1
|
Ye K, Shi G, Xu J, Qiao K, Dai Q, Huo Z, Cao Y, Liu W, Hu Y, Yan L, Zhu Y, Li P, Su R, Xu L, Mi Y. Olaparib reverses prostate cancer resistance to Rapamycin by promoting macrophage polarization towards the M1 phenotype. Mol Cell Biochem 2025:10.1007/s11010-025-05231-0. [PMID: 39984794 DOI: 10.1007/s11010-025-05231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Prostate cancer (PCa) is the most common non-cutaneous malignancy and the second leading cause of cancer-related death in men. Despite its prevalence, treatment outcomes are often unsatisfactory, necessitating the search for more effective therapeutic approaches. mTOR inhibitor Rapamycin (RAPA) has shown promise in managing PCa, but the emergence of resistance often undermines its long-term effectiveness. Recent studies suggest that poly ADP-ribose polymerase (PARP) inhibitor Olaparib (OLP) may overcome drug resistance in various tumor types. This study aims to assess the efficacy of OLP in treating RAPA-resistant PCa, with a specific focus on elucidating its underlying molecular mechanisms. This study utilized drug exposure and concentration escalation experiments to establish human RAPA-resistant PCa cell line (PC-3R) based on the human PCa cell line (PC-3). PC-3R cell lines were screened through a cloning assay. The efficacy of OLP in RAPA-resistant PCa, as well as its regulatory impact on tumor-associated macrophages (TAMs), was evaluated through a combination of real-time PCR, ELISA, immunohistochemistry, and fluorescence experiments. This study unveiled that the combination of OLP and RAPA effectively suppressed the proliferation, stemness, invasion, angiogenesis, apoptosis resistance, and anti-oxidative stress capacity of RAPA-resistant PCa. Additionally, it demonstrated the capacity of OLP to regulate macrophage polarization within the tumor microenvironment and reverse drug resistance to RAPA in PCa. The findings of this study lay a theoretical foundation for the potential utilization of OLP in the treatment of RAPA-resistant PCa, offering substantial academic significance and promising application prospects.
Collapse
Affiliation(s)
- Kai Ye
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Gang Shi
- Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300021, China
| | - Jian Xu
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Kunyan Qiao
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Qinghai Dai
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Zhixiao Huo
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yu Cao
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Wei Liu
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yue Hu
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Lihua Yan
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
| | - Ping Li
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
| | - Rui Su
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China.
| | - Liang Xu
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
- Department of Hepatology & Oncology, Tianjin Second People's Hospital, Tianjin, China.
| | - Yuqiang Mi
- Clinical School of the Second People'S Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People'S Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
| |
Collapse
|
2
|
Naqvi SAA, Riaz IB, Bibi A, Khan MA, Imran M, Khakwani KZR, Raina A, Anjum MU, Cobran EK, Warner JL, Hussain SA, Singh P, Childs DS, Baca SC, Orme JJ, Mateo J, Agarwal N, Gillessen S, Murad MH, Sartor O, Bryce AH. Heterogeneity of the Treatment Effect with PARP Inhibitors in Metastatic Castration-resistant Prostate Cancer: A Living Interactive Systematic Review and Meta-analysis. Eur Urol 2025:S0302-2838(24)02760-X. [PMID: 39848867 DOI: 10.1016/j.eururo.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND AND OBJECTIVE Selection of patients harboring mutations in homologous recombination repair (HRR) genes for treatment with a PARP inhibitor (PARPi) is challenging in metastatic castration-resistant prostate cancer (mCRPC). To gain further insight, we quantitatively assessed the differential efficacy of PARPi therapy among patients with mCRPC and different HRR gene mutations. METHODS This living meta-analysis (LMA) was conducted using the Living Interactive Evidence synthesis framework. We included clinical trials assessing PARPi as monotherapy in pretreated mCRPC or in combination with an androgen receptor pathway inhibitor (ARPI) in treatment-naïve patients. Random-effects meta-analyses were performed for a priori subgroups stratified by HRR status, BRCA status, and each gene. KEY FINDINGS AND LIMITATIONS This first report for our LMA includes 13 trials (4278 patients). Among patients with pretreated mCRPC receiving PARPi monotherapy, the tumor response rate per 100 person-months was numerically higher for patients with BRCA2 (50% prostate-specific antigen response [PSA50%] 3.3; objective response rate [ORR] 3.3), BRCA1 (PSA50% 1.2; ORR 2.0), or PALB2 (PSA50% 3.3; ORR 1.4) alterations than for patients with ATM (PSA50% 0.4; ORR 0.3), CDK12 (PSA50% 0.2; ORR 0.2), or CHEK2 (PSA50% 1.0; ORR 0.7) alterations. Among patients receiving PARPi + ARPI, a significant radiographic progression-free survival benefit was observed in those with BRCA (hazard ratio [HR] 0.28, 95% confidence interval [CI] 0.13-0.62) or CDK12 (HR 0.58, 95% CI 0.35-0.95) alterations, but not in patients with PALB2 (HR 0.53, 95% CI 0.21-1.32), ATM (HR 0.93, 95% CI 0.57-1.53), or CHEK2 (HR 0.92, 95% CI 0.53-1.61) alterations. An overall survival benefit was observed for patients with BRCA alterations (HR 0.47, 95% CI 0.31-0.71) after adjustment for crossover and subsequent therapy, but not for patients with PALB2 (HR 0.33, 95% CI 0.10-1.16), ATM (HR 0.97, 95% CI 0.57-1.67), CDK12 (HR 0.80, 95% CI 0.36-1.78), or CHEK2 (HR 0.81, 95% CI 0.37-1.75) alterations. CONCLUSIONS AND CLINICAL IMPLICATIONS Our LMA delivers information on the effect of PARPi therapy in relation to specific gene alterations in mCRPC via an interactive web platform. The evidence suggests the greatest PARPi benefit in patients with BRCA alterations, a strong signal of benefit in patients with PALB2 or CDK12 alterations, and no benefit in patients with ATM or CHEK2 alterations.
Collapse
Affiliation(s)
| | - Irbaz Bin Riaz
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA.
| | - Arifa Bibi
- Department of Internal Medicine, University of Oklahoma, Oklahoma City, OK, USA
| | - Muhammad Ali Khan
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Manal Imran
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Ammad Raina
- Department of Internal Medicine, Canyon Vista Medical Center, Midwestern University, Sierra Vista, AZ, USA
| | - Muhammad Umair Anjum
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Ewan K Cobran
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | - Jeremy L Warner
- Center for Clinical Cancer Informatics and Data Science, Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Syed A Hussain
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Parminder Singh
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Joaquin Mateo
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Silke Gillessen
- Department of Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland
| | | | - Oliver Sartor
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Alan H Bryce
- Department of Oncology, City of Hope Cancer Center, Goodyear, AZ, USA
| |
Collapse
|
3
|
Huang D, Su Z, Mei Y, Shao Z. The complex universe of inactive PARP1. Trends Genet 2024; 40:1074-1085. [PMID: 39306519 DOI: 10.1016/j.tig.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a crucial member of the PARP family, which modifies targets through ADP-ribosylation and plays key roles in a variety of biological processes. PARP inhibitors (PARPis) hinder ADP-ribosylation and lead to the retention of PARP1 at the DNA lesion (also known as trapping), which underlies their toxicity. However, inhibitors and mutations that make PARP1 inactive do not necessarily correlate with trapping potency, challenging the current understanding of inactivation-caused trapping. Recent studies on mouse models indicate that both trapping and non-trapping inactivating mutations of PARP1 lead to embryonic lethality, suggesting the unexpected toxicity of the current inhibition strategy. The allosteric model, complicated automodification, and various biological functions of PARP1 all contribute to the complexity of PARP1 inactivation.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ziyi Su
- Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanxia Mei
- Department of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengping Shao
- Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, China.
| |
Collapse
|
4
|
Al-Rahahleh RQ, Sobol RW. Poly-ADP-ribosylation dynamics, signaling, and analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:315-337. [PMID: 39221603 PMCID: PMC11604531 DOI: 10.1002/em.22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
ADP-ribosylation is a reversible post-translational modification that plays a role as a signaling mechanism in various cellular processes. This modification is characterized by its structural diversity, highly dynamic nature, and short half-life. Hence, it is tightly regulated at many levels by cellular factors that fine-tune its formation, downstream signaling, and degradation that together impacts cellular outcomes. Poly-ADP-ribosylation is an essential signaling mechanism in the DNA damage response that mediates the recruitment of DNA repair factors to sites of DNA damage via their poly-ADP-ribose (PAR)-binding domains (PBDs). PAR readers, encoding PBDs, convey the PAR signal to mediate cellular outcomes that in some cases can be dictated by PAR structural diversity. Several PBD families have been identified, each with variable PAR-binding affinity and specificity, that also recognize and bind to distinct parts of the PAR chain. PARylation signaling has emerged as an attractive target for the treatment of specific cancer types, as the inhibition of PAR formation or degradation can selectively eliminate cancer cells with specific DNA repair defects and can enhance radiation or chemotherapy response. In this review, we summarize the key players of poly-ADP-ribosylation and its regulation and highlight PBDs as tools for studying PARylation dynamics and the expanding potential to target PARylation signaling in cancer treatment.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
5
|
Yang D, Liu X, Yang Y, Long Y, Nan D, Shi B, Wang J, Yang M, Cong H, Xing L, Zhou F, Yuan Q, Ta N, Zhang Y, Ma R, Liu F, Liu S. Pharmacological USP2 targeting suppresses ovarian cancer growth by potentiating apoptosis and ferroptosis. Arch Biochem Biophys 2024; 762:110193. [PMID: 39486565 DOI: 10.1016/j.abb.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Ovarian cancer is a frequently observed type of gynaecologic malignancy generally associated with poor prognosis around the world. Ubiquitin-specific proteases (USPs) form the largest subfamily of deubiquitylating enzymes and have emerged as potential therapeutic targets against human cancers. Through a systematic analysis of the prognostic significance of USP expression, USP2 was found to be inversely correlated with patient survival in ovarian cancer. Accordingly, we investigated the effects of pharmacological inhibition of USP2 on ovarian cancer by exploiting its small molecule inhibitor ML364. Our findings show that ML364 effectively hindered ovarian cancer growth and migration using a series of in vitro assays. In addition to apoptosis induction, ML364 also sensitized ovarian cancer cells to ferroptosis. Mechanistically, ML364 treatment resulted in cyclin D1 downregulation, increased poly (ADP-ribose) polymerase (PARP) cleavage, and elevated ROS levels in ovarian cancer cells. Collectively, our findings suggest USP2 as a potential therapeutic target in ovarian cancer, and hence, its pharmacological inhibition warrants further investigation.
Collapse
Affiliation(s)
- Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiuxiu Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Department of Gynecology, Zhongshan Hospital of Dalian University, Dalian, China
| | - Yinghui Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yu Long
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ding Nan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Bo Shi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinhao Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mei Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haotian Cong
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lin Xing
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Feixue Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qianhui Yuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Na Ta
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruilan Ma
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, China.
| | - Fang Liu
- Department of Oncology, The Second Affiliated Hospital, Dalian Medical University, China.
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
6
|
Saeidi H, Sarafbidabad M. PARP inhibitors in prostate cancer: clinical applications. Mol Biol Rep 2024; 51:1103. [PMID: 39476131 DOI: 10.1007/s11033-024-10034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024]
Abstract
Despite recent advancements in the treatment of metastatic castrate-resistant prostate cancer (mCRPC), this disease remains lethal. A novel family of targeted pharmaceuticals known as poly-ADP-ribose polymerase (PARP) inhibitors has been developed to treat mCRPC patients with homologous recombination repair (HRR) gene alterations. The FDA recently approved olaparib and rucaparib for treating mCRPC patients with HRR gene alterations. Ongoing trials are investigating combination therapies involving PARP inhibitors combined with radiation, chemotherapy, immunotherapy, and androgen receptor signaling inhibitors (ARSIs) to improve the effectiveness of PARP inhibitors and broaden the range of patients who can benefit from the treatment. This review provides an overview of the development of PARP inhibitors in prostate cancer and analyzes the mechanisms underlying their resistance.
Collapse
Affiliation(s)
- Hamidreza Saeidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohsen Sarafbidabad
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
7
|
Han GYQ, Alexander M, Gattozzi J, Day M, Kirsch E, Tafreshi N, Chalar R, Rahni S, Gossner G, Burke W, Damaghi M. Ecological and evolutionary dynamics to design and improve ovarian cancer treatment. Clin Transl Med 2024; 14:e70012. [PMID: 39210542 PMCID: PMC11362027 DOI: 10.1002/ctm2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer ecosystems are exceedingly complex, consisting of a high heterogeneity of cancer cells. Development of drugs such as poly ADP-ribose polymerase (PARP) inhibitors, targeted therapies and immunotherapies offer more options for sequential or combined treatments. Nevertheless, mortality in metastatic ovarian cancer patients remains high because cancer cells consistently develop resistance to single and combination therapies, urging a need for treatment designs that target the evolvability of cancer cells. The evolutionary dynamics that lead to resistance emerge from the complex tumour microenvironment, the heterogeneous populations, and the individual cancer cell's plasticity. We propose that successful management of ovarian cancer requires consideration of the ecological and evolutionary dynamics of the disease. Here, we review current options and challenges in ovarian cancer treatment and discuss principles of tumour evolution. We conclude by proposing evolutionarily designed strategies for ovarian cancer, with the goal of integrating such principles with longitudinal, quantitative data to improve the treatment design and management of drug resistance. KEY POINTS/HIGHLIGHTS: Tumours are ecosystems in which cancer and non-cancer cells interact and evolve in complex and dynamic ways. Conventional therapies for ovarian cancer inevitably lead to the development of resistance because they fail to consider tumours' heterogeneity and cellular plasticity. Eco-evolutionarily designed therapies should consider cancer cell plasticity and patient-specific characteristics to improve clinical outcome and prevent relapse.
Collapse
Affiliation(s)
- Grace Y. Q. Han
- Renaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Monica Alexander
- Department of Molecular and Cellular BiologyStony Brook UniversityStony BrookNew YorkUSA
| | - Julia Gattozzi
- Department of Molecular and Cellular PharmacologyStony Brook UniversityStony BrookNew YorkUSA
| | - Marilyn Day
- Department of Obstetrics and GynecologyRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Elayna Kirsch
- Department of Obstetrics and GynecologyRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | | | - Raafat Chalar
- Stony Brook Cancer CenterRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | | | - Gabrielle Gossner
- Department of Obstetrics and GynecologyStony Brook University HospitalStony BrookNew YorkUSA
| | - William Burke
- Department of Obstetrics and GynecologyStony Brook University HospitalStony BrookNew YorkUSA
| | - Mehdi Damaghi
- Stony Brook Cancer CenterRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
- Department of PathologyRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
- Department of Radiation OncologyRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
8
|
Xiao M, Yang J, Dong M, Mao X, Pan H, Lei Y, Tong X, Yu X, Yu X, Shi S. NLRP4 renders pancreatic cancer resistant to olaparib through promotion of the DNA damage response and ROS-induced autophagy. Cell Death Dis 2024; 15:620. [PMID: 39187531 PMCID: PMC11347561 DOI: 10.1038/s41419-024-06984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Olaparib has been approved as a therapeutic option for metastatic pancreatic ductal adenocarcinoma patients with BRCA1/2 mutations. However, a significant majority of pancreatic cancer patients have inherent resistance or develop tolerance to olaparib. It is crucial to comprehend the molecular mechanism underlying olaparib resistance to facilitate the development of targeted therapies for pancreatic cancer. In this study, we conducted an analysis of the DepMap database to investigate gene expression variations associated with olaparib sensitivity. Our findings revealed that NLRP4 upregulation contributes to increased resistance to olaparib in pancreatic cancer cells, both in vitro and in vivo. RNA sequencing and Co-IP MS analysis revealed that NLRP4 is involved in the DNA damage response and autophagy pathway. Our findings confirmed that NLRP4 enhances the capacity for DNA repair and induces the production of significant levels of reactive oxygen species (ROS) and autophagy in response to treatment with olaparib. Specifically, NLRP4-generated mitochondrial ROS promote autophagy in pancreatic cancer cells upon exposure to olaparib. However, NLRP4-induced ROS do not affect DNA damage. The inhibition of mitochondrial ROS using MitoQ and autophagy using chloroquine (CQ) may render cells more susceptible to the effects of olaparib. Taken together, our findings highlight the significant roles played by NLRP4 in the processes of autophagy and DNA repair when pancreatic cancer cells are treated with olaparib, thereby suggesting the potential therapeutic utility of olaparib in pancreatic cancer patients with low NLRP4 expression.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingwei Dong
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haoqi Pan
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoning Yu
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Fei X, Xue JW, Wu JZ, Yang CY, Wang KJ, Ma Q. Promising therapy for neuroendocrine prostate cancer: current status and future directions. Ther Adv Med Oncol 2024; 16:17588359241269676. [PMID: 39131727 PMCID: PMC11311189 DOI: 10.1177/17588359241269676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive variant of castration-resistant prostate cancer. It is characterized by low or no expression of the androgen receptor (AR), activation of AR-independent signaling, and increased neuroendocrine phenotype. Most of NEPC is induced by treatment of androgen deprivation therapy and androgen receptor pathway inhibitors (ARPIs). Currently, the treatment of NEPC follows the treatment strategy for small-cell lung cancer, lacking effective drugs and specific treatment options. This review summarizes potential novel targets and therapies for NEPC treatment, including epigenetic regulators (zeste homolog 2 inhibitors, lysine-specific demethylase 1 inhibitors), aurora kinase A inhibitors, poly-ADP-ribose polymerase inhibitors, delta-like ligand 3 targeted therapies, a combination of immunotherapies, etc. Other promising targets and future directions are also discussed in this review. These novel targets and therapies may provide new opportunities for the treatment of NEPC.
Collapse
Affiliation(s)
- Xin Fei
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jia-Wei Xue
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, The First Hospital of Ninghai, Ningbo, China
| | - Ji-zhongrong Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, Shengzhou People’s Hospital, Shaoxing, China
| | - Chong-Yi Yang
- Department of Urology, The First Hospital of Ninghai, 142 Taoyuan Middle Road, Yuelong Street, Ninghai county, Ningbo, Zhejiang 315699, China
| | - Ke-Jie Wang
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, 52, Liuting Street, Haishu District, Ningbo, Zhejiang 315010, China
| | - Qi Ma
- Department of Urology, the First Affiliated Hospital of Ningbo University, 52, Liuting Street, Haishu District,Ningbo, Zhejiang 315010, China
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, 52, Liuting Street, Haishu District, Ningbo, Zhejiang 315010, China
- Yi-Huan Genitourinary Cancer Group, 52, Liuting Street, Haishu District, Ningbo,Zhejiang 315010, China
| |
Collapse
|
10
|
Ramakrishnan N, Weaver TM, Aubuchon LN, Woldegerima A, Just T, Song K, Vindigni A, Freudenthal BD, Verma P. Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells. Nat Commun 2024; 15:6343. [PMID: 39068174 PMCID: PMC11283519 DOI: 10.1038/s41467-024-50673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.
Collapse
Affiliation(s)
- Natasha Ramakrishnan
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Lindsey N Aubuchon
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ayda Woldegerima
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Taylor Just
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kevin Song
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Böhi F, Hottiger MO. Expanding the Perspective on PARP1 and Its Inhibitors in Cancer Therapy: From DNA Damage Repair to Immunomodulation. Biomedicines 2024; 12:1617. [PMID: 39062190 PMCID: PMC11275100 DOI: 10.3390/biomedicines12071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of PARP inhibitors as a therapeutic strategy for tumors with high genomic instability, particularly those harboring BRCA mutations, has advanced cancer treatment. However, recent advances have illuminated a multifaceted role of PARP1 beyond its canonical function in DNA damage repair. This review explores the expanding roles of PARP1, highlighting its crucial interplay with the immune system during tumorigenesis. We discuss PARP1's immunomodulatory effects in macrophages and T cells, with a particular focus on cytokine expression. Understanding these immunomodulatory roles of PARP1 not only holds promise for enhancing the efficacy of PARP inhibitors in cancer therapy but also paves the way for novel treatment regimens targeting immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Cancer Biology Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Kipcak A, Sezan S, Karpat O, Kaya E, Baylan S, Sariyar E, Yandim C, Karagonlar ZF. Suppression of CTC1 inhibits hepatocellular carcinoma cell growth and enhances RHPS4 cytotoxicity. Mol Biol Rep 2024; 51:799. [PMID: 39001931 DOI: 10.1007/s11033-024-09756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Although DNA repair mechanisms function to maintain genomic integrity, in cancer cells these mechanisms may negatively affect treatment efficiency. The strategy of targeting cancer cells via inhibiting DNA damage repair has been successfully used in breast and ovarian cancer using PARP inhibitors. Unfortunately, such strategies have not yet yielded results in liver cancer. Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a treatment-resistant malignancy. Despite the development of guided therapies, treatment regimens for advanced HCC patients still fall short of the current need and significant problems such as cancer relapse with resistance still exist. In this paper, we targeted telomeric replication protein CTC1, which is responsible for telomere maintenance. METHODS CTC expression was analyzed using tumor and matched-tissue RNA-sequencing data from TCGA and GTEx. In HCC cell lines, q-RT-PCR and Western blotting were used to detect CTC1 expression. The knock-down of CTC1 was achieved using lentiviral plasmids. The effects of CTC1 silencing on HCC cells were analyzed by flow cytometry, MTT, spheroid and colony formation assays. RESULTS CTC1 is significantly downregulated in HCC tumor samples. However, CTC1 protein levels were higher in sorafenib-resistant cell lines compared to the parental groups. CTC1 inhibition reduced cell proliferation in sorafenib-resistant HCC cell lines and diminished their spheroid and colony forming capacities. Moreover, these cells were more sensitive to single and combined drug treatment with G4 stabilizer RHPS4 and sorafenib. CONCLUSION Our results suggest that targeting CTC1 might be a viable option for combinational therapies designed for sorafenib resistant HCC patients.
Collapse
Affiliation(s)
- Arda Kipcak
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Cad, İzmir, Turkey
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Sila Sezan
- Division of Bioengineering, Graduate School, İzmir University of Economics, Sakarya Cad, İzmir, Turkey
| | - Ozum Karpat
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Cad, İzmir, Turkey
| | - Ezgi Kaya
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Cad, İzmir, Turkey
| | - Sude Baylan
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Cad, İzmir, Turkey
| | - Ece Sariyar
- Division of Bioengineering, Graduate School, İzmir University of Economics, Sakarya Cad, İzmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | - Cihangir Yandim
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Cad, İzmir, Turkey
| | - Zeynep Firtina Karagonlar
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Cad, İzmir, Turkey.
- Division of Bioengineering, Graduate School, İzmir University of Economics, Sakarya Cad, İzmir, Turkey.
| |
Collapse
|
13
|
Galli A, Bellè F, Fargnoli A, Caligo MA, Cervelli T. Functional Characterization of the Human BRCA1 ∆11 Splicing Isoforms in Yeast. Int J Mol Sci 2024; 25:7511. [PMID: 39062754 PMCID: PMC11276823 DOI: 10.3390/ijms25147511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BRCA1, a crucial tumor suppressor gene, has several splicing isoforms, including Δ9-11, Δ11, and Δ11q, which lack exon 11, coding for significant portions of the protein. These isoforms are naturally present in both normal and cancerous cells, exhibiting altered activity compared to the full-length BRCA1. Despite this, the impact on cancer risk of the germline intronic variants promoting the exclusive expression of these Δ11 isoforms remains uncertain. Consequently, they are classified as variants of uncertain significance (VUS), posing challenges for traditional genetic classification methods due to their rarity and complexity. Our research utilizes a yeast-based functional assay, previously validated for assessing missense BRCA1 variants, to compare the activity of the Δ11 splicing isoforms with known pathogenic missense variants. This approach allows us to elucidate the functional implications of these isoforms and determine whether their exclusive expression could contribute to increased cancer risk. By doing so, we aim to provide insights into the pathogenic potential of intronic VUS-generating BRCA1 splicing isoforms and improve the classification of BRCA1 variants.
Collapse
Affiliation(s)
- Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Arcangelo Fargnoli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Oncology, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| |
Collapse
|
14
|
Zhang F, Sun J, Zhang L, Li R, Wang Y, Geng H, Shen C, Li L, Chen L. PARP inhibition leads to synthetic lethality with key splicing-factor mutations in myelodysplastic syndromes. Br J Cancer 2024; 131:231-242. [PMID: 38806724 PMCID: PMC11263539 DOI: 10.1038/s41416-024-02729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Splicing factors are frequently mutated in patients with myelodysplastic syndromes and acute myeloid leukaemia. Recent studies have revealed convergent molecular defects caused by splicing factor mutations, among which R-loop dysregulation and resultant genome instability are suggested as contributing factors to disease progression. On the other hand, understanding how mutant cells survive upon aberrant R-loop formation and genome instability is essential for developing novel therapeutics. METHODS The immunoprecipitation was performed to identify R-loops in association with PARP1/poly-ADP-ribosylation. The western blot, immunofluorescence, and flow cytometry assays were used to test the cell viability, cell cycle arrest, apoptosis, and ATM activation in mutant cells following the treatment of the PARP inhibitor. The Srsf2(P95H) knock-in murine hematopoietic cells and MLL-AF9 transformed leukaemia model were generated to investigate the potential of the PARP inhibitor as a therapy for haematological malignancies. RESULTS The disease-causing mutations in SRSF2 activate PARP and elevate the overall poly-ADP-ribosylation levels of proteins in response to R-loop dysregulation. In accordance, mutant cells are more vulnerable to the PARP inhibitors in comparison to the wild-type counterpart. Notably, the synthetic lethality was further validated in the Srsf2(P95H) knock-in murine hematopoietic cell and MLL-AF9 leukaemia model. CONCLUSIONS Our findings suggest that mutant cells antagonise the genome threat caused by R-loop disruption by PARP activation, thus making PARP targeting a promising therapeutic strategy for myeloid cancers with mutations in SRSF2.
Collapse
Affiliation(s)
- Fangliang Zhang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianai Sun
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Ruiqi Li
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanzhen Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huichao Geng
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chao Shen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA.
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Berckmans Y, Ene HM, Ben-Meir K, Martinez-Conde A, Wouters R, Van den Ende B, Van Mechelen S, Monin R, Frechtel-Gerzi R, Gabay H, Dor-On E, Haber A, Weinberg U, Vergote I, Giladi M, Coosemans A, Palti Y. Tumor Treating Fields (TTFields) induce homologous recombination deficiency in ovarian cancer cells, thus mitigating drug resistance. Front Oncol 2024; 14:1402851. [PMID: 38993641 PMCID: PMC11238040 DOI: 10.3389/fonc.2024.1402851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Background Ovarian cancer is the leading cause of mortality among gynecological malignancies. Carboplatin and poly (ADP-ribose) polymerase inhibitors (PARPi) are often implemented in the treatment of ovarian cancer. Homologous recombination deficient (HRD) tumors demonstrate increased sensitivity to these treatments; however, many ovarian cancer patients are homologous recombination proficient (HRP). TTFields are non-invasive electric fields that induce an HRD-like phenotype in various cancer types. The current study aimed to investigate the impact of TTFields applied together with carboplatin or PARPi (olaparib or niraparib) in preclinical ovarian cancer models. Methods A2780 (HRP), OVCAR3 (HRD), and A2780cis (platinum-resistant) human ovarian cancer cells were treated in vitro with TTFields (1 V/cm RMS, 200 kHz, 72 h), alone or with various drug concentrations. Treated cells were measured for cell count, colony formation, apoptosis, DNA damage, expression of DNA repair proteins, and cell cycle. In vivo, ID8-fLuc (HRP) ovarian cancer cells were inoculated intraperitoneally to C57BL/6 mice, which were then treated with either sham, TTFields (200 kHz), olaparib (50 mg/kg), or TTFields plus olaparib; over a period of four weeks. Tumor growth was analyzed using bioluminescent imaging at treatment cessation; and survival analysis was performed. Results The nature of TTFields-drug interaction was dependent on the drug's underlying mechanism of action and on the genetic background of the cells, with synergistic interactions between TTFields and carboplatin or PARPi seen in HRP and resistant cells. Treated cells demonstrated elevated levels of DNA damage, accompanied by G2/M arrest, and induction of an HRD-like phenotype. In the tumor-bearing mice, TTFields and olaparib co-treatment resulted in reduced tumor volume and a survival benefit relative to olaparib monotherapy and to control. Conclusion By inducing an HRD-like phenotype, TTFields sensitize HRP and resistant ovarian cancer cells to treatment with carboplatin or PARPi, potentially mitigating a-priori and de novo drug resistance, a major limitation in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yani Berckmans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | | | | | | - Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Oncoinvent AS, Oslo, Norway
| | - Bieke Van den Ende
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sara Van Mechelen
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | - Ignace Vergote
- Department of Gynecology and Obstetrics, Gynecologic Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
16
|
Aljardali MW, Kremer KM, Parker JE, Fleming E, Chen H, Lea JS, Kraus WL, Camacho CV. Nucleolar Localization of the RNA Helicase DDX21 Predicts Survival Outcomes in Gynecologic Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:1495-1504. [PMID: 38767454 PMCID: PMC11172406 DOI: 10.1158/2767-9764.crc-24-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Cancer cells with DNA repair defects (e.g., BRCA1/2 mutant cells) are vulnerable to PARP inhibitors (PARPi) due to induction of synthetic lethality. However, recent clinical evidence has shown that PARPi can prevent the growth of some cancers irrespective of their BRCA1/2 status, suggesting alternative mechanisms of action. We previously discovered one such mechanism in breast cancer involving DDX21, an RNA helicase that localizes to the nucleoli of cells and is a target of PARP1. We have now extended this observation in endometrial and ovarian cancers and provided links to patient outcomes. When PARP1-mediated ADPRylation of DDX21 is inhibited by niraparib, DDX21 is mislocalized to the nucleoplasm resulting in decreased rDNA transcription, which leads to a reduction in ribosome biogenesis, protein translation, and ultimately endometrial and ovarian cancer cell growth. High PARP1 expression was associated with high nucleolar localization of DDX21 in both cancers. High nucleolar DDX21 negatively correlated with calculated IC50s for niraparib. By studying endometrial cancer patient samples, we were able to show that high DDX21 nucleolar localization was significantly associated with decreased survival. Our study suggests that the use of PARPi as a cancer therapeutic can be expanded to further types of cancers and that DDX21 localization can potentially be used as a prognostic factor and as a biomarker for response to PARPi. SIGNIFICANCE Currently, there are no reliable biomarkers for response to PARPi outside of homologous recombination deficiency. Herein we present a unique potential biomarker, with clear functional understanding of the molecular mechanism by which DDX21 nucleolar localization can predict response to PARPi.
Collapse
Affiliation(s)
- Marwa W. Aljardali
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin M. Kremer
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessica E. Parker
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elaine Fleming
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jayanthi S. Lea
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
17
|
Zhang Y, Chen S, Liu J. Mitochondrion quality control for longevity promotion. Metabol Open 2024; 22:100259. [PMID: 39011167 PMCID: PMC11247211 DOI: 10.1016/j.metop.2023.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 07/17/2024] Open
Affiliation(s)
- Yao Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Ng YB, Akincilar SC. Shaping DNA damage responses: Therapeutic potential of targeting telomeric proteins and DNA repair factors in cancer. Curr Opin Pharmacol 2024; 76:102460. [PMID: 38776747 DOI: 10.1016/j.coph.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 05/25/2024]
Abstract
Shelterin proteins regulate genomic stability by preventing inappropriate DNA damage responses (DDRs) at telomeres. Unprotected telomeres lead to persistent DDR causing cell cycle inhibition, growth arrest, and apoptosis. Cancer cells rely on DDR to protect themselves from DNA lesions and exogenous DNA-damaging agents such as chemotherapy and radiotherapy. Therefore, targeting DDR machinery is a promising strategy to increase the sensitivity of cancer cells to existing cancer therapies. However, the success of these DDR inhibitors depends on other mutations, and over time, patients develop resistance to these therapies. This suggests the need for alternative approaches. One promising strategy is co-inhibiting shelterin proteins with DDR molecules, which would offset cellular fitness in DNA repair in a mutation-independent manner. This review highlights the associations and dependencies of the shelterin complex with the DDR proteins and discusses potential co-inhibition strategies that might improve the therapeutic potential of current inhibitors.
Collapse
Affiliation(s)
- Yu Bin Ng
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Semih Can Akincilar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| |
Collapse
|
19
|
Montero V, Montana M, Carré M, Vanelle P. Quinoxaline derivatives: Recent discoveries and development strategies towards anticancer agents. Eur J Med Chem 2024; 271:116360. [PMID: 38614060 DOI: 10.1016/j.ejmech.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Cancer is a leading cause of death and a major health problem worldwide. While many effective anticancer agents are available, most drugs currently on the market are not specific, raising issues like the common side effects of chemotherapy. However, recent research hold promises for the development of more efficient and safer anticancer drugs. Quinoxaline and its derivatives are becoming recognized as a novel class of chemotherapeutic agents with activity against different tumors. The present review compiles and discusses studies concerning the therapeutic potential of the anticancer activity of quinoxaline derivatives, covering articles published between January 2018 and January 2023.
Collapse
Affiliation(s)
- Vincent Montero
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, Marseille CEDEX 05, 13385, France.
| | - Marc Montana
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Oncopharma, Hôpital Nord, Marseille, France
| | - Manon Carré
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie, Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, Hôpital Conception, Marseille, 13005, France
| |
Collapse
|
20
|
Wu S, Yao X, Sun W, Jiang K, Hao J. Exploration of poly (ADP-ribose) polymerase inhibitor resistance in the treatment of BRCA1/2-mutated cancer. Genes Chromosomes Cancer 2024; 63:e23243. [PMID: 38747337 DOI: 10.1002/gcc.23243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Breast cancer susceptibility 1/2 (BRCA1/2) genes play a crucial role in DNA damage repair, yet mutations in these genes increase the susceptibility to tumorigenesis. Exploiting the synthetic lethality mechanism between BRCA1/2 mutations and poly(ADP-ribose) polymerase (PARP) inhibition has led to the development and clinical approval of PARP inhibitor (PARPi), representing a milestone in targeted therapy for BRCA1/2 mutant tumors. This approach has paved the way for leveraging synthetic lethality in tumor treatment strategies. Despite the initial success of PARPis, resistance to these agents diminishes their efficacy in BRCA1/2-mutant tumors. Investigations into PARPi resistance have identified replication fork stability and homologous recombination repair as key factors sensitive to PARPis. Additionally, studies suggest that replication gaps may also confer sensitivity to PARPis. Moreover, emerging evidence indicates a correlation between PARPi resistance and cisplatin resistance, suggesting a potential overlap in the mechanisms underlying resistance to both agents. Given these findings, it is imperative to explore the interplay between replication gaps and PARPi resistance, particularly in the context of platinum resistance. Understanding the impact of replication gaps on PARPi resistance may offer insights into novel therapeutic strategies to overcome resistance mechanisms and enhance the efficacy of targeted therapies in BRCA1/2-mutant tumors.
Collapse
Affiliation(s)
- Shuyi Wu
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Xuanjie Yao
- The Fourth Clinical Medical College, Zhejiang Chinese Medicine University, HangZhou, China
| | - Weiwei Sun
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Kaitao Jiang
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Jie Hao
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| |
Collapse
|
21
|
Kim SI, Kim H, Dan K, Park H, Lee C, Kim HS, Chung HH, Kim J, Park NH, Han D, Lee M. Proteomic landscaping of high-grade serous ovarian carcinoma identifies stearoyl-CoA desaturase 5 as a potential predictive biomarker for poly(ADP-ribose) polymerase inhibitor response. Clin Transl Med 2024; 14:e1693. [PMID: 38720404 PMCID: PMC11079157 DOI: 10.1002/ctm2.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
| | - Hong‐Beom Park
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulRepublic of Korea
- Transdisciplinary Department of Medicine and Advanced TechnologySeoul National University HospitalSeoulRepublic of Korea
| | - Cheol Lee
- Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of PathologySeoul National University HospitalSeoulRepublic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Jae‐Weon Kim
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Noh Hyun Park
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine and Advanced TechnologySeoul National University HospitalSeoulRepublic of Korea
- Department of MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Maria Lee
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| |
Collapse
|
22
|
McDevitt T, Durkie M, Arnold N, Burghel GJ, Butler S, Claes KBM, Logan P, Robinson R, Sheils K, Wolstenholme N, Hanson H, Turnbull C, Hume S. EMQN best practice guidelines for genetic testing in hereditary breast and ovarian cancer. Eur J Hum Genet 2024; 32:479-488. [PMID: 38443545 PMCID: PMC11061103 DOI: 10.1038/s41431-023-01507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) is a genetic condition associated with increased risk of cancers. The past decade has brought about significant changes to hereditary breast and ovarian cancer (HBOC) diagnostic testing with new treatments, testing methods and strategies, and evolving information on genetic associations. These best practice guidelines have been produced to assist clinical laboratories in effectively addressing the complexities of HBOC testing, while taking into account advancements since the last guidelines were published in 2007. These guidelines summarise cancer risk data from recent studies for the most commonly tested high and moderate risk HBOC genes for laboratories to refer to as a guide. Furthermore, recommendations are provided for somatic and germline testing services with regards to clinical referral, laboratory analyses, variant interpretation, and reporting. The guidelines present recommendations where 'must' is assigned to advocate that the recommendation is essential; and 'should' is assigned to advocate that the recommendation is highly advised but may not be universally applicable. Recommendations are presented in the form of shaded italicised statements throughout the document, and in the form of a table in supplementary materials (Table S4). Finally, for the purposes of encouraging standardisation and aiding implementation of recommendations, example report wording covering the essential points to be included is provided for the most common HBOC referral and reporting scenarios. These guidelines are aimed primarily at genomic scientists working in diagnostic testing laboratories.
Collapse
Affiliation(s)
- Trudi McDevitt
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland.
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, North East and Yorkshire Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust Western Bank, Sheffield, UK
| | - Norbert Arnold
- UKSH Campus Kiel, Gynecology and Obstetrics, Institut of Clinical Chemistry, Institut of Clinical Molecular Biology, Kiel, Germany
| | - George J Burghel
- Manchester University NHS Foundation Trust, North West Genomic Laboratory Hub, Manchester, UK
| | - Samantha Butler
- Central and South Genomic Laboratory Hub, West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Peter Logan
- HSCNI / Belfast Trust Laboratories, Regional Molecular Diagnostics Service, Belfast, Northern Ireland
| | - Rachel Robinson
- Leeds Teaching Hospitals NHS Trust, Genetics Department, Leeds, UK
| | | | | | - Helen Hanson
- St George's University Hospitals NHS Foundation Trust, Clinical Genetics, London, UK
| | | | - Stacey Hume
- University of British Columbia, Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Zohourian N, Brown JA. Current trends in clinical trials and the development of small molecule epigenetic inhibitors as cancer therapeutics. Epigenomics 2024; 16:671-680. [PMID: 38639711 PMCID: PMC11233149 DOI: 10.2217/epi-2023-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Epigenetic mechanisms control and regulate normal chromatin structure and gene expression patterns, with epigenetic dysregulation observed in many different cancer types. Importantly, epigenetic modifications are reversible, offering the potential to silence oncogenes and reactivate tumor suppressors. Small molecule drugs manipulating these epigenetic mechanisms are at the leading edge of new therapeutic options for cancer treatment. The clinical use of histone deacetyltransferases inhibitors (HDACi) demonstrates the effectiveness of targeting epigenetic mechanisms for cancer treatment. Notably, the development of new classes of inhibitors, including lysine acetyltransferase inhibitors (KATi), are the future of epigenetic-based therapeutics. We outline the progress of current classes of small molecule epigenetic drugs for use against cancer (preclinical and clinical) and highlight the potential market growth in epigenetic-based therapeutics.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | - James Al Brown
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
24
|
Bastos IM, Rebelo S, Silva VLM. A review of poly(ADP-ribose)polymerase-1 (PARP1) role and its inhibitors bearing pyrazole or indazole core for cancer therapy. Biochem Pharmacol 2024; 221:116045. [PMID: 38336156 DOI: 10.1016/j.bcp.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Cancer is a disease with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. The hallmarks of cancer evidence the acquired cells characteristics that promote the growth of malignant tumours, including genomic instability and mutations, the ability to evade cellular death and the capacity of sustaining proliferative signalization. Poly(ADP-ribose) polymerase-1 (PARP1) is a protein that plays key roles in cellular regulation, namely in DNA damage repair and cell survival. The inhibition of PARP1 promotes cellular death in cells with homologous recombination deficiency, and therefore, the interest in PARP protein has been rising as a target for anticancer therapies. There are already some PARP1 inhibitors approved by Food and Drug Administration (FDA), such as Olaparib and Niraparib. The last compound presents in its structure an indazole core. In fact, pyrazoles and indazoles have been raising interest due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as inhibitors of PARP1 and presented promising results. Therefore, this review aims to address the importance of PARP1 in cell regulation and its role in cancer. Moreover, it intends to report a comprehensive literature review of PARP1 inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PARP1 inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Huang Y, Qiu Y, Ding L, Ren S, Jiang Y, Luo J, Huang J, Yin X, Fu S, Zhao J, Hu K, Liao J. Somatic mutations in four novel genes contribute to homologous recombination deficiency in breast cancer: a real-world clinical tumor sequencing study. J Pathol Clin Res 2024; 10:e12367. [PMID: 38504382 PMCID: PMC10951049 DOI: 10.1002/2056-4538.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
Breast cancers involving mutations in homologous recombination (HR) genes, most commonly BRCA1 and BRCA2 (BRCA1/2), respond well to PARP inhibitors and platinum-based chemotherapy. However, except for these specific HR genes, it is not clear which other mutations contribute to homologous recombination defects (HRD). Here, we performed next-generation sequencing of tumor tissues and matched blood samples from 119 breast cancer patients using the OncoScreen Plus panel. Genomic mutation characteristics and HRD scores were analyzed. In the HR genes, we found that BRCA1/2 and PLAB2 mutations were related to HRD. HRD was also detected in a subset of patients without germline or somatic mutations in BRCA1/2, PLAB2, or other HR-related genes. Notably, LRP1B, NOTCH3, GATA2, and CARD11 (abbreviated as LNGC) mutations were associated with high HRD scores in breast cancer patients. Furthermore, functional experiments demonstrated that silencing CARD11 and GATA2 impairs HR repair efficiency and enhances the sensitivity of tumor cells to olaparib treatment. In summary, in the absence of mutations in the HR genes, the sensitivity of tumor cells to PARP inhibitors and platinum-based chemotherapy may be enhanced in a subset of breast cancer patients with LNGC somatic mutations.
Collapse
Affiliation(s)
- Yongsheng Huang
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouPR China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouPR China
| | - Linxiaoxiao Ding
- Breast Tumor Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Shuwei Ren
- Department of Clinical LaboratoryThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Yuanling Jiang
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Jiahuan Luo
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Jinghua Huang
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Xinke Yin
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Sha Fu
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Jianli Zhao
- Breast Tumor Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouPR China
| | - Jianwei Liao
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| |
Collapse
|
26
|
Zhang X, Pang W, Li T, Lin T, Yuan J, Xu S. Design, synthesis, and biological activity evaluation of new tankyrase-2 directed inhibitors. Chem Biol Drug Des 2024; 103:e14360. [PMID: 37814809 DOI: 10.1111/cbdd.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
A new series of flavonoids and quinolone derivatives were designed, synthesized and, evaluated for their biological activity. Among them, compound 14e showed better inhibition potency against TNKS2 in comparison with G007-LK, one of the most potent preclinical stage TNKS inhibitor. Molecular docking results showed that 14e occupied both the adenosine and nicotinamide pockets and formed a hydrogen bond with Met1054 of TNKS2. This study provides a lead for the design and discovery of potent and selective TNKS2 inhibitors.
Collapse
Affiliation(s)
- Xiaoli Zhang
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Wan Pang
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Tang Li
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Taofeng Lin
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Juanchan Yuan
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Ponti G, De Angelis C, Ponti R, Pongetti L, Losi L, Sticchi A, Tomasi A, Ozben T. Hereditary breast and ovarian cancer: from genes to molecular targeted therapies. Crit Rev Clin Lab Sci 2023; 60:640-650. [PMID: 37455374 DOI: 10.1080/10408363.2023.2234488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Hereditary familial tumors constitute 10-15% of all malignancies and present opportunities for the identification of therapeutic approaches against specific germline genetic defects. Hereditary breast and ovarian cancer (HBOC) syndrome, which is linked to the pathogenic mutations of the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) genes, is an important research model for personalized therapeutic approaches for specific germline mutations. HBOC is characterized by multiple cases of breast and ovarian carcinoma in association with other tumors (prostate, pancreas and stomach carcinoma) within the same family branch, a young age of onset (<36 years), bilaterality and an autosomal dominant pattern of inheritance. Counseling, evaluation of the clinical criteria for the diagnosis of HBOC, and the performance of genetic testing allow for the identification of subjects with BRCA1/2 mutations and provide crucial information for clinical and therapeutic management. The identification of a BRCA gene mutation has therapeutic implications for women with metastatic and non-metastatic breast cancer. In the therapeutic setting of BRCA+ breast cancer, treatment with poly (ADP-ribose) polymerase (PARP) inhibitors, which keep cancer cells from repairing their damaged DNA and cause cell death, is remarkable. This review summarizes the evidence demonstrating the value of BRCA1/2 status as a diagnostic and prognostic tool and as a predictive biomarker in the personalized approach to hereditary BRCA + cancers.
Collapse
Affiliation(s)
- Giovanni Ponti
- Division of Clinical Pathology, Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rosamaria Ponti
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Linda Pongetti
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Sticchi
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Aldo Tomasi
- Division of Clinical Pathology, Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Tomris Ozben
- Specialist in Clinical Biochemistry Akdeniz University, Department of Clinical Biochemistry, Antalya Turkey University of Modena and Reggio Emilia, Clinical and Experimental Medicine, Modena, Italy
| |
Collapse
|
28
|
He H, Wang S, Zhang W, Gao S, Guan H, Zhou P. Downregulation of TAB182 promotes cancer stem-like cell properties and therapeutic resistance in triple-negative breast cancer cells. BMC Cancer 2023; 23:1101. [PMID: 37953246 PMCID: PMC10642046 DOI: 10.1186/s12885-023-11552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
TAB182 participates in DNA damage repair and radio-/chemosensitivity regulation in various tumors, but its role in tumorigenesis and therapeutic resistance in breast cancer remains unclear. In the current paper, we observed that triple-negative Breast Cancer (TNBC), a highly aggressive type of breast cancer, exhibits a lower expression of TAB182. TAB182 knockdown stimulates the proliferation, migration, and invasion of TNBC cells. Our study first obtained RNA-seq data to explore the cellular functions mediated by TAB182 at the genome level in TNBC cells. A transcriptome analysis and in vitro experiments enabled us to identify that TAB182 downregulation drives the enhanced properties of cancer stem-like cells (CSCs) in TNBC cells. Furthermore, TAB182 deletion contributes to the resistance of cells to olaparib or cisplatin, which can be rescued by silencing GLI2, a gene downstream of cancer stemness-related signaling pathways. Our results reveal a novel function of TAB182 as a potential negative regulator of cancer stem-like properties and drug sensitivity in TNBC cells, suggesting that TAB182 may be a tumor suppressor gene and is associated with increased therapeutic benefits for TNBC patients.
Collapse
Affiliation(s)
- Huan He
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, People's Republic of China
| | - Shaozheng Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Wen Zhang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shanshan Gao
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Pingkun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
29
|
Li Z, Luo A, Xie B. The Complex Network of ADP-Ribosylation and DNA Repair: Emerging Insights and Implications for Cancer Therapy. Int J Mol Sci 2023; 24:15028. [PMID: 37834477 PMCID: PMC10573881 DOI: 10.3390/ijms241915028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.
Collapse
Affiliation(s)
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
30
|
Kim HJ, Moon SJ, Kim JH. Mechanistic insights into the dual role of CCAR2/DBC1 in cancer. Exp Mol Med 2023; 55:1691-1701. [PMID: 37524873 PMCID: PMC10474295 DOI: 10.1038/s12276-023-01058-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 08/02/2023] Open
Abstract
Cell cycle and apoptosis regulator 2 (CCAR2), also known as deleted in breast cancer 1 (DBC1), has been recently identified as a master regulator of transcriptional processes and plays diverse roles in physiology and pathophysiology, including as a regulator of apoptosis, DNA repair, metabolism, and tumorigenesis. CCAR2 functions as a coregulator of various transcription factors and a critical regulator of numerous epigenetic modifiers. Based on its ability to stimulate apoptosis by activating and stabilizing p53, CCAR2 was initially considered to be a tumor suppressor. However, an increasing number of studies have shown that CCAR2 also functions as a tumor-promoting coregulator by activating oncogenic transcription factors and regulating the enzymatic activity of epigenetic modifiers, indicating that CCAR2 may play a dual role in cancer progression by acting as a tumor suppressor and tumor promoter. Here, we review recent progress in understanding the dual tumor-suppressing and oncogenic roles of CCAR2 in cancer. We discuss CCAR2 domain structures, its interaction partners, and the molecular mechanisms by which it regulates the activities of transcription factors and epigenetic modifiers.
Collapse
Affiliation(s)
- Hwa Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Sue Jin Moon
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Jeong Hoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea.
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea.
| |
Collapse
|
31
|
Lovsund T, Mashayekhi F, Fitieh A, Stafford J, Ismail IH. Unravelling the Role of PARP1 in Homeostasis and Tumorigenesis: Implications for Anti-Cancer Therapies and Overcoming Resistance. Cells 2023; 12:1904. [PMID: 37508568 PMCID: PMC10378431 DOI: 10.3390/cells12141904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Detailing the connection between homeostatic functions of enzymatic families and eventual progression into tumorigenesis is crucial to our understanding of anti-cancer therapies. One key enzyme group involved in this process is the Poly (ADP-ribose) polymerase (PARP) family, responsible for an expansive number of cellular functions, featuring members well established as regulators of DNA repair, genomic stability and beyond. Several PARP inhibitors (PARPi) have been approved for clinical use in a range of cancers, with many more still in trials. Unfortunately, the occurrence of resistance to PARPi therapy is growing in prevalence and requires the introduction of novel counter-resistance mechanisms to maintain efficacy. In this review, we summarize the updated understanding of the vast homeostatic functions the PARP family mediates and pin the importance of PARPi therapies as anti-cancer agents while discussing resistance mechanisms and current up-and-coming counter-strategies for countering such resistance.
Collapse
Affiliation(s)
- Taylor Lovsund
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Amira Fitieh
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - James Stafford
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
32
|
Wong WW, O'Brien-Gortner SF, Anderson RF, Wilson WR, Hay MP, Dickson BD. Hypoxia-activated prodrugs of phenolic olaparib analogues for tumour-selective chemosensitisation. RSC Med Chem 2023; 14:1309-1330. [PMID: 37484567 PMCID: PMC10357951 DOI: 10.1039/d3md00117b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 07/25/2023] Open
Abstract
Poly(ADP-ribose)polymerase inhibitors (PARPi) are used for treatment of tumours with a defect in homologous recombination (HR) repair. Combination with radio- or chemotherapy could broaden their applicability but a major hurdle is enhancement of normal tissue toxicity. Development of hypoxia-activated prodrugs (HAPs) of PARPi has potential to restrict PARP inhibition to tumours thereby avoiding off-target toxicity. We have designed and synthesised phenolic derivatives of olaparib (termed phenolaparibs) and corresponding ether-linked HAPs. Phenolaparib cytotoxicity in HR-proficient and deficient cell lines was consistent with inhibition of PARP-1. Prodrugs were deactivated relative to phenolaparibs in biochemical PARP-1 inhibition assays, and cell culture. Prodrug 7 was selectively converted to phenolaparib 4 under hypoxia and demonstrated hypoxia-selective cytotoxicity, including chemosensitisation of HR-proficient cells in combination with temozolomide. This work demonstrates the feasibility of a HAP approach to PARPi for use in combination therapies.
Collapse
Affiliation(s)
- Way W Wong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
| | - Sophia F O'Brien-Gortner
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
- School of Chemical Sciences, The University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
| | - Michael P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
| | - Benjamin D Dickson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
| |
Collapse
|
33
|
Huang Y, Zheng D, Yang Q, Wu J, Tian H, Ji Z, Chen L, Cai J, Li Z, Chen Y. Global trends in BRCA-related breast cancer research from 2013 to 2022: A scientometric analysis. Front Oncol 2023; 13:1197168. [PMID: 37476378 PMCID: PMC10354558 DOI: 10.3389/fonc.2023.1197168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Since the mid-2000s, breast cancer incidence among women has slowly increased at about 0.5% per year. In the last three decades, Breast Cancer Susceptibility Gene (BRCA) has been proven to be the crucial gene in encouraging the incidence and development of breast cancer. However, scientometric analysis on BRCA-related breast cancer is in shortage. Thus, to have a clear understanding of the current status and catch up with the hotspots, a scientometric analysis was conducted on specific academic publications collected from the Web of Science (WoS). Methods We searched the Web of Science Core Collection (WoSCC) to procure associated articles as our dataset. Bibliometric, CiteSpace, VOSviewer, and HistCite software were then applied to conduct visual analyses of countries, institutions, journals, authors, landmark articles, and keywords in this research field. Results A total of 7,266 articles and 1,310 review articles published between 2013 to 2022 were retrieved eventually. The annual output steadily rose year by year and peaked in 2021. The USA led the way in the number of published works, total citations, and collaboration. Breast Cancer Research and Treatment was the most favoured journal in this research field. Narod SA from the University of Toronto produced the most publications. At last, the most prominent keywords were "breast cancer" (n=1,778), "women" (n=1,369), "brca1" (n=1,276), "ovarian cancer" (n=1,259), "risk" (n=1,181), and "mutations" (n=929), which exposed the hotspots within the BRCA domain of breast cancer study. Conclusion The tendency in the BRCA research field over the past decade was presented by the scientometric analysis. The current research focus is the clinical trials of poly-adenosine diphosphate ribose polymerase inhibitors (PARPi) drugs and their resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyang Li
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| | - Yexi Chen
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| |
Collapse
|
34
|
Wang X, Liu W, Li K, Chen K, He S, Zhang J, Gu B, Xu X, Song S. PET imaging of PARP expression using 68Ga-labelled inhibitors. Eur J Nucl Med Mol Imaging 2023; 50:2606-2620. [PMID: 37145164 PMCID: PMC10317875 DOI: 10.1007/s00259-023-06249-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Imaging the PARP expression using 18F probes has been approved in clinical trials. Nevertheless, hepatobiliary clearance of both 18F probes hindered their application in monitoring abdominal lesions. Our novel 68Ga-labelled probes aim for fewer abdominal signals while ensuring PARP targeting by optimizing the pharmacokinetic properties of radioactive probes. METHODS Three radioactive probes targeted PARP were designed, synthesized, and evaluated based on the PARP inhibitor Olaparib. These 68Ga-labelled radiotracers were assessed in vitro and in vivo. RESULTS Precursors that did not lose binding affinity for PARP were designed, synthesized, and then labelled with 68Ga in high radiochemical purity (> 97%). The 68Ga-labelled radiotracers were stable. Due to the increased expression of PARP-1 in SK-OV-3 cells, the uptake of the three radiotracers by SK-OV-3 cells was significantly greater than that by A549 cells. PET/CT imaging of the SK-OV-3 models indicated that the tumor uptake of 68Ga-DOTA-Olaparib (0.5 h: 2.83 ± 0.55%ID/g; 1 h: 2.37 ± 0.64%ID/g) was significantly higher than that of the other 68Ga-labelled radiotracers. There was a significant difference in the T/M (tumor-to-muscle) ratios between the unblocked and blocked groups as calculated from the PET/CT images (4.07 ± 1.01 vs. 1.79 ± 0.45, P = 0.0238 < 0.05). Tumor autoradiography revealed high accumulation in tumor tissues, further confirming the above data. PARP-1 expression in the tumor was confirmed by immunochemistry. CONCLUSION As the first 68Ga-labelled PARP inhibitor, 68Ga-DOTA-Olaparib displayed high stability and quick PARP imaging in a tumor model. This compound is thus a promising imaging agent that can be used in a personalized PARP inhibitor treatment regimen.
Collapse
Affiliation(s)
- Xiangwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Wei Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Ke Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Kaiwen Chen
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| |
Collapse
|
35
|
Dong R, Ding T, Li Z. Update on poly(ADP-ribose) polymerase inhibitors resistance in ovarian cancer. Front Pharmacol 2023; 14:1164395. [PMID: 37426808 PMCID: PMC10326311 DOI: 10.3389/fphar.2023.1164395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Ovarian cancer is one of the most common reproductive system tumors. The incidence of ovarian cancer in China is on the rise. Poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) is a DNA repair enzyme associated with DNA damage repair. PARPi takes PARP as a target to kill tumor cells, especially for tumors with homologous recombination (HR) dysfunction. Currently, PARPi has been widely used in clinical practice, mainly for the maintenance of advanced ovarian epithelial cancer. The intrinsic or acquired drug resistance of PARPi has gradually become an important clinical problem with the wide application of PARPi. This review summarizes the mechanisms of PARPi resistance and the current progress on PARPi-based combination strategies.
Collapse
Affiliation(s)
- Ruihong Dong
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Ding
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
36
|
Zhao ML, Stefanick DF, Nadalutti CA, Beard WA, Wilson SH, Horton JK. Temporal recruitment of base excision DNA repair factors in living cells in response to different micro-irradiation DNA damage protocols. DNA Repair (Amst) 2023; 126:103486. [PMID: 37028218 PMCID: PMC10133186 DOI: 10.1016/j.dnarep.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Laser micro-irradiation across the nucleus rapidly generates localized chromatin-associated DNA lesions permitting analysis of repair protein recruitment in living cells. Recruitment of three fluorescently-tagged base excision repair factors [DNA polymerase β (pol β), XRCC1 and PARP1], known to interact with one another, was compared in gene-deleted mouse embryonic fibroblasts and in those expressing the endogenous factor. A low energy micro-irradiation (LEMI) forming direct single-strand breaks and a moderate energy (MEMI) protocol that additionally creates oxidized bases were compared. Quantitative characterization of repair factor recruitment and sensitivity to clinical PARP inhibitors (PARPi) was dependent on the micro-irradiation protocol. PARP1 recruitment was biphasic and generally occurred prior to pol β and XRCC1. After LEMI, but not after MEMI, pol β and XRCC1 recruitment was abolished by the PARPi veliparib. Consistent with this, pol β and XRCC1 recruitment following LEMI was considerably slower in PARP1-deficient cells. Surprisingly, the recruitment half-times and amplitudes for pol β were less affected by PARPi than were XRCC1 after MEMI suggesting there is a XRCC1-independent component for pol β recruitment. After LEMI, but not MEMI, pol β dissociation was more rapid than that of XRCC1. Unexpectedly, PARP1 dissociation was slowed in the absence of XRCC1 as well with a PARPi after LEMI but not MEMI, suggesting that XRCC1 facilitates PARP1 dissociation from specific DNA lesions. XRCC1-deficient cells showed pronounced hypersensitivity to the PARPi talazoparib correlating with its known cytotoxic PARP1 trapping activity. In contrast to DNA methylating agents, PARPi only minimally sensitized pol β and XRCC1-deficient cells to oxidative DNA damage suggesting differential binding of PARP1 to alternate repair intermediates. In summary, pol β, XRCC1, and PARP1 display recruitment kinetics that exhibit correlated and unique properties that depend on the DNA lesion and PARP activity revealing that there are multiple avenues utilized in the repair of chromatin-associated DNA.
Collapse
Affiliation(s)
- Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cristina A Nadalutti
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
37
|
Purwar R, Ranjan R, Pal M, Upadhyay SK, Kumar T, Pandey M. Role of PARP inhibitors beyond BRCA mutation and platinum sensitivity in epithelial ovarian cancer: a meta-analysis of hazard ratios from randomized clinical trials. World J Surg Oncol 2023; 21:157. [PMID: 37217940 DOI: 10.1186/s12957-023-03027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND PARP inhibitors (PARPi) have a well-established role in platinum-sensitive ovarian cancer (PSOC), in BRCA mutant (BRCAm), and homologous recombination deficiency (HRD) population. However, their role in wild type and homologous recombination proficient population is still not clear. METHODS A meta-analysis of hazard ratios (HR) of randomized control trials (RCTs) was conducted to study the role of PARPi. The published RCTs comparing the efficacy of PARP inhibitors alone or in combination with chemotherapy and/or target therapies versus placebo/chemotherapy alone/target therapy alone in primary or recurrent ovarian cancer settings were selected. Progression-free survival (PFS) and overall survival (OS) were the primary endpoints. RESULTS A total of 14 primary studies and 5 updated studies are considered, consisting of 5363 patients. Overall, HR for PFS was 0.50 [95% CI 0.40-0.62]. HR of PFS was 0.94 [95% CI 0.76-1.15] in the PROC group, 0.41 [95% CI 0.29-0.60] was in HRD with BRCA unknown (BRCAuk), 0.38 [95% CI 0.26-0.57] in HRD with BRCAm, and 0.52 [95% CI 0.38-0.71] in HRD with BRCAwt. In the HRP group, overall HR for PFS was 0.67 [95% CI 0.56-0.80], 0.61 [95% CI 0.38-0.99] in HRD unknown with BRCA wt, and 0.40 [95% CI 0.29-0.55] in BRCAm HR for PFS. Overall, HR for OS was 0.86 [95% CI 0.73-1.031]. CONCLUSIONS The results suggest that PARPi have a meaningful clinical benefit in PSOC, HRD, BRACm, and also in HRP and PROC; however, the evidence is not sufficient to recommend their routine use and further studies are needed to expand their role in the HRP and PROC groups.
Collapse
Affiliation(s)
- Roli Purwar
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rakesh Ranjan
- Department of Science and Technology, Centre for Interdisciplinary Mathematical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manjusha Pal
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | | | - Tarun Kumar
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
38
|
Zhang J, Zhang J, Li H, Chen L, Yao D. Dual-target inhibitors of PARP1 in cancer therapy: a drug discovery perspective. Drug Discov Today 2023; 28:103607. [PMID: 37146962 DOI: 10.1016/j.drudis.2023.103607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1), a key enzyme in DNA repair, has emerged as a promising anticancer druggable target. An increasing number of PARP1 inhibitors have been discovered to treat cancer, most notably those characterized by BRCA1/2 mutations. Although PARP1 inhibitors have achieved great clinical success, their cytotoxicity, development of drug resistance, and restriction of indication have weakened their clinical therapeutic effects. To address these issues, dual PARP1 inhibitors have been documented as a promising strategy. Here, we review recent progress in the development of dual PARP1 inhibitors, summarize the different designs of dual-target inhibitors, and introduce their antitumor pharmacology, shedding light on the discovery of dual PARP1 inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Jiahui Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; These authors contributed equally to this work
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China; These authors contributed equally to this work
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
39
|
Keller KM, Koetsier J, Schild L, Amo-Addae V, Eising S, van den Handel K, Ober K, Koopmans B, Essing A, van den Boogaard ML, Langenberg KPS, Jäger N, Kool M, Pfister S, Dolman MEM, Molenaar JJ, van Hooff SR. The potential of PARP as a therapeutic target across pediatric solid malignancies. BMC Cancer 2023; 23:310. [PMID: 37020198 PMCID: PMC10077757 DOI: 10.1186/s12885-022-10319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Pediatric cancer is the leading cause of disease-related death in children and the need for better therapeutic options remains urgent. Due to the limited number of patients, target and drug development for pediatrics is often supplemented by data from studies focused on adult cancers. Recent evidence shows that pediatric cancers possess different vulnerabilities that should be explored independently from adult cancers. METHODS Using the publicly available Genomics of Drug Sensitivity in Cancer database, we explore therapeutic targets and biomarkers specific to the pediatric solid malignancies Ewing sarcoma, medulloblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. Results are validated using cell viability assays and high-throughput drug screens are used to identify synergistic combinations. RESULTS Using published drug screening data, PARP is identified as a drug target of interest across multiple different pediatric malignancies. We validate these findings, and we show that efficacy can be improved when combined with conventional chemotherapeutics, namely topoisomerase inhibitors. Additionally, using gene set enrichment analysis, we identify ribosome biogenesis as a potential biomarker for PARP inhibition in pediatric cancer cell lines. CONCLUSION Collectively, our results provide evidence to support the further development of PARP inhibition and the combination with TOP1 inhibition as a therapeutic approach in solid pediatric malignancies. Additionally, we propose ribosome biogenesis as a component to PARP inhibitor sensitivity that should be further investigated to help maximize the potential utility of PARP inhibition and combinations across pediatric solid malignancies.
Collapse
Affiliation(s)
- Kaylee M Keller
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Joost Koetsier
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Linda Schild
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Vicky Amo-Addae
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Selma Eising
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Kimberley Ober
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Anke Essing
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Department of Pharmaceutical Sciences, University Utrecht, Utrecht, the Netherlands.
| | | |
Collapse
|
40
|
Lin C, Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Therapeutic targeting of DNA damage repair pathways guided by homologous recombination deficiency scoring in ovarian cancers. Fundam Clin Pharmacol 2023; 37:194-214. [PMID: 36130021 DOI: 10.1111/fcp.12834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
The susceptibility of cells to DNA damage and their DNA repair ability are crucial for cancer therapy. Homologous recombination is one of the major repairing mechanisms for DNA double-strand breaks. Approximately half of ovarian cancer (OvCa) cells harbor homologous recombination deficiency (HRD). Considering that HRD is a major hallmark of OvCas, scholars proposed HRD scoring to evaluate the HRD degree and guide the choice of therapeutic strategies for OvCas. In the last decade, synthetic lethal strategy by targeting poly (ADP-ribose) polymerase (PARP) in HR-deficient OvCas has attracted considerable attention in view of its favorable clinical effort. We therefore suggested that the uses of other DNA damage/repair-targeted drugs in HR-deficient OvCas might also offer better clinical outcome. Here, we reviewed the current small molecule compounds that targeted DNA damage/repair pathways and discussed the HRD scoring system to guide their clinical uses.
Collapse
Affiliation(s)
- Chunxiu Lin
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
41
|
Hachem S, Kassis Y, Hachem MC, Zouein J, Gharios J, Kourie HR. BRCAness in biliary tract cancer: a new prognostic and predictive biomarker? Biomark Med 2023; 17:51-57. [PMID: 36994675 DOI: 10.2217/bmm-2022-0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy with a very poor prognosis. Considering that most cases of CCA are diagnosed at a locally advanced stage and the standard of care for advanced CCA remains suboptimal, new prognostic and predictive biomarkers must be developed to improve the management and survival of patients diagnosed with CCA regardless of disease stage. According to recent studies, 20% of biliary tract cancers exhibit the BRCAness phenotype, meaning that these tumors do not have germline mutations in BRCA but share phenotypic traits with tumors that possess hereditary BRCA mutations. Therefore, screening for these mutations in CCA patients is beneficial to predict tumor sensitivity and response to DNA-damaging chemotherapy such as platinum agents.
Collapse
Affiliation(s)
- Samir Hachem
- Department of Hematology-Oncology, Saint Joseph University of Beirut, Riad el Solh Beirut, 11-5076, Lebanon
| | - Yara Kassis
- Department of Hematology-Oncology, Saint Joseph University of Beirut, Riad el Solh Beirut, 11-5076, Lebanon
| | - Maria Cr Hachem
- Department of Hematology-Oncology, Saint Joseph University of Beirut, Riad el Solh Beirut, 11-5076, Lebanon
| | - Joseph Zouein
- Department of Hematology-Oncology, Saint Joseph University of Beirut, Riad el Solh Beirut, 11-5076, Lebanon
| | - Joseph Gharios
- Department of General Surgery, Saint Joseph University of Beirut, Riad el Solh Beirut, 11-5076, Lebanon
| | - Hampig R Kourie
- Department of Hematology-Oncology, Saint Joseph University of Beirut, Riad el Solh Beirut, 11-5076, Lebanon
| |
Collapse
|
42
|
Biegała Ł, Gajek A, Marczak A, Rogalska A. Olaparib-Resistant BRCA2MUT Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival. Cells 2023; 12:cells12071038. [PMID: 37048111 PMCID: PMC10093185 DOI: 10.3390/cells12071038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The PARP inhibitor (PARPi) olaparib is currently the drug of choice for serous ovarian cancer (OC), especially in patients with homologous recombination (HR) repair deficiency associated with deleterious BRCA1/2 mutations. Unfortunately, OC patients who fail to respond to PARPi or relapse after treatment have limited therapeutic options. To elucidate olaparib resistance and enhance the efficacy of olaparib, intracellular factors exploited by OC cells to achieve decreased sensitivity to PARPi were examined. An olaparib-resistant OC cell line, PEO1-OR, was established from BRCA2MUT PEO1 cells. The anticancer activity and action of olaparib combined with inhibitors of the ATR/CHK1 pathway (ceralasertib as ATRi, MK-8776 as CHK1i) in olaparib-sensitive and -resistant OC cell lines were evaluated. Whole-exome sequencing revealed that PEO1-OR cells acquire resistance through subclonal enrichment of BRCA2 secondary mutations that restore functional full-length protein. Moreover, PEO1-OR cells upregulate HR repair-promoting factors (BRCA1, BRCA2, RAD51) and PARP1. Olaparib-inducible activation of the ATR/CHK1 pathway and G2/M arrest is abrogated in olaparib-resistant cells. Drug sensitivity assays revealed that PEO1-OR cells are less sensitive to ATRi and CHK1i agents. Combined treatment is less effective in olaparib-resistant cells considering inhibition of metabolic activity, colony formation, survival, accumulation of DNA double-strand breaks, and chromosomal aberrations. However, synergistic antitumor activity between compounds is achievable in PEO1-OR cells. Collectively, olaparib-resistant cells display co-existing HR repair-related mechanisms that confer resistance to olaparib, which may be effectively utilized to resensitize them to PARPi via combination therapy. Importantly, the addition of ATR/CHK1 pathway inhibitors to olaparib has the potential to overcome acquired resistance to PARPi.
Collapse
|
43
|
Guo S, Zhang S, Zhuang Y, Xie F, Wang R, Kong X, Zhang Q, Feng Y, Gao H, Kong X, Liu T. Muscle PARP1 inhibition extends lifespan through AMPKα PARylation and activation in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2213857120. [PMID: 36947517 PMCID: PMC10068811 DOI: 10.1073/pnas.2213857120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 03/23/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) has been reported to play an important role in longevity. Here, we showed that the knockdown of the PARP1 extended the lifespan of Drosophila, with particular emphasis on the skeletal muscle. The muscle-specific mutant Drosophila exhibited resistance to starvation and oxidative stress, as well as an increased ability to climb, with enhanced mitochondrial biogenesis and activity at an older age. Mechanistically, the inhibition of PARP1 increases the activity of AMP-activated protein kinase alpha (AMPKα) and mitochondrial turnover. PARP1 could interact with AMPKα and then regulate it via poly(ADP ribosyl)ation (PARylation) at residues E155 and E195. Double knockdown of PARP1 and AMPKα, specifically in muscle, could counteract the effects of PARP1 inhibition in Drosophila. Finally, we showed that increasing lifespan via maintaining mitochondrial network homeostasis required intact PTEN induced kinase 1 (PINK1). Taken together, these data indicate that the interplay between PARP1 and AMPKα can manipulate mitochondrial turnover, and be targeted to promote longevity.
Collapse
Affiliation(s)
- Shanshan Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Shuang Zhang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yixiao Zhuang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Famin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Xingyu Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai200040, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai200438, China
| | - Yonghao Feng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Huanqing Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai200040, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai200438, China
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai200438, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia010021, China
| |
Collapse
|
44
|
New Approaches in Early-Stage NSCL Management: Potential Use of PARP Inhibitors and Immunotherapy Combination. Int J Mol Sci 2023; 24:ijms24044044. [PMID: 36835456 PMCID: PMC9961654 DOI: 10.3390/ijms24044044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Lung cancer is the second most common cancer in the world, being the first cause of cancer-related mortality. Surgery remains the only potentially curative treatment for Non-Small Cell Lung Cancer (NSCLC), but the recurrence risk remains high (30-55%) and Overall Survival (OS) is still lower than desirable (63% at 5 years), even with adjuvant treatment. Neoadjuvant treatment can be helpful and new therapies and pharmacologic associations are being studied. Immune Checkpoint Inhibitors (ICI) and PARP inhibitors (PARPi) are two pharmacological classes already in use to treat several cancers. Some pre-clinical studies have shown that its association can be synergic and this is being studied in different settings. Here, we review the PARPi and ICI strategies in cancer management and the information will be used to develop a clinical trial to evaluate the potential of PARPi association with ICI in early-stage neoadjuvant setting NSCLC.
Collapse
|
45
|
WGS Data Collections: How Do Genomic Databases Transform Medicine? Int J Mol Sci 2023; 24:ijms24033031. [PMID: 36769353 PMCID: PMC9917848 DOI: 10.3390/ijms24033031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
As a scientific community we assumed that exome sequencing will elucidate the basis of most heritable diseases. However, it turned out it was not the case; therefore, attention has been increasingly focused on the non-coding sequences that encompass 98% of the genome and may play an important regulatory function. The first WGS-based datasets have already been released including underrepresented populations. Although many databases contain pooled data from several cohorts, recently the importance of local databases has been highlighted. Genomic databases are not only collecting data but may also contribute to better diagnostics and therapies. They may find applications in population studies, rare diseases, oncology, pharmacogenetics, and infectious and inflammatory diseases. Further data may be analysed with Al technologies and in the context of other omics data. To exemplify their utility, we put a highlight on the Polish genome database and its practical application.
Collapse
|
46
|
Tocci P, Roman C, Sestito R, Di Castro V, Sacconi A, Molineris I, Paolini F, Carosi M, Tonon G, Blandino G, Bagnato A. Targeting tumor-stroma communication by blocking endothelin-1 receptors sensitizes high-grade serous ovarian cancer to PARP inhibition. Cell Death Dis 2023; 14:5. [PMID: 36604418 PMCID: PMC9816119 DOI: 10.1038/s41419-022-05538-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
PARP inhibitors (PARPi) have changed the treatment paradigm of high-grade serous ovarian cancer (HG-SOC). However, the impact of this class of inhibitors in HG-SOC patients with a high rate of TP53 mutations is limited, highlighting the need to develop combinatorial therapeutic strategies to improve responses to PARPi. Here, we unveil how the endothelin-1/ET-1 receptor (ET-1/ET-1R) axis, which is overexpressed in human HG-SOC and associated with poor prognosis, instructs HG-SOC/tumor microenvironment (TME) communication via key pro-malignant factors and restricts the DNA damage response induced by the PARPi olaparib. Mechanistically, the ET-1 axis promotes the p53/YAP/hypoxia inducible factor-1α (HIF-1α) transcription hub connecting HG-SOC cells, endothelial cells and activated fibroblasts, hence fueling persistent DNA damage signal escape. The ET-1R antagonist macitentan, which dismantles the ET-1R-mediated p53/YAP/HIF-1α network, interferes with HG-SOC/stroma interactions that blunt PARPi efficacy. Pharmacological ET-1R inhibition by macitentan in orthotopic HG-SOC patient-derived xenografts synergizes with olaparib to suppress metastatic progression, enhancing PARPi survival benefit. These findings reveal ET-1R as a mechanistic determinant in the regulation of HG-SOC/TME crosstalk and DNA damage response, indicating the use of macitentan in combinatorial treatments with PARPi as a promising and emerging therapy.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy.
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Francesca Paolini
- Tumor Immunology and Immunotherapy Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- Pathology Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Tonon
- Center for Omics Sciences (COSR) and Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
47
|
Dabbs DJ, Huang RS, Ross JS. Novel markers in breast pathology. Histopathology 2023; 82:119-139. [PMID: 36468266 DOI: 10.1111/his.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Breast pathology is an ever-expanding database of information which includes markers, or biomarkers, that detect or help treat the disease as prognostic or predictive information. This review focuses on these aspects of biomarkers which are grounded in immunohistochemistry, liquid biopsies and next-generation sequencing.
Collapse
Affiliation(s)
- David J Dabbs
- PreludeDx, Laguna Hills, CA, USA.,Department of Pathology, University of Pittsburgh, Board Member, CASI (Consortium for Analytical Standardization in Immunohistochemistry), Pittsburgh, PA, USA
| | - Richard S Huang
- Clinical Development, Foundation Medicine, Cambridge, MA, USA
| | | |
Collapse
|
48
|
Perez-Castro L, Garcia R, Venkateswaran N, Barnes S, Conacci-Sorrell M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J 2023; 290:7-27. [PMID: 34687129 PMCID: PMC9883803 DOI: 10.1111/febs.16245] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Barnes
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
49
|
Zhu T, Zheng JY, Huang LL, Wang YH, Yao DF, Dai HB. Human PARP1 substrates and regulators of its catalytic activity: An updated overview. Front Pharmacol 2023; 14:1137151. [PMID: 36909172 PMCID: PMC9995695 DOI: 10.3389/fphar.2023.1137151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a key DNA damage sensor that is recruited to damaged sites after DNA strand breaks to initiate DNA repair. This is achieved by catalyzing attachment of ADP-ribose moieties, which are donated from NAD+, on the amino acid residues of itself or other acceptor proteins. PARP inhibitors (PARPi) that inhibit PARP catalytic activity and induce PARP trapping are commonly used for treating BRCA1/2-deficient breast and ovarian cancers through synergistic lethality. Unfortunately, resistance to PARPi frequently occurs. In this review, we present the novel substrates and regulators of the PARP1-catalyzed poly (ADP-ribosyl)ation (PARylatison) that have been identified in the last 3 years. The overall aim is the presentation of protein interactions of potential therapeutic intervention for overcoming the resistance to PARPi.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju-Yan Zheng
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Ling Huang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hong Wang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di-Fei Yao
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Bin Dai
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Gadducci A, Cosio S. Trabectedin and lurbinectedin: Mechanisms of action, clinical impact, and future perspectives in uterine and soft tissue sarcoma, ovarian carcinoma, and endometrial carcinoma. Front Oncol 2022; 12:914342. [PMID: 36408147 PMCID: PMC9671549 DOI: 10.3389/fonc.2022.914342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The ecteinascidins trabectedin and lurbinectedin are very interesting antineoplastic agents, with a favorable toxicity profile and peculiar mechanisms of action. These drugs form adducts in the minor groove of DNA, which produce single-strand breaks (SSBs) and double-strand breaks (DSBs) and trigger a series of events resulting in cell cycle arrest and apoptosis. Moreover, the ecteinascidins interact with the tumor microenvironment, reduce the number of tumor-associated macrophages, and inhibit the secretion of cytokines and chemokines. Trabectedin has been approved by the Federal Drug Administration (FDA) for patients with unresectable or metastatic liposarcoma or leiomyosarcoma who received a prior anthracycline-based regimen. Moreover, trabectedin in combination with pegylated liposomal doxorubicin (PLD) has been approved in the European Union for the treatment of platinum-sensitive recurrent ovarian cancer. Lurbinectedin has been approved by the FDA for patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. The review assesses in vitro and in vivo experimental studies on the antineoplastic effects of both ecteinascidins as well as the clinical trials on the activity of trabectedin in uterine sarcoma and ovarian carcinoma and of lurbinectedin in ovarian carcinoma and endometrial carcinoma.
Collapse
|