1
|
Rida P, Baker S, Saidykhan A, Bown I, Jinna N. FOXM1 Transcriptionally Co-Upregulates Centrosome Amplification and Clustering Genes and Is a Biomarker for Poor Prognosis in Androgen Receptor-Low Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3191. [PMID: 39335162 PMCID: PMC11429756 DOI: 10.3390/cancers16183191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
There are currently no approved targeted treatments for quadruple-negative breast cancer [QNBC; ER-/PR-/HER2-/androgen receptor (AR)-], a subtype of triple-negative breast cancer (TNBC). AR-low TNBC is more proliferative and clinically aggressive than AR-high TNBC. Centrosome amplification (CA), a cancer hallmark, is rampant in TNBC, where it induces spindle multipolarity-mediated cell death unless centrosome clustering pathways are co-upregulated to avert these sequelae. We recently showed that genes that confer CA and centrosome clustering are strongly overexpressed in AR-low TNBCs relative to AR-high TNBCs. However, the molecular mechanisms that index centrosome clustering to the levels of CA are undefined. We argue that FOXM1, a cell cycle-regulated oncogene, links the expression of genes that drive CA to the expression of genes that act at kinetochores and along microtubules to facilitate centrosome clustering. We provide compelling evidence that upregulation of the FOXM1-E2F1-ATAD2 oncogene triad in AR-low TNBC is accompanied by CA and the co-upregulation of centrosome clustering proteins such as KIFC1, AURKB, BIRC5, and CDCA8, conferring profound dysregulation of cell cycle controls. Targeting FOXM1 in AR-low TNBC may render cancer cells incapable of clustering their centrosomes and impair their ability to generate excess centrosomes. Hence, our review illuminates FOXM1 as a potential actionable target for AR-low TNBC.
Collapse
Affiliation(s)
- Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Sophia Baker
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Adam Saidykhan
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Isabelle Bown
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Nikita Jinna
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Sun Y, Chen J, Hong JH, Xiao R, Teng Y, Wang P, Deng P, Yu Z, Chan JY, Chai KXY, Gao J, Wang Y, Pan L, Liu L, Liu S, Teh BT, Yu Q, Lim ST, Li W, Xu B, Ong CK, Tan J. Targeting AURKA to induce synthetic lethality in CREBBP-deficient B-cell malignancies via attenuation of MYC expression. Oncogene 2024; 43:2172-2183. [PMID: 38783101 DOI: 10.1038/s41388-024-03065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.
Collapse
Affiliation(s)
- Yichen Sun
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Teng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangzhou, China
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhaoliang Yu
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Kelila Xin Ye Chai
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Jiuping Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yali Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lu Pan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangzhou, China
| | - Lizhen Liu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangzhou, China
| | - Shini Liu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangzhou, China
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Soon Thye Lim
- Director's office, National Cancer Centre Singapore, Singapore, Singapore
- Office of Education, Duke-NUS Medical School, Singapore, Singapore
| | - Wenyu Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangzhou, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Choon Kiat Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Coupling Kinesin Spindle Protein and Aurora B Inhibition with Apoptosis Induction Enhances Oral Cancer Cell Killing. Cancers (Basel) 2024; 16:2014. [PMID: 38893134 PMCID: PMC11171144 DOI: 10.3390/cancers16112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Many proteins regulating mitosis have emerged as targets for cancer therapy, including the kinesin spindle protein (KSP) and Aurora kinase B (AurB). KSP is crucial for proper spindle pole separation during mitosis, while AurB plays roles in chromosome segregation and cytokinesis. Agents targeting KSP and AurB selectively affect dividing cells and have shown significant activity in vitro. However, these drugs, despite advancing to clinical trials, often yield unsatisfactory outcomes as monotherapy, likely due to variable responses driven by cyclin B degradation and apoptosis signal accumulation networks. Accumulated data suggest that combining emerging antimitotics with various cytostatic drugs can enhance tumor-killing effects compared to monotherapy. Here, we investigated the impact of inhibiting anti-apoptotic signals with the BH3-mimetic Navitoclax in oral cancer cells treated with the selective KSP inhibitor, Ispinesib, or AurB inhibitor, Barasertib, aiming to potentiate cell death. The combination of BH3-mimetics with both KSP and AurB inhibitors synergistically induced substantial cell death, primarily through apoptosis. A mechanistic analysis underlying this synergistic activity, undertaken by live-cell imaging, is presented. Our data underscore the importance of combining BH3-mimetics with antimitotics in clinical trials to maximize their effectiveness.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
4
|
Kim S, Lau TT, Liao MK, Ma HT, Poon RY. Coregulation of NDC80 Complex Subunits Determines the Fidelity of the Spindle-Assembly Checkpoint and Mitosis. Mol Cancer Res 2024; 22:423-439. [PMID: 38324016 PMCID: PMC11063766 DOI: 10.1158/1541-7786.mcr-23-0828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
NDC80 complex (NDC80C) is composed of four subunits (SPC24, SPC25, NDC80, and NUF2) and is vital for kinetochore-microtubule (KT-MT) attachment during mitosis. Paradoxically, NDC80C also functions in the activation of the spindle-assembly checkpoint (SAC). This raises an interesting question regarding how mitosis is regulated when NDC80C levels are compromised. Using a degron-mediated depletion system, we found that acute silencing of SPC24 triggered a transient mitotic arrest followed by mitotic slippage. SPC24-deficient cells were unable to sustain SAC activation despite the loss of KT-MT interaction. Intriguingly, our results revealed that other subunits of the NDC80C were co-downregulated with SPC24 at a posttranslational level. Silencing any individual subunit of NDC80C likewise reduced the expression of the entire complex. We found that the SPC24-SPC25 and NDC80-NUF2 subcomplexes could be individually stabilized using ectopically expressed subunits. The synergism of SPC24 downregulation with drugs that promote either mitotic arrest or mitotic slippage further underscored the dual roles of NDC80C in KT-MT interaction and SAC maintenance. The tight coordinated regulation of NDC80C subunits suggests that targeting individual subunits could disrupt mitotic progression and provide new avenues for therapeutic intervention. IMPLICATIONS These results highlight the tight coordinated regulation of NDC80C subunits and their potential as targets for antimitotic therapies.
Collapse
Affiliation(s)
- Sehong Kim
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Thomas T.Y. Lau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Man Kit Liao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Randy Y.C. Poon
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
5
|
Shah ET, Molloy C, Gough M, Kryza T, Samuel SG, Tucker A, Bhatia M, Ferguson G, Heyman R, Vora S, Monkman J, Bolderson E, Kulasinghe A, He Y, Gabrielli B, Hooper JD, Richard DJ, O'Byrne KJ, Adams MN. Inhibition of Aurora B kinase (AURKB) enhances the effectiveness of 5-fluorouracil chemotherapy against colorectal cancer cells. Br J Cancer 2024; 130:1196-1205. [PMID: 38287178 PMCID: PMC10991355 DOI: 10.1038/s41416-024-02584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.
Collapse
Affiliation(s)
- Esha T Shah
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Christopher Molloy
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Madeline Gough
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Thomas Kryza
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Selwin G Samuel
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Amos Tucker
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Maneet Bhatia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Genevieve Ferguson
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Rebecca Heyman
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Shivam Vora
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Yaowu He
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Brian Gabrielli
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - John D Hooper
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kenneth J O'Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Cancer Services, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Mark N Adams
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
6
|
Power EA, Rechberger JS, Zhang L, Oh JH, Anderson JB, Nesvick CL, Ge J, Hinchcliffe EH, Elmquist WF, Daniels DJ. Overcoming translational barriers in H3K27-altered diffuse midline glioma: Increasing the drug-tumor residence time. Neurooncol Adv 2023; 5:vdad033. [PMID: 37128506 PMCID: PMC10148679 DOI: 10.1093/noajnl/vdad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Background H3K27-altered diffuse midline glioma (DMG) is the deadliest pediatric brain tumor; despite intensive research efforts, every clinical trial to date has failed. Is this because we are choosing the wrong drugs? Or are drug delivery and other pharmacokinetic variables at play? We hypothesize that the answer is likely a combination, where optimization may result in a much needed novel therapeutic approach. Methods We used in vitro drug screening, patient samples, and shRNA knockdown models to identify an upregulated target in DMG. A single small molecule protein kinase inhibitor with translational potential was selected for systemic and direct, loco-regional delivery to patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM). Pharmacokinetic studies were conducted in non-tumor bearing rats. Results Aurora kinase (AK) inhibitors demonstrated strong antitumor effects in DMG drug screens. Additional in vitro studies corroborated the importance of AK to DMG survival. Systemic delivery of alisertib showed promise in subcutaneous PDX but not intracranial GEMM and PDX models. Repeated loco-regional drug administration into the tumor through convection-enhanced delivery (CED) was equally inefficacious, and pharmacokinetic studies revealed rapid clearance of alisertib from the brain. In an effort to increase the drug to tumor residence time, continuous CED over 7 days improved drug retention in the rodent brainstem and significantly extended survival in both orthotopic PDXs and GEMMs. Conclusions These studies provide evidence for increasing drug-tumor residence time of promising targeted therapies via extended CED as a valuable treatment strategy for DMG.
Collapse
Affiliation(s)
- Erica A Power
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jacob B Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Cody L Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jizhi Ge
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Eisenmann ED, Stromatt JC, Fobare S, Huang KM, Buelow DR, Orwick S, Jeon JY, Weber RH, Larsen B, Mims AS, Hertlein E, Byrd JC, Baker SD. TP-0903 Is Active in Preclinical Models of Acute Myeloid Leukemia with TP53 Mutation/Deletion. Cancers (Basel) 2022; 15:29. [PMID: 36612026 PMCID: PMC9817780 DOI: 10.3390/cancers15010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) with mutations in the tumor suppressor gene TP53 confers a dismal prognosis with 3-year overall survival of <5%. While inhibition of kinases involved in cell cycle regulation induces synthetic lethality in a variety of TP53 mutant cancers, this strategy has not been evaluated in mutant TP53 AML. Previously, we demonstrated that TP-0903 is a novel multikinase inhibitor with low nM activity against AURKA/B, Chk1/2, and other cell cycle regulators. Here, we evaluated the preclinical activity of TP-0903 in TP53 mutant AML cell lines, including a single-cell clone of MV4-11 containing a TP53 mutation (R248W), Kasumi-1 (R248Q), and HL-60 (TP 53 null). TP-0903 inhibited cell viability (IC50, 12−32 nM) and induced apoptosis at 50 nM. By immunoblot, 50 nM TP-0903 upregulated pChk1/2 and pH2AX, suggesting induction of DNA damage. The combination of TP-0903 and decitabine was additive in vitro, and in vivo significantly prolonged median survival compared to single-agent treatments in mice xenografted with HL-60 (vehicle, 46 days; decitabine, 55 days; TP-0903, 63 days; combination, 75 days) or MV4-11 (R248W) (51 days; 62 days; 81 days; 89 days) (p < 0.001). Together, these results provide scientific premise for the clinical evaluation of TP-0903 in combination with decitabine in TP53 mutant AML.
Collapse
Affiliation(s)
- Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43212, USA
| | - Jack C. Stromatt
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43212, USA
| | - Sydney Fobare
- Division of Hematology, The Ohio State University, Columbus, OH 43212, USA
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43212, USA
| | - Daelynn R. Buelow
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43212, USA
| | - Shelley Orwick
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43212, USA
| | - Jae Yoon Jeon
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43212, USA
| | - Robert H. Weber
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43212, USA
| | - Bill Larsen
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43212, USA
| | - Alice S. Mims
- Division of Hematology, The Ohio State University, Columbus, OH 43212, USA
| | - Erin Hertlein
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
8
|
Aurora Kinases as Therapeutic Targets in Head and Neck Cancer. Cancer J 2022; 28:387-400. [PMID: 36165728 PMCID: PMC9836054 DOI: 10.1097/ppo.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACT The Aurora kinases (AURKA and AURKB) have attracted attention as therapeutic targets in head and neck squamous cell carcinomas. Aurora kinases were first defined as regulators of mitosis that localization to the centrosome (AURKA) and centromere (AURKB), governing formation of the mitotic spindle, chromatin condensation, activation of the core mitotic kinase CDK1, alignment of chromosomes at metaphase, and other processes. Subsequently, additional roles for Aurora kinases have been defined in other phases of cell cycle, including regulation of ciliary disassembly and DNA replication. In cancer, elevated expression and activity of Aurora kinases result in enhanced or neomorphic locations and functions that promote aggressive disease, including promotion of MYC expression, oncogenic signaling, stem cell identity, epithelial-mesenchymal transition, and drug resistance. Numerous Aurora-targeted inhibitors have been developed and are being assessed in preclinical and clinical trials, with the goal of improving head and neck squamous cell carcinoma treatment.
Collapse
|
9
|
Tsuchiya K, Goshima G. Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells. J Cell Biol 2021; 220:e202104114. [PMID: 34779859 PMCID: PMC8598081 DOI: 10.1083/jcb.202104114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/13/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The γ-tubulin complex acts as the predominant microtubule (MT) nucleator that initiates MT formation and is therefore an essential factor for cell proliferation. Nonetheless, cellular MTs are formed after experimental depletion of the γ-tubulin complex, suggesting that cells possess other factors that drive MT nucleation. Here, by combining gene knockout, auxin-inducible degron, RNA interference, MT depolymerization/regrowth assay, and live microscopy, we identified four microtubule-associated proteins (MAPs), ch-TOG, CLASP1, CAMSAPs, and TPX2, which are involved in γ-tubulin-independent MT generation in human colon cancer cells. In the mitotic MT regrowth assay, nucleated MTs organized noncentriolar MT organizing centers (ncMTOCs) in the absence of γ-tubulin. Depletion of CLASP1 or TPX2 substantially delayed ncMTOC formation, suggesting that these proteins might promote MT nucleation in the absence of γ-tubulin. In contrast, depletion of ch-TOG or CAMSAPs did not affect the timing of ncMTOC appearance. CLASP1 also accelerates γ-tubulin-independent MT regrowth during interphase. Thus, MT generation can be promoted by MAPs without the γ-tubulin template.
Collapse
Affiliation(s)
- Kenta Tsuchiya
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Breast cancer dormancy is associated with a 4NG1 state and not senescence. NPJ Breast Cancer 2021; 7:140. [PMID: 34707097 PMCID: PMC8551199 DOI: 10.1038/s41523-021-00347-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Reactivation of dormant cancer cells can lead to cancer relapse, metastasis, and patient death. Dormancy is a nonproliferative state and is linked to late relapse and death. No targeted therapy is currently available to eliminate dormant cells, highlighting the need for a deeper understanding and reliable models. Here, we thoroughly characterize the dormant D2.OR and ZR-75-1, and proliferative D2A1 breast cancer cell line models in vivo and/or in vitro, and assess if there is overlap between a dormant and a senescent phenotype. We show that D2.OR but not D2A1 cells become dormant in the liver of an immunocompetent model. In vitro, we show that D2.OR and ZR-75-1 cells in response to a 3D environment or serum-free conditions are growth-arrested in G1, of which a subpopulation resides in a 4NG1 state. The dormancy state is reversible and not associated with a senescence phenotype. This will aid future research on breast cancer dormancy.
Collapse
|
11
|
Sun Y, Gao Y, Chen J, Huang L, Deng P, Chen J, Chai KXY, Hong JH, Chan JY, He H, Wang Y, Cheah D, Lim JQ, Chia BKH, Huang D, Liu L, Liu S, Wang X, Teng Y, Pang D, Grigoropoulos NF, Teh BT, Yu Q, Lim ST, Li W, Ong CK, Huang H, Tan J. CREBBP cooperates with the cell cycle machinery to attenuate chidamide sensitivity in relapsed/refractory diffuse large B-cell lymphoma. Cancer Lett 2021; 521:268-280. [PMID: 34481935 DOI: 10.1016/j.canlet.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) exhibits frequent inactivating mutations of the histone acetyltransferase CREBBP, highlighting the attractiveness of targeting CREBBP deficiency as a therapeutic strategy. In this study, we demonstrate that chidamide, a novel histone deacetylase (HDAC) inhibitor, is effective in treating a subgroup of relapsed/refractory DLBCL patients, achieving an overall response rate (ORR) of 25.0% and a complete response (CR) rate of 15.0%. However, the clinical response to chidamide remains poor, as most patients exhibit resistance, hampering the clinical utility of the drug. Functional in vitro and in vivo studies have shown that CREBBP loss of function is correlated with chidamide sensitivity, which is associated with modulation of the cell cycle machinery. A combinatorial drug screening of 130 kinase inhibitors targeting cell cycle regulators identified AURKA inhibitors, which inhibit the G2/M transition during the cell cycle, as top candidates that synergistically enhanced the antitumor effects of chidamide in CREBBP-proficient DLBCL cells. Our study demonstrates that CREBBP inactivation can serve as a potential biomarker to predict chidamide sensitivity, while combination of an AURKA inhibitor and chidamide is a novel therapeutic strategy for the treatment of relapsed/refractory DLBCL.
Collapse
Affiliation(s)
- Yichen Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Huang
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, China
| | - Peng Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinghong Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kelila Xin Ye Chai
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Jason Yongsheng Chan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Haixia He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yali Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Daryl Cheah
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Burton Kuan Hui Chia
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Lizhen Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shini Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoxiao Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Teng
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, China
| | - Diwen Pang
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, China
| | | | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Institute of Molecular and Cell Biology, Singapore; SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | - Soon Thye Lim
- Director's Office, National Cancer Centre Singapore, Singapore; Office of Education, Duke-NUS Medical School, Singapore
| | - Wenyu Li
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, China
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Genome Institute of Singapore, A*STAR, Singapore.
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Jochems F, Thijssen B, De Conti G, Jansen R, Pogacar Z, Groot K, Wang L, Schepers A, Wang C, Jin H, Beijersbergen RL, Leite de Oliveira R, Wessels LFA, Bernards R. The Cancer SENESCopedia: A delineation of cancer cell senescence. Cell Rep 2021; 36:109441. [PMID: 34320349 PMCID: PMC8333195 DOI: 10.1016/j.celrep.2021.109441] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence is characterized as a stable proliferation arrest that can be triggered by multiple stresses. Most knowledge about senescent cells is obtained from studies in primary cells. However, senescence features may be different in cancer cells, since the pathways that are involved in senescence induction are often deregulated in cancer. We report here a comprehensive analysis of the transcriptome and senolytic responses in a panel of 13 cancer cell lines rendered senescent by two distinct compounds. We show that in cancer cells, the response to senolytic agents and the composition of the senescence-associated secretory phenotype are more influenced by the cell of origin than by the senescence trigger. Using machine learning, we establish the SENCAN gene expression classifier for the detection of senescence in cancer cell samples. The expression profiles and senescence classifier are available as an interactive online Cancer SENESCopedia.
Collapse
Affiliation(s)
- Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Bram Thijssen
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Giulia De Conti
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Robin Jansen
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Ziva Pogacar
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Kelvin Groot
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Arnout Schepers
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Cun Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Haojie Jin
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Rodrigo Leite de Oliveira
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands; Faculty of EEMCS, Delft University of Technology, Delft, the Netherlands.
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Gao C, Han Y, Bai L, Wang Y, Xue F. IK: A novel cell mitosis regulator that contributes to carcinogenesis. Cell Biochem Funct 2021; 39:854-859. [PMID: 34250629 DOI: 10.1002/cbf.3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
Carcinogenesis is characterized by abnormal regulation of cell growth and cell death. IK is a novel cell mitosis regulator that may contribute to carcinogenesis. Previous studies showed that the loss of IK expression resulted in cell mitotic arrest and even cell death. Besides, IK can also inhibit the interferon gamma (IFN-γ)-induced expression of human leukocyte antigen (HLA) class II antigen, which is associated with tumour immune microenvironment. To gain insight into the current research progress regarding IK, we conducted a review and searched the limited literature on IK using PubMed or Web of Science. In this review, we discussed the possible biological functions and mechanisms of IK in cancer and its immune microenvironment. Future perspectives of IK were also mentioned to explore its clinical significance.
Collapse
Affiliation(s)
- Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Nankai University Affiliated Hospital (Tianjin Fourth Hospital), Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| |
Collapse
|
14
|
Serrano-Del Valle A, Reina-Ortiz C, Benedi A, Anel A, Naval J, Marzo I. Future prospects for mitosis-targeted antitumor therapies. Biochem Pharmacol 2021; 190:114655. [PMID: 34129859 DOI: 10.1016/j.bcp.2021.114655] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Dysregulation of cell cycle progression is a hallmark of cancer cells. In recent years, efforts have been devoted to the development of new therapies that target proteins involved in cell cycle regulation and mitosis. Novel targeted antimitotic drugs include inhibitors of aurora kinase family, polo-like kinase 1, Mps1, Eg5, CENP-5 and the APC/cyclosome complex. While certain new inhibitors reached the clinical trial stage, most were discontinued due to negative results. However, these therapies should not be readily dismissed. Based on recent advances concerning their mechanisms of action, new strategies could be devised to increase their efficacy and promote further clinical trials. Here we discuss three main lines of action to empower these therapeutic approaches: increasing cell death signals during mitotic arrest, targeting senescent cells and facilitating antitumor immune response through immunogenic cell death (ICD).
Collapse
Affiliation(s)
| | - Chantal Reina-Ortiz
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Andrea Benedi
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Alberto Anel
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Javier Naval
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Isabel Marzo
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain.
| |
Collapse
|
15
|
Lynch KN, Liu JF, Kesten N, Chow KH, Shetty A, He R, Afreen MF, Yuan L, Matulonis UA, Growdon WB, Muto MG, Horowitz NS, Feltmate CM, Worley MJ, Berkowitz RS, Crum CP, Rueda BR, Hill SJ. Enhanced Efficacy of Aurora Kinase Inhibitors in G2/M Checkpoint Deficient TP53 Mutant Uterine Carcinomas Is Linked to the Summation of LKB1-AKT-p53 Interactions. Cancers (Basel) 2021; 13:cancers13092195. [PMID: 34063609 PMCID: PMC8125555 DOI: 10.3390/cancers13092195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancers arising from the lining of the uterus, endometrial cancers, are the most common gynecologic malignancy in the United States. Once endometrial cancer escapes the uterus and grows in distant locations, there are limited therapeutic options. The most aggressive and lethal endometrial cancers carry alterations in the protein p53, which is a critical guardian of many cellular functions. The role of these p53 alterations in endometrial cancer is not well understood. The goal of this work was to use p53 altered models of endometrial cancer to understand which, if any, therapeutically targetable vulnerabilities these p53 alterations may confer in endometrial cancer. Here we show that many of these p53 altered cells have problems with cell division which can be targeted with novel single and combination therapies. These discoveries may lead to relevant new therapies for difficult to treat advanced stage endometrial cancers. Abstract Uterine carcinoma (UC) is the most common gynecologic malignancy in the United States. TP53 mutant UCs cause a disproportionate number of deaths due to limited therapies for these tumors and the lack of mechanistic understanding of their fundamental vulnerabilities. Here we sought to understand the functional and therapeutic relevance of TP53 mutations in UC. We functionally profiled targetable TP53 dependent DNA damage repair and cell cycle control pathways in a panel of TP53 mutant UC cell lines and patient-derived organoids. There were no consistent defects in DNA damage repair pathways. Rather, most models demonstrated dependence on defective G2/M cell cycle checkpoints and subsequent upregulation of Aurora kinase-LKB1-p53-AKT signaling in the setting of baseline mitotic defects. This combination makes them sensitive to Aurora kinase inhibition. Resistant lines demonstrated an intact G2/M checkpoint, and combining Aurora kinase and WEE1 inhibitors, which then push these cells through mitosis with Aurora kinase inhibitor-induced spindle defects, led to apoptosis in these cases. Overall, this work presents Aurora kinase inhibitors alone or in combination with WEE1 inhibitors as relevant mechanism driven therapies for TP53 mutant UCs. Context specific functional assessment of the G2/M checkpoint may serve as a biomarker in identifying Aurora kinase inhibitor sensitive tumors.
Collapse
Affiliation(s)
- Katherine N. Lynch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joyce F. Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Nikolas Kesten
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kin-Hoe Chow
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.-H.C.); (A.S.)
| | - Aniket Shetty
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.-H.C.); (A.S.)
| | - Ruiyang He
- Department of Biochemistry, Cambridge University, Cambridge CB2 1QW, UK;
| | - Mosammat Faria Afreen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Liping Yuan
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.Y.); (C.P.C.)
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Whitfield B. Growdon
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA; (W.B.G.); (B.R.R.)
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
| | - Michael G. Muto
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Neil S. Horowitz
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Colleen M. Feltmate
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michael J. Worley
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ross S. Berkowitz
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Christopher P. Crum
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.Y.); (C.P.C.)
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Bo R. Rueda
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA; (W.B.G.); (B.R.R.)
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
| | - Sarah J. Hill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.Y.); (C.P.C.)
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Corresponding Author: Sarah J. Hill, Dana-Farber Cancer Institute, Smith 834, 450 Brookline Ave., Boston, MA 02215. Tel.: 617-272-5451; Fax: 617-582-8601; E-mail:
| |
Collapse
|
16
|
Ghelli Luserna di Rorà A, Martinelli G, Simonetti G. The balance between mitotic death and mitotic slippage in acute leukemia: a new therapeutic window? J Hematol Oncol 2019; 12:123. [PMID: 31771633 PMCID: PMC6880427 DOI: 10.1186/s13045-019-0808-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Mitosis is the process whereby an eukaryotic cell divides into two identical copies. Different multiprotein complexes are involved in the fine regulation of cell division, including the mitotic promoting factor and the anaphase promoting complex. Prolonged mitosis can result in cellular division, cell death, or mitotic slippage, the latter leading to a new interphase without cellular division. Mitotic slippage is one of the causes of genomic instability and has an important therapeutic and clinical impact. It has been widely studied in solid tumors but not in hematological malignancies, in particular, in acute leukemia. We review the literature data available on mitotic regulation, alterations in mitotic proteins occurring in acute leukemia, induction of prolonged mitosis and its consequences, focusing in particular on the balance between cell death and mitotic slippage and on its therapeutic potentials. We also present the most recent preclinical and clinical data on the efficacy of second-generation mitotic drugs (CDK1-Cyclin B1, APC/CCDC20, PLK, Aurora kinase inhibitors). Despite the poor clinical activity showed by these drugs as single agents, they offer a potential therapeutic window for synthetic lethal combinations aimed to selectively target leukemic cells at the right time, thus decreasing the risk of mitotic slippage events.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
17
|
de Jong Y, Bennani F, van Oosterwijk JG, Alberti G, Baranski Z, Wijers-Koster P, Venneker S, Briaire-de Bruijn IH, van de Akker BE, Baelde H, Cleton-Jansen AM, van de Water B, Danen EH, Bovée JV. A screening-based approach identifies cell cycle regulators AURKA, CHK1 and PLK1 as targetable regulators of chondrosarcoma cell survival. J Bone Oncol 2019; 19:100268. [PMID: 31832331 PMCID: PMC6889735 DOI: 10.1016/j.jbo.2019.100268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Chondrosarcomas are malignant cartilage tumors that are relatively resistant towards conventional therapeutic approaches. Kinase inhibitors have been investigated and shown successful for several different cancer types. In this study we aimed at identifying kinase inhibitors that inhibit the survival of chondrosarcoma cells and thereby serve as new potential therapeutic strategies to treat chondrosarcoma patients. An siRNA screen targeting 779 different kinases was conducted in JJ012 chondrosarcoma cells in parallel with a compound screen consisting of 273 kinase inhibitors in JJ012, SW1353 and CH2879 chondrosarcoma cell lines. AURKA, CHK1 and PLK1 were identified as most promising targets and validated further in a more comprehensive panel of chondrosarcoma cell lines. Dose response curves were performed using tyrosine kinase inhibitors: MK-5108 (AURKA), LY2603618 (CHK1) and Volasertib (PLK1) using viability assays and cell cycle analysis. Apoptosis was measured at 24 h after treatment using a caspase 3/7 assay. Finally, chondrosarcoma patient samples (N = =34) were used to examine the correlation between AURKA, CHK1 and PLK1 RNA expression and documented patient survival. Dose dependent decreases in viability were observed in chondrosarcoma cell lines after treatment with MK-5108, LY2603618 and volasertib, with cell lines showing highest sensitivity to PLK1 inhibition. In addition increased sensitivity to conventional chemotherapy was observed after CHK1 inhibition in a subset of the cell lines. Interestingly, whereas AURKA and CHK1 were both expressed in chondrosarcoma patient samples, PLK1 expression was found to be low compared to normal cartilage. Analysis of patient samples revealed that high CHK1 RNA expression correlated with a worse overall survival. AURKA, CHK1 and PLK1 are identified as important survival genes in chondrosarcoma cell lines. Although further research is needed to validate these findings, inhibiting CHK1 seems to be the most promising potential therapeutic target for patients with chondrosarcoma.
Collapse
Affiliation(s)
- Yvonne de Jong
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Fairuz Bennani
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Jolieke G. van Oosterwijk
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Gaia Alberti
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Zuzanna Baranski
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Pauline Wijers-Koster
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Sanne Venneker
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Inge H. Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Brendy E. van de Akker
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Erik H.J. Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Judith V.M.G. Bovée
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
- Corresponding author.
| |
Collapse
|
18
|
Abstract
Cancer is a disease caused by several factors characterized by uncontrolled cell division, growth, and survival. ENMD-2076, is a novel orally active small molecule multikinase inhibitor targeting angiogenesis, proliferation, and the cell cycle. It is selectively active against the mitotic kinases aurora A and B, and kinases responsible for angiogenesis including VEGFR2/KDR and FGFR1 and 2. ENMD-2076 has been shown to inhibit tumor growth and prevent angiogenesis in vitro and in vivo in preclinical cancer models. Moreover, in a phase I trial, ENMD-2076 was well tolerated, exhibited a linear pharmacokinetic profile, and showed a promising antitumor activity in a number of solid tumors. In this study, we show that ENMD-2076 has antiproliferative effects, causes cell cycle arrest, and has activity in preclinical models of colorectal cancer (CRC), including patient-derived xenograft (PDX) models. Forty-seven human CRC cell lines were exposed in vitro to ENMD-2076 and analyzed for effects on cell cycle, apoptosis, and downstream effector proteins. The drug was then tested against 20 human CRC PDX models to further evaluate in-vivo antitumor activity. We show that ENMD-2076 exhibits a broad range of activity against a large panel of CRC cell lines with varying molecular characteristics. Mechanistically, ENMD-2076 exposure resulted in a G2/M cell cycle arrest, an increase in aneuploidy, and cell death in responsive cell lines. In addition, ENMD-2076 treatment resulted in a promising antitumor activity in CRC PDX models. These results support the continued development of ENMD-2076 in CRC including further exploration of rational combinations.
Collapse
|
19
|
Murga-Zamalloa C, Inamdar KV, Wilcox RA. The role of aurora A and polo-like kinases in high-risk lymphomas. Blood Adv 2019; 3:1778-1787. [PMID: 31186254 PMCID: PMC6560346 DOI: 10.1182/bloodadvances.2019000232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
High-risk lymphomas (HRLs) are associated with dismal outcomes and remain a therapeutic challenge. Recurrent genetic and molecular alterations, including c-myc expression and aurora A kinase (AAK) and polo-like kinase-1 (PLK1) activation, promote cell proliferation and contribute to the highly aggressive natural history associated with these lymphoproliferative disorders. In addition to its canonical targets regulating mitosis, the AAK/PLK1 axis directly regulates noncanonical targets, including c-myc. Recent studies demonstrate that HRLs, including T-cell lymphomas and many highly aggressive B-cell lymphomas, are dependent upon the AAK/PLK1 axis. Therefore, the AAK/PLK1 axis has emerged as an attractive therapeutic target in these lymphomas. In addition to reviewing these recent findings, we summarize the rationale for targeting AAK/PLK1 in high-risk and c-myc-driven lymphoproliferative disorders.
Collapse
Affiliation(s)
- Carlos Murga-Zamalloa
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; and
| | | | - Ryan A Wilcox
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; and
| |
Collapse
|
20
|
Cheng Z, Liu F, Tian H, Xu Z, Chai X, Luo D, Wang Y. Impairing the maintenance of germinative cells in Echinococcus multilocularis by targeting Aurora kinase. PLoS Negl Trop Dis 2019; 13:e0007425. [PMID: 31095613 PMCID: PMC6541280 DOI: 10.1371/journal.pntd.0007425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/29/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Background The tumor-like growth of the metacestode larvae of the tapeworm E. multilocularis causes human alveolar echinococcosis, a severe disease mainly affecting the liver. The germinative cells, a population of adult stem cells, are crucial for the larval growth and development of the parasite within the hosts. Maintenance of the germinative cell pools relies on their abilities of extensive proliferation and self-renewal, which requires accurate control of the cell division cycle. Targeting regulators of the cell division progression may impair germinative cell populations, leading to impeded parasite growth. Methodology/Principal findings In this study, we describe the characterization of EmAURKA and EmAURKB, which display significant similarity to the members of Aurora kinases that are essential mitotic kinases and play key roles in cell division. Our data suggest that EmAURKA and EmAURKB are actively expressed in the germinative cells of E. multilocularis. Treatment with low concentrations of MLN8237, a dual inhibitor of Aurora A and B, resulted in chromosomal defects in the germinative cells during mitosis, while higher concentrations of MLN8237 caused a failure in cytokinesis of the germinative cells, leading to multinucleated cells. Inhibition of the activities of Aurora kinases eventually resulted in depletion of the germinative cell populations in E. multilocularis, which in turn caused larval growth inhibition of the parasite. Conclusions/Significance Our data demonstrate the vital roles of Aurora kinases in the regulation of mitotic progression and maintenance of the germinative cells in E. multilocularis, and suggest Aurora kinases as promising druggable targets for the development of novel chemotherapeutics against human alveolar echinococcosis. Alveolar echinococcosis (AE), caused by infection with the metacestode larvae of the tapeworm E. multilocularis, is a lethal disease in humans. A population of adult stem cells, called germinative cells, drive the cancer-like growth of the parasite within their host and are considered responsible for disease recurrence after therapy termination. Nevertheless, benzimidazoles, the current drugs of choice against AE, show limited effects on killing these cells. Here, we describe EmAURKA and EmAURKB, two Aurora kinase members that play essential roles in regulating E. multilocularis germinative cell mitosis, as promising drug targets for eliminating the population of germinative cells. We show that targeting E. multilocularis Aurora kinases by small molecular inhibitor MLN8237 causes severe mitotic defects and eventually impairs the viability of germinative cells, leading to larval growth inhibition of the parasite in vitro. Our study suggests that targeting mitosis by MLN8237 or related compounds offers possibilities for germinative cell killing and we hope this will help in exploring novel therapeutic strategies against the disease.
Collapse
Affiliation(s)
- Zhe Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fan Liu
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Huimin Tian
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Zhijian Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoli Chai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Damin Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanhai Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
21
|
Veitch Z, Zer A, Loong H, Salah S, Masood M, Gupta A, Bradbury PA, Hogg D, Wong A, Kandel R, Charames GS, Abdul Razak AR. A phase II study of ENMD-2076 in advanced soft tissue sarcoma (STS). Sci Rep 2019; 9:7390. [PMID: 31089155 PMCID: PMC6517396 DOI: 10.1038/s41598-019-43222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
ENMD-2076, an aurora-A kinase inhibitor with anti-angiogenic properties, has shown activity in solid and hematologic malignancies. We investigated oral ENMD-2076 in an open-label, single-arm phase II study using 275 mg daily on a 28-day cycle in patients with advanced soft-tissue sarcomas (STS) receiving ≤1 line of prior therapy. Primary endpoint was 6-month progression-free survival (PFS) with ≤15% indicating no interest, and ≥40% indicating further interest in ENMD-2076. Secondary/exploratory endpoints included clinical benefit (CBR ≥6-months) and objective response (ORR) rates, PFS, OS, safety, and whole-exome sequencing (WES) for potentially associated biomarkers. Overall, 23/25 (92%) patients receiving ENMD-2076 were efficacy evaluable with median follow-up of 14 months (range 2.2-39.5). Common subtypes were leiomyosarcoma (n = 10), undifferentiated pleomorphic sarcoma (n = 3), angiosarcoma (n = 3), and alveolar soft-part sarcoma (n = 3). The 6-month PFS was 20.8% (95% CI:3.2-38.4) with a CBR of 17% (95% CI:1.55-33.23) and ORR of 9% (95% CI:3.08-20.46). Median PFS was 2.5 months (95% CI:2.20-4.47) and OS was 14.1 months (95% CI:6.07-20.07). The most common high-grade treatment-related adverse event was hypertension (60%). WES identified PTPRB mutations in 3/4 patients (p = 0.018) benefiting from ENMD-2076. Although this study failed to meet its primary endpoint, occasional responses and prolonged stable disease was noted. ENMD-2076 evaluation in PTPRB mutated tumors and/or angiosarcoma is warranted.
Collapse
Affiliation(s)
- Zachary Veitch
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Alona Zer
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Herbert Loong
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Samer Salah
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Abha Gupta
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Penelope A Bradbury
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - David Hogg
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Andrew Wong
- Department of Pathology and Lab Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Rita Kandel
- Department of Pathology and Lab Medicine, Mount Sinai Hospital, Toronto, Canada
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - George S Charames
- Department of Pathology and Lab Medicine, Mount Sinai Hospital, Toronto, Canada
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Albiruni R Abdul Razak
- Princess Margaret Cancer Centre, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
22
|
Zeng X, Xu WK, Lok TM, Ma HT, Poon RYC. Imbalance of the spindle-assembly checkpoint promotes spindle poison-mediated cytotoxicity with distinct kinetics. Cell Death Dis 2019; 10:314. [PMID: 30952840 PMCID: PMC6450912 DOI: 10.1038/s41419-019-1539-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/24/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
Abstract
Disrupting microtubule dynamics with spindle poisons activates the spindle-assembly checkpoint (SAC) and induces mitotic cell death. However, mitotic exit can occur prematurely without proper chromosomal segregation or cytokinesis by a process termed mitotic slippage. It remains controversial whether mitotic slippage increases the cytotoxicity of spindle poisons or the converse. Altering the SAC induces either mitotic cell death or mitotic slippage. While knockout of MAD2-binding protein p31comet strengthened the SAC and promoted mitotic cell death, knockout of TRIP13 had the opposite effect of triggering mitotic slippage. We demonstrated that mitotic slippage prevented mitotic cell death caused by spindle poisons, but reduced subsequent long-term survival. Weakening of the SAC also reduced cell survival in response to spindle perturbation insufficient for triggering mitotic slippage, of which mitotic exit was characterized by displaced chromosomes during metaphase. In either mitotic slippage or mitotic exit with missegregated chromosomes, cell death occurred only after one cell cycle following mitotic exit and increased progressively during subsequent cell cycles. Consistent with these results, transient inhibition of the SAC using an MPS1 inhibitor acted synergistically with spindle perturbation in inducing chromosome missegregation and cytotoxicity. The specific temporal patterns of cell death after mitotic exit with weakened SAC may reconcile the contradictory results from many previous studies.
Collapse
Affiliation(s)
- Xiaofang Zeng
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.,Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wendy Kaichun Xu
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.,Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Tsun Ming Lok
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
23
|
Navarro-Serer B, Childers EP, Hermance NM, Mercadante D, Manning AL. Aurora A inhibition limits centrosome clustering and promotes mitotic catastrophe in cells with supernumerary centrosomes. Oncotarget 2019; 10:1649-1659. [PMID: 30899434 PMCID: PMC6422193 DOI: 10.18632/oncotarget.26714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 01/29/2023] Open
Abstract
The presence of supernumerary centrosomes is prevalent in cancer, where they promote the formation of transient multipolar mitotic spindles. Active clustering of supernumerary centrosomes enables the formation of a functional bipolar spindle that is competent to complete a bipolar division. Disruption of spindle pole clustering in cancer cells promotes multipolar division and generation of non-proliferative daughter cells with compromised viability. Hence molecular pathways required for spindle pole clustering in cells with supernumerary centrosomes, but dispensable in normal cells, are promising therapeutic targets. Here we demonstrate that Aurora A kinase activity is required for spindle pole clustering in cells with extra centrosomes. While cells with two centrosomes are ultimately able to build a bipolar spindle and proceed through a normal cell division in the presence of Aurora A inhibition, cells with supernumerary centrosomes form multipolar and disorganized spindles that are not competent for chromosome segregation. Instead, following a prolonged mitosis, these cells experience catastrophic divisions that result in grossly aneuploid, and non-proliferative daughter cells. Aurora A inhibition in a panel of Acute Myeloid Leukemia cancer cells has a similarly disparate impact on cells with supernumerary centrosomes, suggesting that centrosome number and spindle polarity may serve as predictive biomarkers for response to therapeutic approaches that target Aurora A kinase function.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Eva P Childers
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Nicole M Hermance
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Dayna Mercadante
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Amity L Manning
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| |
Collapse
|
24
|
Lee JW, Parameswaran J, Sandoval-Schaefer T, Eoh KJ, Yang DH, Zhu F, Mehra R, Sharma R, Gaffney SG, Perry EB, Townsend JP, Serebriiskii IG, Golemis EA, Issaeva N, Yarbrough WG, Koo JS, Burtness B. Combined Aurora Kinase A (AURKA) and WEE1 Inhibition Demonstrates Synergistic Antitumor Effect in Squamous Cell Carcinoma of the Head and Neck. Clin Cancer Res 2019; 25:3430-3442. [PMID: 30755439 DOI: 10.1158/1078-0432.ccr-18-0440] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCC) commonly bear disruptive mutations in TP53, resulting in treatment resistance. In these patients, direct targeting of p53 has not been successful, but synthetic lethal approaches have promise. Although Aurora A kinase (AURKA) is overexpressed and an oncogenic driver, its inhibition has only modest clinical effects in HPV-negative HNSCC. We explored a novel combination of AURKA and WEE1 inhibition to overcome intrinsic resistance to AURKA inhibition.Experimental Design: AURKA protein expression was determined by fluorescence-based automated quantitative analysis of patient specimens and correlated with survival. We evaluated treatment with the AURKA inhibitor alisertib (MLN8237) and the WEE1 inhibitor adavosertib (AZD1775), alone or in combination, using in vitro and in vivo HNSCC models. RESULTS Elevated nuclear AURKA correlated with worse survival among patients with p16(-) HNSCC. Alisertib caused spindle defects, G2-M arrest and inhibitory CDK1 phosphorylation, and cytostasis in TP53 mutant HNSCC FaDu and UNC7 cells. Addition of adavosertib to alisertib instead triggered mitotic entry and mitotic catastrophe. Moreover, in FaDu and Detroit 562 xenografts, this combination demonstrated synergistic effects on tumor growth and extended overall survival compared with either vehicle or single-agent treatment. CONCLUSIONS Combinatorial treatment with adavosertib and alisertib leads to synergistic antitumor effects in in vitro and in vivo HNSCC models. These findings suggest a novel rational combination, providing a promising therapeutic avenue for TP53-mutated cancers.
Collapse
Affiliation(s)
- Jong Woo Lee
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Janaki Parameswaran
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Teresa Sandoval-Schaefer
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kyung Jin Eoh
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Dong-Hua Yang
- Biosample Repository, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Fang Zhu
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ranee Mehra
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Roshan Sharma
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephen G Gaffney
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Elizabeth B Perry
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Natalia Issaeva
- Section of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Wendell G Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Ja Seok Koo
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Barbara Burtness
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
25
|
Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, Flaifel A, Novak JS, Gulati A, Buss E, Younger ST, McBrayer SK, Cowley GS, Bonal DM, Nguyen QD, Brulle-Soumare L, Taylor P, Cairo S, Ryan CJ, Pease EJ, Maratea K, Travers J, Root DE, Signoretti S, Pellman D, Ashton S, Lord CJ, Barry ST, Kaelin WG. Cells Lacking the RB1 Tumor Suppressor Gene Are Hyperdependent on Aurora B Kinase for Survival. Cancer Discov 2019; 9:230-247. [PMID: 30373918 PMCID: PMC6368871 DOI: 10.1158/2159-8290.cd-18-0389] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022]
Abstract
Small cell lung cancer (SCLC) accounts for 15% of lung cancers and is almost always linked to inactivating RB1 and TP53 mutations. SCLC frequently responds, albeit briefly, to chemotherapy. The canonical function of the RB1 gene product RB1 is to repress the E2F transcription factor family. RB1 also plays both E2F-dependent and E2F-independent mitotic roles. We performed a synthetic lethal CRISPR/Cas9 screen in an RB1 -/- SCLC cell line that conditionally expresses RB1 to identify dependencies that are caused by RB1 loss and discovered that RB1 -/- SCLC cell lines are hyperdependent on multiple proteins linked to chromosomal segregation, including Aurora B kinase. Moreover, we show that an Aurora B kinase inhibitor is efficacious in multiple preclinical SCLC models at concentrations that are well tolerated in mice. These results suggest that RB1 loss is a predictive biomarker for sensitivity to Aurora B kinase inhibitors in SCLC and perhaps other RB1 -/- cancers. SIGNIFICANCE: SCLC is rarely associated with actionable protooncogene mutations. We did a CRISPR/Cas9-based screen that showed that RB1 -/- SCLC are hyperdependent on AURKB, likely because both genes control mitotic fidelity, and confirmed that Aurora B kinase inhibitors are efficacious against RB1 -/- SCLC tumors in mice at nontoxic doses.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.
Collapse
Affiliation(s)
- Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raquel Fonseca
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abhishek A Chakraborty
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Alexander Spektor
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rebecca B Jennings
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abdallah Flaifel
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jesse S Novak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditi Gulati
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Elizabeth Buss
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Scott T Younger
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Samuel K McBrayer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Glenn S Cowley
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Paula Taylor
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | | | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Republic of Ireland
| | | | - Kim Maratea
- IMED Drug Safety and Metabolism, AstraZeneca, Boston, Massachusetts
| | - Jon Travers
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Susan Ashton
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Simon T Barry
- IMED Oncology, AstraZeneca, Cambridge, United Kingdom
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
26
|
Liu X, Chen Y, Li Y, Petersen RB, Huang K. Targeting mitosis exit: A brake for cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2019; 1871:179-191. [PMID: 30611728 DOI: 10.1016/j.bbcan.2018.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The transition from mitosis to interphase, referred to as mitotic exit, is a critical mitotic process which involves activation and inactivation of multiple mitotic kinases and counteracting protein phosphatases. Loss of mitotic exit checkpoints is a common feature of cancer cells, leading to mitotic dysregulation and confers cancer cells with oncogenic characteristics, such as aberrant proliferation and microtubule-targeting agent (MTA) resistance. Since MTA resistance results from cancer cells prematurely exiting mitosis (mitotic slippage), blocking mitotic exit is believed to be a promising anticancer strategy. Moreover, based on this theory, simultaneous inhibition of mitotic exit and additional cell cycle phases would likely achieve synergistic antitumor effects. In this review, we divide the molecular regulators of mitotic exit into four categories based on their different regulatory functions: 1) the anaphase-promoting complex/cyclosome (APC/C, a ubiquitin ligase), 2) cyclin B, 3) mitotic kinases and phosphatases, 4) kinesins and microtubule-binding proteins. We also review the regulators of mitotic exit and propose prospective anticancer strategies targeting mitotic exit, including their strengths and possible challenges to their use.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
27
|
De Martino D, Yilmaz E, Orlacchio A, Ranieri M, Zhao K, Di Cristofano A. PI3K blockage synergizes with PLK1 inhibition preventing endoreduplication and enhancing apoptosis in anaplastic thyroid cancer. Cancer Lett 2018; 439:56-65. [PMID: 30243708 PMCID: PMC6195833 DOI: 10.1016/j.canlet.2018.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
Anaplastic thyroid cancer (ATC) is among the most lethal malignancies. The mitotic kinase PLK1 is overexpressed in the majority of ATCs and PLK1 inhibitors have shown preclinical efficacy. However, they also cause mitotic slippage and endoreduplication, leading to the generation of tetraploid, genetically unstable cell populations. We hypothesized that PI3K activity may facilitate mitotic slippage upon PLK1 inhibition, and thus tested the effect of combining PLK1 and PI3K inhibitors in ATC models, in vitro and in vivo. Treatment with BI6727 and BKM120 resulted in a significant synergistic effect in ATC cells, independent of the levels of AKT activity. Combination of the two drugs enhanced growth suppression at doses for which the single drugs showed no effect, and led to a massive reduction of the tetraploid cells population. Furthermore, combined treatment in PI3Khigh cell lines showed a significant induction of apoptosis. Finally, combined inhibition of PI3K and PLK1 was extremely effective in vivo, in an immunocompetent allograft model of ATC. Our results demonstrate a clear therapeutic potential of combining PLK1 and PI3K inhibitors in anaplastic thyroid tumors.
Collapse
Affiliation(s)
- Daniela De Martino
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Emrullah Yilmaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arturo Orlacchio
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michela Ranieri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ke Zhao
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
28
|
Fang H, Niu K, Mo D, Zhu Y, Tan Q, Wei D, Li Y, Chen Z, Yang S, Balajee AS, Zhao Y. RecQL4-Aurora B kinase axis is essential for cellular proliferation, cell cycle progression, and mitotic integrity. Oncogenesis 2018; 7:68. [PMID: 30206236 PMCID: PMC6134139 DOI: 10.1038/s41389-018-0080-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/06/2018] [Accepted: 04/28/2018] [Indexed: 01/22/2023] Open
Abstract
Human RecQL4 helicase plays critical roles in the maintenance of genomic stability. Mutations in RecQL4 helicase results in three clinically related autosomal recessive disorders: Rothmund–Thomson syndrome (RTS), RAPADILINO, and Baller–Gerold syndrome. In addition to several premature aging features, RTS patients are characterized by aneuploidy involving either loss or gain of a single chromosome. Chromosome mosaicism and isochromosomes involving chromosomes 2, 7, and 8 have been reported in RecQL4-deficient RTS patients, but the precise role of RecQL4 in chromosome segregation/stability remains to be elucidated. Here, we demonstrate that RecQL4 physically and functionally interacts with Aurora B kinase (AURKB) and stabilizes its expression by inhibiting its ubiquitination process. Our study indicates that the N-terminus of RecQL4 interacts with the catalytic domain of AURKB. Strikingly, RecQL4 suppression reduces the expression of AURKB leading to mitotic irregularities and apoptotic cell death. RecQL4 suppression increases the proportion of cells at the G2/M phase followed by an extensive cell death, presumably owing to the accumulation of mitotic irregularities. Both these defects (accumulation of cells at G2/M phase and an improper mitotic exit to sub-G1) are complemented by the ectopic expression of AURKB. Finally, evidence is provided for the requirement of both human telomerase reverse transcriptase and RecQL4 for stable immortalization and longevity of RTS fibroblasts. Collectively, our study suggests that the RecQL4–AURKB axis is essential for cellular proliferation, cell cycle progression, and mitotic stability in human cells.
Collapse
Affiliation(s)
- Hongbo Fang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kaifeng Niu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongliang Mo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuqi Zhu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qunsong Tan
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Di Wei
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yueyang Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zixiang Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuchen Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Adayabalam S Balajee
- Cytogenetics Biodosimetry Laboratory, REACTS, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299 Bethel Valley Road, Oak Ridge, TN, 37830, USA.
| | - Yongliang Zhao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
29
|
Methylation of Aurora kinase A by MMSET reduces p53 stability and regulates cell proliferation and apoptosis. Oncogene 2018; 37:6212-6224. [PMID: 30013191 DOI: 10.1038/s41388-018-0393-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 11/08/2022]
Abstract
The histone methyltransferase multiple myeloma SET domain protein (MMSET/WHSC1) is highly expressed in diverse tumor types, and its expression appears to be involved in cell proliferation. In this study, we report that MMSET interacts with and methylates Aurora kinase A (AURKA). We show that MMSET-mediated methylation of AURKA induces interaction with p53 as well as enhanced kinase activity of AURKA, which results in the proteasomal degradation of p53. MMSET-mediated p53 degradation increases cell proliferation and results in oncogenic activity. Furthermore, knockdown of MMSET potently inhibits tumorigenic cells and renders them sensitive to growth inhibition by the therapeutic drug, alisertib (AURKA inhibitor). Taken together, our results suggest that MMSET is a regulator of p53 stability via methylation of AURKA in proliferating cells and might be a potential therapeutic target in solid tumors.
Collapse
|
30
|
Ma Y, Yang J, Wang R, Zhang Z, Qi X, Liu C, Ma M. Aurora-A affects radiosenstivity in cervical squamous cell carcinoma and predicts poor prognosis. Oncotarget 2018; 8:31509-31520. [PMID: 28404933 PMCID: PMC5458225 DOI: 10.18632/oncotarget.15663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/27/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Definitive radiation therapy (RT) (with or without cisplatin-based chemotherapy) is one of the most effective treatments for cervical squamous cell carcinoma (CSCC), but efficacy is limited due to resistance. In the present study, we investigated the relationship between the expression of Aurora kinase A (Aurora-A, AURKA)and response to RT in patients with CSCC. METHODS The expression of Aurora-A in biopsy specimens of untreated primary tumors in 129 Uyghur patients with CSCC was investigated immunohistochemically. Primary treatment in these patients was definitive radical RT, which consisted of pelvic RT plus brachytherapy (total point A dose:70-85 Gy) (with or without cisplatin-based chemotherapy). The prognostic value of tumoral Aurora-A expression and patients' clinical outcomes were evaluated. RESULTS Aurora-A expression was significantly associated with lymph node metastasis (P<0.001), large tumor size (P<0.001), low hemoglobin (Hb) level (P=0.011) and recurrence (P<0.001), but not other clinicopathological factors. Definitive RT was unfavorable in patients with high Aurora-A expression (P < 0.001). In 129 enrolled patients, lymph node metastasis, large tumor size, low Hb level, and AURKA overexpression were prognostic factors for both recurrent free survival (RFS) and overall survival (OS) in univariate analysis. However, only high AURKA expression was an adverse independent risk factor for both RFS (hazard ratio, 3.953; 95% CI, 1.473-10.638; P = 0.006) and OS (hazard ratio 9.091; 95%CI 2.597-32.258; P<0.001) in multivariate analyses. CONCLUSIONS Aurora-A may serve as a predictive biomarker of radiation response and a therapeutic target to reverse radiation therapy resistance.
Collapse
Affiliation(s)
- Yuhua Ma
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China.,The Department of Radiation Oncology, Tumor Hospital Affilated To Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jie Yang
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Ruozheng Wang
- The Department of Radiation Oncology, Tumor Hospital Affilated To Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zegao Zhang
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaoli Qi
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Chunhua Liu
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Miaomiao Ma
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
31
|
Wang X, Sun Q. TP53 mutations, expression and interaction networks in human cancers. Oncotarget 2018; 8:624-643. [PMID: 27880943 PMCID: PMC5352183 DOI: 10.18632/oncotarget.13483] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022] Open
Abstract
Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.
Collapse
Affiliation(s)
- Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
32
|
The Aurora kinase A inhibitor TC-A2317 disrupts mitotic progression and inhibits cancer cell proliferation. Oncotarget 2018; 7:84718-84735. [PMID: 27713168 PMCID: PMC5356694 DOI: 10.18632/oncotarget.12448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 01/22/2023] Open
Abstract
Mitotic progression is crucial for the maintenance of chromosomal stability. A proper progression is ensured by the activities of multiple kinases. One of these enzymes, the serine/threonine kinase Aurora A, is required for proper mitosis through the regulation of centrosome and spindle assembly. In this study, we functionally characterized a newly developed Aurora kinase A inhibitor, TC-A2317. In human lung cancer cells, TC-A2317 slowed proliferation by causing aberrant formation of centrosome and microtubule spindles and prolonging the duration of mitosis. Abnormal mitotic progression led to accumulation of cells containing micronuclei or multinuclei. Furthermore, TC-A2317–treated cells underwent apoptosis, autophagy or senescence depending on cell type. In addition, TC-A2317 inactivated the spindle assembly checkpoint triggered by paclitaxel, thereby exacerbating mitotic catastrophe. Consistent with this, the expression level of Aurora A in tumors was inversely correlated with survival in lung cancer patients. Collectively, these data suggest that inhibition of Aurora kinase A using TC-A2317 is a promising target for anti-cancer therapeutics.
Collapse
|
33
|
Pitts TM, Bradshaw-Pierce EL, Bagby SM, Hyatt SL, Selby HM, Spreafico A, Tentler JJ, McPhillips K, Klauck PJ, Capasso A, Diamond JR, Davis SL, Tan AC, Arcaroli JJ, Purkey A, Messersmith WA, Ecsedy JA, Eckhardt SG. Antitumor activity of the aurora a selective kinase inhibitor, alisertib, against preclinical models of colorectal cancer. Oncotarget 2018; 7:50290-50301. [PMID: 27385211 PMCID: PMC5226583 DOI: 10.18632/oncotarget.10366] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background The Aurora kinases are a family of serine/threonine kinases comprised of Aurora A, B, and C which execute critical steps in mitotic and meiotic progression. Alisertib (MLN8237) is an investigational Aurora A selective inhibitor that has demonstrated activity against a wide variety of tumor types in vitro and in vivo, including CRC. Results CRC cell lines demonstrated varying sensitivity to alisertib with IC50 values ranging from 0.06 to > 5 umol/L. Following exposure to alisertib we observed a decrease in pAurora A, B and C in four CRC cell lines. We also observed an increase in p53 and p21 in a sensitive p53 wildtype cell line in contrast to the p53 mutant cell line or the resistant cell lines. The addition of alisertib to standard CRC treatments demonstrated improvement over single agent arms; however, the benefit was largely less than additive, but not antagonistic. Methods Forty-seven CRC cell lines were exposed to alisertib and IC50s were calculated. Twenty-one PDX models were treated with alisertib and the Tumor Growth Inhibition Index was assessed. Additionally, 5 KRAS wildtype and mutant PDX models were treated with alisertib as single agent or in combination with cetuximab or irinotecan, respectively. Conclusion Alisertib demonstrated anti-proliferative effects against CRC cell lines and PDX models. Our data suggest that the addition of alisertib to standard therapies in colorectal cancer if pursued clinically, will require further investigation of patient selection strategies and these combinations may facilitate future clinical studies.
Collapse
Affiliation(s)
- Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erica L Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Takeda California, San Diego, CA, USA
| | - Stacey M Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie L Hyatt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Heather M Selby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Spreafico
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - John J Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly McPhillips
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter J Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Capasso
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Lindsey Davis
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John J Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffery A Ecsedy
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - S Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
34
|
Song YW, Lim Y, Cho SK. 2,4‑Di‑tert‑butylphenol, a potential HDAC6 inhibitor, induces senescence and mitotic catastrophe in human gastric adenocarcinoma AGS cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:675-683. [PMID: 29427610 DOI: 10.1016/j.bbamcr.2018.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 02/08/2023]
Abstract
The natural product 2,4‑di‑tert‑butylphenol (DTBP) has a wide spectrum of biological functions, including anticancer activities, although the underlying mechanisms are poorly understood. Here, we found that DTBP induces senescence in human gastric adenocarcinoma AGS cells as evidenced by upregulation of p21 and Rb and increased β‑galactosidase activity. DTBP also induces mitotic catastrophe and generates multinucleated cells, which is accompanied by an increase in the proportion of polymerized tubulin, possibly caused by inhibition of HDAC6 enzyme activity. In silico docking analysis showed that DTBP docked at the entrance of the ligand-binding pocket of the HDAC6 enzyme. Accordingly, DTBP represents a promising lead structure for the development of HDAC6 inhibitors, with an improvement in specificity conferred by modification of the cap group. We propose for the first time that the underlying mechanism of the anticancer activity of DTBP is attributed to inhibition of HDAC6 activity.
Collapse
Affiliation(s)
- Yeon Woo Song
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea.
| |
Collapse
|
35
|
Noronha S, Alt LAC, Scimeca TE, Zarou O, Obrzut J, Zanotti B, Hayward EA, Pillai A, Mathur S, Rojas J, Salamah R, Chandar N, Fay MJ. Preclinical evaluation of the Aurora kinase inhibitors AMG 900, AZD1152-HQPA, and MK-5108 on SW-872 and 93T449 human liposarcoma cells. In Vitro Cell Dev Biol Anim 2017; 54:71-84. [PMID: 29197031 DOI: 10.1007/s11626-017-0208-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/10/2017] [Indexed: 11/26/2022]
Abstract
Liposarcoma is a malignant soft tissue tumor that originates from adipose tissue and is one of the most frequently diagnosed soft tissue sarcomas in humans. There is great interest in identifying novel chemotherapeutic options for treating liposarcoma based upon molecular alterations in the cancer cells. The Aurora kinases have been identified as promising chemotherapeutic targets based on their altered expression in many human cancers and cellular roles in mitosis and cytokinesis. In this study, we investigated the effects of an Aurora kinase A inhibitor (MK-5108), an Aurora kinase B inhibitor (AZD1152-HQPA), and a pan-Aurora kinase inhibitor (AMG 900) on undifferentiated SW-872 and well-differentiated 93T449 human liposarcoma cells. Treatment of the SW-872 and 93T449 cells with MK-5108 (0-1000 nM), AZD1152-HQPA (0-1000 nM), and AMG 900 (0-1000 nM) for 72 h resulted in a dose-dependent decrease in the total viable cell number. Based upon the EC50 values, the potency of the three Aurora kinase inhibitors in the SW-872 cells was as follows: AMG 900 (EC50 = 3.7 nM) > AZD1152-HQPA (EC50 = 43.4 nM) > MK-5108 (EC50 = 309.0 nM), while the potency in the 93T449 cells was as follows: AMG 900 (EC50 = 6.5 nM) > AZD1152-HQPA (EC50 = 74.5 nM) > MK-5108 (EC50 = 283.6 nM). The percentage of polyploidy after 72 h of drug treatment (0-1000 nM) was determined by propidium iodide staining and flow cytometric analysis. AMG 900 caused a significant increase in polyploidy starting at 25 nM in the SW-872 and 93T449 cells, and AZD1152-HQPA caused a significant increase starting at 100 nM in the SW-872 cells and 250 nM in the 93T449 cells. The Aurora kinase A inhibitor MK-5108 did not significantly increase the percentage of polyploid cells at any of the doses tested in either cell line. The expression of Aurora kinase A and B was evaluated in the SW-872 cells versus differentiated adipocytes and human mesenchymal stem cells by real-time RT-PCR and Western blot analysis. Aurora kinase A and B mRNA expression was significantly increased in the SW-872 cells versus the differentiated adipocytes and human mesenchymal stem cells. Western blot analysis revealed a ~ 48 kDa immunoreactive band for Aurora kinase A that was not present in the differentiated adipocytes or the human mesenchymal stem cells. A ~ 39 kDa immunoreactive band for Aurora kinase B was detected in the SW-872 cells, differentiated adipocytes, and human mesenchymal stem cells. A smaller immunoreactive band for Aurora kinase B was detected in the SW-872 cells but not in the differentiated adipocytes and human mesenchymal stem cells, and this may reflect the expression of a truncated splice variant of Aurora kinase B that has been associated with poor patient prognosis. The 93T449 cells demonstrated decreased expression of Aurora kinase A and B mRNA and protein compared to the SW-872 cells, and also expressed the truncated form of Aurora kinase B. The results of these in vitro studies indicate that Aurora kinase inhibitors should be further investigated as possible chemotherapeutic agents for human liposarcoma.
Collapse
Affiliation(s)
- Sandhya Noronha
- Physician Assistant Program, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Lauren A C Alt
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Taylor E Scimeca
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Omran Zarou
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Justyna Obrzut
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Elizabeth A Hayward
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Akhil Pillai
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Shubha Mathur
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Joseph Rojas
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Ribhi Salamah
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Nalini Chandar
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Michael J Fay
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA.
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA.
| |
Collapse
|
36
|
Jin X, Mo Q, Zhang Y, Gao Y, Wu Y, Li J, Hao X, Ma D, Gao Q, Chen P. The p38 MAPK inhibitor BIRB796 enhances the antitumor effects of VX680 in cervical cancer. Cancer Biol Ther 2017; 17:566-76. [PMID: 27082306 DOI: 10.1080/15384047.2016.1177676] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
VX680 is a potent and selective inhibitor that targets the Aurora kinase family. The p38 mitogen-activated protein kinase (MAPK) regulates a large number of cellular pathways and plays an important role in the regulation of cell survival and apoptosis. This study aimed to evaluate the effect of VX680 on cervical cancer cells and investigate whether the effects on apoptosis are enhanced by the ablation of p38 MAPK activation. The results suggested that VX680 inhibited the proliferation of cervical cancer cells by causing G2/M phase arrest and endoreduplication and that the apoptotic effect was attenuated by the activation of p38 MAPK. However, the addition of BIRB796, which is an important p38 MAPK inhibitor, effectively eliminated the expression of p-p38 and hence significantly enhanced the cell death induced by VX680 in vitro. Further study demonstrated that BIRB796 cooperated with VX680 to suppress cervical cancer cell growth in a mouse xenograft model. Taken together, our results demonstrated that VX680 induced cell cycle arrest and endoreduplication in human cervical cancer cells. Combined treatment with VX680 and BIRB796 synergistically inhibited tumor growth both in vitro and in vivo. Dual blockade of Aurora kinases and p38 MAPK is therefore a promising strategy for cervical cancer treatment.
Collapse
Affiliation(s)
- Xin Jin
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Qingqing Mo
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yu Zhang
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yue Gao
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yuan Wu
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Jing Li
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Xing Hao
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Ding Ma
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Qinglei Gao
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Pingbo Chen
- a Cancer Biology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| |
Collapse
|
37
|
Yu Z, Sun Y, She X, Wang Z, Chen S, Deng Z, Zhang Y, Liu Q, Liu Q, Zhao C, Li P, Liu C, Feng J, Fu H, Li G, Wu M. SIX3, a tumor suppressor, inhibits astrocytoma tumorigenesis by transcriptional repression of AURKA/B. J Hematol Oncol 2017; 10:115. [PMID: 28595628 PMCID: PMC5465582 DOI: 10.1186/s13045-017-0483-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/31/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND SIX homeobox 3 (SIX3) is a member of the sine oculis homeobox transcription factor family. It plays a vital role in the nervous system development. Our previous study showed that the SIX3 gene is hypermethylated, and its expression is decreased in astrocytoma, but the role of SIX3 remains unknown. METHODS Chromatin-immunoprecipitation (ChIP) and luciferase reporter assay were used to confirm the binding of SIX3 to the promoter regions of aurora kinase A (AURKA) and aurora kinase B (AURKB). Confocal imaging and co-immunoprecipitation (Co-IP) were used to detect the interaction between AURKA and AURKB. Flow cytometry was performed to assess the effect of SIX3 on cell cycle distribution. Colony formation, EdU incorporation, transwell, and intracranial xenograft assays were performed to demonstrate the effect of SIX3 on the malignant phenotype of astrocytoma cells. RESULTS SIX3 is identified as a novel negative transcriptional regulator of AURKA and AURKB, and it decreases the expression of AURKA and AURKB in a dose-dependent manner in astrocytoma cells. Importantly, interactions between AURKA and AURKB stabilize and protect AURKA/B from degradation, and overexpression of SIX3 does not affect these interactions; SIX3 also acts as a tumor suppressor, and it increases p53 activity and expression at the post-translational level by the negative regulation of AURKA or AURKB, reduces the events of numerical centrosomal aberrations and misaligned chromosomes, and significantly inhibits the proliferation, invasion, and tumorigenesis of astrocytoma in vitro and in vivo. Moreover, experiments using primary cultured astrocytoma cells indicate that astrocytoma patients with a low expression of SIX3 and mutant p53 are more sensitive to treatment with aurora kinase inhibitors. CONCLUSION SIX3 is a novel negative transcriptional regulator and acts as a tumor suppressor that directly represses the transcription of AURKA and AURKB in astrocytoma. For the first time, the functional interaction of AURKA and AURKB has been found, which aids in the protection of their stability, and partially explains their constant high expression and activity in cancers. SIX3 is a potential biomarker that could be used to predict the response of astrocytoma patients to aurora kinase inhibitors.
Collapse
Affiliation(s)
- Zhibin Yu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling She
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zeyou Wang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shuai Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Zhiyong Deng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Qiang Liu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qing Liu
- The Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chunhua Zhao
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Changhong Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Jianbo Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Haijuan Fu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
38
|
Martin D, Fallaha S, Proctor M, Stevenson A, Perrin L, McMillan N, Gabrielli B. Inhibition of Aurora A and Aurora B Is Required for the Sensitivity of HPV-Driven Cervical Cancers to Aurora Kinase Inhibitors. Mol Cancer Ther 2017; 16:1934-1941. [DOI: 10.1158/1535-7163.mct-17-0159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/20/2017] [Accepted: 05/09/2017] [Indexed: 11/16/2022]
|
39
|
Bogen D, Wei JS, Azorsa DO, Ormanoglu P, Buehler E, Guha R, Keller JM, Mathews Griner LA, Ferrer M, Song YK, Liao H, Mendoza A, Gryder BE, Sindri S, He J, Wen X, Zhang S, Shern JF, Yohe ME, Taschner-Mandl S, Shohet JM, Thomas CJ, Martin SE, Ambros PF, Khan J. Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma. Oncotarget 2016; 6:35247-62. [PMID: 26497213 PMCID: PMC4742102 DOI: 10.18632/oncotarget.6208] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/30/2015] [Indexed: 01/11/2023] Open
Abstract
Despite advances in multimodal treatment, neuroblastoma (NB) is often fatal for children with high-risk disease and many survivors need to cope with long-term side effects from high-dose chemotherapy and radiation. To identify new therapeutic targets, we performed an siRNA screen of the druggable genome combined with a small molecule screen of 465 compounds targeting 39 different mechanisms of actions in four NB cell lines. We identified 58 genes as targets, including AURKB, in at least one cell line. In the drug screen, aurora kinase inhibitors (nine molecules) and in particular the AURKB-selective compound, barasertib, were the most discriminatory with regard to sensitivity for MYCN-amplified cell lines. In an expanded panel of ten NB cell lines, those with MYCN-amplification and wild-type TP53 were the most sensitive to low nanomolar concentrations of barasertib. Inhibition of the AURKB kinase activity resulted in decreased phosphorylation of the known target, histone H3, and upregulation of TP53 in MYCN-amplified, TP53 wild-type cells. However, both wild-type and TP53 mutant MYCN-amplified cell lines arrested in G2/M phase upon AURKB inhibition. Additionally, barasertib induced endoreduplication and apoptosis. Treatment of MYCN-amplified/TP53 wild-type neuroblastoma xenografts resulted in profound growth inhibition and tumor regression. Therefore, aurora B kinase inhibition is highly effective in aggressive neuroblastoma and warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Dominik Bogen
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David O Azorsa
- Clinical Translational Research Division, Translational Genomics Research Institute (TGen), Scottsdale, AZ, USA
| | - Pinar Ormanoglu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Eugen Buehler
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jonathan M Keller
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Lesley A Mathews Griner
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Young K Song
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hongling Liao
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Berkley E Gryder
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sivasish Sindri
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianbin He
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shile Zhang
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John F Shern
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marielle E Yohe
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sabine Taschner-Mandl
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jason M Shohet
- Texas Children's Cancer Center and Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Scott E Martin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Peter F Ambros
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Po'uha ST, Kavallaris M. Gamma-actin is involved in regulating centrosome function and mitotic progression in cancer cells. Cell Cycle 2016; 14:3908-19. [PMID: 26697841 DOI: 10.1080/15384101.2015.1120920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reorganization of the actin cytoskeleton during mitosis is crucial for regulating cell division. A functional role for γ-actin in mitotic arrest induced by the microtubule-targeted agent, paclitaxel, has recently been demonstrated. We hypothesized that γ-actin plays a role in mitosis. Herein, we investigated the effect of γ-actin in mitosis and demonstrated that γ-actin is important in the distribution of β-actin and formation of actin-rich retraction fibers during mitosis. The reduced ability of paclitaxel to induce mitotic arrest as a result of γ-actin depletion was replicated with a range of mitotic inhibitors, suggesting that γ-actin loss reduces the ability of broad classes of anti-mitotic agents to induce mitotic arrest. In addition, partial depletion of γ-actin enhanced centrosome amplification in cancer cells and caused a significant delay in prometaphase/metaphase. This prolonged prometaphase/metaphase arrest was due to mitotic defects such as uncongressed and missegregated chromosomes, and correlated with an increased presence of mitotic spindle abnormalities in the γ-actin depleted cells. Collectively, these results demonstrate a previously unknown role for γ-actin in regulating centrosome function, chromosome alignment and maintenance of mitotic spindle integrity.
Collapse
Affiliation(s)
- Sela T Po'uha
- a Children's Cancer Institute; Lowy Cancer Research Center; University of New South Wales ; Randwick , NSW , Australia
| | - Maria Kavallaris
- a Children's Cancer Institute; Lowy Cancer Research Center; University of New South Wales ; Randwick , NSW , Australia.,b ARC Center of Excellence in Convergent Bio-Nano Science and Technology; Australian Center for Nanomedicine; University of New South Wales ; Sydney , Australia
| |
Collapse
|
41
|
Buliaková B, Mesárošová M, Bábelová A, Šelc M, Némethová V, Šebová L, Rázga F, Ursínyová M, Chalupa I, Gábelová A. Surface-modified magnetite nanoparticles act as aneugen-like spindle poison. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:69-80. [PMID: 27593490 DOI: 10.1016/j.nano.2016.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
Iron oxide nanoparticles are one of the most promising types of nanoparticles for biomedical applications, primarily in the context of nanomedicine-based diagnostics and therapy; hence, great attention should be paid to their bio-safety. Here, we investigate the ability of surface-modified magnetite nanoparticles (MNPs) to produce chromosome damage in human alveolar A549 cells. Compared to control cells, all the applied MNPs increased the level of micronuclei moderately but did not cause structural chromosomal aberrations in exposed cells. A rise in endoreplication, polyploid and multinuclear cells along with disruption of tubulin filaments, downregulation of Aurora protein kinases and p53 protein activation indicated the capacity of these MNPs to impair the chromosomal passenger complex and/or centrosome maturation. We suppose that surface-modified MNPs may act as aneugen-like spindle poisons via interference with tubulin polymerization. Further studies on experimental animals revealing mechanisms of therapeutic-aimed MNPs are required to confirm their suitability as potential anti-cancer drugs.
Collapse
Affiliation(s)
- Barbora Buliaková
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Monika Mesárošová
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Andrea Bábelová
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Michal Šelc
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | | | - Lívia Šebová
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Filip Rázga
- Polymer Institute, SAS, Bratislava, Slovakia
| | | | - Ivan Chalupa
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Alena Gábelová
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia.
| |
Collapse
|
42
|
Yan M, Wang C, He B, Yang M, Tong M, Long Z, Liu B, Peng F, Xu L, Zhang Y, Liang D, Lei H, Subrata S, Kelley KW, Lam EWF, Jin B, Liu Q. Aurora-A Kinase: A Potent Oncogene and Target for Cancer Therapy. Med Res Rev 2016; 36:1036-1079. [PMID: 27406026 DOI: 10.1002/med.21399] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The Aurora kinase family is comprised of three serine/threonine kinases, Aurora-A, Aurora-B, and Aurora-C. Among these, Aurora-A and Aurora-B play central roles in mitosis, whereas Aurora-C executes unique roles in meiosis. Overexpression or gene amplification of Aurora kinases has been reported in a broad range of human malignancies, pointing to their role as potent oncogenes in tumorigenesis. Aurora kinases therefore represent promising targets for anticancer therapeutics. A number of Aurora kinase inhibitors (AKIs) have been generated; some of which are currently undergoing clinical evaluation. Recent studies have unveiled novel unexpected functions of Aurora kinases during cancer development and the mechanisms underlying the anticancer actions of AKIs. In this review, we discuss the most recent advances in Aurora-A kinase research and targeted cancer therapy, focusing on the oncogenic roles and signaling pathways of Aurora-A kinases in promoting tumorigenesis, the recent preclinical and clinical AKI data, and potential alternative routes for Aurora-A kinase inhibition.
Collapse
Affiliation(s)
- Min Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Mengying Tong
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zijie Long
- Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lingzhi Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yan Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sen Subrata
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith W Kelley
- Laboratory of Immunophysiology, Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. .,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China. .,Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
43
|
Durlacher CT, Li ZL, Chen XW, He ZX, Zhou SF. An update on the pharmacokinetics and pharmacodynamics of alisertib, a selective Aurora kinase A inhibitor. Clin Exp Pharmacol Physiol 2016; 43:585-601. [DOI: 10.1111/1440-1681.12571] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Cameron T Durlacher
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| | - Zhi-Ling Li
- Department of Pharmacy; Shanghai Children's Hospital; Shanghai Jiao Tong University; Shanghai China
| | - Xiao-Wu Chen
- Department of General Surgery; The First People's Hospital of Shunde Affiliated to Southern Medical University; Shunde Foshan Guangdong
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine; Stem Cell and Tissue Engineering Research Centre & Sino-US Joint Laboratory for Medical Sciences; Guizhou Medical University; Guiyang Guizhou China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| |
Collapse
|
44
|
Kobayashi A, Hashizume C, Dowaki T, Wong RW. Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A. Cell Cycle 2016; 14:1447-58. [PMID: 25789545 DOI: 10.1080/15384101.2015.1021518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spindle poles are defined by centrosomes; therefore, an abnormal number or defective structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. Previously, we showed that Tpr (translocated promoter region), a component of the nuclear pore complex (NPC), interacts with Mad1 and dynein to promote proper chromosome segregation during mitosis. Tpr also associates with p53 to induce autophagy. Here, we report that Tpr depletion induces mitotic catastrophe and enhances the rate of tetraploidy and polyploidy. Mechanistically, Tpr interacts, via its central domain, with Aurora A but not Aurora B kinase. In Tpr-depleted cells, the expression levels, centrosomal localization and phosphorylation of Aurora A were all reduced. Surprisingly, an Aurora A inhibitor, Alisertib (MLN8237), also disrupted centrosomal localization of Tpr and induced mitotic catastrophe and cell death in a time- and dose-dependent manner. Strikingly, over-expression of Aurora A disrupted Tpr centrosomal localization only in cells with supernumerary centrosomes but not in bipolar cells. Our results highlight the mutual regulation between Tpr and Aurora A and further confirm the importance of nucleoporin function in spindle pole organization, bipolar spindle assembly, and mitosis; functions that are beyond the conventional nucleocytoplasmic transport and NPC structural roles of nucleoporins. Furthermore, the central coiled-coil domain of Tpr binds to and sequesters extra Aurora A to safeguard bipolarity. This Tpr domain merits further investigation for its ability to inhibit Aurora kinase and as a potential therapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- Akiko Kobayashi
- a Laboratory of Molecular and Cellular Biology; Department of Biology ; Faculty of Natural Systems; Kanazawa University ; Kanazawa , Ishikawa , Japan
| | | | | | | |
Collapse
|
45
|
Necchi A, Lo Vullo S, Mariani L, Raggi D, Giannatempo P, Calareso G, Togliardi E, Crippa F, Di Genova N, Perrone F, Colecchia M, Paolini B, Pelosi G, Nicolai N, Procopio G, Salvioni R, De Braud FG. An open-label, single-arm, phase 2 study of the Aurora kinase A inhibitor alisertib in patients with advanced urothelial cancer. Invest New Drugs 2016; 34:236-42. [PMID: 26873642 DOI: 10.1007/s10637-016-0328-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Progress in developing effective salvage therapies for UC is warranted. Alisertib is an orally available, selective inhibitor of the aurora kinase A. METHODS A single-group, phase 2 trial was conducted with alisertib 50 mg orally BID for 7 days, with 14d rest until disease progression (PD) (NCT02109328). The primary endpoint (EP) was RECIST 1.1 objective response-rate (ORR, H0 ≤ 5%, H1 ≥ 20%, α = 10% and β = 20%). Eligibility included failure of at least one platinum-based regimen. RESULTS From 10/2014 to 04/2015, 22 patients were enrolled (20 evaluable for response), 8 (36.4%) in second-line and 14 (63.6 %) beyond the second-line. Eight (36.4%) had an ECOG-performance status 1-2. Two partial responses (PR, ORR: 9.1%), 7 stable disease (SD) and 11 PD were obtained. Median follow-up was 8.3 months (IQR: 7-10.3), 6-month progression-free survival (PFS) was 13.6% (95%CI: 4.8-39.0). Two SD are still receiving treatment after 11.5 and 6.3 months. Median overall survival (OS) was not reached (6-month OS: 59.1%, 95%CI: 41.7-83.7). Hb < 10 g/dl was significantly associated with shorter PFS and OS multivariably (p = 0.031 and p = 0.033). Tissue of the case with 11.5 month SD harbored a missense mutation of mTOR (E1813D), the nonsense mutation Q527STOP of TSC1, HER3 and TAF1L missense mutations. Grade 3-4 adverse events (AE) were: 40.9% mucositis, 36.4% fatigue, 18.2% neutropenia (13.6% febrile neutropenia). There were 2 treatment-related deaths. CONCLUSIONS The study did not meet the primary EP, yet sustained disease control was obtained in about 14% of patients. The incidence of AE and the issue of patient selection are two major concerns.
Collapse
Affiliation(s)
- Andrea Necchi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milano, Italy.
| | - Salvatore Lo Vullo
- Clinical Epidemiology and Trials Organization Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Luigi Mariani
- Clinical Epidemiology and Trials Organization Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Daniele Raggi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milano, Italy
| | - Patrizia Giannatempo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milano, Italy
| | - Giuseppina Calareso
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Elena Togliardi
- Pharmacy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Flavio Crippa
- Nuclear Medicine and PET Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Nicola Di Genova
- Clinical Trials Center, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Federica Perrone
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Maurizio Colecchia
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giuseppe Pelosi
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
- Università degli Studi di Milano, Milano, Italy
| | - Nicola Nicolai
- Department of Surgery, Urology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giuseppe Procopio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milano, Italy
| | - Roberto Salvioni
- Department of Surgery, Urology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Filippo G De Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milano, Italy
- Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
46
|
Asteriti IA, Di Cesare E, De Mattia F, Hilsenstein V, Neumann B, Cundari E, Lavia P, Guarguaglini G. The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy. Oncotarget 2015; 5:6229-42. [PMID: 25153724 PMCID: PMC4171625 DOI: 10.18632/oncotarget.2190] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inhibition of Aurora kinase activity by small molecules is being actively investigated as a potential anti-cancer strategy. A successful therapeutic use of Aurora inhibitors relies on a comprehensive understanding of the effects of inactivating Aurora kinases on cell division, a challenging aim given the pleiotropic roles of those kinases during mitosis. Here we have used the Aurora-A inhibitor MLN8237, currently under phase-I/III clinical trials, in dose-response assays in U2OS human cancer cells synchronously proceeding towards mitosis. By following the behaviour and fate of single Aurora-inhibited cells in mitosis by live microscopy, we show that MLN8237 treatment affects multiple processes that are differentially sensitive to the loss of Aurora-A function. A role of Aurora-A in controlling the orientation of cell division emerges. MLN8237 treatment, even in high doses, fails to induce efficient elimination of dividing cells, or of their progeny, while inducing significant aneuploidy in daughter cells. The results of single-cell analyses show a complex cellular response to MLN8237 and evidence that its effects are strongly dose-dependent: these issues deserve consideration in the light of the design of strategies to kill cancer cells via inhibition of Aurora kinases.
Collapse
Affiliation(s)
- Italia Anna Asteriti
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Erica Di Cesare
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Fabiola De Mattia
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Volker Hilsenstein
- Advanced Light Microscopy Facility, EMBL, Meyerhofstraße 1, Heidelberg, Germany
| | - Beate Neumann
- Advanced Light Microscopy Facility, EMBL, Meyerhofstraße 1, Heidelberg, Germany
| | - Enrico Cundari
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Patrizia Lavia
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
47
|
Gonzalez LC, Ghadaouia S, Martinez A, Rodier F. Premature aging/senescence in cancer cells facing therapy: good or bad? Biogerontology 2015; 17:71-87. [DOI: 10.1007/s10522-015-9593-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/22/2015] [Indexed: 01/07/2023]
|
48
|
Davis SL, Robertson KM, Pitts TM, Tentler JJ, Bradshaw-Pierce EL, Klauck PJ, Bagby SM, Hyatt SL, Selby HM, Spreafico A, Ecsedy JA, Arcaroli JJ, Messersmith WA, Tan AC, Eckhardt SG. Combined inhibition of MEK and Aurora A kinase in KRAS/PIK3CA double-mutant colorectal cancer models. Front Pharmacol 2015; 6:120. [PMID: 26136684 PMCID: PMC4468631 DOI: 10.3389/fphar.2015.00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
Aurora A kinase and MEK inhibitors induce different, and potentially complementary, effects on the cell cycle of malignant cells, suggesting a rational basis for utilizing these agents in combination. In this work, the combination of an Aurora A kinase and MEK inhibitor was evaluated in pre-clinical colorectal cancer models, with a focus on identifying a subpopulation in which it might be most effective. Increased synergistic activity of the drug combination was identified in colorectal cancer cell lines with concomitant KRAS and PIK3CA mutations. Anti-proliferative effects were observed upon treatment of these double-mutant cell lines with the drug combination, and tumor growth inhibition was observed in double-mutant human tumor xenografts, though effects were variable within this subset. Additional evaluation suggests that degree of G2/M delay and p53 mutation status affect apoptotic activity induced by combination therapy with an Aurora A kinase and MEK inhibitor in KRAS and PIK3CA mutant colorectal cancer. Overall, in vitro and in vivo testing was unable to identify a subset of colorectal cancer that was consistently responsive to the combination of a MEK and Aurora A kinase inhibitor.
Collapse
Affiliation(s)
- S Lindsey Davis
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Kelli M Robertson
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Todd M Pitts
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - John J Tentler
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Erica L Bradshaw-Pierce
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; Department of Drug Metabolism and Pharmacokinetics, Takeda California, Inc. San Diego, CA, USA
| | - Peter J Klauck
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Stacey M Bagby
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Stephanie L Hyatt
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Heather M Selby
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Anna Spreafico
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Jeffrey A Ecsedy
- Department of Translational Medicine, Millenium Pharmaceuticals, Inc., A wholly owned Subsidiary of a Takeda Pharmaceutical Company Limited Cambridge, MA, USA
| | - John J Arcaroli
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Aik Choon Tan
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - S Gail Eckhardt
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| |
Collapse
|
49
|
Li J, Hong MJ, Chow JP, Man WY, Mak JP, Ma HT, Poon RY. Co-inhibition of polo-like kinase 1 and Aurora kinases promotes mitotic catastrophe. Oncotarget 2015; 6:9327-40. [PMID: 25871386 PMCID: PMC4496220 DOI: 10.18632/oncotarget.3313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/08/2015] [Indexed: 11/25/2022] Open
Abstract
Mitosis is choreographed by a number of protein kinases including polo-like kinases and Aurora kinases. As these kinases are frequently dysregulated in cancers, small-molecule inhibitors have been developed for targeted anticancer therapies. Given that PLK1 and Aurora kinases possess both unique functions as well as co-regulate multiple mitotic events, whether pharmacological inhibition of these kinases together can enhance mitotic catastrophe remains an outstanding issue to be determined. Using concentrations of inhibitors that did not induce severe mitotic defects on their own, we found that both the metaphase arrest and mitotic slippage induced by inhibitors targeting Aurora A and Aurora B (MK-5108 and Barasertib respectively) were enhanced by a PLK1 inhibitor (BI 2536). We found that PLK1 is overexpressed in cells from nasopharyngeal carcinoma, a highly invasive cancer with poor prognosis, in comparison to normal nasopharyngeal epithelial cells. Nasopharyngeal carcinoma cells were more sensitive to BI 2536 as a single agent and co-inhibition with Aurora kinases than normal cells. These observations underscore the mechanism and potential benefits of targeting PLK1 and Aurora kinases to induce mitotic catastrophe in cancer cells.
Collapse
Affiliation(s)
- Jingjing Li
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Myung Jin Hong
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jeremy P.H. Chow
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wing Yu Man
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Joyce P.Y. Mak
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y.C. Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
50
|
Puzio-Kuter AM, Laddha SV, Castillo-Martin M, Sun Y, Cordon-Cardo C, Chan CS, Levine AJ. Involvement of tumor suppressors PTEN and p53 in the formation of multiple subtypes of liposarcoma. Cell Death Differ 2015; 22:1785-91. [PMID: 25822339 PMCID: PMC4648325 DOI: 10.1038/cdd.2015.27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 12/26/2022] Open
Abstract
Liposarcoma (LPS) is a type of soft tissue sarcoma that mostly occurs in adults, and in humans is characterized by amplifications of MDM2 and CDK4. The molecular pathogenesis of this malignancy is still poorly understood and, therefore, we developed a mouse model with conditional inactivation of PTEN and p53 to investigate these pathways in the progression of the disease. We show that deletion of these two tumor suppressors cooperate in the formation of multiple subtypes of LPS (from well-differentiated LPS to pleomorphic LPS). In addition, progression of the tumors is further characterized by the expression of D cyclins and CDK4/6, which allow for continued cell division. Microarray analysis also revealed novel genes that are differentially expressed between different subtypes of LPS, which could aid in understanding the disease and to unravel potential new therapeutic targets.
Collapse
Affiliation(s)
- A M Puzio-Kuter
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - S V Laddha
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - M Castillo-Martin
- Icahn School of Medicine at Mount Sinai, Mount Sinai School of Medicine, New York, USA
| | - Y Sun
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - C Cordon-Cardo
- Icahn School of Medicine at Mount Sinai, Mount Sinai School of Medicine, New York, USA
| | - C S Chan
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Jersey, USA
| | - A J Levine
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.,Institute for Advanced Study, Princeton, New Jersey, USA
| |
Collapse
|