1
|
Silva-Lagos L, Ijaz A, Buwalda P, Kassai S, Klostermann CE, Leemhuis H, Veldhuizen EJA, Schols HA, López-Velázquez G, de Vos P. Immunostimulatory effects of isomalto/malto-polysaccharides via TLR2 and TLR4 in preventing doxycycline-induced cytokine loss. Carbohydr Polym 2025; 350:122980. [PMID: 39647934 DOI: 10.1016/j.carbpol.2024.122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
Isomalto/malto-polysaccharides (IMMPs) are α-glucans with prebiotic potential used as food ingredients. However, their ability to exert direct cellular effects remains unknown. IMMPs may enhance immunity by activating toll-like receptors (TLRs), key for defense against pathogens. Doxycycline is an antibiotic that requires an effective immune function but paradoxically has immune-attenuating effects by reducing TLR2 activity, potentially increasing antibiotic needs. We hypothesize that IMMPs are recognized by various cell surface TLRs, leading to the activation of the NF-κB signaling pathway. Furthermore, IMMPs' immune-stimulating effect could prevent the doxycycline-induced reduction of TLR2 activity in immune cells. IMMPs activated TLR2, increasing NF-κB signaling by 3.42- and 6.37-fold at 1 and 2 mg/mL, respectively. TLR4 activation increased 5.47-, 7.39-, and 8.34-fold at 0.5, 1, and 2 mg/mL. IMMPs enhanced IL-8, TNFα, and IL1-RA production in THP-1 monocytes. Additionally, preincubation of macrophages with IMMPs enhanced cytokine production and partially prevented doxycycline-induced cytokine reduction in response to TLR2 activation. Molecular docking analyses support IMMPs and doxycycline binding to these TLRs. These findings suggest that IMMPs stimulate immunity via TLR2 and TLR4, partially mitigating doxycycline's adverse effects. This provides a dietary strategy to enhance pathogen clearance, reduce antibiotic needs, and support immune health.
Collapse
Affiliation(s)
- Luis Silva-Lagos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Adil Ijaz
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| | - P Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands; Innovation Center, Royal Avebe, Groningen, the Netherlands
| | - Sonia Kassai
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Hans Leemhuis
- Innovation Center, Royal Avebe, Groningen, the Netherlands
| | - Edwin J A Veldhuizen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Cuidad de México, Mexico
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Zeng Y, Cheng H, Zhong R, Zhong W, Zheng R, Miao J. Novel immunomodulatory peptides from hydrolysates of the Rana spinosa (Quasipaa spinosa) meat and their immunomodulatory activity mechanism. Food Chem 2025; 465:142024. [PMID: 39561595 DOI: 10.1016/j.foodchem.2024.142024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
In this study, hydrolysates of Rana spinosa meat were purified and characterized, and combined with molecular docking to screen potential immunomodulatory peptides and explore their activities and mechanisms of action. The results showed that 582 peptides were identified from the hydrolysates, and three novel immunomodulatory peptides, GIHETTYNS (1020.4512 Da), IADRMQKE (989.4964 Da), and IVRDIKEK (999.6077 Da), were obtained by molecular docking. These peptides significantly increased the proliferative activity of RAW264.7 cells and accelerated its cell cycle proceeding, promoted the production of NO, IL-6, and TNF-α, and enhanced ROS levels. The molecular docking analysis revealed that immunomodulatory peptides bound to the key regions of TLR4/MD-2 by hydrogen bonds and hydrophobic interactions, and the common sites of action were LYS A:458, ARG A:434, and ARG D: 90. Furthermore, these immunomodulatory peptides had favorable safety and stability properties in silico analysis. These novel peptides are expected to be new natural materials for immunomodulators.
Collapse
Affiliation(s)
- Yan Zeng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongyi Cheng
- Zhejiang Key Laboratory for Wildlife Biotechnology and Conservation and Utilization, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Wanying Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongquan Zheng
- Zhejiang Key Laboratory for Wildlife Biotechnology and Conservation and Utilization, Zhejiang Normal University, Jinhua, Zhejiang 321004, China..
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Li S, An M, Zhao Y, Zhao W, Li P, Du B. Immunomodulatory peptides from sturgeon cartilage: Isolation, identification, molecular docking and effects on RAW264.7 cells. Food Chem X 2024; 24:101863. [PMID: 39431208 PMCID: PMC11488438 DOI: 10.1016/j.fochx.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Sturgeons (Acipenseridae), ancient fish known for their caviar, produce underutilized by-products like protein-rich cartilage, which is a source of high-quality bioactive peptides. This study investigates immunomodulatory peptides from sturgeon cartilage hydrolysates mechanisms. The study found that sturgeon cartilage hydrolysate F2-7 and its key peptides(DHVPLPLP and HVPLPLP)significantly promoted RAW267.4 cell proliferation, NO release, and phagocytosis (P < 0.001).Additionally, western blotting confirmed that F2-7 enhances immune response by increasing the expression of P-IKKα/β, IΚΚ, p65, and P-p65 proteins in the NF-κB signalling pathway (P < 0.01). Molecular docking further demonstrated that DHVPLPLP and HVPLPLP bind to NF-κB pathway proteins via hydrogen bonding, with low estimated binding energies (-2.75 and -1.64; -6.04 and -4.75 kcal/mol), thus establishing their role as key immune peptides in F2-7. Therefore, DHVPLPLP and HVPLPLP have the potential to be developed as dietary supplements for immune enhancement. Their ability to enhance immune function provides a theoretical basis for novel immune supplements.
Collapse
Affiliation(s)
- Shuchan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Miaoqing An
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxuan Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Agura T, Shin S, Jo H, Jeong S, Ahn H, Pang SY, Lee J, Park JH, Kim Y, Kang JS. Aptamin C enhances anti-cancer activity NK cells through the activation of STAT3: a comparative study with vitamin C. Anat Cell Biol 2024; 57:408-418. [PMID: 39048513 PMCID: PMC11424563 DOI: 10.5115/acb.24.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024] Open
Abstract
Vitamin C is a well-known antioxidant with antiviral, anticancer, and anti-inflammatory properties based on its antioxidative function. Aptamin C, a complex of vitamin C with its specific aptamer, has been reported to maintain or even enhance the efficacy of vitamin C while increasing its stability. To investigate in vivo distribution of Aptamin C, Gulo knockout mice, which, like humans, cannot biosynthesize vitamin C, were administered Aptamin C orally for 2 and 4 weeks. The results showed higher vitamin C accumulation in all tissues when administered Aptamin C, especially in the spleen. Next, the activity of natural killer (NK) cells were conducted. CD69, a marker known for activating for NK cells, which had decreased due to vitamin C deficiency, did not recover with vitamin C treatment but showed an increasing with Aptamin C. Furthermore, the expression of CD107a, a cell surface marker that increases during the killing process of target cells, also did not recover with vitamin C but increased with Aptamin C. Based on these results, when cultured with tumor cells to measure the extent of tumor cell death, an increase in tumor cell death was observed. To investigate the signaling mechanisms and related molecules involved in the proliferation and activation of NK cells by Aptamin C showed that Aptamin C treatment led to an increase in intracellular STAT3 activation. In conclusion, Aptamin C has a higher capability to activate NK cells and induce tumor cell death compared to vitamin C and it is mediated through the activation of STAT3.
Collapse
Affiliation(s)
- Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seulgi Shin
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Research and Development, N Therapeutics Co., Ltd., Seoul, Korea
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - So Young Pang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Lu X, Liu L, Zhang H, Lu H, Tian T, Du B, Li P, Yu Y, Zhou J, Lu H. High-Yield Expressed Human Ferritin Heavy-Chain Nanoparticles in K. marxianus for Functional Food Development. Foods 2024; 13:2919. [PMID: 39335848 PMCID: PMC11431416 DOI: 10.3390/foods13182919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The use of Generally Recognized as Safe (GRAS)-grade microbial cell factories to produce recombinant protein-based nutritional products is a promising trend in developing food and health supplements. In this study, GRAS-grade Kluyveromyces marxianus was employed to express recombinant human heavy-chain ferritin (rhFTH), achieving a yield of 11 g/L in a 5 L fermenter, marking the highest yield reported for ferritin nanoparticle proteins to our knowledge. The rhFTH formed 12 nm spherical nanocages capable of ferroxidase activity, which involves converting Fe2+ to Fe3+ for storage. The rhFTH-containing yeast cell lysates promoted cytokine secretion (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β)) and enhanced locomotion, pharyngeal pumping frequency, egg-laying capacity, and lifespan under heat and oxidative stress in the RAW264.7 mouse cell line and the C. elegans model, respectively, whereas yeast cell lysate alone had no such effects. These findings suggest that rhFTH boosts immunity, holding promise for developing ferritin-based food and nutritional products and suggesting its adjuvant potential for clinical applications of ferritin-based nanomedicine. The high-yield production of ferritin nanoparticles in K. marxianus offers a valuable source of ferritin for the development of ferritin-based products.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Liping Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Haibo Zhang
- North America Nutrition Research and Development Society, Guangzhou Aoungo Biotech Co., Ltd., Guangzhou 510310, China
| | - Haifang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Tian Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Sauer L, Sato A, Davies HD. Therapeutics Pipeline. Pediatr Clin North Am 2024; 71:481-498. [PMID: 38754937 DOI: 10.1016/j.pcl.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Children have unique physiologic, developmental, and psychosocial needs and unique vulnerabilities, making them a challenging population for which to develop therapeutics. This is particularly apparent in the urgent and chaotic environment of a pandemic or outbreak. Advances in the development of medical countermeasures (MCMs) for pediatric populations have grown substantially over the last decade, and the coronavirus disease 2019 pandemic forced advancements in how we approach pediatric MCM development. Consequently, a MCMs pipeline targeting the pediatric population is essential. This article addresses the challenges inherent in these differences that must be taken into account.
Collapse
Affiliation(s)
- Lauren Sauer
- GCHS, Special Pathogen Research Network, Department of Environmental, Agricultural and Occupational Health, UNMC College of Public Health, 984355 Nebraska Medical Center, Omaha, NE, USA
| | - Alice Sato
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Nebraska Medical Center, 987810, Nebraska Medical Center, Omaha, NE 68198-7810, USA
| | - Herbert Dele Davies
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Nebraska Medical Center, 987810, Nebraska Medical Center, Omaha, NE 68198-7810, USA; Academic Affairs, University of Nebraska Medical Center, 987810 Nebraska Medical Center, Omaha, NE 68198-7810, USA.
| |
Collapse
|
9
|
Sur S, Bhartiya P, Steele R, Brennan M, DiPaolo RJ, Ray RB. Momordicine-I Suppresses Head and Neck Cancer Growth by Reprogrammimg Immunosuppressive Effect of the Tumor-Infiltrating Macrophages and B Lymphocytes. Mol Cancer Ther 2024; 23:672-682. [PMID: 38315993 PMCID: PMC11065610 DOI: 10.1158/1535-7163.mct-23-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Head and neck cancer (HNC) is prevalent worldwide, and treatment options are limited. Momordicine-I (M-I), a natural component from bitter melon, shows antitumor activity against these cancers, but its mechanism of action, especially in the tumor microenvironment (TME), remains unclear. In this study, we establish that M-I reduces HNC tumor growth in two different immunocompetent mouse models using MOC2 and SCC VII cells. We demonstrate that the anticancer activity results from modulating several molecules in the monocyte/macrophage clusters in CD45+ populations in MOC2 tumors by single-cell RNA sequencing. Tumor-associated macrophages (TAM) often pose a barrier to antitumor effects, but following M-I treatment, we observe a significant reduction in the expression of Sfln4, a myeloid cell differentiation factor, and Cxcl3, a neutrophil chemoattractant, in the monocyte/macrophage populations. We further find that the macrophages must be in close contact with the tumor cells to inhibit Sfln4 and Cxcl3, suggesting that these TAMs are impacted by M-I treatment. Coculturing macrophages with tumor cells shows inhibition of Agr1 expression following M-I treatment, which is indicative of switching from M2 to M1 phenotype. Furthermore, the total B-cell population in M-I-treated tumors is significantly lower, whereas spleen cells also show similar results when cocultured with MOC2 cells. M-I treatment also inhibits PD1, PD-L1, and FoxP3 expression in tumors. Collectively, these results uncover the potential mechanism of M-I by modulating immune cells, and this new insight can help to develop M-I as a promising candidate to treat HNCs, either alone or as adjuvant therapy.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Pradeep Bhartiya
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Michelle Brennan
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
| | - Richard J. DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
10
|
Park YM, Lee HY, Shin DY, Kim SH, Yoo Y, Kim MJ, Kim MJ, Yang HJ, Park KH. Augmentation of NK-cell activity and immunity by combined natural polyphenols and saccharides in vitro and in vivo. Int J Biol Macromol 2024; 268:131908. [PMID: 38679269 DOI: 10.1016/j.ijbiomac.2024.131908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Curcuma longa and Sargassum coreanum are commonly used in traditional pharmaceutical medicine to improve immune function in chronic diseases. The present study was designed to systematically elucidate the in vitro and in vivo immuno-enhancing effects of a combination of C. longa and S. coreanum extracts (CS) that contain polyphenols and saccharides as functional molecules in a cyclophosphamide (Cy)-induced model of immunosuppression. In primary splenocytes, we observed the ameliorative effects of CS on a Cy-induced immunosuppression model with low cytotoxicity and an optimal mixture procedure. CS treatment enhanced T- and B-cell proliferation, increased splenic natural killer-cell activity, and restored cytokine release. Wistar rats were orally administered low (30 mg/kg), intermediate (100 mg/kg), or high (300 mg/kg) doses of CS for four weeks, followed by oral administration of Cy (5 mg/kg) for four weeks. Compared with the vehicle group, low-, intermediate-, and high-dose CS treatment accelerated dose-dependent recovery of the serum level of tumor necrosis factor-α, interferon-γ, interleukin-2, and interleukin-12. These results suggest that CS treatment accelerates the amelioration of immune deficiency in Cy-treated primary splenocytes and rats, which supports considering it for immunity maintenance. Our findings provide experimental evidence for further research and clinical application in immunosuppressed patients.
Collapse
Affiliation(s)
- Young Mi Park
- INVIVO Co. Ltd., 121, Nonsan 32992, Republic of Korea; Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan 54651, Republic of Korea
| | - Hak Yong Lee
- INVIVO Co. Ltd., 121, Nonsan 32992, Republic of Korea
| | | | - Suk Hun Kim
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Yeol Yoo
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Min Ji Kim
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Min Jung Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hye Jeong Yang
- Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue and Department of Oriental Pharmaceutical Development, Nambu University, Gwangju 62271, Republic of Korea; Department of Emergency Medicine and BioMedical Science Graduate Program (BMSGP), Chonnam National University, Gwangju 61469, Republic of Korea.
| |
Collapse
|
11
|
Jang S, Kim S, Kim SJ, Kim JY, Gu DH, So BR, Ryu JA, Park JM, Yoon SR, Jung SK. Innate Immune-Enhancing Effect of Pinus densiflora Pollen Extract via NF-κB Pathway Activation. J Microbiol Biotechnol 2024; 34:644-653. [PMID: 38213288 PMCID: PMC11016773 DOI: 10.4014/jmb.2309.09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/β and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.
Collapse
Affiliation(s)
- Sehyeon Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun Young Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da Hye Gu
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo Ram So
- COSMAX NBT, INC., Seongnam 13486, Republic of Korea
| | - Jung A Ryu
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Jeong Min Park
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Sung Ran Yoon
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
12
|
Casais R, Iglesias N, Sevilla IA, Garrido JM, Balseiro A, Dominguez M, Juste RA. Non-specific effects of inactivated Mycobacterium bovis oral and parenteral treatment in a rabbit scabies model. Vet Res 2024; 55:41. [PMID: 38532491 DOI: 10.1186/s13567-024-01293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
Tuberculosis BCG vaccination induced non-specific protective effects in humans led to postulate the concept of trained immunity (TRAIM) as an innate type of immune mechanism that triggered by a pathogen, protects against others. Killed vaccines have been considered not to be effective. However, field efficacy of a commercial vaccine against paratuberculosis, as well as of a recently developed M. bovis heat-inactivated vaccine (HIMB) prompted to test whether it could also induce TRAIM. To this, we used a sarcoptic mange rabbit model. Twenty-four weaned rabbits were treated orally or subcutaneously with a suspension of either HIMB (107 UFC) or placebo. Eighty-four days later the animals were challenged with approximately 5000 S. scabiei mites on the left hind limb. Skin lesion extension was measured every 2 weeks until 92 days post-infection (dpi). Two animals were killed at 77 dpi because of extensive skin damage. The rest were euthanized and necropsied and the lesion area and the mite burden per squared cm were estimated. Specific humoral immune responses to S. scabiei and to M. bovis were investigated with the corresponding specific ELISA tests. Subcutaneously and orally HIMB vaccinated animals compared with placebo showed reduced lesion scores (up to 74% and 62%, respectively) and mite counts (-170% and 39%, respectively). This, together with a significant positive correlation (r = 0.6276, p = 0.0031) between tuberculosis-specific antibodies and mite count at 92 dpi supported the hypothesis of non-specific effects of killed mycobacterial vaccination. Further research is needed to better understand this mechanism to maximize cross protection.
Collapse
Affiliation(s)
- Rosa Casais
- Area de Sanidad Animal, SERIDA, 33394, Gijon, Asturias, Spain
- NySA Group, SERIDA, 33300, Villaviciosa, Asturias, Spain
| | - Natalia Iglesias
- Area de Sanidad Animal, SERIDA, 33394, Gijon, Asturias, Spain
- NySA Group, SERIDA, 33300, Villaviciosa, Asturias, Spain
| | - Iker A Sevilla
- Departamento de Sanidad Animal, NEIKER-BRTA, 48160, Derio, Bizkaia, Spain
| | - Joseba M Garrido
- Departamento de Sanidad Animal, NEIKER-BRTA, 48160, Derio, Bizkaia, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, León, Spain
- NySA Group, SERIDA, 33300, Villaviciosa, Asturias, Spain
| | - Mercedes Dominguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Ramon A Juste
- Departamento de Sanidad Animal, NEIKER-BRTA, 48160, Derio, Bizkaia, Spain.
- NySA Group, SERIDA, 33300, Villaviciosa, Asturias, Spain.
| |
Collapse
|
13
|
Yang Y, Yuan L, Wang K, Lu D, Meng F, Xu D, Li W, Nan Y. The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy. Molecules 2024; 29:1424. [PMID: 38611704 PMCID: PMC11012976 DOI: 10.3390/molecules29071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Tumors have a huge impact on human life and are now the main cause of disease-related deaths. The main means of treatment are surgery and radiotherapy, but they are more damaging to the organism and have a poor postoperative prognosis. Therefore, we urgently need safe and effective drugs to treat tumors. In recent years, Chinese herbal medicines have been widely used in tumor therapy as complementary and alternative therapies. Medicinal and edible herbs are popular and have become a hot topic of research, which not only have excellent pharmacological effects and activities, but also have almost no side effects. Therefore, as a typical medicine and food homology, some components of Paeoniae Radix Alba (PRA, called Baishao in China) have been shown to have good efficacy and safety against cancer. Numerous studies have also shown that Paeoniae Radix Alba and its active ingredients treat cancer through various pathways and are also one of the important components of many antitumor herbal compound formulas. In this paper, we reviewed the literature on the intervention of Paeoniae Radix Alba in tumors and its mechanism of action in recent years and found that there is a large amount of literature on its effect on total glucosides of paeony (TGP) and paeoniflorin (PF), as well as an in-depth discussion of the mechanism of action of Paeoniae Radix Alba and its main constituents, with a view to promote the clinical development and application of Paeoniae Radix Alba in the field of antitumor management.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Kaili Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital, Ningxia Medical University, Wuzhong 751100, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
14
|
Zhang R, Guan S, Meng Z, Zhang D, Lu J. Ginsenoside Rb1 alleviates 3-MCPD-induced renal cell pyroptosis by activating mitophagy. Food Chem Toxicol 2024; 186:114522. [PMID: 38373586 DOI: 10.1016/j.fct.2024.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Ginsenoside Rb1 (Gs-Rb1) is among the most significant effective pharmacological components in ginseng. 3-monochloropropane-1,2-diol (3-MCPD), a chloropropanol-like contaminant, is produced in the production of refined oils and thermal processing of food. Pyroptosis is a type of programmed cell death triggered by inflammasomes. Excessive pyroptosis causes kidney injury and inflammation. Previous studies have revealed that 3-MCPD induced pyroptosis in mice and NRK-52E cells. In the present study, we find that Gs-Rb1 attenuates 3-MCPD-induced renal cell pyroptosis by assaying GSDMD-N, caspase-1, IL-18, and IL-1β in mice and NRK-52E cells. In further mechanistic studies, we show that Gs-Rb1 removes damaged mitochondria via mitophagy and reduces intracellular reactive oxygen species (ROS) generation, therefore alleviating 3-MCPD-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) activation and pyroptosis. The above results are further validated by the addition of autophagy inhibitor Chloroquine (CQ) and mitophagy inhibitor Cyclosporin A (CsA). Afterward, we explore how Gs-Rb1 activated mitophagy in vitro. We determine that Gs-Rb1 enhances the protein expression and nuclear translocation of Transcription factor EB (TFEB). However, silencing of the TFEB gene by small interfering RNA technology reverses the role of Gs-Rb1 in activating mitophagy. Therefore, we conclude that 3-MCPD damages mitochondria and leads to ROS accumulation, which causes NLRP3 activation and pyroptosis in ICR mice and NRK-52E cells, while Gs-Rb1 mitigates this phenomenon via the TFEB-mitophagy pathway. Our findings may provide new insights for understanding the molecular mechanisms by which Gs-Rb1 mitigates renal injury.
Collapse
Affiliation(s)
- Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Zhuoqun Meng
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
15
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
16
|
Wang D, Li H, Hou TY, Zhang ZJ, Li HZ. Effects of conjugated interactions between Perilla seed meal proteins and different polyphenols on the structural and functional properties of proteins. Food Chem 2024; 433:137345. [PMID: 37666124 DOI: 10.1016/j.foodchem.2023.137345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The study aims to perform alkali-induced covalent modification of perilla seed meal protein (PSMP) using different polyphenols: gallic acid (GA), protocatechuic acid (PCA), caffeic acid (CA), apigenin (API) and luteolin (LU). Covalent binding between different polyphenols and PSMP was found to occur, with PSMP-LU showing the highest binding rate of 90.89 ± 1.37 mg/g; the fluorescence spectrum of PSMP-CA showed a maximum blue shift of Δ13.4 nm; the solubility increased from 69.626 ± 1.39 % to 83.102 ± 0.98 %. In order to better understand how these covalent conjugates, stabilize -carotene in emulsions, they were utilized as emulsifiers in an emulsion delivery method. The work further reveals the formation of PSMP-polyphenol conjugates and develops a novel emulsification system to deliver readily decomposable functional factors, providing a potential scenario for the application of PSMP and bioactive conjugates.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - He Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Tian-Yu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Zhi-Jun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Hui-Zhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
17
|
Kim ME, Lee JS. The Potential of Korean Bioactive Substances and Functional Foods for Immune Enhancement. Int J Mol Sci 2024; 25:1334. [PMID: 38279334 PMCID: PMC10816026 DOI: 10.3390/ijms25021334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
In this review, we explore the immunomodulatory properties of Korean foods, focusing on ginseng and fermented foods. One notable example is Korean red ginseng, known for its immune system-regulating effects attributed to the active ingredient, ginsenoside. Ginsenoside stimulates immune cells, enhancing immune function and suppressing inflammatory responses. With a long history, Korean red ginseng has demonstrated therapeutic effects against various diseases. Additionally, Korean fermented foods like kimchi, doenjang, chongkukjang, gochujang, vinegar, and jangajji provide diverse nutrients and bioactive substances, contributing to immune system enhancement. Moreover, traditional Korean natural herbs such as Cirsium setidens Nakai, Gomchwi, Beak-Jak-Yak, etc. possess immune-boosting properties and are used in various Korean foods. By incorporating these foods into one's diet, one can strengthen their immune system, positively impacting their overall health and well-being.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Department of Biological Science, Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
18
|
Silva Lagos L, Klostermann CE, López-Velázquez G, Fernández-Lainez C, Leemhuis H, Oudhuis AACML, Buwalda P, Schols HA, de Vos P. Crystal type, chain length and polydispersity impact the resistant starch type 3 immunomodulatory capacity via Toll-like receptors. Carbohydr Polym 2024; 324:121490. [PMID: 37985084 DOI: 10.1016/j.carbpol.2023.121490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Food ingredients that can activate and improve immunological defense, against e.g., pathogens, have become a major field of research. Resistant starches (RSs) can resist enzymes in the upper gastrointestinal (GI) tract and induce health benefits. RS-3 physicochemical characteristics such as chain length (DP), A- or B-type crystal, and polydispersity index (PI) might be crucial for immunomodulation by activating human toll-like receptors (hTLRs). We hypothesize that crystal type, DP and PI, alone or in combination, impact the recognition of RS-3 preparations by hTLRs leading to different RS-3 immunomodulatory effects. We studied the activation of hTLR2, hTLR4, and hTLR5 by 0.5, 1 and 2 mg/mL of RS-3. We found strong activation of hTLR2-dependent NF-kB activation with PI <1.25, DP 18 as an A- or B-type crystal. At different doses, NF-kB activation was increased from 6.8 to 7.1 and 10-fold with A-type and 6.2 to 10.2 and 14.4-fold with B-type. This also resulted in higher cytokine production in monocytes. Molecular docking, using amylose-A and B, demonstrated that B-crystals bind hTLR2 promoting hTLR2-1 dimerization, supporting the stronger effects of B-type crystals. Immunomodulatory effects of RS-3 are predominantly hTLR2-dependent, and activation can be tailored by managing crystallinity, chain length, and PI.
Collapse
Affiliation(s)
- Luis Silva Lagos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Cuidad de México, Mexico
| | - Cynthia Fernández-Lainez
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Laboratorio de Errores innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Hans Leemhuis
- Innovation Center, Royal Avebe, Groningen, the Netherlands
| | | | - Piet Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands; Innovation Center, Royal Avebe, Groningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
19
|
Januszewski J, Forma A, Zembala J, Flieger M, Tyczyńska M, Dring JC, Dudek I, Świątek K, Baj J. Nutritional Supplements for Skin Health-A Review of What Should Be Chosen and Why. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:68. [PMID: 38256329 PMCID: PMC10820017 DOI: 10.3390/medicina60010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Supplementation of micronutrients is considered to be crucial in the reinforcement of the skin's barrier. In this paper, 14 nutritional compounds commonly used in food or pharmaceutic industries were analyzed in terms of influencing skin conditions. The major objective of this paper was to provide a narrative review of the available literature regarding several chosen compounds that are currently widely recommended as supplements that aim to maintain proper and healthy skin conditions. We conducted a review of the literature from PubMed, Scopus, and Web of Science until September 2023 without any other restrictions regarding the year of the publication. Ultimately, we reviewed 238 articles, including them in this review. Each of the reviewed compounds, including vitamin A, vitamin C, vitamin D, vitamin E, curcumin, chlorella, Omega-3, biotin,Ppolypodium leucotomos, Simmondsia chinesis, gamma oryzanol, olive leaf extract, spirulina, and astaxanthin, was observed to present some possible effects with promising benefits for a skin condition, i.e., photoprotective radiation. Adding them to the diet or daily routine might have a positive influence on some skin inflammatory diseases such as atopic dermatitis or psoriasis. Further, UV radiation protection facilitated by some supplements and their impact on human cells might be helpful during chemotherapy or in preventing melanoma development. Further research is needed because of the lack of clear consensus regarding the doses of the described compounds that could provide desirable effects on the skin.
Collapse
Affiliation(s)
- Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-004 Warsaw, Poland;
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Magdalena Tyczyńska
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - James Curtis Dring
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Kamila Świątek
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| |
Collapse
|
20
|
Chen H, Li X, Chi H, Li Z, Wang C, Wang Q, Feng H, Li P. A Qualitative Analysis of Cultured Adventitious Ginseng Root's Chemical Composition and Immunomodulatory Effects. Molecules 2023; 29:111. [PMID: 38202694 PMCID: PMC10780104 DOI: 10.3390/molecules29010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The cultivation of ginseng in fields is time-consuming and labor-intensive. Thus, culturing adventitious ginseng root in vitro constitutes an effective approach to accumulating ginsenosides. In this study, we employed UPLC-QTOF-MS to analyze the composition of the cultured adventitious root (cAR) of ginseng, identifying 60 chemical ingredients. We also investigated the immunomodulatory effect of cAR extract using various mouse models. The results demonstrated that the cAR extract showed significant activity in enhancing the immune response in mice. The mechanism underlying the immunomodulatory effect of cAR was analyzed through network pharmacology analysis, revealing potential 'key protein targets', namely TNF, AKT1, IL-6, VEGFA, and IL-1β, affected by potential 'key components', namely the ginsenosides PPT, F1, Rh2, CK, and 20(S)-Rg3. The signaling pathways PI3K-Akt, AGE-RAGE, and MAPK may play a vital role in this process.
Collapse
Affiliation(s)
- Hong Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Xiangzhu Li
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Hang Chi
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China;
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| |
Collapse
|
21
|
Zeng Y, Yin H, Zhou X, Wang C, Zhou B, Wang B, Tang B, Huang L, Chen X, Zou X. Effect of replacing inorganic iron with iron-rich microbial preparations on growth performance, serum parameters and iron metabolism of weaned piglets. Vet Res Commun 2023; 47:2017-2025. [PMID: 37402083 DOI: 10.1007/s11259-023-10162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
This study aimed to investigate the effects of replacing of dietary inorganic iron with iron-rich Lactobacillus plantarum and iron-rich Candida utilis on the growth performance, serum parameters, immune function and iron metabolism of weaned piglets. Fifty-four 28-day-old healthy Duroc × Landrace × Yorkshire castrated male weanling piglets of similar body weight were randomly and equally divided into three groups. The piglets were kept in three pens per group, with six pigs in each pen. The dietary treatments were (1) a basal diet + ferrous sulfate preparation containing 120 mg/kg iron (CON); (2) a basal diet + iron-rich Candida utilis preparation containing 120 mg/kg iron (CUI); and (3) a basal diet + iron-rich Lactobacillus plantarum preparation containing 120 mg/kg iron (LPI). The entire feeding trial lasted for 28 days, after which blood, viscera, and intestinal mucosa were collected. The results showed no significant difference in growth parameters and organ indices of the heart, liver, spleen, lung, and kidney of weaned piglets when treated with CUI and LPI compared with the CON group (P > 0.05). However, CUI and LPI significantly reduced the serum contents of AST, ALP, and LDH (P < 0.05). Serum ALT content was significantly lower in the LPI treatment compared to the CON group (P < 0.05). Compared to CON, CUI significantly increased the contents of serum IgG and IL-4 (P < 0.05), and CUI significantly decreased the content of IL-2. LPI significantly increased the contents of serum IgA, IgG, IgM and IL-4 (P < 0.05), while LPI significant decreased the levels of IL-1β, IL-2, IL-6, IL-8, and TNF-α compared to CON (P < 0.05). CUI led to a significant increase in ceruloplasmin activity and TIBC (P < 0.05). LPI significantly increased the contents of serum Fe and ferritin, and increased the serum ceruloplasmin activity and TIBC compared to CON (P < 0.05). Furthermore, CUI resulted in a significant increase in the relative mRNA expression of FPN1 and DMT1 in the jejunal mucosa (P < 0.05). LPI significantly increased the relative mRNA expression of TF, FPN1, and DMT1 in the jejunal mucosa (P < 0.05). Based on these results, the replacement of dietary inorganic iron with an iron-rich microbial supplement could improve immune function, iron absorption and storage in piglets.
Collapse
Affiliation(s)
- Yan Zeng
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Hongmei Yin
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Xiaoling Zhou
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Chunping Wang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha, 410009, China
- College of Pharmacy, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha Medical University, Changsha, 410219, China
| | - Bin Wang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Bingxuan Tang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Lihong Huang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Xian Chen
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Xiaoyan Zou
- College of Pharmacy, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
22
|
Li Z, Lee JE, Cho N, Yoo HM. Anti-viral effect of usenamine a using SARS-CoV-2 pseudo-typed viruses. Heliyon 2023; 9:e21742. [PMID: 38027904 PMCID: PMC10656252 DOI: 10.1016/j.heliyon.2023.e21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The escalating pandemic brought about by the novel SARS-CoV-2 virus is threatening global health, and thus, it is necessary to develop effective antiviral drugs. Usenamine A is a dibenzo-furan derivative separated from lichen Usnea diffracta showing broad-spectrum activity against different viruses. We evaluate that usenamine A has antiviral effects against novel SARS-CoV-2 Delta variant pseudotyped viruses (PVs) in A549 cells. In addition, usenamine A significantly suppresses SARS-CoV-2 PV-induced mitochondrial depolarization, elevated reactive oxygen species (ROS) levels, apoptosis, and inflammation. Usenamine A also causes the SARS-CoV-2 spike protein to become less stable. Thus, usenamine A shows potential as an antiviral drug that can provide protection against COVID-19.
Collapse
Affiliation(s)
- Zijun Li
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Joo-Eun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
23
|
Cisneros-Zevallos L, Maghoumi M, Lopez-Torres M, Beltran-Maldonado B. Transforming stressed plants into healthy foods. Curr Opin Biotechnol 2023; 83:102980. [PMID: 37536039 DOI: 10.1016/j.copbio.2023.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
This paper presents the current status of transforming stressed plants into healthy foods and the future trends in this emerging field. Herein, we describe the three major key elements to advance this field, including a better understanding of the mode of action of oxidative stress on nutraceutical biosynthesis under pre- and postharvest scenarios either converting plants into biofactories of nutraceuticals or creating 'functional fresh produce' while preserving quality. We discuss the need of designing healthy products based on stressed fresh produce and by-products and present a pragmatic strategy to enhance nutraceuticals in plants, and finally we propose designing appropriate studies with stressed plants targeting immunomodulatory properties to determine preventive and therapeutic effects against chronic diseases and the appropriate recommended dose.
Collapse
Affiliation(s)
- Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States.
| | - Mahshad Maghoumi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States
| | - Manuel Lopez-Torres
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States
| | - Belem Beltran-Maldonado
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States
| |
Collapse
|
24
|
Pahade A, Bajaj P, Reche A, Shirbhate U. Immunomodulators and Their Applications in Dentistry and Periodontics: A Comprehensive Review. Cureus 2023; 15:e46653. [PMID: 37937011 PMCID: PMC10627732 DOI: 10.7759/cureus.46653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
The intricate interplay between the immune system and oral health has revealed opportunities for novel therapeutic interventions in dentistry and periodontics. This review article delves into the pivotal role of immunomodulators in orchestrating immune responses within the oral cavity and their applications in managing various oral and periodontal conditions. The oral environment faces many challenges, from microbial infections to tissue injuries, necessitating a precise immune response for optimal oral health maintenance. Characterized by their ability to modulate immune reactions, immunomodulators emerge as versatile tools for maintaining immune equilibrium. This is a comprehensive overview of the mechanisms through which immunomodulators exert their effects, shedding light on their dual role as regulators of both pro-inflammatory and anti-inflammatory pathways. The diverse applications of immunomodulators within dentistry are explored in depth. Immunomodulators exhibit promising outcomes from managing common oral conditions like gingivitis, periodontitis, and oral ulcers to enhancing the integration of dental implants and promoting wound healing post-surgery. This article highlights the various types of immunomodulatory agents utilized in dental practice, elucidating their mechanisms of action, routes of administration, dosages, and potential side effects.
Collapse
Affiliation(s)
- Abhishek Pahade
- Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pavan Bajaj
- Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Unnati Shirbhate
- Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
25
|
Ijinu TP, De Lellis LF, Shanmugarama S, Pérez-Gregorio R, Sasikumar P, Ullah H, Buccato DG, Di Minno A, Baldi A, Daglia M. Anthocyanins as Immunomodulatory Dietary Supplements: A Nutraceutical Perspective and Micro-/Nano-Strategies for Enhanced Bioavailability. Nutrients 2023; 15:4152. [PMID: 37836436 PMCID: PMC10574533 DOI: 10.3390/nu15194152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Anthocyanins (ACNs) have attracted considerable attention for their potential to modulate the immune system. Research has revealed their antioxidant and anti-inflammatory properties, which play a crucial role in immune regulation by influencing key immune cells, such as lymphocytes, macrophages, and dendritic cells. Moreover, ACNs contribute towards maintaining a balance between proinflammatory and anti-inflammatory cytokines, thus promoting immune health. Beyond their direct effects on immune cells, ACNs significantly impact gut health and the microbiota, essential factors in immune regulation. Emerging evidence suggests that they positively influence the composition of the gut microbiome, enhancing their immunomodulatory effects. Furthermore, these compounds synergize with other bioactive substances, such as vitamins and minerals, further enhancing their potential as immune-supporting dietary supplements. However, detailed clinical studies must fully validate these findings and determine safe dosages across varied populations. Incorporating these natural compounds into functional foods or supplements could revolutionize the management of immune-related conditions. Personalized nutrition and healthcare strategies may be developed to enhance overall well-being and immune resilience by fully understanding the mechanisms underlying the actions of their components. Recent advancements in delivery methods have focused on improving the bioavailability and effectiveness of ACNs, providing promising avenues for future applications.
Collapse
Affiliation(s)
- Thadiyan Parambil Ijinu
- Naturæ Scientific, Kerala University-Business Innovation and Incubation Centre, Kariavattom Campus, University of Kerala, Thiruvananthapuram 695581, India;
- The National Society of Ethnopharmacology, VRA-179, Mannamoola, Peroorkada P.O., Thiruvananthapuram 695005, India
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Rosa Pérez-Gregorio
- Food and Health Omics Group, Institute of Agroecology and Food, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain;
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Analytical and Food Chemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
26
|
Mazzio E, Barnes A, Badisa R, Fierros-Romero G, Williams H, Council S, Soliman K. Functional immune boosters; the herb or its dead microbiome? Antigenic TLR4 agonist MAMPs found in 65 medicinal roots and algae's. J Funct Foods 2023; 107:105687. [PMID: 37654434 PMCID: PMC10469438 DOI: 10.1016/j.jff.2023.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background Humans have been consuming medicinal plants (as herbs/ spices) to combat illness for centuries while ascribing beneficial effects predominantly to the plant/phytochemical constituents, without recognizing the power of obligatory resident microorganism' communities (MOCs) (live/dead bacteria, fungus, yeast, molds etc.) which remain after industrial microbial reduction methods. Very little is known about the taxonomic identity of residual antigenic microbial associated molecular patterns (MAMPs) debris in our botanical over the counter (OTC) products, which if present would be recognized as foreign (non-self) antigenic matter by host pattern recognition receptors (PRRs) provoking a host immune response; this the basis of vaccine adjuvants. As of today, only few research groups have removed the herbal MAMP biomass from herbs, all suggesting that immune activation may not be from the plant but rather its microbial biomass; a hypothesis we corroborate. Purpose The purpose of this work was to conduct a high through put screening (HTPS) of over 2500 natural plants, OTC botanical supplements and phytochemicals to elucidate those with pro-inflammatory; toll like receptor 4 (TLR4) activating properties in macrophages. Study Design The HTPS was conducted on RAW 264.7 cells vs. lipopolysaccharide (LPS) E. coli 0111:B4, testing iNOS / nitric oxide production ( NO 2 - ) as a perimeter endpoint. The data show not a single drug/chemical/ phytochemical and approximately 98 % of botanicals to be immune idle (not effective) with only 65 pro-inflammatory (hits) in a potency range of LPS. Method validation studies eliminated the possibility of false artifact or contamination, and results were cross verified through multiple vendors/ manufacturers/lot numbers by botanical species. Lead botanicals were evaluated for plant concentration of LPS, 1,3:1,6-β-glucan, 1,3:1,4-β-D-glucan and α-glucans; where the former paralleled strength in vitro. LPS was then removed from plants using high-capacity endotoxin poly lysine columns, where bioactivity of LPS null "plant" extracts were lost. The stability of E.Coli 0111:B4 in an acid stomach mimetic model was confirmed. Last, we conducted a reverse culture on aerobic plate counts (APCs) from select hits, with subsequent isolation of gram-negative bacteria (MacConkey agar). Cultures were 1) heat destroyed (retested/ confirming bioactivity) and 2) subject to taxonomical identification by genetic sequencing 18S, ITS1, 5.8 s, ITS2 28S, and 16S. Conclusion The data show significant gram negative MAMP biomass dominance in A) roots (e.g. echinacea, yucca, burdock, stinging nettle, sarsaparilla, hydrangea, poke, madder, calamus, rhaponticum, pleurisy, aconite etc.) and B) oceanic plants / algae's (e.g. bladderwrack, chlorella, spirulina, kelp, and "OTC Seamoss-blends" (irish moss, bladderwrack, burdock root etc), as well as other random herbs (eg. corn silk, cleavers, watercress, cardamom seed, tribulus, duckweed, puffball, hordeum and pollen). The results show a dominance of gram negative microbes (e.g. Klebsilla aerogenes, Pantoae agglomerans, Cronobacter sakazakii), fungus (Glomeracaea, Ascomycota, Irpex lacteus, Aureobasidium pullulans, Fibroporia albicans, Chlorociboria clavula, Aspergillus_sp JUC-2), with black walnut hull, echinacea and burdock root also containing gram positive microbial strains (Fontibacillus, Paenibacillus, Enterococcus gallinarum, Bromate-reducing bacterium B6 and various strains of Clostridium). Conclusion This work brings attention to the existence of a functional immune bioactive herbal microbiome, independent from the plant. There is need to further this avenue of research, which should be carried out with consideration as to both positive or negative consequences arising from daily consumption of botanicals highly laden with bioactive MAMPS.
Collapse
Affiliation(s)
- E. Mazzio
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - A. Barnes
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - R. Badisa
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - G. Fierros-Romero
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - H. Williams
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - S. Council
- John Gnabre Science Research Institute, Baltimore, MD 21224, United States
| | - K.F.A. Soliman
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| |
Collapse
|
27
|
Mazzio E, Barnes A, Badisa R, Council S, Soliman KFA. Plants against cancer: the immune-boosting herbal microbiome: not of the plant, but in the plant. Basic concepts, introduction, and future resource for vaccine adjuvant discovery. Front Oncol 2023; 13:1180084. [PMID: 37588095 PMCID: PMC10426289 DOI: 10.3389/fonc.2023.1180084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023] Open
Abstract
The presence of microorganism communities (MOCs) comprised of bacteria, fungi, archaea, algae, protozoa, viruses, and the like, are ubiquitous in all living tissue, including plant and animal. MOCs play a significant role in establishing innate and acquired immunity, thereby influencing susceptibility and resistance to disease. This understanding has fostered substantial advancements in several fields such as agriculture, food science/safety, and the development of vaccines/adjuvants, which rely on administering inactivated-attenuated MOC pathogens. Historical evidence dating back to the 1800s, including reports by Drs Busch, Coley, and Fehleisen, suggested that acute febrile infection in response to "specific microbes" could trigger spontaneous tumor remission in humans. This discovery led to the purposeful administration of the same attenuated strains, known as "Coley's toxin," marking the onset of the first microbial (pathogen) associated molecular pattern (MAMPs or PAMPs)-based tumor immunotherapy, used clinically for over four decades. Today, these same MAMPS are consumed orally by billions of consumers around the globe, through "specific" mediums (immune boosting "herbal supplements") as carriers of highly concentrated MOCs accrued in roots, barks, hulls, sea algae, and seeds. The American Herbal Products Association (AHPA) mandates microbial reduction in botanical product processing but does not necessitate the removal of dead MAMP laden microbial debris, which we ingest. Moreover, while existing research has focused on the immune-modulating role of plant phytochemicals, the actual immune-boosting properties might instead reside solely in the plant's MOC MAMP laden biomass. This assertion is logical, considering that antigenic immune-provoking epitopes, not phytochemicals, are known to stimulate immune response. This review explores a neglected area of research regarding the immune-boosting effects of the herbal microbiome - a presence which is indirectly corroborated by various peripheral fields of study and poses a fundamental question: Given that food safety focuses on the elimination of harmful pathogens and crop science acknowledges the existence of plant microbiomes, what precisely are the immune effects of ingesting MAMPs of diverse structural composition and concentration, and where are these distributed in our botanicals? We will discuss the topic of concentrated edible MAMPs as acid and thermally stable motifs found in specific herbs and how these would activate cognate pattern recognition receptors (PPRs) in the upper gut-associated lymphoid tissue (GALT), including Peyer's patches and the lamina propria, to boost antibody titers, CD8+ and CD4+ T cells, NK activity, hematopoiesis, and facilitating M2 to M1 macrophage phenotype transition in a similar manner as vaccines. This new knowledge could pave the way for developing bioreactor-grown/heat-inactivated MOC therapies to boost human immunity against infections and improve tumor surveillance.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Andrew Barnes
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Ramesh Badisa
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Stevie Council
- John Gnabre Science Research Institute, Baltimore, MD, United States
| | - Karam F. A. Soliman
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| |
Collapse
|
28
|
Boucher E, Plazy C, Le Gouellec A, Toussaint B, Hannani D. Inulin Prebiotic Protects against Lethal Pseudomonas aeruginosa Acute Infection via γδ T Cell Activation. Nutrients 2023; 15:3037. [PMID: 37447363 DOI: 10.3390/nu15133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) causes harmful lung infections, especially in immunocompromised patients. The immune system and Interleukin (IL)-17-producing γδ T cells (γδ T) are critical in controlling these infections in mice. The gut microbiota modulates host immunity in both cancer and infection contexts. Nutritional intervention is a powerful means of modulating both microbiota composition and functions, and subsequently the host's immune status. We have recently shown that inulin prebiotic supplementation triggers systemic γδ T activation in a cancer context. We hypothesized that prophylactic supplementation with inulin might protect mice from lethal P. aeruginosa acute lung infection in a γδ T-dependent manner. C57Bl/6 mice were supplemented with inulin for 15 days before the lethal P. aeruginosa lung infection, administered intranasally. We demonstrate that prophylactic inulin supplementation triggers a higher proportion of γδ T in the blood, accompanied by a higher infiltration of IL-17-producing γδ T within the lungs, and protects 33% of infected mice from death. This observation relies on γδ T, as in vivo γδ TcR blocking using a monoclonal antibody completely abrogates inulin-mediated protection. Overall, our data indicate that inulin supplementation triggers systemic γδ T activation, and could help resolve lung P. aeruginosa infections. Moreover, our data suggest that nutritional intervention might be a powerful way to prevent/reduce infection-related mortality, by reinforcing the microbiota-dependent immune system.
Collapse
Affiliation(s)
- Emilie Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Caroline Plazy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Audrey Le Gouellec
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Bertrand Toussaint
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Dalil Hannani
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
29
|
Zhao R, Jiang S, Tang Y, Ding G. Effects of Low Molecular Weight Peptides from Red Shrimp ( Solenocera crassicornis) Head on Immune Response in Immunosuppressed Mice. Int J Mol Sci 2023; 24:10297. [PMID: 37373442 DOI: 10.3390/ijms241210297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the immunoenhancement effects of low molecular weight peptides (SCHPs-F1) from red shrimp (Solenocera crassicornis) head against cyclophosphamide (CTX)-induced immunosuppressed mice. ICR mice were intraperitoneally injected with 80 mg/kg CTX for 5 consecutive days to establish the immunosuppressive model and then intragastrically administered with SCHPs-F1 (100 mg/kg, 200 mg/kg, and 400 mg/kg) to investigate its improving effect on immunosuppressed mice and explore its potential mechanism using Western blot. SCHPs-F1 could effectively improve the spleen and thymus index, promoting serum cytokines and immunoglobulins production and upregulating the proliferative activity of splenic lymphocytes and peritoneal macrophages of the CTX-treated mice. Moreover, SCHPs-F1 could significantly promote the expression levels of related proteins in the NF-κB and MAPK pathways in the spleen tissues. Overall, the results suggested that SCHPs-F1 could effectively ameliorate the immune deficiency caused by CTX and had the potential to explore as an immunomodulator in functional foods or dietary supplements.
Collapse
Affiliation(s)
- Rui Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuoqi Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
30
|
Chatterjee D, Krainc D. Mechanisms of Glucocerebrosidase Dysfunction in Parkinson's Disease. J Mol Biol 2023; 435:168023. [PMID: 36828270 PMCID: PMC10247409 DOI: 10.1016/j.jmb.2023.168023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson's disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. https://twitter.com/NeilChatterBox
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
31
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8:207. [PMID: 37211559 DOI: 10.1038/s41392-023-01452-1] [Citation(s) in RCA: 353] [Impact Index Per Article: 353.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Macrophages exist in various tissues, several body cavities, and around mucosal surfaces and are a vital part of the innate immune system for host defense against many pathogens and cancers. Macrophages possess binary M1/M2 macrophage polarization settings, which perform a central role in an array of immune tasks via intrinsic signal cascades and, therefore, must be precisely regulated. Many crucial questions about macrophage signaling and immune modulation are yet to be uncovered. In addition, the clinical importance of tumor-associated macrophages is becoming more widely recognized as significant progress has been made in understanding their biology. Moreover, they are an integral part of the tumor microenvironment, playing a part in the regulation of a wide variety of processes including angiogenesis, extracellular matrix transformation, cancer cell proliferation, metastasis, immunosuppression, and resistance to chemotherapeutic and checkpoint blockade immunotherapies. Herein, we discuss immune regulation in macrophage polarization and signaling, mechanical stresses and modulation, metabolic signaling pathways, mitochondrial and transcriptional, and epigenetic regulation. Furthermore, we have broadly extended the understanding of macrophages in extracellular traps and the essential roles of autophagy and aging in regulating macrophage functions. Moreover, we discussed recent advances in macrophages-mediated immune regulation of autoimmune diseases and tumorigenesis. Lastly, we discussed targeted macrophage therapy to portray prospective targets for therapeutic strategies in health and diseases.
Collapse
Affiliation(s)
- Shanze Chen
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Abdullah F U H Saeed
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, China
| | - Qiong Jiang
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haizhao Xu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Department of Respiratory, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Onisei T, Tihăuan BM, Dolete G, Axinie Bucos M, Răscol M, Isvoranu G. In Vivo Acute Toxicity and Immunomodulation Assessment of a Novel Nutraceutical in Mice. Pharmaceutics 2023; 15:pharmaceutics15041292. [PMID: 37111777 PMCID: PMC10144505 DOI: 10.3390/pharmaceutics15041292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Achieving and maintaining a well-balanced immune system has righteously become an insightful task for the general population and an even more fundamental goal for those affected by immune-related diseases. Since our immune functions are indispensable in defending the body against pathogens, diseases and other external attacks, while playing a vital role in maintaining health and modulating the immune response, we require an on-point grasp of their shortcoming as a foundation for the development of functional foods and novel nutraceuticals. Seeing that immunoceuticals are considered effective in improving immune functions and reducing the incidence of immunological disorders, the main focus of this study was to assess the immunomodulatory properties and possible acute toxicity of a novel nutraceutical with active substances of natural origin on C57BL/6 mice for 21 days. We evaluated the potential hazards (microbial contamination and heavy metals) of the novel nutraceutical and addressed the acute toxicity according to OECD guidelines of a 2000 mg/kg dose on mice for 21 days. The immunomodulatory effect was assessed at three concentrations (50 mg/kg, 100 mg/kg and 200 mg/kg) by determining body and organ indexes through a leukocyte analysis; flow cytometry immunophenotyping of lymphocytes populations and their subpopulations (T lymphocytes (LyCD3+), cytotoxic suppressor T lymphocytes (CD3+CD8+), helper T lymphocytes (CD3+CD4+), B lymphocytes (CD3-CD19+) and NK cells (CD3-NK1.1.+); and the expression of the CD69 activation marker. The results obtained for the novel nutraceutical referred to as ImunoBoost indicated no acute toxicity, an increased number of lymphocytes and the stimulation of lymphocyte activation and proliferation, demonstrating its immunomodulatory effect. The safe human consumption dose was established at 30 mg/day.
Collapse
Affiliation(s)
- Tatiana Onisei
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Bianca-Maria Tihăuan
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Mădălina Axinie Bucos
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Manuela Răscol
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Gheorghița Isvoranu
- National Institute of Pathology Victor Babeş-Bucharest, 99-101 Spl. Independenței, 050096 Bucharest, Romania
| |
Collapse
|
33
|
Zulkifli, Jamil KF, Darmawi, Usman S. Is Formulary of Maranta Arundinacea Clarias Gariepinus (F-MaCg) a Potential Immunostimulant? Avicenna J Med Biotechnol 2023; 15:91-99. [PMID: 37034889 PMCID: PMC10073917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 11/02/2023] Open
Abstract
Background External factors have the potential to act as immunostimulants in order to influence the body's protection from many foreign antigens. We intended to investigate the ethanol extract Formulary of F-MaCg effect as an immunostimulant. Methods A purely experimental with a completely randomized design was used on twenty-four white male rats. They were divided into four groups:1) G0 [given aquades (5 ml)]; 2) G1 [given F-MaCg-75 mg/gr BW (Body Weight)]; 3) G2 (F-MaCg -150 mg/gr plus Hepatitis B vaccine at the beginning and the end of treatment); and 4) G3 (F-MaCg -300 mg/gr BW plus hepatitis B vaccine at the end of treatment). The rat's spleen lymphocyte blast transformation was evaluated on the 15th and 37th days. Lymphocytes were examined using microtetrazolium assays. Optical Density (OD) was measured using an ELISA reader [493 nμ (nanomicro)]. Observation of lymphocyte viability by a counting chamber using a light microscope and trypan blue 1% before being cultured with Phytohaemoaglutinin. Results Lymphocyte cell viability in the hepatitis B vaccine-induced group on the 15th day showed the highest average value in the G2 (1,484/mcl of blood); on the 37th day, it was in G3 (1,578/mcl of blood). The proliferative activity of spleen lymphocytes indicated by the difference in the OD values of the four treatment groups was 0.467, 0.913, 1.619, and 1.473 nμ, respectively. Histological observations of the spleen showed differences at all given formulary dose concentrations. Conclusion F-MaCg could be an immunostimulant because of its ability to trigger a cellular immune response.
Collapse
Affiliation(s)
- Zulkifli
- Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Kurnia Fitri Jamil
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Darmawi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Said Usman
- Department of Public Health, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
34
|
Zhao L, Miao Y, Shan B, Zhao C, Peng C, Gong J. Theabrownin Isolated from Pu-Erh Tea Enhances the Innate Immune and Anti-Inflammatory Effects of RAW264.7 Macrophages via the TLR2/4-Mediated Signaling Pathway. Foods 2023; 12:foods12071468. [PMID: 37048289 PMCID: PMC10094067 DOI: 10.3390/foods12071468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Theabrownin (TB) is a tea pigment extracted from Pu-erh Tea. The effects of TB on innate immunity and inflammation are not well understood. Herein, the effects of TB on innate immunity are investigated using RAW264.7 macrophages. We found that TB promoted the proliferation of RAW264.7 macrophages, altered their morphology, enhanced their pinocytic and phagocytic ability, and significantly increased their secretion of nitric oxide (NO) and cytokines, all of which enhanced the immune response. Additionally, TB inhibited the release of inflammatory signals in RAW264.7 macrophages primed with lipopolysaccharide (LPS), implying that TB modulates the excessive inflammation induced by bacterial infection. A Western blot showed that TB could activate the toll-like receptor (TLR)2/4-mediated myeloid differentiation factor 88 (MyD88)-dependent mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathway and the TLR2-mediated phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, enhancing the immune functions of RAW264.7 macrophages. TB also inhibited the phosphorylation of core proteins in the MAPK/NF-κB/PI3K-AKT signaling pathway induced by LPS. In addition, we analyzed the transcriptomes of RAW264.7 macrophages, and a Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed that TB modulated thetoll-like receptor signal pathway. A gene ontology (GO) enrichment analysis indicated that TB treatment strongly modulated the immune response and inflammation. As a result, TB-enhanced innate immunity and modulated inflammation via the TLR2/4 signaling pathway.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Shan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| |
Collapse
|
35
|
Yoon J, Park B, Kim H, Choi S, Jung D. Korean Red Ginseng Potentially Improves Maintaining Antibodies after COVID-19 Vaccination: A 24-Week Longitudinal Study. Nutrients 2023; 15:nu15071584. [PMID: 37049424 PMCID: PMC10097014 DOI: 10.3390/nu15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Despite the effectiveness and safety of COVID-19 vaccines, vaccine-induced responses decline over time; thus, booster vaccines have been approved globally. In addition, interest in natural compounds capable of improving host immunity has increased. This study aimed to examine the effect of Korean Red Ginseng (KRG) on virus-specific antibodies after COVID-19 vaccination. We conducted a 24 week clinical pilot study of 350 healthy subjects who received two doses of the COVID-19 vaccine and a booster vaccination (third dose). These subjects were randomized 1:2 to the KRG and control groups. We evaluated antibody response five times: just before the second dose (baseline), 2 weeks, 4 weeks, 12 weeks after the second dose, and 4 weeks after the third dose. The primary endpoints were changes in COVID-19 spike antibody titers and neutralizing antibody titers. The antibody formation rate of the KRG group was sustained higher than that of the control group for 12 weeks after the second dose. This trend was prominently observed in those above 50 years old. We found that KRG can help to increase and maintain vaccine response, highlighting that KRG could potentially be used as an immunomodulator with COVID-19 vaccines.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heejung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seungjun Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Laboratory Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Donghyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
36
|
Sun Y, Liu X, Fu X, Xu W, Guo Q, Zhang Y. Discrepancy Study of the Chemical Constituents of Panax Ginseng from Different Growth Environments with UPLC-MS-Based Metabolomics Strategy. Molecules 2023; 28:molecules28072928. [PMID: 37049688 PMCID: PMC10095802 DOI: 10.3390/molecules28072928] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Panax ginseng (P. ginseng), the dried root and rhizome of P. ginseng C. A. Meyer, is widely used in many fields as dietary supplements and medicine. To characterize the chemical constituents in P. ginseng cultivated in different growth environments, a UPLC-TOF-MS method was established for qualitative analysis. Four hundred and eight ginsenosides, including 81 new compounds, were characterized in P. ginseng from different regions. Among the detected compounds, 361 ginsenosides were recognized in P. ginseng cultivated in the region of Monsoon Climate of Medium Latitudes, possessing the largest amount of ginsenosides in all samples. Furthermore, 41 ginsenosides in 12 batches of P. ginsengs were quantified with a UPLC-MRM-MS method, and P. ginsengs from different regions were distinguished via chemometric analysis. This study showed that the different environments have a greater influence on P. ginseng, which laid a foundation for further quality control of the herb.
Collapse
Affiliation(s)
- Yizheng Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaojie Fu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingmei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Youbo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
37
|
Ricci A, Roviello GN. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life (Basel) 2023; 13:402. [PMID: 36836758 PMCID: PMC9966545 DOI: 10.3390/life13020402] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A complex network of processes inside the human immune system provides resistance against a wide range of pathologies. These defenses form an innate and adaptive immunity, in which certain immune components work together to counteract infections. In addition to inherited variables, the susceptibility to diseases may be influenced by factors such as lifestyle choices and aging, as well as environmental determinants. It has been shown that certain dietary chemical components regulate signal transduction and cell morphologies which, in turn, have consequences on pathophysiology. The consumption of some functional foods may increase immune cell activity, defending us against a number of diseases, including those caused by viruses. Here, we investigate a range of functional foods, often marketed as immune system boosters, in an attempt to find indications of their potential protective role against diseases caused by viruses, such as the influenza viruses (A and B), herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in some cases mediated by gut microbiota. We also discuss the molecular mechanisms that govern the protective effects of some functional foods and their molecular constituents. The main message of this review is that discovering foods that are able to strengthen the immune system can be a winning weapon against viral diseases. In addition, understanding how the dietary components function can aid in the development of novel strategies for maintaining human bodily health and keeping our immune systems strong.
Collapse
Affiliation(s)
- Andrea Ricci
- Studio Nutrizione e Benessere, Via Giuseppe Verdi 1, 84043 Agropoli, Italy
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area Di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
38
|
Immunostimulatory Effect of Postbiotics Prepared from Phellinus linteus Mycelial Submerged Culture via Activation of Spleen and Peyer's Patch in C3H/HeN Mice. Pharmaceuticals (Basel) 2022; 15:ph15101215. [PMID: 36297326 PMCID: PMC9612016 DOI: 10.3390/ph15101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal mushrooms are an important natural resource promoting health benefits. Herein, Phellinus linteus mycelia were prepared under submerged cultivation, the mycelium-containing culture broth was extracted as a whole to obtain the postbiotic materials (PLME), and its effect on the immune system was evaluated in normal C3H/HeN mice. Oral administration of PLME for 4 weeks was well tolerated and safe. In the PLME-administered groups, in addition to the production of immunostimulatory cytokines, such as interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), the mitogenic activity was significantly increased. PLME administration also significantly increased the levels of serum immunoglobulin G (IgG) and IgA in the small intestinal fluid and Peyer's patches and enhanced Peyer's patch-mediated bone marrow cell proliferation activity and cytokine production (IL-2, IL-6, and IFN-γ). Histomorphometric analyses showed an increase in immune cells in the spleen and small intestinal tissues of mice administered PLME, supporting the rationale for its immune system activation. PLME mainly contained neutral sugar (969.1 mg/g), comprising primarily of glucose as a monosaccharide unit. The β-glucan content was 88.5 mg/g. Data suggest that PLME effectively promote immune function by stimulating the systemic immune system through the spleen and intestinal immune tissues. PLME can thus be developed as a functional ingredient to enhance immune functions.
Collapse
|
39
|
Yang F, Chen B, Jiang M, Wang H, Hu Y, Wang H, Xu X, Gao X, Yang W. Integrating Enhanced Profiling and Chemometrics to Unveil the Potential Markers for Differentiating among the Leaves of Panax ginseng, P. quinquefolius, and P. notoginseng by Ultra-High Performance Liquid Chromatography/Ion Mobility-Quadrupole Time-of-Flight Mass Spectrometry. Molecules 2022; 27:5549. [PMID: 36080314 PMCID: PMC9458027 DOI: 10.3390/molecules27175549] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/22/2022] Open
Abstract
The leaves of Panax species (e.g., Panax ginseng-PGL, P. quinquefolius-PQL, and P. notoginseng-PNL) can serve as a source for healthcare products. Comprehensive characterization and unveiling of the metabolomic difference among PGL, PQL, and PNL are critical to ensure their correct use. For this purpose, enhanced profiling and chemometrics were integrated to probe into the ginsenoside markers for PGL/PQL/PNL by ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS). A hybrid scan approach (HDMSE-HDDDA) was established achieving the dimension-enhanced metabolic profiling, with 342 saponins identified or tentatively characterized from PGL/PQL/PNL. Multivariate statistical analysis (33 batches of leaf samples) could unveil 42 marker saponins, and the characteristic ginsenosides diagnostic for differentiating among PGL/PQL/PNL were primarily established. Compared with the single DDA or DIA, the HDMSE-HDDDA hybrid scan approach could balance between the metabolome coverage and spectral reliability, leading to high-definition MS spectra and the additional collision-cross section (CCS) useful to differentiate isomers.
Collapse
Affiliation(s)
- Feifei Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Boxue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Huimin Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| |
Collapse
|
40
|
Fan X, Zhang Z, Zheng L, Wei W, Chen Z. Long non-coding RNAs in the pathogenesis of heart failure: A literature review. Front Cardiovasc Med 2022; 9:950284. [PMID: 35990951 PMCID: PMC9381960 DOI: 10.3389/fcvm.2022.950284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Heart failure (HF) is a common cardiovascular disorder and a major cause of mortality and morbidity in older people. The mechanisms underlying HF are still not fully understood, restricting novel therapeutic target discovery and drug development. Besides, few drugs have been shown to improve the survival of HF patients. Increasing evidence suggests that long non-coding RNAs (lncRNAs) serve as a critical regulator of cardiac physiological and pathological processes, regarded as a new target of treatment for HF. lncRNAs are versatile players in the pathogenesis of HF. They can interact with chromatin, protein, RNA, or DNA, thereby modulating chromatin accessibility, gene expressions, and signaling transduction. In this review, we summarized the current knowledge on how lncRNAs involve in HF and categorized them into four aspects based on their biological functions, namely, cardiomyocyte contractility, cardiac hypertrophy, cardiac apoptosis, and myocardial fibrosis. Along with the extensive laboratory data, RNA-based therapeutics achieved great advances in recent years. These indicate that targeting lncRNAs in the treatment of HF may provide new strategies and address the unmet clinical needs.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Cardiovascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenwei Zhang
- Department of Urinary Surgery, No.3 People's Hospital, Jinan, China
| | - Liang Zheng
- Department of Cardiovascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wei
- Postdoctoral Mobile Station of Wangjing Hospital, Wangjing Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
- *Correspondence: Wei Wei
| | - Zetao Chen
- Section of Integrated Chinese and Western Medicine, Shandong university of Traditional Chinese Medicine, Jinan, China
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Zetao Chen
| |
Collapse
|