing tumor cells, thus pointing to their use in diagnosis and therapy.
Collapse
Affiliation(s)
- Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Francesca Oltolina
- Department of Health Sciences, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Cristina Basilico
- Laboratory of Exploratory Research, Candiolo Cancer Institute, Str. Prov. 142, 10060 Candiolo, Italy.
| |
Collapse
|
44
|
Kobold S, Steffen J, Chaloupka M, Grassmann S, Henkel J, Castoldi R, Zeng Y, Chmielewski M, Schmollinger JC, Schnurr M, Rothenfußer S, Schendel DJ, Abken H, Sustmann C, Niederfellner G, Klein C, Bourquin C, Endres S. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer. J Natl Cancer Inst 2014; 107:364. [PMID: 25424197 DOI: 10.1093/jnci/dju364] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy. METHODS SV40 T antigen-specific T cells from T cell receptor (TCR)-I-transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein. Targeting and killing by combined ACT and anti-EGFR-anti-EpCAM BiAb therapy was analyzed in C57Bl/6 mice (n = six to 12 per group) carrying subcutaneous tumors of the murine gastric cancer cell line GC8 (SV40(+) and EpCAM(+)). Anti-EGFR x anti-c-Met BiAb was used for targeting of human tumor-specific T cells to c-Met(+) human tumor cell lines. Differences between experimental conditions were analyzed using the Student's t test, and differences in tumor growth with two-way analysis of variance. Overall survival was analyzed by log-rank test. All statistical tests were two-sided. RESULTS The BiAb linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. In vivo, the combination of ACT and Biab produced increased T cell infiltration of tumors, retarded tumor growth, and prolonged survival compared with ACT with a control antibody (median survival 95 vs 75 days, P < .001). In human cells, this strategy enhanced recruitment of human EGFR-transduced T cells to immobilized c-Met and recognition of tyrosinase(+) melanoma cells by TCR-, as well as of CEA(+) colon cancer cells by chimeric antigen receptor (CAR)-modified T cells. CONCLUSIONS BiAb recruitment of tumor-specific T cells transduced with a marker antigen to tumor cells may enhance efficacy of ACT.
Collapse
Affiliation(s)
- Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB).
| | - Julius Steffen
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Michael Chaloupka
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Simon Grassmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Jonas Henkel
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Raffaella Castoldi
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Yi Zeng
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Markus Chmielewski
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Jan C Schmollinger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Max Schnurr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Simon Rothenfußer
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Dolores J Schendel
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Hinrich Abken
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Claudio Sustmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Gerhard Niederfellner
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Christian Klein
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Carole Bourquin
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany (SK, JS, MiC, SG, JH, YZ, JCS, MS, SR, CB, SE); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Penzberg, Penzberg, Germany (RC, CS, GN); Center for Molecular Medicine Cologne and Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany (MaC, HA); Institute of Molecular Immunology, Helmholtz Zentrum München and Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (DJS); Roche Pharmaceutical Research and Early Development, Oncology Discovery and Translational Area, Roche Innovation Center Zurich, Switzerland (CL); Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland (CB)
| |
Collapse
|
45
|
Vigna E, Comoglio PM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene 2014; 34:1883-9. [PMID: 24882574 DOI: 10.1038/onc.2014.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field.
Collapse
Affiliation(s)
- E Vigna
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - P M Comoglio
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| |
Collapse
|
46
|
Le Couter J, Scheer JM. Bispecific therapeutics for ophthalmic indications: target selection and the optimal molecular format. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2014.918846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Ekert JE, Johnson K, Strake B, Pardinas J, Jarantow S, Perkinson R, Colter DC. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development. PLoS One 2014; 9:e92248. [PMID: 24638075 PMCID: PMC3956916 DOI: 10.1371/journal.pone.0092248] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/20/2014] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor microenvironment.
Collapse
Affiliation(s)
- Jason E. Ekert
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
- * E-mail:
| | - Kjell Johnson
- Arbor Analytics, LLC, Ann Arbor, Michigan, United States of America
| | | | - Jose Pardinas
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - Stephen Jarantow
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - Robert Perkinson
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - David C. Colter
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| |
Collapse
|
48
|
Luraghi P, Reato G, Cipriano E, Sassi F, Orzan F, Bigatto V, De Bacco F, Menietti E, Han M, Rideout WM, Perera T, Bertotti A, Trusolino L, Comoglio PM, Boccaccio C. MET signaling in colon cancer stem-like cells blunts the therapeutic response to EGFR inhibitors. Cancer Res 2014; 74:1857-69. [PMID: 24448239 DOI: 10.1158/0008-5472.can-13-2340-t] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metastatic colorectal cancer remains largely incurable, although in a subset of patients, survival is prolonged by new targeting agents such as anti-EGF receptor (anti-EGFR) antibodies. This disease is believed to be supported by a subpopulation of stem-like cells termed colon cancer-initiating cell (CCIC), which may also confer therapeutic resistance. However, how CCICs respond to EGFR inhibition has not been fully characterized. To explore this question, we systematically generated CCICs through spheroid cultures of patient-derived xenografts of metastatic colorectal cancer. These cultures, termed "xenospheres," were capable of long-term self-propagation in vitro and phenocopied the original patient tumors in vivo, thus operationally defining CCICs. Xenosphere CCICs retained the genetic determinants for EGFR therapeutic response in vitro and in xenografts; like the original tumors, xenospheres harboring a mutated KRAS gene were resistant to EGFR therapy, whereas those harboring wild-type RAS pathway genes (RAS(wt)) were sensitive. Notably, the effects of EGFR inhibition in sensitive CCICs could be counteracted by cytokines secreted by cancer-associated fibroblasts. In particular, we found that the MET receptor ligand hepatocyte growth factor (HGF) was especially active in supporting in vitro CCIC proliferation and resistance to EGFR inhibition. Ectopic production of human HGF in CCIC xenografts rendered the xenografts susceptible to MET inhibition, which sensitized the response to EGFR therapy. By showing that RAS(wt) CCICs rely on both EGFR and MET signaling, our results offer a strong preclinical proof-of-concept for concurrent targeting of these two pathways in the clinical setting.
Collapse
Affiliation(s)
- Paolo Luraghi
- Authors' Affiliations: Institute for Cancer Research at Candiolo (IRCC), Center for Experimental Clinical Molecular Oncology; Department of Oncology, University of Torino, Candiolo, Torino, Italy; Aveo Oncology Inc., Cambridge, Massachusetts; and Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Magkrioti C, Aidinis V. Autotaxin and lysophosphatidic acid signalling in lung pathophysiology. World J Respirol 2013; 3:77-103. [DOI: 10.5320/wjr.v3.i3.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX or ENPP2) is a secreted glycoprotein widely present in biological fluids. ATX primarily functions as a plasma lysophospholipase D and is largely responsible for the bulk of lysophosphatidic acid (LPA) production in the plasma and at inflamed and/or malignant sites. LPA is a phospholipid mediator produced in various conditions both in cells and in biological fluids, and it evokes growth-factor-like responses, including cell growth, survival, differentiation and motility, in almost all cell types. The large variety of LPA effector functions is attributed to at least six G-protein coupled LPA receptors (LPARs) with overlapping specificities and widespread distribution. Increased ATX/LPA/LPAR levels have been detected in a large variety of cancers and transformed cell lines, as well as in non-malignant inflamed tissues, suggesting a possible involvement of ATX in chronic inflammatory disorders and cancer. In this review, we focus exclusively on the role of the ATX/LPA axis in pulmonary pathophysiology, analysing the effects of ATX/LPA on pulmonary cells and leukocytes in vitro and in the context of pulmonary pathophysiological situations in vivo and in human diseases.
Collapse
|
50
|
A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol 2013; 31:621-32. [PMID: 24094861 PMCID: PMC7114091 DOI: 10.1016/j.tibtech.2013.08.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/01/2013] [Accepted: 08/27/2013] [Indexed: 12/20/2022]
Abstract
Recombinant DNA technologies are leading the rapid expansion of bispecific antibody formats. The therapeutic potential of bispecific antibodies is being realized through creative design. Bispecific antibodies are potentially underutilized reagents for diagnostics.
Artificial manipulation of antibody genes has facilitated the production of several unique recombinant antibody formats, which have highly important therapeutic and biotechnological applications. Although bispecific antibodies (bsAbs) are not new, they are coming to the forefront as our knowledge of the potential efficacy of antibody-based therapeutics expands. The next generation of bsAbs is developing due to significant improvements in recombinant antibody technologies. This review focuses on recent advances with a particular focus on improvements in format and design that are contributing to the resurgence of bsAbs, and in particular, on innovative structures applicable to next generation point-of-care (POC) devices with applicability to low resource environments.
Collapse
|