1
|
de León Reyes NS, Bortolozzo-Gleich MH, Nomura Y, Fregola CG, Nieto M, Gogos JA, Leroy F. Interhemispheric CA1 projections support spatial cognition and are affected in a mouse model of the 22q11.2 deletion syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611389. [PMID: 39282348 PMCID: PMC11398471 DOI: 10.1101/2024.09.05.611389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Untangling the hippocampus connectivity is critical for understanding the mechanisms supporting learning and memory. However, the function of interhemispheric connections between hippocampal formations is still poorly understood. So far, two major hippocampal commissural projections have been characterized in rodents. Mossy cells from the hilus of the dentate gyrus project to the inner molecular layer of the contralateral dentate gyrus and CA3 and CA2 pyramidal neuron axonal collaterals to contralateral CA3, CA2 and CA1. In contrary, little is known about commissural projection from the CA1 region. Here, we show that CA1 pyramidal neurons from the dorsal hippocampus project to contralateral dorsal CA1 as well as dorsal subiculum. We further demonstrate that the interhemispheric projection from CA1 to dorsal subiculum supports spatial memory and spatial working memory in WT mice, two cognitive functions impaired in male mice from the Df16(A) +/- model of 22q11.2 deletion syndrome (22q11.2DS) associated with schizophrenia. Investigation of the CA1 interhemispheric projections in Df16(A) +/- mice revealed that these projections are disrupted with male mutants showing stronger anatomical defects compared to females. Overall, our results characterize a novel interhemispheric projection from dCA1 to dorsal subiculum and suggest that dysregulation of this projection may contribute to the cognitive deficits associated with the 22q11.2DS.
Collapse
Affiliation(s)
- Noelia S. de León Reyes
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | | | - Yuki Nomura
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| | - Cristina García Fregola
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Joseph A. Gogos
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Physiology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia University, New York, NY, United States
| | - Félix Leroy
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| |
Collapse
|
2
|
Rodríguez-Armendariz E, Vela-Romero M, Galiana A. Sensory Processing Challenges in Children with Neurodevelopmental Disorders and Genetic Conditions: An Observational Study. NEUROSCI 2024; 5:339-353. [PMID: 39483286 PMCID: PMC11467969 DOI: 10.3390/neurosci5030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
Sensory processing challenges are crucial yet often neglected aspects in the care of children with neurodevelopmental disorders and genetic conditions. They represent a key area of interest in neuroscience, as they significantly impact children's daily functioning and quality of life. This observational study examines these challenges in a group of 614 children, aged 3 to 14 years and 11 months, divided into three groups: 183 with neurodevelopmental disorders (autism spectrum disorder, attention deficit hyperactivity disorder, developmental delays, and learning disorders), 89 with genetic conditions (22q11.2 deletion syndrome, Williams syndrome, and pseudohypoparathyroidism), and 342 controls. Sensory processing was assessed using Sensory Profile 2 (SP2). Results indicated that children with neurodevelopmental disorders and genetic conditions exhibited significant sensory processing difficulties compared to controls. SP2 identified distinct sensory challenges across different sensory systems, varying by diagnosis. Notably, genetic conditions appeared to have a more generalised impact across multiple sensory systems, while neurodevelopmental disorders tended to affect specific systems more narrowly. These findings highlight the importance of early identification and tailored evidence-based interventions to address these specific sensory processing issues. Further research should explore the long-term impact of these interventions in these different populations and their integration into broader therapeutic programmes.
Collapse
Affiliation(s)
- Ekaine Rodríguez-Armendariz
- Facultad de Ciencias de la Salud, Universidad Europea Miguel de Cervantes (UEMC), 47012 Valladolid, Spain;
- Centro de Investigación Micaela Portilla, Universidad del País Vasco (UPV/EHU), 01006 Vitoria, Spain
| | - María Vela-Romero
- Conecta Clínica-Centro de Desarrollo Infantil, 13001 Ciudad Real, Spain;
| | - Adrián Galiana
- Conecta Clínica-Centro de Desarrollo Infantil, 13001 Ciudad Real, Spain;
- Facultad de Psicología, Ciencias de la Salud y del Comportamiento, Universidad a Distancia de Madrid (UDIMA), 28400 Collado Villalba, Spain
| |
Collapse
|
3
|
Latrèche C, Mancini V, Rochas V, Maeder J, Cantonas LM, Férat V, Schneider M, Michel CM, Eliez S. Using transcranial alternating current stimulation to enhance working memory skills in youths with 22q11.2 deletion syndrome: A randomized double-blind sham-controlled study. Psychiatry Res 2024; 335:115835. [PMID: 38460352 DOI: 10.1016/j.psychres.2024.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Abnormal cognitive development, particularly working memory (WM) deficits, is among the first apparent manifestations of psychosis. Yet, cognitive impairment only shows limited response to current pharmacological treatment. Alternative interventions to target cognition are highly needed in individuals at high risk for psychosis, like carriers of 22q11.2 deletion syndrome (22q11.2DS). Here we applied theta-tuned transcranial alternating current stimulation (tACS) between frontal and temporal regions during a visual WM task in 34 deletion carriers. We conducted a double-blind sham-controlled study over three consecutive days. The stimulation parameters were derived from individual structural MRI scan and HD-EEG data acquired at baseline (Day 1) to model current intensity and individual preferential theta peak. Participants were randomized to either sham or tACS (Days 2 and 3) and then completed a visual WM task and a control task. Our findings reveal that tACS was safe and well-tolerated among participants. We found a significantly increased accuracy in the visual WM but not the control task following tACS. Moreover, this enhancement in WM accuracy was greater after tACS than during tACS, indicating stronger offline effects than online effects. Our study therefore supports the application of repeated sessions of brain stimulation in 22q11.2DS.
Collapse
Affiliation(s)
- Caren Latrèche
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland.
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Johanna Maeder
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland
| | - Lucia M Cantonas
- Autism Brain and Behavior Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Victor Férat
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Maude Schneider
- Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Switzerland
| |
Collapse
|
4
|
Smerconish S, Schmitt JE. Neuroanatomical Correlates of Cognitive Dysfunction in 22q11.2 Deletion Syndrome. Genes (Basel) 2024; 15:440. [PMID: 38674375 PMCID: PMC11050060 DOI: 10.3390/genes15040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS), the most common chromosomal microdeletion, presents as a heterogeneous phenotype characterized by an array of anatomical, behavioral, and cognitive abnormalities. Individuals with 22q11.2DS exhibit extensive cognitive deficits, both in overall intellectual capacity and focal challenges in executive functioning, attentional control, perceptual abilities, motor skills, verbal processing, as well as socioemotional operations. Heterogeneity is an intrinsic factor of the deletion's clinical manifestation in these cognitive domains. Structural imaging has identified significant changes in volume, thickness, and surface area. These alterations are closely linked and display region-specific variations with an overall increase in abnormalities following a rostral-caudal gradient. Despite the extensive literature developing around the neurocognitive and neuroanatomical profiles associated with 22q11.2DS, comparatively little research has addressed specific structure-function relationships between aberrant morphological features and deficient cognitive processes. The current review attempts to categorize these limited findings alongside comparisons to populations with phenotypic and structural similarities in order to answer to what degree structural findings can explain the characteristic neurocognitive deficits seen in individuals with 22q11.2DS. In integrating findings from structural neuroimaging and cognitive assessments, this review seeks to characterize structural changes associated with the broad neurocognitive challenges faced by individuals with 22q11.2DS.
Collapse
|
5
|
von Scheibler ENMM, Widdershoven JCC, van Barneveld DCPBM, Schröder N, van Eeghen AM, van Amelsvoort TAMJ, Boot E. Hearing loss and history of otolaryngological conditions in adults with microdeletion 22q11.2. Am J Med Genet A 2024; 194:e63456. [PMID: 37916923 DOI: 10.1002/ajmg.a.63456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Previous studies have shown that the 22q11.2 microdeletion, associated with 22q11.2 deletion syndrome (22q11.2DS), conveys an increased risk of chronic otitis media, and hearing loss at young age. This study reports on hearing loss and history of otolaryngological conditions in adults with 22q11.2DS. We conducted a retrospective study of 60 adults with 22q11.2DS (41.7% male) at median age 25 (range 16-74) years who had visited an otolaryngologist and audiologist for routine assessment at a 22q11.2 expert center. Demographic, genetic, audiometric, and otolaryngological data were systematically extracted from the medical files. Regression analysis was used to evaluate the effect of age, sex, full-scale intelligence quotient, and history of chronic otitis media on the severity of hearing loss. Hearing loss, mostly high-frequency sensorineural, was found in 78.3% of adults. Higher age and history of chronic otitis media were associated with more severe hearing loss. Otolaryngological conditions with possible treatment implications included chronic otitis media (56.7%), globus pharyngeus (18.3%), balance problems (16.7%), and obstructive sleep apnea (8.3%). The results suggest that in 22q11.2DS, high-frequency hearing loss appears to be common from a young adult age, and often unrecognized. Therefore, we recommend periodic audiometric screening in all adults, including high-frequency ranges.
Collapse
Affiliation(s)
- Emma N M M von Scheibler
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands
- Department of Psychiatry and Neuropsychology, MHeNs, Maastricht University, Maastricht, The Netherlands
| | - Josine C C Widdershoven
- Department of Otorhinolaryngology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Nina Schröder
- Department of Psychiatry and Neuropsychology, MHeNs, Maastricht University, Maastricht, The Netherlands
| | - Agnies M van Eeghen
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands
- Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Erik Boot
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands
- Department of Psychiatry and Neuropsychology, MHeNs, Maastricht University, Maastricht, The Netherlands
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Forsyth JK, Bearden CE. Rethinking the First Episode of Schizophrenia: Identifying Convergent Mechanisms During Development and Moving Toward Prediction. Am J Psychiatry 2023; 180:792-804. [PMID: 37908094 DOI: 10.1176/appi.ajp.20230736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| | - Carrie E Bearden
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| |
Collapse
|
7
|
Rogdaki M. From Gene to Brain and Behavior: Excitatory and Inhibitory Imbalance and Psychosis in Individuals With 22q11.2 Deletion Syndrome. Biol Psychiatry 2023; 94:526-527. [PMID: 37673515 DOI: 10.1016/j.biopsych.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Maria Rogdaki
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
8
|
Mancini V, Saleh MG, Delavari F, Bagautdinova J, Eliez S. Excitatory/Inhibitory Imbalance Underlies Hippocampal Atrophy in Individuals With 22q11.2 Deletion Syndrome With Psychotic Symptoms. Biol Psychiatry 2023; 94:569-579. [PMID: 37011759 DOI: 10.1016/j.biopsych.2023.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Abnormal neurotransmitter levels have been reported in individuals at high risk for schizophrenia, leading to a shift in the excitatory/inhibitory balance. However, it is unclear whether these alterations predate the onset of clinically relevant symptoms. Our aim was to explore in vivo measures of excitatory/inhibitory balance in 22q11.2 deletion carriers, a population at genetic risk for psychosis. METHODS Glx (glutamate+glutamine) and GABA+ (gamma-aminobutyric acid with macromolecules and homocarnosine) concentrations were estimated in the anterior cingulate cortex, superior temporal cortex, and hippocampus using the Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence and the Gannet toolbox in 52 deletion carriers and 42 control participants. T1-weighted images were acquired longitudinally and processed with FreeSurfer version 6 to extract hippocampal volume. Subgroup analyses were conducted in deletion carriers with psychotic symptoms. RESULTS While no differences were found in the anterior cingulate cortex, deletion carriers had higher levels of Glx in the hippocampus and superior temporal cortex and lower levels of GABA+ in the hippocampus than control participants. We additionally found a higher Glx concentration in the hippocampus of deletion carriers with psychotic symptoms. Finally, more pronounced hippocampal atrophy was significantly associated with increased Glx levels in deletion carriers. CONCLUSIONS We provide evidence for an excitatory/inhibitory imbalance in temporal brain structures of deletion carriers, with a further hippocampal Glx increase in individuals with psychotic symptoms that was associated with hippocampal atrophy. These results are in line with theories proposing abnormally enhanced glutamate levels as a mechanistic explanation for hippocampal atrophy via excitotoxicity. Our results highlight a central role of glutamate in the hippocampus of individuals at genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Joëlle Bagautdinova
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
9
|
Raven EP, Veraart J, Kievit RA, Genc S, Ward IL, Hall J, Cunningham A, Doherty J, van den Bree MBM, Jones DK. In vivo evidence of microstructural hypo-connectivity of brain white matter in 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:4342-4352. [PMID: 37495890 PMCID: PMC7615578 DOI: 10.1038/s41380-023-02178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
22q11.2 deletion syndrome, or 22q11.2DS, is a genetic syndrome associated with high rates of schizophrenia and autism spectrum disorders, in addition to widespread structural and functional abnormalities throughout the brain. Experimental animal models have identified neuronal connectivity deficits, e.g., decreased axonal length and complexity of axonal branching, as a primary mechanism underlying atypical brain development in 22q11.2DS. However, it is still unclear whether deficits in axonal morphology can also be observed in people with 22q11.2DS. Here, we provide an unparalleled in vivo characterization of white matter microstructure in participants with 22q11.2DS (12-15 years) and those undergoing typical development (8-18 years) using a customized magnetic resonance imaging scanner which is sensitive to axonal morphology. A rich array of diffusion MRI metrics are extracted to present microstructural profiles of typical and atypical white matter development, and provide new evidence of connectivity differences in individuals with 22q11.2DS. A recent, large-scale consortium study of 22q11.2DS identified higher diffusion anisotropy and reduced overall diffusion mobility of water as hallmark microstructural alterations of white matter in individuals across a wide age range (6-52 years). We observed similar findings across the white matter tracts included in this study, in addition to identifying deficits in axonal morphology. This, in combination with reduced tract volume measurements, supports the hypothesis that abnormal microstructural connectivity in 22q11.2DS may be mediated by densely packed axons with disproportionately small diameters. Our findings provide insight into the in vivo white matter phenotype of 22q11.2DS, and promote the continued investigation of shared features in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rogier A Kievit
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Isobel L Ward
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Jessica Hall
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Adam Cunningham
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Joanne Doherty
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Campbell PD, Lee I, Thyme S, Granato M. Mitochondrial proteins encoded by the 22q11.2 neurodevelopmental locus regulate neural stem and progenitor cell proliferation. Mol Psychiatry 2023; 28:3769-3781. [PMID: 37794116 PMCID: PMC10730408 DOI: 10.1038/s41380-023-02272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Microdeletion of a 3Mb region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes individuals to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11.2DS pathogenesis; however, which of the six mitochondrial genes contribute to neurodevelopmental phenotypes and their underlying mechanisms remain unresolved. To systematically test 22q11.2DS genes for functional roles in neurodevelopment and behavior, we generated genetic mutants for each of the 37 conserved zebrafish orthologs and performed high throughput behavioral phenotyping using seven behavioral assays. Through this unbiased approach, we identified five single-gene mutants with partially overlapping behavioral phenotypes. Two of these genes, mrpl40 and prodha, encode for mitochondrial proteins and, similar to what we observed in mrpl40 and prodha mutants, pharmacologic inhibition of mitochondrial function during development results in microcephaly. Single mutant analysis shows that both mrpl40 and prodha mutants display aberrant neural stem and progenitor cell proliferation, with each gene regulating distinct cell populations. Finally, double mutants for both mrpl40 and prodha display aggravated behavioral phenotypes and neural stem and progenitor cell analysis reveals a previously unrecognized partially redundant role for mrpl40 and prodha in regulating radial glia-like cell proliferation. Combined, our results demonstrate a critical role for mitochondrial function in neural stem and progenitor cell populations in the developing vertebrate brain and provide compelling evidence that mitochondrial dysfunction during neurodevelopment is linked to brain volume and behavioral phenotypes observed in models of 22q11.2DS.
Collapse
Affiliation(s)
- Philip D Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isaiah Lee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Summer Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. RESEARCH SQUARE 2023:rs.3.rs-3070199. [PMID: 37461714 PMCID: PMC10350205 DOI: 10.21203/rs.3.rs-3070199/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1, a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
Affiliation(s)
- Takeshi Hiramoto
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | | | - Gina Kang
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Bailey Matsumura
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Lucas J. Stevens
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, Texas 78229, USA
| |
Collapse
|
12
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545013. [PMID: 37398198 PMCID: PMC10312713 DOI: 10.1101/2023.06.14.545013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1 , a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
|
13
|
Kopal J, Kumar K, Saltoun K, Modenato C, Moreau CA, Martin-Brevet S, Huguet G, Jean-Louis M, Martin CO, Saci Z, Younis N, Tamer P, Douard E, Maillard AM, Rodriguez-Herreros B, Pain A, Richetin S, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Draganski B, Sønderby IE, Andreassen OA, Glahn DC, Thompson PM, Bearden CE, Jacquemont S, Bzdok D. Rare CNVs and phenome-wide profiling highlight brain structural divergence and phenotypical convergence. Nat Hum Behav 2023; 7:1001-1017. [PMID: 36864136 PMCID: PMC7615290 DOI: 10.1038/s41562-023-01541-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
Copy number variations (CNVs) are rare genomic deletions and duplications that can affect brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, existing studies have primarily examined single CNV loci in small clinical cohorts. It remains unknown, for example, how distinct CNVs escalate vulnerability for the same developmental and psychiatric disorders. Here we quantitatively dissect the associations between brain organization and behavioural differentiation across 8 key CNVs. In 534 CNV carriers, we explored CNV-specific brain morphology patterns. CNVs were characteristic of disparate morphological changes involving multiple large-scale networks. We extensively annotated these CNV-associated patterns with ~1,000 lifestyle indicators through the UK Biobank resource. The resulting phenotypic profiles largely overlap and have body-wide implications, including the cardiovascular, endocrine, skeletal and nervous systems. Our population-level investigation established brain structural divergences and phenotypical convergences of CNVs, with direct relevance to major brain disorders.
Collapse
Affiliation(s)
- Jakub Kopal
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montréal, Quebec, Canada
| | - Kuldeep Kumar
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Karin Saltoun
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montréal, Quebec, Canada
| | - Claudia Modenato
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Human Genetics and Cognitive Functions, CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
| | - Sandra Martin-Brevet
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Guillaume Huguet
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Martineau Jean-Louis
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Charles-Olivier Martin
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Zohra Saci
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Nadine Younis
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Petra Tamer
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Elise Douard
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Borja Rodriguez-Herreros
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Aurèlie Pain
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sonia Richetin
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, CA, USA
| | - Ana I Silva
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah Lippé
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Bogdan Draganski
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, CA, USA
| | - Sébastien Jacquemont
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montréal, Quebec, Canada.
- TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Tabata H, Mori D, Matsuki T, Yoshizaki K, Asai M, Nakayama A, Ozaki N, Nagata KI. Histological Analysis of a Mouse Model of the 22q11.2 Microdeletion Syndrome. Biomolecules 2023; 13:biom13050763. [PMID: 37238632 DOI: 10.3390/biom13050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is associated with a high risk of developing various psychiatric and developmental disorders, including schizophrenia and early-onset Parkinson's disease. Recently, a mouse model of this disease, Del(3.0Mb)/+, mimicking the 3.0 Mb deletion which is most frequently found in patients with 22q11.2DS, was generated. The behavior of this mouse model was extensively studied and several abnormalities related to the symptoms of 22q11.2DS were found. However, the histological features of their brains have been little addressed. Here we describe the cytoarchitectures of the brains of Del(3.0Mb)/+ mice. First, we investigated the overall histology of the embryonic and adult cerebral cortices, but they were indistinguishable from the wild type. However, the morphologies of individual neurons were slightly but significantly changed from the wild type counterparts in a region-specific manner. The dendritic branches and/or dendritic spine densities of neurons in the medial prefrontal cortex, nucleus accumbens, and primary somatosensory cortex were reduced. We also observed reduced axon innervation of dopaminergic neurons into the prefrontal cortex. Given these affected neurons function together as the dopamine system to control animal behaviors, the impairment we observed may explain a part of the abnormal behaviors of Del(3.0Mb)/+ mice and the psychiatric symptoms of 22q11.2DS.
Collapse
Affiliation(s)
- Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya 466-8550, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kaichi Yoshizaki
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
15
|
Campbell PD, Lee I, Thyme S, Granato M. Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522615. [PMID: 36711666 PMCID: PMC9881859 DOI: 10.1101/2023.01.03.522615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microdeletion of a 3Mbp region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11.2DS pathogenesis; however, which of the six mitochondrial genes contribute to neurodevelopmental phenotypes and their underlying mechanisms remain unresolved. To systematically test 22q11.2DS genes for functional roles in neurodevelopment and behavior, we generated genetic mutants for each of the 37 conserved zebrafish orthologs and performed high throughput behavioral phenotyping using seven behavioral assays. Through this unbiased approach, we identified five single-gene mutants with partially overlapping behavioral phenotypes. Two of these genes, mrpl40 and prodha , encode for mitochondrial proteins and, similar to what we observed in mrpl40 and prodha mutants, pharmacologic inhibition of mitochondrial function during development results in microcephaly. Finally, we show that both mrpl40 and prodha mutants display neural stem and progenitor cell phenotypes, with each gene regulating different neural stem cell populations. Combined, our results demonstrate a critical role for mitochondrial function in neural stem and progenitor cell populations in the developing vertebrate brain and provide compelling evidence that mitochondrial dysfunction during neurodevelopment is linked to brain volume and behavioral phenotypes observed in models of 22q11.2DS.
Collapse
Affiliation(s)
- Philip D. Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Isaiah Lee
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Summer Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Michael Granato
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| |
Collapse
|
16
|
Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology 2023; 48:151-167. [PMID: 36056106 PMCID: PMC9700830 DOI: 10.1038/s41386-022-01426-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Over the last five decades, a large body of evidence has accrued for structural and metabolic brain alterations in schizophrenia. Here we provide an overview of these findings, focusing on measures that have traditionally been thought to reflect synaptic spine density or synaptic activity and that are relevant for understanding if there is lower synaptic density in the disorder. We conducted literature searches to identify meta-analyses or other relevant studies in patients with chronic or first-episode schizophrenia, or in people at high genetic or clinical risk for psychosis. We identified 18 meta-analyses including over 50,000 subjects in total, covering: structural MRI measures of gyrification index, grey matter volume, grey matter density and cortical thickness, neurite orientation dispersion and density imaging, PET imaging of regional glucose metabolism and magnetic resonance spectroscopy measures of N-acetylaspartate. We also review preclinical evidence on the relationship between ex vivo synaptic measures and structural MRI imaging, and PET imaging of synaptic protein 2A (SV2A). These studies show that schizophrenia is associated with lower grey matter volumes and cortical thickness, accelerated grey matter loss over time, abnormal gyrification patterns, and lower regional SV2A levels and metabolic markers in comparison to controls (effect sizes from ~ -0.11 to -1.0). Key regions affected include frontal, anterior cingulate and temporal cortices and the hippocampi. We identify several limitations for the interpretation of these findings in terms of understanding synaptic alterations. Nevertheless, taken with post-mortem findings, they suggest that schizophrenia is associated with lower synaptic density in some brain regions. However, there are several gaps in evidence, in particular whether SV2A findings generalise to other cohorts.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Connor Cummings
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Clare Hall (College), University of Cambridge, Cambridge, UK
| | - George E Chapman
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
17
|
Schmitt JE, DeBevits JJ, Roalf DR, Ruparel K, Gallagher RS, Gur RC, Alexander-Bloch A, Eom TY, Alam S, Steinberg J, Akers W, Khairy K, Crowley TB, Emanuel B, Zakharenko SS, McDonald-McGinn DM, Gur RE. A Comprehensive Analysis of Cerebellar Volumes in the 22q11.2 Deletion Syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:79-90. [PMID: 34848384 PMCID: PMC9162086 DOI: 10.1016/j.bpsc.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND The presence of a 22q11.2 microdeletion (22q11.2 deletion syndrome [22q11DS]) ranks among the greatest known genetic risk factors for the development of psychotic disorders. There is emerging evidence that the cerebellum is important in the pathophysiology of psychosis. However, there is currently limited information on cerebellar neuroanatomy in 22q11DS specifically. METHODS High-resolution 3T magnetic resonance imaging was acquired in 79 individuals with 22q11DS and 70 typically developing control subjects (N = 149). Lobar and lobule-level cerebellar volumes were estimated using validated automated segmentation algorithms, and subsequently group differences were compared. Hierarchical clustering, principal component analysis, and graph theoretical models were used to explore intercerebellar relationships. Cerebrocerebellar structural connectivity with cortical thickness was examined via linear regression models. RESULTS Individuals with 22q11DS had, on average, 17.3% smaller total cerebellar volumes relative to typically developing subjects (p < .0001). The lobules of the superior posterior cerebellum (e.g., VII and VIII) were particularly affected in 22q11DS. However, all cerebellar lobules were significantly smaller, even after adjusting for total brain volumes (all cerebellar lobules p < .0002). The superior posterior lobule was disproportionately associated with cortical thickness in the frontal lobes and cingulate cortex, brain regions known be affected in 22q11DS. Exploratory analyses suggested that the superior posterior lobule, particularly Crus I, may be associated with psychotic symptoms in 22q11DS. CONCLUSIONS The cerebellum is a critical but understudied component of the 22q11DS neuroendophenotype.
Collapse
Affiliation(s)
- J Eric Schmitt
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania; Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - John J DeBevits
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Kosha Ruparel
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - R Sean Gallagher
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Ruben C Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Aaron Alexander-Bloch
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shahinur Alam
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffrey Steinberg
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Walter Akers
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Khaled Khairy
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Beverly Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania; Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Jalbrzikowski M, Lin A, Vajdi A, Grigoryan V, Kushan L, Ching CRK, Schleifer C, Hayes RA, Chu SA, Sugar CA, Forsyth JK, Bearden CE. Longitudinal trajectories of cortical development in 22q11.2 copy number variants and typically developing controls. Mol Psychiatry 2022; 27:4181-4190. [PMID: 35896619 PMCID: PMC9718681 DOI: 10.1038/s41380-022-01681-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Probing naturally-occurring, reciprocal genomic copy number variations (CNVs) may help us understand mechanisms that underlie deviations from typical brain development. Cross-sectional studies have identified prominent reductions in cortical surface area (SA) and increased cortical thickness (CT) in 22q11.2 deletion carriers (22qDel), with the opposite pattern in duplication carriers (22qDup), but the longitudinal trajectories of these anomalies-and their relationship to clinical symptomatology-are unknown. Here, we examined neuroanatomic changes within a longitudinal cohort of 261 22q11.2 CNV carriers and demographically-matched typically developing (TD) controls (84 22qDel, 34 22qDup, and 143 TD; mean age 18.35, ±10.67 years; 50.47% female). A total of 431 magnetic resonance imaging scans (164 22qDel, 59 22qDup, and 208 TD control scans; mean interscan interval = 20.27 months) were examined. Longitudinal FreeSurfer analysis pipelines were used to parcellate the cortex and calculate average CT and SA for each region. First, general additive mixed models (GAMMs) were used to identify regions with between-group differences in developmental trajectories. Secondly, we investigated whether these trajectories were associated with clinical outcomes. Developmental trajectories of CT were more protracted in 22qDel relative to TD and 22qDup. 22qDup failed to show normative age-related SA decreases. 22qDel individuals with psychosis spectrum symptoms showed two distinct periods of altered CT trajectories relative to 22qDel without psychotic symptoms. In contrast, 22q11.2 CNV carriers with autism spectrum diagnoses showed early alterations in SA trajectories. Collectively, these results provide new insights into altered neurodevelopment in 22q11.2 CNV carriers, which may shed light on neural mechanisms underlying distinct clinical outcomes.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Vardui Grigoryan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Charles Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie A Chu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Catherine A Sugar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Biostatistics, University of California, Los Angeles, CA, USA
| | - Jennifer K Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Catalan A, Radua J, McCutcheon R, Aymerich C, Pedruzo B, González-Torres MÁ, Baldwin H, Stone WS, Giuliano AJ, McGuire P, Fusar-Poli P. Examining the variability of neurocognitive functioning in individuals at clinical high risk for psychosis: a meta-analysis. Transl Psychiatry 2022; 12:198. [PMID: 35551176 PMCID: PMC9098884 DOI: 10.1038/s41398-022-01961-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
This study aims to meta-analytically characterize the presence and magnitude of within-group variability across neurocognitive functioning in young people at Clinical High-Risk for psychosis (CHR-P) and comparison groups. Multistep, PRISMA/MOOSE-compliant systematic review (PROSPERO-CRD42020192826) of the Web of Science database, Cochrane Central Register of Reviews and Ovid/PsycINFO and trial registries up to July 1, 2020. The risk of bias was assessed using a modified version of the NOS for cohort and cross-sectional studies. Original studies reporting neurocognitive functioning in individuals at CHR-P compared to healthy controls (HC) or first-episode psychosis (FEP) patients were included. The primary outcome was the random-effect meta-analytic variability ratios (VR). Secondary outcomes included the coefficient of variation ratios (CVR). Seventy-eight studies were included, relating to 5162 CHR-P individuals, 2865 HC and 486 FEP. The CHR-P group demonstrated higher variability compared to HC (in descending order of magnitude) in visual memory (VR: 1.41, 95% CI 1.02-1.94), executive functioning (VR: 1.31, 95% CI 1.18-1.45), verbal learning (VR: 1.29, 95% CI 1.15-1.45), premorbid IQ (VR: 1.27, 95% CI 1.09-1.49), processing speed (VR: 1.26, 95% CI 1.07-1.48), visual learning (VR: 1.20, 95% CI 1.07-1.34), and reasoning and problem solving (VR: 1.17, 95% CI 1.03-1.34). In the CVR analyses the variability in CHR-P population remains in the previous neurocognitive domains and emerged in attention/vigilance, working memory, social cognition, and visuospatial ability. The CHR-P group transitioning to psychosis showed greater VR in executive functioning compared to those not developing psychosis and compared to FEP groups. Clinical high risk for psychosis subjects shows increased variability in neurocognitive performance compared to HC. The main limitation of this study is the validity of the VR and CVR as an index of variability which has received debate. This finding should be explored by further individual-participant data research and support precision medicine approaches.
Collapse
Affiliation(s)
- Ana Catalan
- Mental Health Department. Basurto University Hospital. Biocruces Bizkaia Health Research Institute. Department of Neuroscience, Campus de Leioa, University of the Basque Country, UPV/EHU. Plaza de Cruces 12. 48903, Barakaldo, Bizkaia, Spain. .,Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Joaquim Radua
- grid.13097.3c0000 0001 2322 6764Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK ,grid.10403.360000000091771775Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Mental Health Research Networking Center (CIBERSAM), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Robert McCutcheon
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Claudia Aymerich
- grid.414269.c0000 0001 0667 6181Psychiatry Department, Basurto University Hospital, Bilbao, Spain
| | - Borja Pedruzo
- grid.414269.c0000 0001 0667 6181Psychiatry Department, Basurto University Hospital, Bilbao, Spain
| | - Miguel Ángel González-Torres
- grid.11480.3c0000000121671098Mental Health Department. Basurto University Hospital. Biocruces Bizkaia Health Research Institute. Department of Neuroscience, Campus de Leioa, University of the Basque Country, UPV/EHU. Plaza de Cruces 12. 48903, Barakaldo, Bizkaia Spain
| | - Helen Baldwin
- grid.13097.3c0000 0001 2322 6764Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - William S. Stone
- grid.239395.70000 0000 9011 8547Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Anthony J. Giuliano
- grid.435881.30000 0001 0394 0960Worcester Recovery Center & Hospital, Massachusetts Department of Mental Health, Boston, MA USA
| | - Philip McGuire
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paolo Fusar-Poli
- grid.13097.3c0000 0001 2322 6764Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK ,grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy ,grid.451056.30000 0001 2116 3923National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), London, UK ,grid.37640.360000 0000 9439 0839Outreach and Support in South London (OASIS) service, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
de Oliveira Figueiredo EC, Bondiolotti BM, Laugeray A, Bezzi P. Synaptic Plasticity Dysfunctions in the Pathophysiology of 22q11 Deletion Syndrome: Is There a Role for Astrocytes? Int J Mol Sci 2022; 23:ijms23084412. [PMID: 35457231 PMCID: PMC9028090 DOI: 10.3390/ijms23084412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/01/2023] Open
Abstract
The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related to structural and functional changes observed in patients with cognitive dysfunctions, therefore suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore indicating that mitochondrial processes are strictly related to synapse formation and maintenance of a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal function and metabolism, but also needs the active contribution of astrocytes, we summarize in this review recent studies showing the involvement of synaptic plasticity in the pathophysiology of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible involvement of astrocytes.
Collapse
Affiliation(s)
| | - Bianca Maria Bondiolotti
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Anthony Laugeray
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
- Department of Pharmacology and Physiology, University of Rome Sapienza, 00185 Rome, Italy
- Correspondence: or
| |
Collapse
|
21
|
Age-Related Improvements in Executive Functions and Focal Attention in 22q11.2 Deletion Syndrome Vary Across Domain and Task. J Int Neuropsychol Soc 2022; 28:337-350. [PMID: 33952381 DOI: 10.1017/s135561772100059x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Executive functions (EF) and focal attention have been identified as a weakness in the profile of 22q11.2 deletion syndrome (22q11DS). However, due to a high variety of tasks used across previous studies, it remains unclear whether impairments may be more pronounced for specific subdomains of EF and focal attention. Furthermore, age-related changes have only been examined in a few studies, so far only yielding a partial view of the overall developmental profile. METHOD In a broad age range (8-35 years) composed of longitudinal data, 183 participants (103 diagnosed with 22q11DS) completed an extensive assessment of EF and attention. To get a more comprehensive overview of specific versus global impairments, several tasks were assessed within multiple domains. RESULTS Results suggest differential impairments and trajectories in specific EF subdomains. Specifically, our findings suggest that individuals with 22q11DS not only showed lower overall inhibition skills, but also that initiation skills developed at a slower pace compared to healthy controls. Results are less clear regarding cognitive flexibility, updating and focal attention, for which performance strongly depended on the tasks that was selected to assess the domain. CONCLUSIONS Findings confirm and extend knowledge on differential developmental patterns of EF and attention domains in 22q11DS. They further stress the necessity to administer extensive, multifaceted evaluations to gain a more reliable overview of patients' cognitive profile.
Collapse
|
22
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
23
|
Contribution of schizophrenia polygenic burden to longitudinal phenotypic variance in 22q11.2 deletion syndrome. Mol Psychiatry 2022; 27:4191-4200. [PMID: 35768638 PMCID: PMC9718680 DOI: 10.1038/s41380-022-01674-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
While the recurrent 22q11.2 deletion is one of the strongest genetic risk factors for schizophrenia (SCZ), variability of its associated neuropsychiatric endophenotypes reflects its incomplete penetrance for psychosis development. To assess whether this phenotypic variability is linked to common variants associated with SCZ, we studied the association between SCZ polygenic risk score (PRS) and longitudinally acquired phenotypic information of the Swiss 22q11.2DS cohort (n = 97, 50% females, mean age 17.7 yr, mean visit interval 3.8 yr). The SCZ PRS with the best predictive performance was ascertained in the Estonian Biobank (n = 201,146) with LDpred. The infinitesimal SCZ PRS model showed the strongest capacity in discriminating SCZ cases from controls with one SD difference in SCZ PRS corresponding to an odds ratio (OR) of 1.73 (95% CI 1.57-1.90, P = 1.47 × 10-29). In 22q11.2 patients, random-effects ordinal regression modelling using longitudinal data showed SCZ PRS to have the strongest effect on social anhedonia (OR = 2.09, P = 0.0002), and occupational functioning (OR = 1.82, P = 0.0003) within the negative symptoms course, and dysphoric mood (OR = 2.00, P = 0.002) and stress intolerance (OR = 1.76, P = 0.0002) within the general symptoms course. Genetic liability for SCZ was additionally associated with full scale cognitive decline (β = -0.25, P = 0.02) and with longitudinal volumetric reduction of the right and left hippocampi (β = -0.28, P = 0.005; β = -0.23, P = 0.02, respectively). Our results indicate that the polygenic contribution to SCZ acts upon the threshold-lowering first hit (i.e., the deletion). It modifies the endophenotypes of 22q11.2DS and augments the derailment of developmental trajectories of negative and general symptoms, cognition, and hippocampal volume.
Collapse
|
24
|
Bonthrone AF, Kelly CJ, Ng IHX, Counsell SJ. MRI studies of brain size and growth in individuals with congenital heart disease. Transl Pediatr 2021; 10:2171-2181. [PMID: 34584889 PMCID: PMC8429874 DOI: 10.21037/tp-20-282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/21/2020] [Indexed: 11/10/2022] Open
Abstract
Congenital heart disease (CHD) is the most frequent congenital abnormality. Most infants born with CHD now survive. However, survivors of CHD are at increased risk of neurodevelopmental impairment, which may be due to impaired brain development in the fetal and neonatal period. Magnetic resonance imaging (MRI) provides objective measures of brain volume and growth. Here, we review MRI studies assessing brain volume and growth in individuals with CHD from the fetus to adolescence. Smaller brain volumes compared to healthy controls are evident from around 30 weeks gestation in fetuses with CHD and are accompanied by increased extracerebral cerebrospinal fluid. This impaired brain growth persists after birth and throughout childhood to adolescence. Risk factors for impaired brain growth include reduced cerebral oxygen delivery in utero, longer time to surgery and increased hospital stay. There is increasing evidence that smaller total and regional brain volumes in this group are associated with adverse neurodevelopmental outcome. However, to date, few studies have assessed the association between early measures of cerebral volume and neurodevelopmental outcome in later childhood. Large prospective multicentre studies are required to better characterise the relationship between brain volume and growth, clinical risk factors and subsequent cognitive, motor, and behavioural impairments in this at-risk population.
Collapse
Affiliation(s)
- Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Christopher J Kelly
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Isabel H X Ng
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
25
|
Smaller subcortical volumes and enlarged lateral ventricles are associated with higher global functioning in young adults with 22q11.2 deletion syndrome with prodromal symptoms of schizophrenia. Psychiatry Res 2021; 301:113979. [PMID: 33993037 DOI: 10.1016/j.psychres.2021.113979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
The 22q11.2 deletion syndrome (22q11DS) is a developmental genetic syndrome associated with a 30% risk for developing schizophrenia. Lateral ventricles and subcortical structures are abnormal in this syndrome as well as in schizophrenia. Here, we investigated whether these structures are related in young adults with 22q11DS with and without prodromal symptoms (PS) for schizophrenia and whether abnormalities in volumes are associated with global functioning. MR images were acquired on a 3T scanner from 51 individuals with 22q11DS and 30 healthy controls (mean age: 21±2 years). Correlations were performed to evaluate the relationship between ventricular and subcortical volumes, with Global Assessment of Functioning (GAF) and Premorbid Adjustment Scale (PAS) in each group. Lateral ventricular volumes correlated negatively with subcortical volumes in individuals with 22q11DS. In individuals with 22q11DS with PS only, GAF correlated positively with volumes of the lateral ventricles and negatively with subcortical volumes. PAS correlated negatively with lateral ventricle volumes, and positively with volumes of subcortical structures. The results suggest a common neurodevelopmental mechanism related to the growth of these brain structures. Further, the ratio between the volumes and clinical measures could potentially be used to characterize individuals with 22q11DS and those from the general population for the risk of the development of schizophrenia.
Collapse
|
26
|
Moreau CA, Ching CR, Kumar K, Jacquemont S, Bearden CE. Structural and functional brain alterations revealed by neuroimaging in CNV carriers. Curr Opin Genet Dev 2021; 68:88-98. [PMID: 33812299 PMCID: PMC8205978 DOI: 10.1016/j.gde.2021.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023]
Abstract
Copy Number Variants (CNVs) are associated with elevated rates of neuropsychiatric disorders. A 'genetics-first' approach, involving the CNV effects on the brain, irrespective of clinical symptomatology, allows investigation of mechanisms underlying neuropsychiatric disorders in the general population. Recent years have seen an increasing number of larger multisite neuroimaging studies investigating the effect of CNVs on structural and functional brain endophenotypes. Alterations overlap with those found in idiopathic psychiatric conditions but effect sizes are twofold to fivefold larger. Here we review new CNV-associated structural and functional brain alterations and outline the future of neuroimaging genomics research, with particular emphasis on developing new resources for the study of high-risk CNVs and rare genomic variants.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte-Justine Hospital Research Center, Montreal, Canada; Department of Pediatrics, University of Montreal, Montreal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada; Human Genetics and Cognitive Functions, CNRS UMR 3571, Université de Paris, Institut Pasteur, Paris, France
| | - Christopher Rk Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, USA
| | - Kuldeep Kumar
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - Sebastien Jacquemont
- Sainte-Justine Hospital Research Center, Montreal, Canada; Department of Pediatrics, University of Montreal, Montreal, Canada.
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, USA.
| |
Collapse
|
27
|
Gur RE, Roalf DR, Alexander-Bloch A, McDonald-McGinn DM, Gur RC. Pathways to understanding psychosis through rare - 22q11.2DS - and common variants. Curr Opin Genet Dev 2021; 68:35-40. [PMID: 33571729 PMCID: PMC8728946 DOI: 10.1016/j.gde.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
The 22q11.2 Deletion Syndrome has significant impact on brain and behavior, with about 25% of individuals developing schizophrenia. The condition offers a model for prospective studies on the emergence of psychosis and advancing mechanistic hypotheses on gene-environment interactions, with magnified power for examining genome-phenome association. Here, we highlight findings that build on the International 22q11.2 Brain and Behavior Consortium and relate to several key domains in the study of psychosis-risk and schizophrenia. We examine neurocognition, olfaction and neuroimaging data that indicate similar impairment patterns in this rare syndrome and idiopathic presentation of schizophrenia. We conclude that the converging paradigms, studying psychosis dimensionally in rare and common variants samples, provide complementary approaches that will propel precision medicine in psychiatry.
Collapse
Affiliation(s)
- Raquel E Gur
- Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, the Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and the Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - David R Roalf
- Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, the Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and the Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, the Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and the Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics and 22q and You Center, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, the Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and the Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
28
|
AlKalaf HY, AlHashem AM, AlSaleh NS, AlJohar NM, Abo Thneen AM, ElGhezal HM, Bouhjar IB, Tlili-Graiess K, Sahari AH, Tabarki BM. Epilepsy, neuropsychiatric phenotypes, neuroimaging findings, and genotype-neurophenotype correlation in 22q11.2 deletion syndrome. ACTA ACUST UNITED AC 2021; 25:287-291. [PMID: 33130809 PMCID: PMC8015611 DOI: 10.17712/nsj.2020.4.20200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objectives: To describe the epilepsy, neuropsychiatric manifestations, and neuroimaging findings in a group of patients with 22q11.2 DS, and to correlate the size of the deleted genetic material with the severity of the phenotype. Methods: We retrospectively analyzed the medical records of 28 patients (21 pediatric patients and 7 adults) with a genetically confirmed diagnosis of 22q11.2 DS. Clinical data (epilepsy, neurological exam, neuropsychological and developmental assessment, and psychiatric disorders), neuroimaging, and cytogenetic tests were analyzed. Results: Of the 28 patients with 22q11.2 DS, 6 (21.4%) had epileptic seizures, 2 had symptomatic hypocalcemic seizures, 4 (14.2%) had a psychiatric disorder, which comprised of attention deficit hyperactivity disorder, autism spectrum disorder, psychosis, and mood disorder, and 17 (60.7%) had developmental delay. All patients with epilepsy had a developmental delay. Twelve patients underwent a neuropsychology assessment. Intellectual levels ranged from moderate intellectual disability (7/12, 58%) to average (5/12, 41.6%). Of the 16 patients, 6 (37.5%) had a normal brain, while 10 (62.5%) had abnormal neuroimaging findings. No significant correlation was found between the size of the deleted genetic material and the severity of the phenotype. Conclusion: 22q11.2DS patients are at high risk to develop epilepsy, neuropsychiatric manifestations, and structural brain abnormalities. This indicates that this defined genetic locus is crucial for the development of the nervous system, and patients with 22q11.2 DS have genetic susceptibility to develop epilepsy.
Collapse
Affiliation(s)
- Heeba Y AlKalaf
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McCutcheon R, Pillinger T, Welby G, Vano L, Cummings C, Guo X, Heron TA, Efthimiou O, Cipriani A, Howes O. Magnitude and variability of structural brain abnormalities in neuropsychiatric disease: protocol for a network meta-analysis of MRI studies. EVIDENCE-BASED MENTAL HEALTH 2021; 24:ebmental-2020-300229. [PMID: 33849995 PMCID: PMC8311078 DOI: 10.1136/ebmental-2020-300229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Structural MRI is the most frequently used method to investigate brain volume alterations in neuropsychiatric disease. Previous meta-analyses have typically focused on a single diagnosis, thereby precluding transdiagnostic comparisons. METHODS AND ANALYSIS We will include all structural MRI studies of adults that report brain volumes for participants from at least two of the following diagnostic groups: healthy controls, schizophrenia, schizoaffective disorder, delusional disorder, psychotic depression, clinical high risk for psychosis, schizotypal personality disorder, psychosis unspecified, bipolar disorder, autism spectrum disorder, major depressive disorder, attention deficit hyperactivity disorder, obsessive compulsive disorder, post-traumatic stress disorder, emotionally unstable personality disorder, 22q11 deletion syndrome, generalised anxiety disorder, social anxiety disorder, panic disorder, mixed anxiety and depression. Network meta-analysis will be used to synthesise eligible studies. The primary analysis will examine standardised mean difference in average volume, a secondary analysis will examine differences in variability of volumes. DISCUSSION This network meta-analysis will provide a transdiagnostic integration of structural neuroimaging studies, providing researchers with a valuable summary of a large literature. PROSPERO REGISTRATION NUMBER CRD42020221143.
Collapse
Affiliation(s)
- Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - George Welby
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Luke Vano
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Connor Cummings
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Xin Guo
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Toni Ann Heron
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Orestis Efthimiou
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| |
Collapse
|
30
|
Carrier M, Guilbert J, Lévesque JP, Tremblay MÈ, Desjardins M. Structural and Functional Features of Developing Brain Capillaries, and Their Alteration in Schizophrenia. Front Cell Neurosci 2021; 14:595002. [PMID: 33519380 PMCID: PMC7843388 DOI: 10.3389/fncel.2020.595002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia affects more than 1% of the world's population and shows very high heterogeneity in the positive, negative, and cognitive symptoms experienced by patients. The pathogenic mechanisms underlying this neurodevelopmental disorder are largely unknown, although it is proposed to emerge from multiple genetic and environmental risk factors. In this work, we explore the potential alterations in the developing blood vessel network which could contribute to the development of schizophrenia. Specifically, we discuss how the vascular network evolves during early postnatal life and how genetic and environmental risk factors can lead to detrimental changes. Blood vessels, capillaries in particular, constitute a dynamic and complex infrastructure distributing oxygen and nutrients to the brain. During postnatal development, capillaries undergo many structural and anatomical changes in order to form a fully functional, mature vascular network. Advanced technologies like magnetic resonance imaging and near infrared spectroscopy are now enabling to study how the brain vasculature and its supporting features are established in humans from birth until adulthood. Furthermore, the contribution of the different neurovascular unit elements, including pericytes, endothelial cells, astrocytes and microglia, to proper brain function and behavior, can be dissected. This investigation conducted among different brain regions altered in schizophrenia, such as the prefrontal cortex, may provide further evidence that schizophrenia can be considered a neurovascular disorder.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC, Canada
| | - Jérémie Guilbert
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Lévesque
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
| | - Michèle Desjardins
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| |
Collapse
|
31
|
Zhuo C, Tian H, Fang T, Li R, Li Y, Kong L, Cai Z, Zheng L, Lin X, Chen C. Neural mechanisms underlying visual and auditory processing impairments in schizophrenia: insight into the etiology and implications for tailoring preventive and therapeutic interventions. Am J Transl Res 2020; 12:7657-7669. [PMID: 33437351 PMCID: PMC7791494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Schizophrenia is a complex and devastating neuropsychiatric disorder with an unknown etiology. Patients with schizophrenia have a high prevalence of visual disturbances, commonly accompanied by auditory impairments. In recent review articles, the perceptual deficits of visual and auditory sensory processing have been downplayed. However, visual and auditory impairments are associated with hallucinations, which is characteristic of schizophrenia across all cultures. Despite decades of research, the common neural mechanisms underlying hallucinations remain largely unknown. In recent years, neuroimaging technologies have empowered researchers to investigate the underlying neural mechanisms. In this review article, we performed a literature search of studies that assessed visual and auditory processing impairments, along with their relationship to visual disturbances and auditory hallucinations, in schizophrenia. We proposed that the pulvinar may play a critical role. In addition, disrupted visual and auditory projections from the pulvinar to the visual and auditory cortices could be shared pathways in relation to visual disturbances and auditory hallucinations in schizophrenia. Our findings suggest that early visual and auditory processing deficits may occur before the onset of the initial psychotic episode, including hallucinations, and the full manifestation of schizophrenia. Furthermore, we discussed the directions for future studies. Our findings from this review offer unique insights into the distinct underlying neural mechanisms of schizophrenia, which may help develop tailored preventive and therapeutic interventions in the future.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Brain Circuits Tracing (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Hospital Affiliated to Nankai UniversityTianjin 300222, China
- Department of Psychiatry, Tianjin Medical UniversityTianjin 300072, China
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical UniversityTianjin 300300, China
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Hongjun Tian
- Key Laboratory of Real Time Brain Circuits Tracing (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Hospital Affiliated to Nankai UniversityTianjin 300222, China
| | - Tao Fang
- Key Laboratory of Real Time Brain Circuits Tracing (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Hospital Affiliated to Nankai UniversityTianjin 300222, China
| | - Ranli Li
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical UniversityTianjin 300300, China
| | - Yachen Li
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical UniversityTianjin 300300, China
| | - Lingguang Kong
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Ziyao Cai
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Lidan Zheng
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| |
Collapse
|
32
|
LaMantia AS. Why Does the Face Predict the Brain? Neural Crest Induction, Craniofacial Morphogenesis, and Neural Circuit Development. Front Physiol 2020; 11:610970. [PMID: 33362582 PMCID: PMC7759552 DOI: 10.3389/fphys.2020.610970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchephalic and rhombencephalic neural crest cells generate the craniofacial skeleton, special sensory organs, and subsets of cranial sensory receptor neurons. They do so while preserving the anterior-posterior (A-P) identity of their neural tube origins. This organizational principle is paralleled by central nervous system circuits that receive and process information from facial structures whose A-P identity is in register with that in the brain. Prior to morphogenesis of the face and its circuits, however, neural crest cells act as "inductive ambassadors" from distinct regions of the neural tube to induce differentiation of target craniofacial domains and establish an initial interface between the brain and face. At every site of bilateral, non-axial secondary induction, neural crest constitutes all or some of the mesenchymal compartment for non-axial mesenchymal/epithelial (M/E) interactions. Thus, for epithelial domains in the craniofacial primordia, aortic arches, limbs, the spinal cord, and the forebrain (Fb), neural crest-derived mesenchymal cells establish local sources of inductive signaling molecules that drive morphogenesis and cellular differentiation. This common mechanism for building brains, faces, limbs, and hearts, A-P axis specified, neural crest-mediated M/E induction, coordinates differentiation of distal structures, peripheral neurons that provide their sensory or autonomic innervation in some cases, and central neural circuits that regulate their behavioral functions. The essential role of this neural crest-mediated mechanism identifies it as a prime target for pathogenesis in a broad range of neurodevelopmental disorders. Thus, the face and the brain "predict" one another, and this mutual developmental relationship provides a key target for disruption by developmental pathology.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- Laboratory of Developmental Disorders and Genetics and Center for Neurobiology Research, Fralin Biomedical Research Institute, Department of Pediatrics, Virginia Tech-Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
33
|
Gudbrandsen M, Daly E, Murphy CM, Blackmore CE, Rogdaki M, Mann C, Bletsch A, Kushan L, Bearden CE, Murphy DGM, Craig MC, Ecker C. Brain morphometry in 22q11.2 deletion syndrome: an exploration of differences in cortical thickness, surface area, and their contribution to cortical volume. Sci Rep 2020; 10:18845. [PMID: 33139857 PMCID: PMC7606591 DOI: 10.1038/s41598-020-75811-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS) is the most common microdeletion in humans, with a heterogenous clinical presentation including medical, behavioural and psychiatric conditions. Previous neuroimaging studies examining the neuroanatomical underpinnings of 22q11.2DS show alterations in cortical volume (CV), cortical thickness (CT) and surface area (SA). The aim of this study was to identify (1) the spatially distributed networks of differences in CT and SA in 22q11.2DS compared to controls, (2) their unique and spatial overlap, as well as (3) their relative contribution to observed differences in CV. Structural MRI scans were obtained from 62 individuals with 22q11.2DS and 57 age-and-gender-matched controls (aged 6-31). Using FreeSurfer, we examined differences in vertex-wise estimates of CV, CT and SA at each vertex, and compared the frequencies of vertices with a unique or overlapping difference for each morphometric feature. Our findings indicate that CT and SA make both common and unique contributions to volumetric differences in 22q11.2DS, and in some areas, their strong opposite effects mask differences in CV. By identifying the neuroanatomic variability in 22q11.2DS, and the separate contributions of CT and SA, we can start exploring the shared and distinct mechanisms that mediate neuropsychiatric symptoms across disorders, e.g. 22q11.2DS-related ASD and/or psychosis/schizophrenia.
Collapse
Affiliation(s)
- M Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - E Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - C M Murphy
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Behavioural Genetics Clinic, Adult Autism and ADHD Services, Behavioural and Developmental Clinical Academic Group, South London and Maudsley Foundation, NHS, London, UK
| | - C E Blackmore
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Behavioural Genetics Clinic, Adult Autism and ADHD Services, Behavioural and Developmental Clinical Academic Group, South London and Maudsley Foundation, NHS, London, UK
| | - M Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - C Mann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - A Bletsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - L Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, CA, USA
| | - C E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California-Los Angeles, Los Angeles, CA, USA
| | - D G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - M C Craig
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- National Autism Unit, Bethlem Royal Hospital, London, UK
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.
| |
Collapse
|
34
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
35
|
Licinio J, Wong ML. Molecular Psychiatry, August 2020: new impact factor, and highlights of recent advances in psychiatry, including an overview of the brain's response to stress during infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mol Psychiatry 2020; 25:1606-1610. [PMID: 32724165 PMCID: PMC7385469 DOI: 10.1038/s41380-020-0845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Julio Licinio
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
36
|
Tan LZ, Long LL, Xiao B. [Research advances in multimodal magnetic resonance for cognitive impairment in children with benign childhood epilepsy with centrotemporal spikes]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:528-532. [PMID: 32434653 PMCID: PMC7389406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/01/2020] [Indexed: 08/01/2024]
Abstract
Cognitive impairment in children with benign childhood epilepsy with centrotemporal spikes (BECT) has complex etiologies and is closely associated abnormal neural networks. Multimodal magnetic resonance imaging of brain structure and function is a powerful tool for studying abnormal neural networks of cognitive impairment in epilepsy and can explore the pathogenesis of cognitive impairment in epilepsy at the level of brain structure and function by analyzing the imaging features of brain structure and function. This article reviews the research advances in multimodal magnetic resonance for cognitive impairment in children with BECT.
Collapse
Affiliation(s)
- Lang-Zi Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | |
Collapse
|