1
|
Dowell J, Bice Z, Yan K, Konduri GG. Hyperoxia-induced airflow restriction and Renin-Angiotensin System expression in a bronchopulmonary dysplasia mouse model. Physiol Rep 2024; 12:e15895. [PMID: 38163662 PMCID: PMC10758334 DOI: 10.14814/phy2.15895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanisms underlying hyperoxia-induced airflow restriction in the pediatric lung disease Bronchopulmonary dysplasia (BPD) are unclear. We hypothesized a role for Renin-Angiotensin System (RAS) activity in BPD. RAS is comprised of a pro-developmental pathway consisting of angiotensin converting enzyme-2 (ACE2) and angiotensin II receptor type 2 (AT2), and a pro-fibrotic pathway mediated by angiotensin II receptor type 1 (AT1). We investigated associations between neonatal hyperoxia, airflow restriction, and RAS activity in a BPD mouse model. C57 mouse pups were randomized to normoxic (FiO2 = 0.21) or hyperoxic (FiO2 = 0.75) conditions for 15 days (P1-P15). At P15, P20, and P30, we measured airflow restriction using plethysmography and ACE2, AT1, and AT2 mRNA and protein expression via polymerase chain reaction and Western Blot. Hyperoxia increased airflow restriction P15 and P20, decreased ACE2 and AT2 mRNA, decreased AT2 protein, and increased AT1 protein expression. ACE2 mRNA and protein remained suppressed at P20. By P30, airflow restriction and RAS expression did not differ between groups. Hyperoxia caused high airflow restriction, increased pulmonary expression of the pro-fibrotic RAS pathway, and decreased expression of the pro-developmental in our BPD mouse model. These associated findings may point to a causal role for RAS in hyperoxia-induced airflow restriction.
Collapse
Affiliation(s)
| | - Zachary Bice
- Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Ke Yan
- Medical College of WisconsinMilwaukeeWisconsinUSA
| | | |
Collapse
|
2
|
Dushianthan A, Bracegirdle L, Cusack R, Cumpstey AF, Postle AD, Grocott MPW. Alveolar Hyperoxia and Exacerbation of Lung Injury in Critically Ill SARS-CoV-2 Pneumonia. Med Sci (Basel) 2023; 11:70. [PMID: 37987325 PMCID: PMC10660857 DOI: 10.3390/medsci11040070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Acute hypoxic respiratory failure (AHRF) is a prominent feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critical illness. The severity of gas exchange impairment correlates with worse prognosis, and AHRF requiring mechanical ventilation is associated with substantial mortality. Persistent impaired gas exchange leading to hypoxemia often warrants the prolonged administration of a high fraction of inspired oxygen (FiO2). In SARS-CoV-2 AHRF, systemic vasculopathy with lung microthrombosis and microangiopathy further exacerbates poor gas exchange due to alveolar inflammation and oedema. Capillary congestion with microthrombosis is a common autopsy finding in the lungs of patients who die with coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome. The need for a high FiO2 to normalise arterial hypoxemia and tissue hypoxia can result in alveolar hyperoxia. This in turn can lead to local alveolar oxidative stress with associated inflammation, alveolar epithelial cell apoptosis, surfactant dysfunction, pulmonary vascular abnormalities, resorption atelectasis, and impairment of innate immunity predisposing to secondary bacterial infections. While oxygen is a life-saving treatment, alveolar hyperoxia may exacerbate pre-existing lung injury. In this review, we provide a summary of oxygen toxicity mechanisms, evaluating the consequences of alveolar hyperoxia in COVID-19 and propose established and potential exploratory treatment pathways to minimise alveolar hyperoxia.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Luke Bracegirdle
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Rebecca Cusack
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Andrew F. Cumpstey
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D. Postle
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael P. W. Grocott
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Devaux CA, Lagier JC. Unraveling the Underlying Molecular Mechanism of 'Silent Hypoxia' in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway. J Clin Med 2023; 12:jcm12062445. [PMID: 36983445 PMCID: PMC10056466 DOI: 10.3390/jcm12062445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
A few days after being infected with SARS-CoV-2, a fraction of people remain asymptomatic but suffer from a decrease in arterial oxygen saturation in the absence of apparent dyspnea. In light of our clinical investigation on the modulation of molecules belonging to the renin angiotensin system (RAS) in COVID-19 patients, we propose a model that explains 'silent hypoxia'. The RAS imbalance caused by SARS-CoV-2 results in an accumulation of angiotensin 2 (Ang II), which activates the angiotensin 2 type 1 receptor (AT1R) and triggers a harmful cascade of intracellular signals leading to the nuclear translocation of the hypoxia-inducible factor (HIF)-1α. HIF-1α transactivates many genes including the angiotensin-converting enzyme 1 (ACE1), while at the same time, ACE2 is downregulated. A growing number of cells is maintained in a hypoxic condition that is self-sustained by the presence of the virus and the ACE1/ACE2 ratio imbalance. This is associated with a progressive worsening of the patient's biological parameters including decreased oxygen saturation, without further clinical manifestations. When too many cells activate the Ang II-AT1R-HIF-1α axis, there is a 'hypoxic spillover', which marks the tipping point between 'silent' and symptomatic hypoxia in the patient. Immediate ventilation is required to prevent the 'hypoxic spillover'.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infection Laboratory, Aix-Marseille University, 13000 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 13000 Marseille, France
- Centre National de la Recherche Scientifique, 13000 Marseille, France
| | - Jean-Christophe Lagier
- Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infection Laboratory, Aix-Marseille University, 13000 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 13000 Marseille, France
| |
Collapse
|
4
|
Devaux CA, Camoin-Jau L. An update on angiotensin-converting enzyme 2 structure/functions, polymorphism, and duplicitous nature in the pathophysiology of coronavirus disease 2019: Implications for vascular and coagulation disease associated with severe acute respiratory syndrome coronavirus infection. Front Microbiol 2022; 13:1042200. [PMID: 36519165 PMCID: PMC9742611 DOI: 10.3389/fmicb.2022.1042200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 08/01/2023] Open
Abstract
It has been known for many years that the angiotensin-converting enzyme 2 (ACE2) is a cell surface enzyme involved in the regulation of blood pressure. More recently, it was proven that the severe acute respiratory syndrome coronavirus (SARS-CoV-2) interacts with ACE2 to enter susceptible human cells. This functional duality of ACE2 tends to explain why this molecule plays such an important role in the clinical manifestations of coronavirus disease 2019 (COVID-19). At the very start of the pandemic, a publication from our Institute (entitled "ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome"), was one of the first reviews linking COVID-19 to the duplicitous nature of ACE2. However, even given that COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin system (RAS), we were still far from understanding the complexity of the mechanisms which are controlled by ACE2 in different cell types. To gain insight into the physiopathology of SARS-CoV-2 infection, it is essential to consider the polymorphism and expression levels of the ACE2 gene (including its alternative isoforms). Over the past 2 years, an impressive amount of new results have come to shed light on the role of ACE2 in the pathophysiology of COVID-19, requiring us to update our analysis. Genetic linkage studies have been reported that highlight a relationship between ACE2 genetic variants and the risk of developing hypertension. Currently, many research efforts are being undertaken to understand the links between ACE2 polymorphism and the severity of COVID-19. In this review, we update the state of knowledge on the polymorphism of ACE2 and its consequences on the susceptibility of individuals to SARS-CoV-2. We also discuss the link between the increase of angiotensin II levels among SARS-CoV-2-infected patients and the development of a cytokine storm associated microvascular injury and obstructive thrombo-inflammatory syndrome, which represent the primary causes of severe forms of COVID-19 and lethality. Finally, we summarize the therapeutic strategies aimed at preventing the severe forms of COVID-19 that target ACE2. Changing paradigms may help improve patients' therapy.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Center National de la Recherche Scientifique, Marseille, France
| | - Laurence Camoin-Jau
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Laboratoire d’Hématologie, Hôpital de La Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| |
Collapse
|
5
|
Ruan Z, Li D, Hu Y, Qiu Z, Chen X. The Association of Renin-Angiotensin System Blockades and Mortality in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Acute Respiratory Failure: A Retrospective Cohort Study. Int J Chron Obstruct Pulmon Dis 2022; 17:2001-2011. [PMID: 36072611 PMCID: PMC9444000 DOI: 10.2147/copd.s370817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background Acute respiratory failure (ARF) is a common cause of admission to the intensive care unit (ICU) for patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). There is still a lack of effective interventions and treatments. ACE inhibitors (ACEI)/ angiotensin II receptor blockers (ARB) were effective in COPD patients. We aimed to study the effect of ACEI/ARB use on AECOPD combined with ARF and evaluate the effect of in-hospital continuation of medication. Methods We included patients with AECOPD and ARF from the Medical Information Bank for Intensive Care (MIMIC-III) database. MIMIC III is a large cohort database from Boston, USA. Patients were divided into two groups according to the use of ACEI/ARB before admission. Propensity score matching (PSM) was used to reduce potential bias between the two groups. Cox regression and Kaplan-Meier curves compared 30-day mortality in ACEI/ARB users and non-users. We also defined and analyzed the use of in-hospital ACEI/ARB. Multiple models were used to ensure the robustness of the findings. Subgroup analysis was used to analyze the variability between groups. Results A total of 544 patients were included in the original study. After PSM, 256 patients were included in the matched cohort. Multivariate Cox regression showed 30-day mortality was significantly lower in ACEI/ARB users compared with controls (HR = 0.50, 95% CI: 0.29-0.86, p= 0.013). In PSM and inverse probability-weighted models, the results are stable Continued in-hospital use of ACEI/ARB remains effective (HR 0.40, 95% CI 0.22-0.74, p = 0.003). Kaplan-Meier showed a significant difference in survival between the two groups. Conclusion This study found that pre-hospital ACEI/ARB use was associated with reduced mortality in patients with AECOPD and ARF.
Collapse
Affiliation(s)
- Zhishen Ruan
- The First Clinical College, Shandong Chinese Medical University, Ji Nan, People’s Republic of China
| | - Dan Li
- The First Clinical College, Shandong Chinese Medical University, Ji Nan, People’s Republic of China
| | - Yuanlong Hu
- The First Clinical College, Shandong Chinese Medical University, Ji Nan, People’s Republic of China
| | - Zhanjun Qiu
- The First Clinical College, Shandong Chinese Medical University, Ji Nan, People’s Republic of China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, People’s Republic of China
| | - Xianhai Chen
- The First Clinical College, Shandong Chinese Medical University, Ji Nan, People’s Republic of China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, People’s Republic of China
| |
Collapse
|
6
|
Influence of weather factors on the incidence of COVID-19 in Spain. MEDICINA CLÍNICA (ENGLISH EDITION) 2022; 159:255-261. [PMID: 36060101 PMCID: PMC9425111 DOI: 10.1016/j.medcle.2021.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Introduction Several studies have analyzed the influence of meteorological and geographical factors on the incidence of COVID-19. Seasonality could be important in the transmission of SARS-CoV-2. This study aims to evaluate the geographical pattern of COVID-19 in Spain and its relationship with different meteorological variables. Methods A provincial ecological study analyzing the influence of meteorological and geographical factors on the cumulative incidence of COVID-19 in the 52 (24 coastal and 28 inland) Spanish provinces during the first three waves was carried out. The cumulative incidence was calculated with data from the National Statistical Institute (INE) and the National Epidemiological Surveillance Network (RENAVE), while the meteorological variables were obtained from the Spanish Meteorological Agency (AEMET). Results The total cumulative incidence, in all three waves, was lower in the coastal provinces than in the inland ones (566 ± 181 vs. 782 ± 154; P = 2.5 × 10−5). The cumulative incidence correlated negatively with mean air temperature (r = −0.49; P = 2.2 × 10−4) and rainfall (r = −0.33; P = .01), and positively with altitude (r = 0.56; P = 1.4 × 10−5). The Spanish provinces with an average temperature <10 °C had almost twice the cumulative incidence than the provinces with temperatures >16 °C. The mean air temperature and rainfall were associated with the cumulative incidence of COVID-19, regardless of other factors (Beta Coefficient of −0.62; P = 3.7 × 10−7 and −0.47; P = 4.2 × 10−5 respectively) Conclusions Meteorological and geographical factors could influence the evolution of the pandemic in Spain. Knowledge regarding the seasonality of the virus would help to predict new waves of COVID-19 infections
Collapse
|
7
|
Devaux CA, Raoult D. The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication. Front Physiol 2022; 13:960308. [PMID: 36091390 PMCID: PMC9454615 DOI: 10.3389/fphys.2022.960308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cases of coronavirus disease 2019 (COVID-19) have been reported worldwide. However, one epidemiological report has claimed a lower incidence of the disease in people living at high altitude (>2,500 m), proposing the hypothesis that adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection. This publication was initially greeted with skepticism, because social, genetic, or environmental parametric variables could underlie a difference in susceptibility to the virus for people living in chronic hypobaric hypoxia atmospheres. Moreover, in some patients positive for SARS-CoV-2, early post-infection ‘happy hypoxia” requires immediate ventilation, since it is associated with poor clinical outcome. If, however, we accept to consider the hypothesis according to which the adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection, identification of the molecular rational behind it is needed. Among several possibilities, HIF-1 regulation appears to be a molecular hub from which different signaling pathways linking hypoxia and COVID-19 are controlled. Interestingly, HIF-1α was reported to inhibit the infection of lung cells by SARS-CoV-2 by reducing ACE2 viral receptor expression. Moreover, an association of the rs11549465 variant of HIF-1α with COVID-19 susceptibility was recently discovered. Here, we review the evidence for a link between HIF-1α, ACE2 and AT1R expression, and the incidence/severity of COVID-19. We highlight the central role played by the HIF-1α signaling pathway in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
- *Correspondence: Christian Albert Devaux,
| | - Didier Raoult
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
8
|
Rodriguez Lima DR, Pinzón Rondón ÁM, Rubio Ramos C, Pinilla Rojas DI, Niño Orrego MJ, Díaz Quiroz MA, Molano-González N, Ceballos Quintero JE, Arroyo Santos AF, Ruiz Sternberg ÁM. Clinical characteristics and mortality associated with COVID-19 at high altitude: a cohort of 5161 patients in Bogotá, Colombia. Int J Emerg Med 2022; 15:22. [PMID: 35597911 PMCID: PMC9123834 DOI: 10.1186/s12245-022-00426-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/08/2022] [Indexed: 01/08/2023] Open
Abstract
Background There are few data on the clinical outcomes of patients with coronavirus disease 2019 (COVID-19) in cities over 1000 m above sea level (masl). Objectives To describe the clinical characteristics and mortality of patients with COVID-19 treated at a high complexity hospital in Bogotá, Colombia, at 2640 masl. Methods This was an observational study of a cohort including 5161 patients with confirmed COVID-19 infection from 19 March 2020 to 30 April 2021. Demographic data, laboratory values, comorbidities, oxygenation indices, and clinical outcomes were collected. Data were compared between survivors and nonsurvivors. An independent predictive model was performed for mortality and invasive mechanical ventilation (IMV) using classification and regression trees (CART). Results The median cohort age was 66 years (interquartile range (IQR) 53–77), with 1305 patients dying (25%) and 3856 surviving (75%). The intensive care unit (ICU) received 1223 patients (24%). Of 898 patients who received IMV, 613 (68%) of them perished. The ratio of partial pressure arterial oxygen (PaO2) to fraction inspired oxygen (FiO2), or the P/F ratio, upon ICU admission was 105 (IQR 77–146) and 137 (IQR 91–199) in the deceased and survivors, respectively. The CART model showed that the need for IMV, age greater than 79 years, ratio of oxygen saturation (SaO2) to FiO2, or the S/F ratio, less than 259, and lactate dehydrogenase (LDH) greater than 617 U/L at admission were associated with a greater probability of death. Conclusion Among more than 5000 patients with COVID-19 treated in our hospital, mortality at hospital discharge was 25%. Older age, low S/F ratio, and high LDH at admission were predictors of mortality.
Collapse
Affiliation(s)
- David Rene Rodriguez Lima
- Critical and Intensive Care Medicine, Hospital Universitario Mayor-Méderi, Bogotá, Colombia. .,Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| | - Ángela María Pinzón Rondón
- Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Cristhian Rubio Ramos
- Critical and Intensive Care Medicine, Hospital Universitario Mayor-Méderi, Bogotá, Colombia
| | | | - Maria José Niño Orrego
- Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mateo Andrés Díaz Quiroz
- Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Molano-González
- Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | | | | | - Ángela María Ruiz Sternberg
- Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
9
|
Vesce F, Battisti C, Crudo M. The Inflammatory Cytokine Imbalance for Miscarriage, Pregnancy Loss and COVID-19 Pneumonia. Front Immunol 2022; 13:861245. [PMID: 35359975 PMCID: PMC8961687 DOI: 10.3389/fimmu.2022.861245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
Pregnancy can be defined a vascular event upon endocrine control. In the human hemo-chorial placentation the chorionic villi penetrate the wall of the uterine spiral arteries, to provide increasing amounts of nutrients and oxygen for optimal fetal growth. In any physiological pregnancy the natural maternal response is of a Th1 inflammatory type, aimed at avoiding blood loss through the arteriolar wall openings. The control of the vascular function, during gestation as in any other condition, is achieved through the action of two main types of prostanoids: prostaglandin E2 and thromboxane on the one hand (for vasoconstriction and coagulation), prostacyclin on the other (for vasodilation and blood fluidification). The control of the maternal immune response is upon the responsibility of the fetus itself. Indeed, the chorionic villi are able to counteract the natural maternal response, thus changing the inflammatory Th1 type into the anti-inflammatory Th2. Clinical and experimental research in the past half century address to inflammation as the leading cause of abortion, pregnancy loss, premature delivery and related pulmonary, cerebral, intestinal fetal syndromes. Increased level of Interleukin 6, Interleukin 1-beta, Tumor Necrosis Factor-alfa, Interferon-gamma, are some among the well-known markers of gestational inflammation. On the other side, COVID-19 pneumonia is a result of extensive inflammation induced by viral replication within the cells of the respiratory tract. As it may happen in the uterine arteries in the absence of an effective fetal control, viral pneumonia triggers pulmonary vascular coagulation. The cytokines involved in the process are the same as those in gestational inflammation. As the fetus breathes throughout the placenta, fetal death from placental thrombosis is similar to adult death from pulmonary thrombosis. Preventing and counteracting inflammation is mandatory in both conditions. The most relevant literature dealing with the above-mentioned concepts is reviewed in the present article.
Collapse
Affiliation(s)
- Fortunato Vesce
- OB & Gyn Complex Unit, Arcispedale Sant’Anna – Ferrara University, Ferrara, Italy
| | | | | |
Collapse
|
10
|
Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021; 22:ijms222312800. [PMID: 34884604 PMCID: PMC8657827 DOI: 10.3390/ijms222312800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
- Correspondence: ; Tel.: +42-12-501-17-391
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Eva Goncalvesova
- Department of Heart Failure, Clinic of Cardiology, National Institute of Cardiovascular Diseases, 831 01 Bratislava, Slovakia;
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| |
Collapse
|
11
|
Patel M, Shahjin F, Cohen JD, Hasan M, Machhi J, Chugh H, Singh S, Das S, Kulkarni TA, Herskovitz J, Meigs DD, Chandra R, Hettie KS, Mosley RL, Kevadiya BD, Gendelman HE. The Immunopathobiology of SARS-CoV-2 Infection. FEMS Microbiol Rev 2021; 45:fuab035. [PMID: 34160586 PMCID: PMC8632753 DOI: 10.1093/femsre/fuab035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to coronavirus disease 2019 (COVID-19). Virus-specific immunity controls infection, transmission and disease severity. With respect to disease severity, a spectrum of clinical outcomes occur associated with age, genetics, comorbidities and immune responses in an infected person. Dysfunctions in innate and adaptive immunity commonly follow viral infection. These are heralded by altered innate mononuclear phagocyte differentiation, activation, intracellular killing and adaptive memory, effector, and regulatory T cell responses. All of such affect viral clearance and the progression of end-organ disease. Failures to produce effective controlled antiviral immunity leads to life-threatening end-organ disease that is typified by the acute respiratory distress syndrome. The most effective means to contain SARS-CoV-2 infection is by vaccination. While an arsenal of immunomodulators were developed for control of viral infection and subsequent COVID-19 disease, further research is required to enable therapeutic implementation.
Collapse
Affiliation(s)
- Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Heerak Chugh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Snigdha Singh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Tanmay A Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology –Head & Neck Surgery, Stanford University, Palo Alto, CA 94304, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| |
Collapse
|
12
|
Valero C, Barba R, Marcos DP, Puente N, Riancho JA, Santurtún A. Influence of weather factors on the incidence of COVID-19 in Spain. Med Clin (Barc) 2021; 159:255-261. [PMID: 34887065 PMCID: PMC8590957 DOI: 10.1016/j.medcli.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Several studies have analyzed the influence of meteorological and geographical factors on the incidence of COVID-19. Seasonality could be important in the transmission of SARS-CoV-2. This study aims to evaluate the geographical pattern of COVID-19 in Spain and its relationship with different meteorological variables. METHODS A provincial ecological study analyzing the influence of meteorological and geographical factors on the cumulative incidence of COVID-19 in the 52 (24 coastal and 28 inland) Spanish provinces during the first three waves was carried out. The cumulative incidence was calculated with data from the National Statistical Institute (INE) and the National Epidemiological Surveillance Network (RENAVE), while the meteorological variables were obtained from the Spanish Meteorological Agency (AEMET). RESULTS The total cumulative incidence, in all three waves, was lower in the coastal provinces than in the inland ones (566±181 vs. 782±154; p=2.5×10-5). The cumulative incidence correlated negatively with mean air temperature (r=-0.49; p=2.2×10-4) and rainfall (r=-0.33; p=0.01), and positively with altitude (r=0.56; p=1. 4×10-5). The Spanish provinces with an average temperature <10°C had almost twice the cumulative incidence than the provinces with temperatures >16°C. The mean air temperature and rainfall were associated with the cumulative incidence of COVID-19, regardless of other factors (Beta Coefficient of -0.62; p=3.7×10-7 and -0.47; p=4.2×10-5 respectively). CONCLUSIONS Meteorological and geographical factors could influence the evolution of the pandemic in Spain. Knowledge regarding the seasonality of the virus would help to predict new waves of COVID-19 infections.
Collapse
Affiliation(s)
- Carmen Valero
- Departamento de Medicina Interna, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, España.
| | - Raquel Barba
- Unidad de Medicina Legal, Facultad de Medicina, Universidad de Cantabria, Santander, España
| | - Daniel Pablo Marcos
- Departamento de Medicina Interna, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, España
| | - Nuria Puente
- Departamento de Medicina Interna, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, España
| | - José Antonio Riancho
- Departamento de Medicina Interna, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, España
| | - Ana Santurtún
- Unidad de Medicina Legal, Facultad de Medicina, Universidad de Cantabria, Santander, España
| |
Collapse
|
13
|
Chauvin M, Larsen M, Quirant B, Quentric P, Dorgham K, Royer L, Vallet H, Guihot A, Combadière B, Combadière C, Barallat J, Mayaux J, Luyt CE, Mathian A, Amoura Z, Boddaert J, Armestar F, Gorochov G, Martinez-Caceres E, Sauce D. Elevated Neopterin Levels Predict Fatal Outcome in SARS-CoV-2-Infected Patients. Front Cell Infect Microbiol 2021; 11:709893. [PMID: 34497777 PMCID: PMC8419218 DOI: 10.3389/fcimb.2021.709893] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/31/2021] [Indexed: 01/14/2023] Open
Abstract
Highlights Innate immune activation during Covid-19 infection is associated with pernicious clinical outcome. Background Coronavirus disease 2019 (Covid-19) is a worldwide threat that has already caused more than 3 000 000 deaths. It is characterized by different patterns of disease evolution depending on host factors among which old-age and pre-existing comorbidities play a detrimental role. Previous coronavirus epidemics, notably SARS-CoV, were associated with increased serum neopterin levels, which can be interpreted as a sign of acute innate immunity in response to viral infection. Here we hypothesize that neopterin may serve as a biomarker of SARS-CoV-2 viral infection and Covid-19 disease severity. Methods We measured neopterin blood levels by ELISA. Seric concentration was quantified from 256 healthy donors and 374 Covid-19 patients at hospital admission. Enrolled Covid-19 patients were all symptomatic and displayed a large spectrum of comorbidities. Patients were followed until disease resolution or death. Results Severe and critically ill SARS-CoV-2 infected patients were characterized by a profound exacerbation of immune activation characterized by elevated neopterin blood levels. Systemic neopterin levels above 19nM stratified healthy individuals from Covid-19 patients with 87% specificity and 100% sensitivity. Moreover, systemic neopterin levels above 53nM differentiated non-survivors from survivors with 64% specificity and 100% sensitivity. Conclusion We propose that neopterin concentration measured at arrival to hospital is a hallmark of severe Covid-19 and identifies a high-risk population of pernicious clinical outcome with a need for special medical care.
Collapse
Affiliation(s)
- Manon Chauvin
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Martin Larsen
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Bibiana Quirant
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Paul Quentric
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Karim Dorgham
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Luca Royer
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Hélène Vallet
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Unité de Gériatrie Aigue, Paris, France
| | - Amelie Guihot
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Béhazine Combadière
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Jaume Barallat
- Biochemistry Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Julien Mayaux
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Service de Médecine Intensive-Réanimation et Pneumologie, Paris, France
| | - Charles-Edouard Luyt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne-Université, Service de Médecine Intensive-Réanimation et Pneumologie, Paris, France
| | - Alexis Mathian
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France.,Service de Médecine Interne 2, Institut E3M, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Zahir Amoura
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France.,Service de Médecine Interne 2, Institut E3M, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacques Boddaert
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne-Université, Hôpital Pitié-Salpêtrière, Département de Gériatrie, Paris, France
| | - Fernando Armestar
- Critical Care Department, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Guy Gorochov
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Delphine Sauce
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| |
Collapse
|
14
|
Bhattacharya S, Agarwal S, Shrimali NM, Guchhait P. Interplay between hypoxia and inflammation contributes to the progression and severity of respiratory viral diseases. Mol Aspects Med 2021; 81:101000. [PMID: 34294412 PMCID: PMC8287505 DOI: 10.1016/j.mam.2021.101000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
History of pandemics is dominated by viral infections and specifically respiratory viral diseases like influenza and COVID-19. Lower respiratory tract infection is the fourth leading cause of death worldwide. Crosstalk between resultant inflammation and hypoxic microenvironment may impair ventilatory response of lungs. This reduces arterial partial pressure of oxygen, termed as hypoxemia, which is observed in a section of patients with respiratory virus infections including SARS-CoV-2 (COVID-19). In this review, we describe the interplay between inflammation and hypoxic microenvironment in respiratory viral infection and its contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Sulagna Bhattacharya
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Orissa, India
| | - Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Nishith M Shrimali
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
15
|
Lima RS, Rocha LPC, Moreira PR. Genetic and epigenetic control of ACE2 expression and its possible role in COVID-19. Cell Biochem Funct 2021; 39:713-726. [PMID: 34075603 PMCID: PMC8239811 DOI: 10.1002/cbf.3648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2), is a pandemic that is claiming hundreds of thousands of lives around the world. Angiotensin‐converting enzyme‐2 (ACE2) is a key player in COVID‐19 due to its pivotal role in the SARS‐CoV‐2 infection. This enzyme is expressed throughout the body and the studies conducted so far have shown that its expression varies according to several factors, including cell type, sex, age, disease states and probably SARS‐CoV‐2 infection. Single‐nucleotide polymorphisms (SNPs) and epigenetic mechanisms, including DNA methylation, histone post‐translational modifications and microRNAs, impact ACE2 expression and may explain structural variation. The understanding of how genetic variants and epigenetic markers act to control ACE2 expression in health and disease states may contribute to comprehend several aspects of COVID‐19 that are puzzling researchers and clinicians. This review collects and appraises the literature regarding some aspects in the ACE2 biology, the expression patterns of this molecule, SNPs of the ACE2 gene and epigenetic mechanisms that may impact ACE2 expression in the context of COVID‐19.
Collapse
Affiliation(s)
- Rafael Silva Lima
- Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Paulo Carvalho Rocha
- Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Rocha Moreira
- Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Abdelsalam M, Althaqafi RMM, Assiri SA, Althagafi TM, Althagafi SM, Fouda AY, Ramadan A, Rabah M, Ahmed RM, Ibrahim ZS, Nemenqani DM, Alghamdi AN, Al Aboud D, Abdel-Moneim AS, Alsulaimani AA. Clinical and Laboratory Findings of COVID-19 in High-Altitude Inhabitants of Saudi Arabia. Front Med (Lausanne) 2021; 8:670195. [PMID: 34055842 PMCID: PMC8149591 DOI: 10.3389/fmed.2021.670195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/23/2021] [Indexed: 01/08/2023] Open
Abstract
Background: SARS-CoV-2, the causative agent of COVID-19, continues to cause a worldwide pandemic, with more than 147 million being affected globally as of this writing. People's responses to COVID-19 range from asymptomatic to severe, and the disease is sometimes fatal. Its severity is affected by different factors and comorbidities of the infected patients. Living at a high altitude could be another factor that affects the severity of the disease in infected patients. Methods: In the present study, we have analyzed the clinical, laboratory, and radiological findings of COVID-19-infected patients in Taif, a high-altitude region of Saudi Arabia. In addition, we compared matched diseased subjects to those living at sea level. We hypothesized that people living in high-altitude locations are prone to develop a more severe form of COVID-19 than those living at sea level. Results: Age and a high Charlson comorbidity score were associated with increased numbers of intensive care unit (ICU) admissions and mortality among COVID-19 patients. These ICU admissions and fatalities were found mainly in patients with comorbidities. Rates of leukocytosis, neutrophilia, higher D-dimer, ferritin, and highly sensitive C-reactive protein (CRP) were significantly higher in ICU patients. CRP was the most independent of the laboratory biomarkers found to be potential predictors of death. COVID-19 patients who live at higher altitude developed a less severe form of the disease and had a lower mortality rate, in comparison to matched subjects living at sea level. Conclusion: CRP and Charlson comorbidity scores can be considered predictive of disease severity. People living at higher altitudes developed less severe forms of COVID-19 disease than those living at sea level, due to a not-yet-known mechanism.
Collapse
Affiliation(s)
- Mostafa Abdelsalam
- Alameen Hospital, Taif, Saudi Arabia.,Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Sara A Assiri
- College of Medicine, Taif University, Taif, Saudi Arabia
| | | | - Saleh M Althagafi
- General Department of Medical Services, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ahmed Y Fouda
- Alameen Hospital, Taif, Saudi Arabia.,Anesthesiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Ramadan
- Alameen Hospital, Taif, Saudi Arabia.,Radiology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohammed Rabah
- Alameen Hospital, Taif, Saudi Arabia.,Radiology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Reham M Ahmed
- Alameen Hospital, Taif, Saudi Arabia.,Albbassia Chest Hospital, Cairo, Egypt
| | - Zein S Ibrahim
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | | | | | | | | |
Collapse
|
17
|
Forestieri S, Pintus R, Marcialis MA, Pintus MC, Fanos V. COVID-19 and developmental origins of health and disease. Early Hum Dev 2021; 155:105322. [PMID: 33571742 PMCID: PMC7837628 DOI: 10.1016/j.earlhumdev.2021.105322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
From the moment of the identification of SARS-CoV-2 as an etiological agent of the severe clinical pictures of pneumonia that were being slowly observed all over the world, numerous studies have been conducted to increase the knowledge about what was an unknown virus until then. The efforts were mainly aimed to acquire epidemiological, microbiological, pathogenetic, clinical, diagnostic, therapeutic and preventive information in order to increase the available weapons to fight an infection which was rapidly taking on the characteristics of the pandemic. Given the topicality of the problem, not everything has yet been fully understood and clarified, especially in the maternal-fetal‑neonatal field, where we are beginning to question what could be the outcomes of newborn babies born to mothers who contracted SARS-CoV-2 infection during pregnancy. Thus, the aim of this review is to analyze the long-term outcomes of this infection that could affect the offspring, regardless of a possible maternal-fetal transmission, focusing on, above all, the role of maternal immune activation and the expression of the Angiotensin-converting enzyme 2 (ACE2) in particular at the placental level.
Collapse
Affiliation(s)
| | - Roberta Pintus
- Department of Surgery, Neonatal Intensive Care Unit, University of Cagliari, Cagliari, Italy.
| | | | | | - Vassilios Fanos
- Department of Surgery, Neonatal Intensive Care Unit, University of Cagliari, Cagliari, Italy,Neonatal Intensive Care Unit, AOU, Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
McMillan P, Dexhiemer T, Neubig RR, Uhal BD. COVID-19-A Theory of Autoimmunity Against ACE-2 Explained. Front Immunol 2021; 12:582166. [PMID: 33833750 PMCID: PMC8021777 DOI: 10.3389/fimmu.2021.582166] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-COV-2 has cost many lives worldwide. In dealing with affected patients, the physician is faced with a very unusual pattern of organ damage that is not easily explained on the basis of prior knowledge of viral-induced pathogenesis. It is established that the main receptor for viral entry into tissues is the protein angiotensin-converting enzyme-2 ["ACE-2", (1)]. In a recent publication (2), a theory of autoimmunity against ACE-2, and/or against the ACE-2/SARS-COV-2 spike protein complex or degradation products thereof, was proposed as a possible explanation for the unusual pattern of organ damage seen in COVID-19. In the light of more recent information, this manuscript expands on the earlier proposed theory and offers additional, testable hypotheses that could explain both the pattern and timeline of organ dysfunction most often observed in COVID-19.
Collapse
Affiliation(s)
- Philip McMillan
- Doncaster and Bassetlaw National Health Service (NHS) Trust, Doncaster, United Kingdom
| | - Thomas Dexhiemer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Mohamed T, Abdul-Hafez A, Uhal BD. Regulation of ACE-2 enzyme by hyperoxia in lung epithelial cells by post-translational modification. JOURNAL OF LUNG, PULMONARY & RESPIRATORY RESEARCH 2021; 8:47-52. [PMID: 34825051 PMCID: PMC8612072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bronchopulmonary Dysplasia (BPD) occurs in premature neonates with respiratory distress who require supplemental oxygen in the first days after birth. BPD involves uniform arrest of alveolar development and variable interstitial cellularity and/or fibroproliferation. Previous studies by our lab showed that the enzyme, angiotensin converting enzyme-2 (ACE-2) and its product Ang1-7 exerting action on the receptor Mas oncogene in what is known as ACE-2/Mas axis is protective to lung cells. We also showed that ACE-2 is expressed in fetal human lung fibroblasts but is significantly decreased by hyperoxic gas lung injury, an effect caused by ACE-2 enzyme shedding mediated by TNF-alpha-converting enzyme (TACE/ADAM17). However, no reports yet exist about the regulation of ACE-2 in the alveolar epithelia in hyperoxic lung injury. OBJECTIVE In this study we aim to define the effects of hyperoxic lung injury on the protective ACE-2 enzyme in the human lung alveolar epithelial cell line A549. DESIGN/METHODS Cultured A549 cells were exposed to hyperoxia (95% O2) or normoxia (21% O2) for 3 or 7 days in serum-free nutrient media. Cells were lysed and culture media were collected to test for cellular ACE-2 enzymatic activity and for ACE-2, Mas receptor, TACE/ADAM17, and ubiquitin proteins abundance by immunoblotting. Cells were harvested in Trizol for RNA extraction and ACE-2 qRT-PCR. Whole cell extracts of A549 cell line was used for ACE-2 immunoprecipitation and subsequent ubiquitin immunoblotting. RESULTS Total ubiquitinated proteins were increased by hyperoxia treatment, while ACE-2 and Mas receptor proteins abundance and ACE-2 enzymatic activity were decreased significantly in A549 cells exposed to hyperoxia relative to the normoxia controls. The percent decrease in ACE-2 activity corresponded with increased time of hyperoxic gas exposure. However, in contrast to our data from lung fibroblasts, no significant change was noted in ACE-2 protein released into the media or in ACE-2 mRNA levels by the hyperoxic treatment. Ubiquitin immunoreactive bands were detectable in the ACE-2 immunoprecipitate. CONCLUSIONS These data suggest that hyperoxic exposure of the lung epithelial cells decreases the protective enzyme ACE-2 by cell type specific mechanisms independent of shedding by TACE/ADAM17. The data also suggest a regulatory level of ACE-2 downstream of transcription may involve ACE-2 ubiquitination and targeting for degradation.
Collapse
Affiliation(s)
- Tarek Mohamed
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Amal Abdul-Hafez
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, USA
| |
Collapse
|
20
|
Abdul-Hafez A, Mohamed T, Uhal BD. Angiotensin Converting Enzyme-2 (ACE-2) role in disease and future in research. JOURNAL OF LUNG, PULMONARY & RESPIRATORY RESEARCH 2021; 8:54-60. [PMID: 34414260 PMCID: PMC8373052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Like the 2002-2003 epidemic severe acute respiratory syndrome coronavirus (SARS-CoV), angiotensin converting enzyme-2 (ACE-2) has been identified as the SARS-CoV-2 receptor.1-3 The virus docks into host cell via its spike protein binding to ACE-2 and undergoes proteolytic cleavage by TMPRSS2 protease to facilitate membrane fusion. The spike protein binding to ACE-2 has been shown to be stronger in the novel SARS-CoV-2 virus.1 This review will present an overview of ACE-2 biology.
Collapse
Affiliation(s)
- Amal Abdul-Hafez
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Tarek Mohamed
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, USA
| |
Collapse
|
21
|
Yee M, David Cohen E, Haak J, Dylag AM, O'Reilly MA. Neonatal hyperoxia enhances age-dependent expression of SARS-CoV-2 receptors in mice. Sci Rep 2020; 10:22401. [PMID: 33372179 PMCID: PMC7769981 DOI: 10.1038/s41598-020-79595-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
The severity of COVID-19 lung disease is higher in the elderly and people with pre-existing co-morbidities. People who were born preterm may be at greater risk for COVID-19 because their early exposure to oxygen (hyperoxia) at birth increases the severity of respiratory viral infections. Hyperoxia at birth increases the severity of influenza A virus infections in adult mice by reducing the number of alveolar epithelial type 2 (AT2) cells. Since AT2 cells express the SARS-CoV-2 receptors angiotensin converting enzyme (ACE2) and transmembrane protease/serine subfamily member 2 (TMPRSS2), their expression should decline as AT2 cells are depleted by hyperoxia. Instead, ACE2 was detected in airway Club cells and endothelial cells at birth, and then AT2 cells at one year of age. Neonatal hyperoxia stimulated expression of ACE2 in Club cells and in AT2 cells by 2 months of age. It also stimulated expression of TMPRSS2 in the lung. Increased expression of SARS-CoV-2 receptors was blocked by mitoTEMPO, a mitochondrial superoxide scavenger that reduced oxidative stress and DNA damage seen in oxygen-exposed mice. Our finding that hyperoxia enhances the age-dependent expression of SARS-CoV-2 receptors in mice helps explain why COVID-19 lung disease is greater in the elderly and people with pre-existing co-morbidities.
Collapse
Affiliation(s)
- Min Yee
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - E David Cohen
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Jeannie Haak
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Andrew M Dylag
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Michael A O'Reilly
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
| |
Collapse
|
22
|
Koch A, Kähler W, Klapa S, Grams B, van Ooij PJAM. The conundrum of using hyperoxia in COVID-19 treatment strategies: may intermittent therapeutic hyperoxia play a helpful role in the expression of the surface receptors ACE2 and Furin in lung tissue via triggering of HIF-1α? Intensive Care Med Exp 2020; 8:53. [PMID: 32953400 PMCID: PMC7490775 DOI: 10.1186/s40635-020-00323-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Andreas Koch
- Joint Section of Maritime Medicine, Naval Institute of Maritime Medicine and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wataru Kähler
- Joint Section of Maritime Medicine, Naval Institute of Maritime Medicine and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Sebastian Klapa
- Joint Section of Maritime Medicine, Naval Institute of Maritime Medicine and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Bente Grams
- Joint Section of Maritime Medicine, Naval Institute of Maritime Medicine and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Pieter-Jan A M van Ooij
- Diving Medical Center, Royal Netherlands Navy, Den Helder, and Respiratory Department of the Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Yee M, Cohen ED, Haak J, Dylag AM, O'Reilly MA. Neonatal hyperoxia enhances age-dependent expression of SARS-CoV-2 receptors in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32743585 PMCID: PMC7386505 DOI: 10.1101/2020.07.22.215962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The severity of COVID-19 lung disease is higher in the elderly and people with pre-existing co-morbidities. People who were born preterm may be at greater risk for COVID-19 because their early exposure to oxygen at birth increases their risk of being hospitalized when infected with RSV and other respiratory viruses. Our prior studies in mice showed how high levels of oxygen (hyperoxia) between postnatal days 0-4 increases the severity of influenza A virus infections by reducing the number of alveolar epithelial type 2 (AT2) cells. Because AT2 cells express the SARS-CoV-2 receptors angiotensin converting enzyme (ACE2) and transmembrane protease/serine subfamily member 2 (TMPRSS2), we expected their expression would decline as AT2 cells were depleted by hyperoxia. Instead, we made the surprising discovery that expression of Ace2 and Tmprss2 mRNA increases as mice age and is accelerated by exposing mice to neonatal hyperoxia. ACE2 is primarily expressed at birth by airway Club cells and becomes detectable in AT2 cells by one year of life. Neonatal hyperoxia increases ACE2 expression in Club cells and makes it detectable in 2-month-old AT2 cells. This early and increased expression of SARS-CoV-2 receptors was not seen in adult mice who had been administered the mitochondrial superoxide scavenger mitoTEMPO during hyperoxia. Our finding that early life insults such as hyperoxia enhances the age-dependent expression of SARS-CoV-2 receptors in the respiratory epithelium helps explain why COVID-19 lung disease is greater in the elderly and people with pre-existing co-morbidities.
Collapse
Affiliation(s)
- Min Yee
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| | - E David Cohen
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| | - Jeannie Haak
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| | - Andrew M Dylag
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| | - Michael A O'Reilly
- The Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642
| |
Collapse
|
24
|
Pun M, Turner R, Strapazzon G, Brugger H, Swenson ER. Lower Incidence of COVID-19 at High Altitude: Facts and Confounders. High Alt Med Biol 2020; 21:217-222. [PMID: 32716669 DOI: 10.1089/ham.2020.0114] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pun, Matiram, Rachel Turner, Giacomo Strapazzon, Hermann Brugger, and Erik R. Swenson. Lower incidence of COVID-19 at high altitude: Facts and confounders. High Alt Med Biol. 21:217-222, 2020.-The rapid transmission, increased morbidity, and mortality of coronavirus disease 2019 (COVID-19) has exhausted many health care systems and the global economy. Large variations in COVID-19 prevalence and incidence have been reported across and within many countries worldwide; however, this remains poorly understood. The variability and susceptibility across the world have been mainly attributed to differing socioeconomic status, burden of chronic diseases, access to health care, strength of health care systems, and early or late adoption of control measures. Environmental factors such as pollution, ambient temperature, humidity, and seasonal weather patterns at different latitudes may influence how severe the pandemic is and the incidence of infection in any part of the world. In addition, recent epidemiological data have been used to propose that altitude of residence may not only influence those environmental features considered key to lesser viral transmission, but also susceptibility to more severe forms of COVID-19 through hypoxic-hypobaria driven genomic or nongenomic adaptations specific to high-altitude populations. In this review, we critically examine these factors and attempt to determine based upon available scientific and epidemiological data whether living in high-altitude regions might be protective against COVID-19 as recent publications have claimed.
Collapse
Affiliation(s)
- Matiram Pun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington, USA.,Medical Service, VA Puget Sound Health Care System, Seattle, Washington, USA
| |
Collapse
|
25
|
Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2. Front Cell Infect Microbiol 2020; 10:317. [PMID: 32582574 PMCID: PMC7294848 DOI: 10.3389/fcimb.2020.00317] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
The rapidly evolving pandemic of severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection worldwide cost many lives. The angiotensin converting enzyme-2 (ACE-2) has been identified as the receptor for the SARS-CoV-2 viral entry. As such, it is now receiving renewed attention as a potential target for anti-viral therapeutics. We review the physiological functions of ACE2 in the cardiovascular system and the lungs, and how the activation of ACE2/MAS/G protein coupled receptor contributes in reducing acute injury and inhibiting fibrogenesis of the lungs and protecting the cardiovascular system. In this perspective, we predominantly focus on the impact of SARS-CoV-2 infection on ACE2 and dysregulation of the protective effect of ACE2/MAS/G protein pathway vs. the deleterious effect of Renin/Angiotensin/Aldosterone. We discuss the potential effect of invasion of SARS-CoV-2 on the function of ACE2 and the loss of the protective effect of the ACE2/MAS pathway in alveolar epithelial cells and how this may amplify systemic deleterious effect of renin-angiotensin aldosterone system (RAS) in the host. Furthermore, we speculate the potential of exploiting the modulation of ACE2/MAS pathway as a natural protection of lung injury by modulation of ACE2/MAS axis or by developing targeted drugs to inhibit proteases required for viral entry.
Collapse
Affiliation(s)
- Lobelia Samavati
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
26
|
Zhou H, Liu LP, Fang M, Li YM, Zheng YW. A potential ex vivo infection model of human induced pluripotent stem cell-3D organoids beyond coronavirus disease 2019. Histol Histopathol 2020; 35:1077-1082. [PMID: 32339250 DOI: 10.14670/hh-18-223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) outbreak began in the city of Wuhan, whereupon it rapidly spread throughout China and subsequently across the world. Rapid transmission of COVID-19 has caused wide-spread panic. Many established medications have been used to treat the disease symptoms; however, no specific drugs or vaccines have been developed. Organoids derived from human induced pluripotent stem cells (iPSCs) may serve as suitable infection models for ex vivo mimicking of the viral life cycle and drug screening. Human iPSC-3D organoids, self-organised tissues with multiple cell environments, have a similar structure and function as real human organs; hence, these organoids allow greater viral infection efficiency, mimic the natural host-virus interactions, and are suitable for long-term experimentation. Here, we suggest the use of a functional human iPSC-organoid that could act as a reliable and feasible ex vivo infection model for investigation of the virus. This approach will provide much needed insight into the underlying molecular dynamics of COVID-19 for the development of novel treatment and prevention strategies.
Collapse
Affiliation(s)
- Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Fang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.,Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan. .,School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan.,Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,School of Biotechnology and Healt Sciences, Wuyi University, Jiangmen, Guandong, P.R. China
| |
Collapse
|
27
|
Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2. Front Cell Infect Microbiol 2020. [PMID: 32582574 DOI: 10.3389/fcimb.2020.0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The rapidly evolving pandemic of severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection worldwide cost many lives. The angiotensin converting enzyme-2 (ACE-2) has been identified as the receptor for the SARS-CoV-2 viral entry. As such, it is now receiving renewed attention as a potential target for anti-viral therapeutics. We review the physiological functions of ACE2 in the cardiovascular system and the lungs, and how the activation of ACE2/MAS/G protein coupled receptor contributes in reducing acute injury and inhibiting fibrogenesis of the lungs and protecting the cardiovascular system. In this perspective, we predominantly focus on the impact of SARS-CoV-2 infection on ACE2 and dysregulation of the protective effect of ACE2/MAS/G protein pathway vs. the deleterious effect of Renin/Angiotensin/Aldosterone. We discuss the potential effect of invasion of SARS-CoV-2 on the function of ACE2 and the loss of the protective effect of the ACE2/MAS pathway in alveolar epithelial cells and how this may amplify systemic deleterious effect of renin-angiotensin aldosterone system (RAS) in the host. Furthermore, we speculate the potential of exploiting the modulation of ACE2/MAS pathway as a natural protection of lung injury by modulation of ACE2/MAS axis or by developing targeted drugs to inhibit proteases required for viral entry.
Collapse
Affiliation(s)
- Lobelia Samavati
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
28
|
Mohamed T, Abdul-Hafez A, Gewolb IH, Uhal BD. Oxygen injury in neonates: which is worse? hyperoxia, hypoxia, or alternating hyperoxia/hypoxia. JOURNAL OF LUNG, PULMONARY & RESPIRATORY RESEARCH 2020; 7:4-13. [PMID: 34337150 PMCID: PMC8320601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Premature birth results in an increased risk of respiratory distress and often requires oxygen therapy. While the supplemental oxygen has been implicated as a cause of bronchopulmonary dysplasia (BPD), in clinical practice this supplementation usually only occurs after the patient's oxygen saturation levels have dropped. The effect of hyperoxia on neonates has been extensively studied. However, there is an unanswered fundamental question: which has the most impact-hyperoxia, hypoxia or fluctuating oxygen levels? In this review, we will summarize the reported effect of hypoxia, hyperoxia or a fluctuation of oxygen levels (hypoxia/hyperoxia cycling) in preterm neonates, with special emphasis on the lungs.
Collapse
Affiliation(s)
- Tarek Mohamed
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Amal Abdul-Hafez
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Ira H Gewolb
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, USA
| |
Collapse
|
29
|
Abdul-Hafez A, Mohamed T, Uhal BD. Activation of mas restores hyperoxia-induced loss of lung epithelial barrier function through inhibition of apoptosis. JOURNAL OF LUNG, PULMONARY & RESPIRATORY RESEARCH 2019; 6:58-62. [PMID: 32632378 PMCID: PMC7338093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neonatal therapy with a high concentration of oxygen (hyperoxia) is a known cause of bronchopulmonary dysplasia (BPD). BPD is characterized by increased pulmonary permeability and diffuse infiltration of various inflammatory cells. Disruption of the epithelial barrier may lead to altered pulmonary permeability and airways fluid accumulation. Mas receptor is a component of the renin angiotensin system and is the receptor for the protective endogenous peptide angiotensin 1-7. The activation of the Mas receptor was previously shown to have protective pulmonary responses. However, the effect of Mas receptor activation on epithelial barrier integrity has not been tested. OBJECTIVE To determine the effects of hyperoxia with or without Mas receptor activation on epithelial cell barrier integrity. DESIGN/METHODS Human epithelial cell line A549 was cultured on transwell polycarbonate porous membrane to confluence and treated with 95% oxygen (hyperoxia) for 72 hours with or without the Mas receptor agonist (AVE0991), or the apoptotic inhibitors Z-VAD-FMK or aurintricarboxylic acid. The cells were then challenged with Rhodamine labeled bovine serum albumin (Rh-BSA) on one side of the membrane. Fluorescent quantitation of Rh-BSA (albumin flux) was performed on the media in the other side of the membrane 3 hours later and was compared with 21% oxygen (Normoxia) control group. A549 cells were also cultured with or without AVE0991 in hyperoxia or normoxia and used for nuclear fragmentation apoptosis assay using propidium iodide staining. RESULTS Hyperoxia induced an increase in albumin flux that was significantly prevented by AVE0991 treatment and by the apoptosis inhibitors. AVE0991 also significantly decreased the hyperoxia-induced nuclear fragmentation. CONCLUSION These results suggest that hyperoxia causes a disruption in the epithelial barrier integrity, and that this disruption is inhibited by the Mas receptor agonist AVE0991 through inhibition of epithelial apoptosis. These results reveal a novel potential drug for BPD and pulmonary edema treatment.
Collapse
Affiliation(s)
- Amal Abdul-Hafez
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Tarek Mohamed
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, USA
| |
Collapse
|
30
|
Gandhi CK, Holmes R, Gewolb IH, Uhal BD. Degradation of Lung Protective Angiotensin Converting Enzyme-2 by Meconium in Human Alveolar Epithelial Cells: A Potential Pathogenic Mechanism in Meconium Aspiration Syndrome. Lung 2019; 197:227-233. [PMID: 30759273 PMCID: PMC7088148 DOI: 10.1007/s00408-019-00201-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pancreatic digestive enzymes present in meconium might be responsible for meconium-induced lung injury. The local Renin Angiotensin System plays an important role in lung injury and inflammation. Particularly, angiotensin converting enzyme-2 (ACE-2) has been identified as a protective lung enzyme against the insult. ACE-2 converts pro-apoptotic Angiotensin II to anti-apoptotic Angiotensin 1-7. However, the effect of meconium on ACE-2 has never been studied before. OBJECTIVE To study the effect of meconium on ACE-2, and whether inhibition of proteolytic enzymes present in the meconium reverses its effects on ACE-2. METHODS Alveolar epithelial A549 cells were exposed to F-12 medium, 2.5% meconium, meconium + a protease inhibitor cocktail (PIc) and PIc alone for 16 h. At the end of incubation, apoptosis was measured with a nuclear fragmentation assay and cell lysates were collected for ACE-2 immunoblotting and enzyme activity. RESULTS Meconium caused a fourfold increase in apoptotic nuclei (p < 0.001). The pro-apoptotic effect of meconium can be reversed by PIc. Meconium reduced ACE-2 enzyme activity by cleaving ACE-2 into a fragment detected at ~ 37 kDa by immunoblot. PIc prevented the degradation of ACE-2 and restored 50% of ACE-2 activity (p < 0.05). CONCLUSION These data suggest that meconium causes degradation of lung protective ACE-2 by proteolytic enzymes present in meconium, since the effects of meconium can be reversed by PIc.
Collapse
Affiliation(s)
- Chintan K Gandhi
- Division of Neonatology, Department of Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA.,Division of Neonatal Perinatal Medicine, Pennsylvania State Health Children's Hospital, Hershey, PA, USA
| | | | - Ira H Gewolb
- Division of Neonatology, Department of Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, 3197 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA.
| |
Collapse
|
31
|
Chen CM, Chou HC. Human mesenchymal stem cells attenuate hyperoxia-induced lung injury through inhibition of the renin-angiotensin system in newborn rats. Am J Transl Res 2018; 10:2628-2635. [PMID: 30210699 PMCID: PMC6129538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Hyperoxia induces activation of the renin-angiotensin system (RAS) in newborn rat lungs. This study investigated the therapeutic effects of human mesenchymal stem cells (MSCs) on lung development and RAS expression in neonatal rats exposed to hyperoxia. Sprague-Dawley rat pups were exposed to either room air (RA) or oxygen-enriched atmosphere (O2) treatment from postnatal days 1 to 14. Human MSCs (1 × 105 cells) in 0.03 mL of normal saline (NS) were administered intratracheally on postnatal day 5, and four study groups were obtained: RA + NS, RA + MSCs, O2 + NS, and O2 + MSCs. The lungs were excised for cytokine, expression of RAS components, and histological analyses on postnatal day 14. Body and lung weights were significantly lower in rats reared in hyperoxia than in those reared in RA. The rats reared in hyperoxia and treated with NS exhibited significantly higher tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels, mean linear intercept (MLI), and expression of angiotensin II, angiotensin II type 1 receptor, and angiotensin-converting enzyme than those reared in RA and treated with NS or MSCs did. Administering MSC to hyperoxia-exposed rats reduced TNF-α and IL-6 levels, improved MLI, and decreased expression of angiotensin II, angiotensin II type 1 receptor, and angiotensin-converting enzyme to normoxic levels. Thus, human MSCs attenuated hyperoxia-induced lung injury through inhibition of the RAS in newborn rats.
Collapse
Affiliation(s)
- Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
- Department of Pediatrics, Taipei Medical University HospitalTaipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
32
|
Abdul-Hafez A, Mohamed T, Omar H, Shemis M, Uhal BD. The renin angiotensin system in liver and lung: impact and therapeutic potential in organ fibrosis. JOURNAL OF LUNG, PULMONARY & RESPIRATORY RESEARCH 2018; 5:00160. [PMID: 30175235 PMCID: PMC6114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liver and lung fibrosis are two main organ diseases that are of particular importance in both Egypt and the US. Hepatitis C Virus "HCV" infection and idiopathic pulmonary fibrosis (IPF) are fibrotic diseases of the liver and lung respectively. The liver and lung are reported in literature to share many immune/inflammatory responses to damage through the lung-liver axis. Most importantly, HCV was shown to enhance the development of IPF and is considered one of the risk factors for IPF. The renin angiotensin system (RAS) plays a critical role in the fibrogenesis and inflammation damage of many organs including liver and lung. The relatively recently identified component of RAS, angiotensin converting enzyme-2 (ACE-2), has shown a promising therapeutic potential in models of liver and pulmonary fibrosis. This article reviews the role of RAS in organ fibrosis with focus on role of ACE-2 in fibrotic diseases of the liver and the lung.
Collapse
Affiliation(s)
- Amal Abdul-Hafez
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Tarek Mohamed
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Hanan Omar
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Egypt
| | - Mohamed Shemis
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Egypt
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, USA
| |
Collapse
|
33
|
Mohamed TL, Nguyen HT, Abdul-Hafez A, Dang VX, Dang MT, Gewolb IH, Uhal BD. Prior hypoxia prevents downregulation of ACE-2 by hyperoxia in fetal human lung fibroblasts. Exp Lung Res 2016; 42:121-30. [PMID: 27093376 DOI: 10.3109/01902148.2016.1157712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNLABELLED Purpose/Aim of Study: The renin angiotensin system is involved in experimentally induced lung fibrosis. Angiotensin (ANG)-II is profibrotic. Angiotensin converting enzyme-2 (ACE-2) cleaves ANG-II and is thus protective. ACE-2 has recently been reported to be significantly decreased under hyperoxic conditions. Hyperoxia is linked to Bronchopulmonary Dysplasia and lung fibrosis. Fetal lung cells normally do not undergo fibrotic changes with physiologic hypoxemia. We hypothesized that hypoxia prior to hyperoxic exposure in fetal lung fibroblasts (IMR-90 cell line) might be protective by preventing ACE-2 downregulation. MATERIALS AND METHODS IMR-90 cells were exposed to hypoxia (1%O2/99%N2) followed by hyperoxia (95%O2/5%CO2) or normoxia (21%O2) in vitro. Cells and culture media were recovered separately for assays of ACE-2, TNF-α-converting enzyme (TACE), αSmooth muscle actin (αSMA)-myofibroblast marker-, N-cadherin, and β-catenin immunoreactive protein. RESULTS ACE-2 significantly increased when IMR-90 were hypoxic prior to hyperoxic exposure with no recovery. In contrast to hyperoxia alone, ACE-2 did not decrease when IMR-90 were hypoxic prior to hyperoxic exposure with recovery. TACE/ADAM17 protein and mRNA were significantly decreased under these conditions. αSMA N-cadherin, and β-catenin proteins were significantly decreased with or without normoxic recovery. CONCLUSIONS Hypoxia prior to hyperoxic exposure of fetal lung fibroblasts prevented ACE-2 downregulation and decreased ADAM17/TACE protein and mRNA. αSMA, N-cadherin, and β-catenin were also significantly decreased under these conditions.
Collapse
Affiliation(s)
- Tarek L Mohamed
- a Department of Pediatrics and Human Development , Division of Neonatology , Michigan State University , East Lansing , Michigan , USA
| | - Hang T Nguyen
- b Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan , USA
| | - Amal Abdul-Hafez
- a Department of Pediatrics and Human Development , Division of Neonatology , Michigan State University , East Lansing , Michigan , USA
| | - Vinh X Dang
- c Department of Physiology , Michigan State University , East Lansing , Michigan , USA
| | - MyTrang T Dang
- d Department of Microbiology and Molecular Genetics , Michigan State University , East Lansing , Michigan , USA
| | - Ira H Gewolb
- a Department of Pediatrics and Human Development , Division of Neonatology , Michigan State University , East Lansing , Michigan , USA
| | - Bruce D Uhal
- c Department of Physiology , Michigan State University , East Lansing , Michigan , USA
| |
Collapse
|
34
|
Gandhi C, Uhal BD. Roles of the Angiotensin System in Neonatal Lung Injury and Disease. JSM ATHEROSCLEROSIS 2016; 1:1014. [PMID: 29806050 PMCID: PMC5967852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The renin-angiotensin system (RAS) has long been known as a regulator of blood pressure and fluid homeostasis. In past several decades, local renin-angiotensin systems have been discovered in various tissues and novel actions of angiotensin II (ANGII) have emerged as an immunomodulator and profibrotic molecule. The enzyme responsible for its synthesis, angiotensin-converting-enzyme (ACE), is present in high concentrations in lung tissue. ACE cleaves angiotensin I (ANG I) to generate angiotensin II (ANGII), whereas ACE2 inactivates ANGII and is a negative regulator of the system. The RAS has been implicated in the pathogenesis of pulmonary hypertension, acute lung injury and experimental lung fibrosis. Recent studies in animal and humans indicate that the RAS also plays a critical role in fetal and neonatal lung diseases. Further investigations are needed to better understand the role of RAS, ACE and ACE-2 in neonatal lung injury. With more clarity and understanding, the RAS and/or ACE-2 may ultimately prove to constitute potential therapeutic targets for the treatment of neonatal lung diseases. This manuscript reviews the evidence supporting a role for RAS in neonatal lung injury and discusses new possibilities for therapeutic approaches.
Collapse
Affiliation(s)
- Chintan Gandhi
- Department of Pediatrics/Neonatology, Michigan State University, USA
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, USA
| |
Collapse
|
35
|
Nguyen H, Uhal BD. The unfolded protein response controls ER stress-induced apoptosis of lung epithelial cells through angiotensin generation. Am J Physiol Lung Cell Mol Physiol 2016; 311:L846-L854. [PMID: 27638906 PMCID: PMC5130534 DOI: 10.1152/ajplung.00449.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 09/10/2016] [Indexed: 12/26/2022] Open
Abstract
Recent work from this laboratory showed that endoplasmic reticulum (ER) stress-induced apoptosis of alveolar epithelial cells (AECs) is regulated by the autocrine angiotensin (ANG)II/ANG1-7 system. The proteasome inhibitor MG132 or surfactant protein C (SP-C) BRICHOS domain mutation G100S induced apoptosis in human AECs by activating the proapoptotic cathepsin D and reducing antiapoptotic angiotensin converting enzyme-2 (ACE-2). This study tested the hypothesis that ER stress-induced apoptosis of human AECs might be mediated by influence of the unfolded protein response (UPR) on the autocrine ANGII/ANG1-7 system. A549 cells were challenged with MG132 or SP-C BRICHOS domain mutant G100S to induce ER stress and activation of UPR pathways. The results showed that either MG132 or G100S SP-C mutation activated all three canonical pathways of the UPR (IRE1/XBP1, ATF6, and PERK/eIF2α), which led to a significant increase in cathepsin D or in TACE (an ACE-2 ectodomain shedding enzyme) and eventually caused AEC apoptosis. However, ER stress-induced AEC apoptosis could be prevented by chemical chaperone or by UPR blockers. It is also suggested that ATF6 and IRE1 pathways might play important role in regulation of angiotensin system. These data demonstrate that ER stress induces apoptosis in human AECs through mediation of UPR pathways, which in turn regulate the autocrine ANGII/ANG1-7 system. They also demonstrated that ER stress-induced AEC apoptosis can be blocked by inhibition of UPR signaling pathways.
Collapse
Affiliation(s)
- Hang Nguyen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan; and
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
36
|
Kim J, Lee JK, Heo EY, Chung HS, Kim DK. The association of renin-angiotensin system blockades and pneumonia requiring admission in patients with COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:2159-2166. [PMID: 27672320 PMCID: PMC5025004 DOI: 10.2147/copd.s104097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The hallmark of COPD is chronic airway inflammation, which may be mediated by renin-angiotensin system. The renin-angiotensin system blockers such as angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARBs) have exhibited anti-inflammatory and immunomodulatory effects in patients with various diseases. We explored the effects of ACEi and ARBs on the risk of pneumonia in patients with COPD. METHODS A nested case-control study was performed on COPD patients recruited from January 2010 to August 2013 in two referral hospitals in Korea. A total of 130 COPD patients admitted with pneumonia were included, and 245 COPD patients without pneumonia were selected as controls from a total of 1,646 such patients. Controls were matched with test patients by age, sex, and severity of airflow limitation. The effects of ACEi/ARBs use on the odds ratio (OR) for the development of pneumonia were tested through conditional logistic regression. RESULTS Elderly patients (over 70 years of age) constituted ~30% of each group; most of the patients were male (85%). Of the COPD patients with pneumonia, 21.5% had taken ACEi/ARBs for a mean of 9.8 months (standard deviation ±3.5 months). The proportions of ACEi/ARBs users and the mean duration of such use did not differ when compared to those of the control patients (26.9%, P=0.25; 9.6±3.6 months, P=0.83). Univariate analyses indicated that the use of ACEi/ARBs was not associated with a decreased risk of pneumonia (OR =0.70, 95% confidence interval 0.41-1.23, P=0.21), whereas both a history of pulmonary tuberculosis (OR =1.85, 95% confidence interval 1.12-3.06, P=0.02) and exposure to systemic steroids (OR =2.33, 95% confidence interval 1.28-4.23, P=0.005) did show an association. After adjustment for a history of tuberculosis, comorbid chronic renal disease, and exposure to corticosteroids, ACEi/ARBs reduced the risk of pneumonia in COPD patients (OR =0.51, 95% confidence interval 0.27-0.98, P=0.04). CONCLUSION This study revealed that the use of ACEi/ARBs was associated with reducing the risk of pneumonia in patients with COPD. Further prospective studies are necessary to confirm the protective effect of ACEi/ARBs and elucidate the underlying mechanisms in COPD patients.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Seoul National University Hospital
| | - Jung-Kyu Lee
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Eun Young Heo
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hee Soon Chung
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Deog Kyeom Kim
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| |
Collapse
|