1
|
Oliva V, Fico G, De Prisco M, Gonda X, Rosa AR, Vieta E. Bipolar disorders: an update on critical aspects. Lancet Reg Health Eur 2025; 48:101135. [DOI: 10.1016/j.lanepe.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
2
|
Gold PW, Wong ML. The neuroendocrinology of stress and the importance of a proper balance between the mineralocorticoid and glucocorticoid receptors. Mol Psychiatry 2025; 30:1-3. [PMID: 39681659 DOI: 10.1038/s41380-024-02686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 12/18/2024]
Affiliation(s)
- Philip W Gold
- Clinical Neuroendocrinology Branch, National Institutes of Health, National Institute of Mental Health Intramural Research Program, Bethesda, MD, 20814, USA
| | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
3
|
Saleh N, Blaise C, Daoudi A, Queneau M, Fard K, Dumurgier J, Munoz-Musat E, Marlinge E, Hugon J, Hourregue C, Paquet C, Cognat E. Brain 18FDG-PET pattern in cognitively impaired elderly patients with bipolar disorder. Int J Bipolar Disord 2024; 12:45. [PMID: 39739252 DOI: 10.1186/s40345-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Patients with bipolar disorder (BD) are at increased risk of dementia. The underlying mechanisms are debated. FDG-PET elucidates glucose metabolic reductions due to altered neuronal activity in the cerebral cortex, allowing detection and identification of neurodegenerative processes. This study aims to investigate cerebral glucose metabolism in cognitively impaired elderly patients with BD using FDG-PET imaging, to elucidate potential underlying mechanisms and improve diagnostic accuracy. METHODS We conducted a retrospective analysis of FDG-PET scans from 32 cognitively impaired elderly patients with BD (mean age 70.4 years). These were compared with scans from 35 non-degenerative controls (NDC) and patients diagnosed with Alzheimer's disease (AD, n = 27), frontotemporal dementia (FTD, n = 26), and dementia with Lewy bodies (DLB, n = 18). Voxel-wise statistical analysis was performed using SPM software, adjusting for age and sex. RESULTS No significant cortical hypometabolism was found in patients with BD compared to NDC. In contrast, typical patterns of hypometabolism were observed in the AD, FTD, and DLB groups. The findings suggest that late-life cognitive impairment in patients with BD is not due to a single common neurodegenerative process. CONCLUSION The absence of abnormal cortical metabolism in cognitively impaired elderly patients with BD suggests that cognitive impairment in this population may not be driven by a common neurodegenerative pathway. Further studies using other biomarkers are needed to investigate the brain processes involved, which could lead to improved understanding and management of cognitive impairment in patients with BD.
Collapse
Affiliation(s)
- Nouredine Saleh
- Department of nuclear medicine, Centre de Neurologie Cognitive, GHU AP-HP.Nord, Site Lariboisière Fernand-Widal, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | | | - Amina Daoudi
- Université Paris Cité, UMRS 1144, INSERM, Paris, France
| | - Matthieu Queneau
- Molecular and functional Imaging, IMF Group, Saint-Denis, France
| | - Karim Fard
- Institut Caribéen d'imagerie nucléaire, ICIN, CHU Martinique, Fort-de-France, France
| | - Julien Dumurgier
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
- Université Paris Cité, Inserm U1153, Paris, France
| | - Esteban Munoz-Musat
- Université Paris Cité, UMRS 1144, INSERM, Paris, France
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Emeline Marlinge
- Département de Psychiatrie, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Jacques Hugon
- Université Paris Cité, UMRS 1144, INSERM, Paris, France
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | | | - Claire Paquet
- Université Paris Cité, UMRS 1144, INSERM, Paris, France
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Emmanuel Cognat
- Université Paris Cité, UMRS 1144, INSERM, Paris, France.
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France.
| |
Collapse
|
4
|
Wang R, Wang C, Zhang G, Mundinano IC, Zheng G, Xiao Q, Zhong Y. Causal mechanisms of quadruple networks in pediatric bipolar disorder. Psychol Med 2024:1-12. [PMID: 39679552 DOI: 10.1017/s0033291724002885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
BACKGROUND Pediatric bipolar disorder (PBD) is characterized by abnormal functional connectivity among distributed brain regions. Increasing evidence suggests a role for the limbic network (LN) and the triple network model in the pathophysiology of bipolar disorder (BD). However, the specific relationship between the LN and the triple network in PBD remains unclear. This study aimed to investigate the aberrant causal connections among these four core networks in PBD. METHOD Resting-state functional MRI scans from 92 PBD patients and 40 healthy controls (HCs) were analyzed. Dynamic Causal Modeling (DCM) was employed to assess effective connectivity (EC) among the four core networks. Parametric empirical Bayes (PEB) analysis was conducted to identify ECs associated with group differences, as well as depression and mania severity. Leave-one-out cross-validation (LOOCV) was used to test predictive accuracy. RESULT Compared to HCs, PBD patients exhibited primarily excitatory bottom-up connections from the LN to the salience network (SN) and bidirectional excitatory connections between the default mode network (DMN) and SN. In PBD, top-down connectivity from the triple network to the LN was excitatory in individuals with higher depression severity but inhibitory in those with higher mania severity. LOOCV identified dysconnectivity circuits involving the caudate and hippocampus as being associated with mania and depression severity, respectively. CONCLUSIONS Disrupted bottom-up connections from the LN to the triple network distinguish PBD patients from healthy controls, while top-down disruptions from the triple network to LN relate to mood state differences. These findings offer insight into the neural mechanisms of PBD.
Collapse
Affiliation(s)
- Rong Wang
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Chun Wang
- Department of Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Gui Zhang
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Inaki-Carril Mundinano
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Victoria 3800, Australia
| | - Qian Xiao
- Mental Health Centre of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| |
Collapse
|
5
|
Martino M, Magioncalda P. A working model of neural activity and phenomenal experience in psychosis. Mol Psychiatry 2024; 29:3814-3825. [PMID: 38844531 DOI: 10.1038/s41380-024-02607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 12/05/2024]
Abstract
According to classical phenomenology, phenomenal experience is composed of perceptions (related to environmental stimuli) and imagery/ideas (unrelated to environmental stimuli). Intensity/vividness is supposed to represent the key phenomenal difference between perceptions and ideas, higher in perceptions than ideas, and thus the core subjective criterion to distinguish reality from imagination. At a neural level, phenomenal experience is related to brain activity in the sensory areas, driven by receptor stimulation (underlying perception) or associative areas (underlying imagery/ideas). An alteration of the phenomenal experience that leads to a loss of contact with reality characterizes psychosis, which mainly consists of hallucinations (false perceptions) and delusions (fixed ideas). According to the current data on their neural correlates across subclinical conditions and different neuropsychiatric disorders (such as schizophrenia), hallucinations are mainly associated with: transient (modality-specific) activations of sensory cortices (primarily superior temporal gyrus, occipito-temporal cortex, postcentral gyrus, and insula) during the hallucinatory experience; increased intrinsic activity/connectivity of associative/default-mode network (DMN) areas (primarily temporoparietal junction, posterior cingulate cortex, and medial prefrontal cortex); and deficits in the sensory systems. Analogously, delusions are mainly associated with increased intrinsic activity/connectivity of associative/DMN areas (primarily medial prefrontal cortex). Integrating these data into our three-dimensional model of neural activity and phenomenal-behavioral patterns, we propose the following model of psychosis. A functional/structural deficit in the sensory systems complemented by a functional reconfiguration of intrinsic brain activity favoring hyperactivity of associative/DMN areas may drive neuronal activations in the sensory (auditory/visual/somatosensory) areas and insular (interoceptive) areas with spatiotemporal configurations maximally independent from environmental stimuli and predominantly related to associative processing. This manifests in perception deficit and imagery/ideas composed of exteroceptive-like and interoceptive/affective-like elements that show a phenomenal intensity indistinguishable from perceptions, impairing the reality monitoring, along with minimal changeability by environmental stimuli, ultimately resulting in dissociation of the phenomenal experience from the environment, i.e., psychosis.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
6
|
Meng X, Zhang S, Zhou S, Ma Y, Yu X, Guan L. Putative Risk Biomarkers of Bipolar Disorder in At-risk Youth. Neurosci Bull 2024; 40:1557-1572. [PMID: 38710851 PMCID: PMC11422403 DOI: 10.1007/s12264-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 05/08/2024] Open
Abstract
Bipolar disorder is a highly heritable and functionally impairing disease. The recognition and intervention of BD especially that characterized by early onset remains challenging. Risk biomarkers for predicting BD transition among at-risk youth may improve disease prognosis. We reviewed the more recent clinical studies to find possible pre-diagnostic biomarkers in youth at familial or (and) clinical risk of BD. Here we found that putative biomarkers for predicting conversion to BD include findings from multiple sample sources based on different hypotheses. Putative risk biomarkers shown by perspective studies are higher bipolar polygenetic risk scores, epigenetic alterations, elevated immune parameters, front-limbic system deficits, and brain circuit dysfunction associated with emotion and reward processing. Future studies need to enhance machine learning integration, make clinical detection methods more objective, and improve the quality of cohort studies.
Collapse
Affiliation(s)
- Xinyu Meng
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shengmin Zhang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shuzhe Zhou
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yantao Ma
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xin Yu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lili Guan
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
7
|
Lai L, Li D, Zhang Y, Hao J, Wang X, Cui X, Xiang J, Wang B. Abnormal Dynamic Reconfiguration of Multilayer Temporal Networks in Patients with Bipolar Disorder. Brain Sci 2024; 14:935. [PMID: 39335429 PMCID: PMC11430687 DOI: 10.3390/brainsci14090935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Multilayer networks have been used to identify abnormal dynamic reconfiguration in bipolar disorder (BD). However, these studies ignore the differences in information interactions between adjacent layers when constructing multilayer networks, and the analysis of dynamic reconfiguration is not comprehensive enough; Methods: Resting-state functional magnetic resonance imaging data were collected from 46 BD patients and 54 normal controls. A multilayer temporal network was constructed for each subject, and inter-layer coupling of different nodes was considered using network similarity. The promiscuity, recruitment, and integration coefficients were calculated to quantify the different dynamic reconfigurations between the two groups; Results: The global inter-layer coupling, recruitment, and integration coefficients were significantly lower in BD patients. These results were further observed in the attention network and the limbic/paralimbic and subcortical network, reflecting reduced temporal stability, intra- and inter-subnetwork communication abilities in BD patients. The whole-brain promiscuity was increased in BD patients. The same results were observed in the somatosensory/motor and auditory network, reflecting more functional interactions; Conclusions: This study discovered abnormal dynamic interactions of BD from the perspective of dynamic reconfiguration, which can help to understand the pathological mechanisms of BD.
Collapse
Affiliation(s)
- Luyao Lai
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Dandan Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Yating Zhang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianchao Hao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuedong Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Cui
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
8
|
Liu Y, Cai H, Han T, Wang YF, Li J, Xie XM, Ji X. Network analysis of comorbid aggressive behavior and testosterone among bipolar disorder patients: a cross-sectional study. Transl Psychiatry 2024; 14:224. [PMID: 38811572 PMCID: PMC11137147 DOI: 10.1038/s41398-024-02957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Testosterone has complex effects on psychological traits and behavior; it is associated with social dominance and competition and is a potential human sex pheromone. This study aimed to investigate the associations between testosterone levels, aggressive behavior, and manic symptoms using a network analysis among bipolar disorder (BD) patients in psychiatric emergency departments (PED). Data from January 2021 and March 2022 BD patients in PED were analyzed. Manic symptoms were assessed using the Young Mania Rating Scale (YMRS). Aggression was assessed with subscale of the PANSS scale (PANSS-AG). The undirected network structures of testosterone levels, aggressive behavior, and manic symptoms were estimated, and centrality and bridge centrality indices were examined. Network stability was examined using the case-dropping procedure. The Network Comparison Test (NCT) was conducted to evaluate whether network characteristics differed by gender. We recruited a total of 898 BD patients, with the mean YMRS score as 13.30 ± 9.58. The prevalence of level II aggression was 35.6% (95%CI = 32.5%-38.7%), level III aggression was 29.5% (95%CI = 26.3%-32.6%), and level VI aggression was 7.0% (95%CI = 5.4%-8.8%). The male participants had a mean testosterone level of 391.71 (Standard Deviation (SD):223.39) compared to 36.90 (SD:30.50) for female participants in the whole sample. Through network analysis, "Increased motor activity-energy" emerged as the central symptom, with the highest centrality expected influence, followed by "Emotional Instability" and "Disruptive/aggression behavior". Notably, "Emotional Instability" appeared to be the bridge symptom linking manic symptoms to aggressive behavior. Within the flow network model, "Speech rate and amount" exhibited the strongest positive correlation with testosterone levels, followed closely by "Disruptive/aggression behavior". The constructed network model demonstrated robust stability, with gender showing no significant impact on the structure. In this study, "Increased motor activity-energy" stood out as the most influential symptom, and "Speech rate and amount" acted as the main bridge symptom linking testosterone levels, aggressive behavior, and manic symptoms. Targeting the central and bridge symptoms may improve the outcomes of aggression interventions implemented among BD patients in psychiatric emergency care.
Collapse
Affiliation(s)
- Yi Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hong Cai
- Unit of Psychology Medicine and Behavior Medical, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Tian Han
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Juan Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiao-Meng Xie
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Xiao Ji
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Marten LE, Singh A, Muellen AM, Noack SM, Kozyrev V, Schweizer R, Goya-Maldonado R. Motor performance and functional connectivity between the posterior cingulate cortex and supplementary motor cortex in bipolar and unipolar depression. Eur Arch Psychiatry Clin Neurosci 2024; 274:655-671. [PMID: 37638997 PMCID: PMC10995093 DOI: 10.1007/s00406-023-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.
Collapse
Affiliation(s)
- Lara E Marten
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Anna M Muellen
- Cognitive Neuroscience Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Sören M Noack
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Straße 91, 4056, Basel, Switzerland
| | - Renate Schweizer
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
10
|
Wu YK, Su YA, Li L, Zhu LL, Li K, Li JT, Mitchell PB, Yan CG, Si TM. Brain functional changes across mood states in bipolar disorder: from a large-scale network perspective. Psychol Med 2024; 54:763-774. [PMID: 38084586 DOI: 10.1017/s0033291723002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
BACKGROUND Exploring the neural basis related to different mood states is a critical issue for understanding the pathophysiology underlying mood switching in bipolar disorder (BD), but research has been scarce and inconsistent. METHODS Resting-state functional magnetic resonance imaging data were acquired from 162 patients with BD: 33 (hypo)manic, 64 euthymic, and 65 depressive, and 80 healthy controls (HCs). The differences of large-scale brain network functional connectivity (FC) between the four groups were compared and correlated with clinical characteristics. To validate the generalizability of our findings, we recruited a small longitudinal independent sample of BD patients (n = 11). In addition, we examined topological nodal properties across four groups as exploratory analysis. RESULTS A specific strengthened pattern of network FC, predominantly involving the default mode network (DMN), was observed in (hypo)manic patients when compared with HCs and bipolar patients in other mood states. Longitudinal observation revealed an increase in several network FCs in patients during (hypo)manic episode. Both samples evidenced an increase in the FC between the DMN and ventral attention network, and between the DMN and limbic network (LN) related to (hypo)mania. The altered network connections were correlated with mania severity and positive affect. Bipolar depressive patients exhibited decreased FC within the LN compared with HCs. The exploratory analysis also revealed an increase in degree in (hypo)manic patients. CONCLUSIONS Our findings identify a distributed pattern of large-scale network disturbances in the unique context of (hypo)mania and thus provide new evidence for our understanding of the neural mechanism of BD.
Collapse
Affiliation(s)
- Yan-Kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Le Li
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
| | - Lin-Lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ke Li
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Black Dog Institute, Prince of Wales Hospital, Sydney, Australia
| | - Chao-Gan Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
11
|
Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry 2024; 29:639-652. [PMID: 38114633 DOI: 10.1038/s41380-023-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
How phenomenal experience and behavior are related to neural activity in physiology and psychopathology represents a fundamental question in neuroscience and psychiatry. The phenomenal-behavior patterns may be deconstructed into basic dimensions, i.e., psychomotricity, affectivity, and thought, which might have distinct neural correlates. This work provides a data overview on the relationship of these phenomenal-behavioral dimensions with brain activity across physiological and pathological conditions (including major depressive disorder, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, anxiety disorders, addictive disorders, Parkinson's disease, Tourette syndrome, Alzheimer's disease, and frontotemporal dementia). Accordingly, we propose a three-dimensional model of neural activity and phenomenal-behavioral patterns. In this model, neural activity is organized into distinct units in accordance with connectivity patterns and related input/output processing, manifesting in the different phenomenal-behavioral dimensions. (1) An external neural unit, which involves the sensorimotor circuit/brain's sensorimotor network and is connected with the external environment, processes external inputs/outputs, manifesting in the psychomotor dimension (processing of exteroception/somatomotor activity). External unit hyperactivity manifests in psychomotor excitation (hyperactivity/hyperkinesia/catatonia), while external unit hypoactivity manifests in psychomotor inhibition (retardation/hypokinesia/catatonia). (2) An internal neural unit, which involves the interoceptive-autonomic circuit/brain's salience network and is connected with the internal/body environment, processes internal inputs/outputs, manifesting in the affective dimension (processing of interoception/autonomic activity). Internal unit hyperactivity manifests in affective excitation (anxiety/dysphoria-euphoria/panic), while internal unit hypoactivity manifests in affective inhibition (anhedonia/apathy/depersonalization). (3) An associative neural unit, which involves the brain's associative areas/default-mode network and is connected with the external/internal units (but not with the environment), processes associative inputs/outputs, manifesting in the thought dimension (processing of ideas). Associative unit hyperactivity manifests in thought excitation (mind-wandering/repetitive thinking/psychosis), while associative unit hypoactivity manifests in thought inhibition (inattention/cognitive deficit/consciousness loss). Finally, these neural units interplay and dynamically combine into various neural states, resulting in the complex phenomenal experience and behavior across physiology and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
12
|
Escelsior A, Inuggi A, Sterlini B, Bovio A, Marenco G, Bode J, Favilla L, Tardito S, Altosole T, Pereira da Silva B, Fenoglio D, Filaci G, Amore M, Serafini G. T-cell immunophenotype correlations with cortical thickness and white matter microstructure in bipolar disorder. J Affect Disord 2024; 348:179-190. [PMID: 38154587 DOI: 10.1016/j.jad.2023.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Inflammation and immunological alterations, such as T-cell and cytokine changes, are implicated in bipolar disorder (BD), with some evidence linking them to brain structural changes (e.g., cortical thickness (CT), gray matter (GM) volume and white matter (WM) microstructure). However, the connection between specific peripheral cell types, such as T-cells, and neuroimaging in BD remains scarcely investigated. AIMS OF THE STUDY This study aims to explore the link between T-cell immunophenotype and neuroradiological findings in BD. METHODS Our study investigated 43 type I BD subjects (22 depressive, 21 manic) and 26 healthy controls (HC), analyzing T lymphocyte immunophenotype and employing neuroimaging to assess CT for GM and fractional anisotropy (FA) for WM. RESULTS In lymphocyte populations, BD patients exhibited elevated CD4+ and CD4+ central memory (TCM) cells frequencies, but lower CD8+ effector memory (TEM) and terminal effector memory (TTEM) cells. Neuroimaging analysis revealed reduced CT in multiple brain regions in BD patients; and significant negative correlations between CD4 + TCM levels and CT of precuneus and fusiform gyrus. Tract-based spatial statistics (TBSS) analysis showed widespread alteration in WM microstructure in BD patients, with negative and positive correlations respectively between FA and radial diffusivity (RD) and CD4 + TCM. Additionally, positive and negative correlations were found respectively between FA and RD and the CD8 + TEM and CD8 + TTEM subsets. CONCLUSIONS Our research revealed distinct T lymphocyte changes and brain structure alterations in BD, underscoring possible immune-brain interactions, warranting further study and therapeutic exploration.
Collapse
Affiliation(s)
- Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Alberto Inuggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Juxhin Bode
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Luca Favilla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Samuele Tardito
- Center for Cancer & Immunology Research, Children's National Hospital, 111 Michigan Ave NW (5th floor), Washington, DC 20010, United States of America.
| | | | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| |
Collapse
|
13
|
Rusakova MI, Manzhurova MI, Zakaryan AN, Lopatina SL, Frolova EF, Raevskiy KP. [The gut microbiota in bipolar disorder]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:28-33. [PMID: 39690548 DOI: 10.17116/jnevro202412411128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The gut microbiota is a community of microorganisms that live in the digestive tract of living beings and form bidirectional symbiotic relationships with them. It is known that gut bacteria play an important role in maintaining the functioning of the host organism, and disruption in the normal composition of the gut microbiota can contribute to the development of many diseases. The study of microbiota has been gaining popularity in recent years, and its influence on the course of various pathological conditions is becoming more and more undeniable. Due to the growing evidence supporting the connection between the gastrointestinal tract, microbiota and brain, the term «microbiota-gut-brain axis» has appeared. It regulates the functions of the central nervous system, affecting the mood, behavior of the host and, therefore, is involved in the pathogenesis of various mental disorders. Bipolar disorder, a long-known affective mental illness of an endogenous origin, is no exception. The review analyzes the evidence on the relationship between gut microbiota and bipolar disorder, as well as an overview of additional treatments for this disease that affect the microflora of the human body.
Collapse
Affiliation(s)
- M I Rusakova
- Pavlov First Saint Petersburg Medical University, St. Petersburg, Russia
| | - M I Manzhurova
- Saint Petersburg State University, St. Petersburg, Russia
| | - A N Zakaryan
- Pavlov First Saint Petersburg Medical University, St. Petersburg, Russia
| | - S L Lopatina
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - E F Frolova
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - K P Raevskiy
- Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
14
|
Zhang L, Swaab DF. Sex differences in bipolar disorder: The dorsolateral prefrontal cortex as an etiopathogenic region. Front Neuroendocrinol 2024; 72:101115. [PMID: 37993020 DOI: 10.1016/j.yfrne.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Bipolar disorder (BD) is worldwide a prevalent mental illness and a leading risk factor for suicide. Over the past three decades, it has been discovered that sex differences exist throughout the entire panorama of BD, but the etiologic regions and mechanisms that generate such differences remain poorly characterized. Available evidence indicates that the dorsolateral prefrontal cortex (DLPFC), a critical region that controls higher-order cognitive processing and mood, exhibits biological disparities between male and female patients with psychiatric disorders, which are highly correlated with the co-occurrence of psychotic symptoms. This review addresses the sex differences in BD concerning epidemiology, cognitive impairments, clinical manifestations, neuroimaging, and laboratory abnormalities. It also provides strong evidence linking DLPFC to the etiopathogenesis of these sex differences. We emphasize the importance of identifying gene signatures using human brain transcriptomics, which can depict sexually different variations, explain sex-biased symptomatic features, and provide novel targets for sex-specific therapeutics.
Collapse
Affiliation(s)
- Lin Zhang
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Dick F Swaab
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Aggio V, Fabbella L, Poletti S, Lorenzi C, Finardi A, Colombo C, Zanardi R, Furlan R, Benedetti F. Circulating cytotoxic immune cell composition, activation status and toxins expression associate with white matter microstructure in bipolar disorder. Sci Rep 2023; 13:22209. [PMID: 38097657 PMCID: PMC10721611 DOI: 10.1038/s41598-023-49146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with bipolar disorder (BD) show higher immuno-inflammatory setpoints, with in vivo alterations in white matter (WM) microstructure and post-mortem infiltration of T cells in the brain. Cytotoxic CD8+ T cells can enter and damage the brain in inflammatory disorders, but little is known in BD. Our study aimed to investigate the relationship between cytotoxic T cells and WM alterations in BD. In a sample of 83 inpatients with BD in an active phase of illness (68 depressive, 15 manic), we performed flow cytometry immunophenotyping to investigate frequencies, activation status, and expression of cytotoxic markers in CD8+ and tested for their association with diffusion tensor imaging (DTI) measures of WM microstructure. Frequencies of naïve and activated CD8+ cell populations expressing Perforin, or both Perforin and Granzyme, negatively associated with WM microstructure. CD8+ Naïve cells negative for Granzyme and Perforin positively associates with indexes of WM integrity, while the frequency of CD8+ memory cells negatively associates with index of WM microstructure, irrespective of toxins expression. The resulting associations involve measures representative of orientational coherence and myelination of the fibers (FA and RD), suggesting disrupted oligodendrocyte-mediated myelination. These findings seems to support the hypothesis that immunosenescence (less naïve, more memory T cells) can detrimentally influence WM microstructure in BD and that peripheral CD8+ T cells may participate in inducing an immune-related WM damage in BD mediated by killer proteins.
Collapse
Affiliation(s)
- Veronica Aggio
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Lorena Fabbella
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milan, Italy
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
del Valle E, Rubio-Sardón N, Menéndez-Pérez C, Martínez-Pinilla E, Navarro A. Apolipoprotein D as a Potential Biomarker in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:15631. [PMID: 37958618 PMCID: PMC10650001 DOI: 10.3390/ijms242115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Neuropsychiatric disorders (NDs) are a diverse group of pathologies, including schizophrenia or bipolar disorders, that directly affect the mental and physical health of those who suffer from them, with an incidence that is increasing worldwide. Most NDs result from a complex interaction of multiple genes and environmental factors such as stress or traumatic events, including the recent Coronavirus Disease (COVID-19) pandemic. In addition to diverse clinical presentations, these diseases are heterogeneous in their pathogenesis, brain regions affected, and clinical symptoms, making diagnosis difficult. Therefore, finding new biomarkers is essential for the detection, prognosis, response prediction, and development of new treatments for NDs. Among the most promising candidates is the apolipoprotein D (Apo D), a component of lipoproteins implicated in lipid metabolism. Evidence suggests an increase in Apo D expression in association with aging and in the presence of neuropathological processes. As a part of the cellular neuroprotective defense machinery against oxidative stress and inflammation, changes in Apo D levels have been demonstrated in neuropsychiatric conditions like schizophrenia (SZ) or bipolar disorders (BPD), not only in some brain areas but in corporal fluids, i.e., blood or serum of patients. What is not clear is whether variation in Apo D quantity could be used as an indicator to detect NDs and their progression. This review aims to provide an updated view of the clinical potential of Apo D as a possible biomarker for NDs.
Collapse
Affiliation(s)
- Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nuria Rubio-Sardón
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Carlota Menéndez-Pérez
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
17
|
Degraff Z, Souza GS, Santos NA, Shoshina II, Felisberti FM, Fernandes TP, Sigurdsson G. Brain atrophy and cognitive decline in bipolar disorder: Influence of medication use, symptomatology and illness duration. J Psychiatr Res 2023; 163:421-429. [PMID: 37276646 DOI: 10.1016/j.jpsychires.2023.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Bipolar disorder (BPD) is a chronic condition characterized by recurrent episodes of mania and depression. To date, the association of biological and psychopathological processes in BPD has not been extensively studied on a cognitive and cortical basis at the same time. We investigated whether brain atrophy (in prefrontal, temporal and occipital cortices) was associated with cognitive, biological and clinical processes in patients with BPD and healthy controls (HCs). A total of 104 participants (56 with BPD) completed tasks that measured attention, memory, information processing speed, inhibitory control, visuospatial working memory and cognitive flexibility. In addition, structural brain scans were obtained using high-resolution MRI. Outcomes of the measurements were examined using robust multiple mediation analyses. BPD patients showed greater cortical atrophy across all regions of interest when compared to HCs, linked to cognitive decline. BPD patients had slower reaction times and markedly increased errors of commission on the tasks. The outcomes were significantly influenced by medication use, symptomatology and illness duration. The findings showcase the complexity of brain structures and networks as well as the physiological mechanisms underlying diverse BPD symptomatology and endophenotypes. These differences were pronounced in patients with BPD, motivating further investigations of pathophysiological mechanisms involved in brain atrophy and cognitive decline.
Collapse
Affiliation(s)
- Zeke Degraff
- Svenskagier Neurologie, Stockholm, Sweden; Institute of Neurology, Belgium.
| | | | | | | | | | - Thiago P Fernandes
- Federal University of Para, Para, Brazil; Federal University of Paraiba, Paraiba, Brazil
| | | |
Collapse
|
18
|
Abé C, Liberg B, Klahn AL, Petrovic P, Landén M. Mania-related effects on structural brain changes in bipolar disorder - a narrative review of the evidence. Mol Psychiatry 2023; 28:2674-2682. [PMID: 37147390 PMCID: PMC10615759 DOI: 10.1038/s41380-023-02073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
Cross-sectional neuroimaging studies show that bipolar disorder is associated with structural brain abnormalities, predominantly observed in prefrontal and temporal cortex, cingulate gyrus, and subcortical regions. However, longitudinal studies are needed to elucidate whether these abnormalities presage disease onset or are consequences of disease processes, and to identify potential contributing factors. Here, we narratively review and summarize longitudinal structural magnetic resonance imaging studies that relate imaging outcomes to manic episodes. First, we conclude that longitudinal brain imaging studies suggest an association of bipolar disorder with aberrant brain changes, including both deviant decreases and increases in morphometric measures. Second, we conclude that manic episodes have been related to accelerated cortical volume and thickness decreases, with the most consistent findings occurring in prefrontal brain areas. Importantly, evidence also suggests that in contrast to healthy controls, who in general show age-related cortical decline, brain metrics remain stable or increase during euthymic periods in bipolar disorder patients, potentially reflecting structural recovering mechanisms. The findings stress the importance of preventing manic episodes. We further propose a model of prefrontal cortical trajectories in relation to the occurrence of manic episodes. Finally, we discuss potential mechanisms at play, remaining limitations, and future directions.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Quantify Research, Stockholm, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Luisa Klahn
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Schumer MC, Chase HW, Rozovsky R, Eickhoff SB, Phillips ML. Prefrontal, parietal, and limbic condition-dependent differences in bipolar disorder: a large-scale meta-analysis of functional neuroimaging studies. Mol Psychiatry 2023; 28:2826-2838. [PMID: 36782061 PMCID: PMC10615766 DOI: 10.1038/s41380-023-01974-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Over the past few decades, neuroimaging research in Bipolar Disorder (BD) has identified neural differences underlying cognitive and emotional processing. However, substantial clinical and methodological heterogeneity present across neuroimaging experiments potentially hinders the identification of consistent neural biomarkers of BD. This meta-analysis aims to comprehensively reassess brain activation and connectivity in BD in order to identify replicable differences that converge across and within resting-state, cognitive, and emotional neuroimaging experiments. METHODS Neuroimaging experiments (using fMRI, PET, or arterial spin labeling) reporting whole-brain results in adults with BD and controls published from December 1999-June 18, 2019 were identified via PubMed search. Coordinates showing significant activation and/or connectivity differences between BD participants and controls during resting-state, emotional, or cognitive tasks were extracted. Four parallel, independent meta-analyses were calculated using the revised activation likelihood estimation algorithm: all experiment types, all resting-state experiments, all cognitive experiments, and all emotional experiments. To confirm reliability of identified clusters, two different meta-analytic significance tests were employed. RESULTS 205 published studies yielding 506 individual neuroimaging experiments (150 resting-state, 134 cognitive, 222 emotional) comprising 5745 BD and 8023 control participants were included. Five regions survived both significance tests. Individuals with BD showed functional differences in the right posterior cingulate cortex during resting-state experiments, the left amygdala during emotional experiments, including those using a mixed (positive/negative) valence manipulation, and the left superior and right inferior parietal lobules during cognitive experiments, while hyperactivating the left medial orbitofrontal cortex during cognitive experiments. Across all experiments, there was convergence in the right caudate extending to the ventral striatum, surviving only one significance test. CONCLUSIONS Our findings indicate reproducible localization of prefrontal, parietal, and limbic differences distinguishing BD from control participants that are condition-dependent, despite heterogeneity, and point towards a framework for identifying reproducible differences in BD that may guide diagnosis and treatment.
Collapse
Affiliation(s)
- Maya C Schumer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Schimmelpfennig J, Topczewski J, Zajkowski W, Jankowiak-Siuda K. The role of the salience network in cognitive and affective deficits. Front Hum Neurosci 2023; 17:1133367. [PMID: 37020493 PMCID: PMC10067884 DOI: 10.3389/fnhum.2023.1133367] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Analysis and interpretation of studies on cognitive and affective dysregulation often draw upon the network paradigm, especially the Triple Network Model, which consists of the default mode network (DMN), the frontoparietal network (FPN), and the salience network (SN). DMN activity is primarily dominant during cognitive leisure and self-monitoring processes. The FPN peaks during task involvement and cognitive exertion. Meanwhile, the SN serves as a dynamic "switch" between the DMN and FPN, in line with salience and cognitive demand. In the cognitive and affective domains, dysfunctions involving SN activity are connected to a broad spectrum of deficits and maladaptive behavioral patterns in a variety of clinical disorders, such as depression, insomnia, narcissism, PTSD (in the case of SN hyperactivity), chronic pain, and anxiety, high degrees of neuroticism, schizophrenia, epilepsy, autism, and neurodegenerative illnesses, bipolar disorder (in the case of SN hypoactivity). We discuss behavioral and neurological data from various research domains and present an integrated perspective indicating that these conditions can be associated with a widespread disruption in predictive coding at multiple hierarchical levels. We delineate the fundamental ideas of the brain network paradigm and contrast them with the conventional modular method in the first section of this article. Following this, we outline the interaction model of the key functional brain networks and highlight recent studies coupling SN-related dysfunctions with cognitive and affective impairments.
Collapse
Affiliation(s)
- Jakub Schimmelpfennig
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | - Jan Topczewski
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | | | | |
Collapse
|
21
|
Marin C, Alobid I, Fuentes M, López-Chacón M, Mullol J. Olfactory Dysfunction in Mental Illness. Curr Allergy Asthma Rep 2023; 23:153-164. [PMID: 36696016 PMCID: PMC9875195 DOI: 10.1007/s11882-023-01068-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW Olfactory dysfunction contributes to the psychopathology of mental illness. In this review, we describe the neurobiology of olfaction, and the most common olfactory alterations in several mental illnesses. We also highlight the role, hitherto underestimated, that the olfactory pathways play in the regulation of higher brain functions and its involvement in the pathophysiology of psychiatric disorders, as well as the effect of inflammation on neurogenesis as a possible mechanism involved in olfactory dysfunction in psychiatric conditions. RECENT FINDINGS The olfactory deficits present in anxiety, depression, schizophrenia or bipolar disorder consist of specific alterations of different components of the sense of smell, mainly the identification of odours, as well as the qualifications of their hedonic valence (pleasant or unpleasant). Epidemiological findings have shown that both environmental factors, such as air pollutants, and inflammatory disease of the upper respiratory tract, can contribute to an increased risk of mental illness, at least in part, due to peripheral inflammatory mechanisms of the olfactory system. In this review, we describe the neurobiology of olfaction, and the most common olfactory function alterations in several psychiatric conditions and its role as a useful symptom for the differential diagnosis. We also highlight the effect of inflammation on neurogenesis as a possible mechanism involved in olfactory dysfunction in these psychiatric conditions.
Collapse
Affiliation(s)
- Concepció Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CELLEX, Department 2B, Villarroel 170, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain.
| | - Isam Alobid
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CELLEX, Department 2B, Villarroel 170, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mireya Fuentes
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CELLEX, Department 2B, Villarroel 170, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Mauricio López-Chacón
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CELLEX, Department 2B, Villarroel 170, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Joaquim Mullol
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CELLEX, Department 2B, Villarroel 170, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain. .,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
22
|
von Mücke-Heim IA, Deussing JM. The P2X7 receptor in mood disorders: Emerging target in immunopsychiatry, from bench to bedside. Neuropharmacology 2023; 224:109366. [PMID: 36470368 DOI: 10.1016/j.neuropharm.2022.109366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Psychiatric disorders are among the most burdensome disorders worldwide. Though therapies have evolved over the last decades, treatment resistance still affects many patients. Recently, neuroimmune systems have been identified as important factors of mood disorder biology. The underlying dysregulation in neuroimmune cross-talk is driven by genetic risk factors and accumulating adverse environmental influences like chronic psychosocial stress. These result in a cluster of proinflammatory cytokines and quantitative and functional changes of immune cell populations (e.g., microglia, monocytes, T cells), varying by disease entity and state. Among the emerging immune targets, purinergic signalling revolving around the membranous and ATP specific P2X7 receptor (P2X7R) has gained wider attention and clinical studies making use of antagonistic drugs are on-going. Still, no clinically meaningful applications have been identified so far. A major problem is the often overly simplified approach taken to translate findings from bench to bedside. Therefore, the present review focuses on purinergic signalling via P2X7R in the context of recent advances in immunopsychiatric mood disorder research. Our aim is to provide an overview of the current P2X7R-related findings, from bench to bedside. First, we summarize the characteristics of purinergic signalling and P2X7R, followed by a depiction of genetic and clinical data connecting P2X7R to mood disorders. We close with our perspective on current developments and discuss changes necessary to translate the evident potential of P2X7R signalling modulation into meaningful clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
| | - Jan M Deussing
- Max Planck Institute for Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
23
|
Xi C, Liu Z, Zeng C, Tan W, Sun F, Yang J, Palaniyappan L. The centrality of working memory networks in differentiating bipolar type I depression from unipolar depression: A task-fMRI study. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2023; 68:22-32. [PMID: 35244484 PMCID: PMC9720478 DOI: 10.1177/07067437221078646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Up to 70%-80% of patients with bipolar disorder are misdiagnosed as having major depressive disorder (MDD), leading to both delayed intervention and worsening disability. Differences in the cognitive neurophysiology may serve to distinguish between the depressive phase of type 1 bipolar disorder (BDD-I) from MDD, though this remains to be demonstrated. To this end, we investigate the discriminatory signal in the topological organization of the functional connectome during a working memory (WM) task in BDD-I and MDD, as a candidate identification approach. METHODS We calculated and compared the degree centrality (DC) at the whole-brain voxel-wise level in 31 patients with BDD-I, 35 patients with MDD, and 80 healthy controls (HCs) during an n-back task. We further extracted the distinct DC patterns in the two patient groups under different WM loads and used machine learning approaches to determine the distinguishing ability of the DC map. RESULTS Patients with BDD-I had lower accuracy and longer reaction time (RT) than HCs at high WM loads. BDD-I is characterized by decreased DC in the default mode network (DMN) and the sensorimotor network (SMN) when facing high WM load. In contrast, MDD is characterized by increased DC in the DMN during high WM load. Higher WM load resulted in better classification performance, with the distinct aberrant DC maps under 2-back load discriminating the two disorders with 90.91% accuracy. CONCLUSIONS The distributed brain connectivity during high WM load provides novel insights into the neurophysiological mechanisms underlying cognitive impairment of depression. This could potentially distinguish BDD-I from MDD if replicated in future large-scale evaluations of first-episode depression with longitudinal confirmation of diagnostic transition.
Collapse
Affiliation(s)
- Chang Xi
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Can Zeng
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Wenjian Tan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Fuping Sun
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Jie Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Lena Palaniyappan
- 113611Robarts Research Institute, Western University, London, Canada.,Departments of Psychiatry and Medical Biophysics, Schulich School of Medicine, Western University, London, Canada
| |
Collapse
|
24
|
Saeidi M, Rezvankhah T, Pereira-Sanchez V, Rafieian M, Shariati B, Esmaeeli ST, Emamikhah M, Alavi K, Shabani A, Soraya S, Kashaninasab F, Mirfazeli FS. First-episode mania after COVID-19: A case series in Iran. Front Psychiatry 2023; 14:1102450. [PMID: 37113541 PMCID: PMC10129056 DOI: 10.3389/fpsyt.2023.1102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 04/29/2023] Open
Abstract
Background Increasing reports of manic episodes in patients during acute infection with COVID-19 have been documented since the pandemic began, including individuals without a previous personal or family history of bipolar disorder. As infections and autoimmunity have putative roles in bipolar disorder, we aimed to document the clinical presentations, associated stressors, family aggregation patterns, and brain imaging and electroencephalographic correlates with a series of patients with episodes of mania that emerged shortly after COVID-19 infections. Methods We obtained all relevant clinical information from 12 patients whose first manic episode started within a month of COVID-19 infection and were treated at Rasool-e-Akram hospital and Iran psychiatric hospital, two tertiary medical centers in Tehran, Iran, in 2021. Results Patients had a mean age of 44. The interval between the onset of symptoms of COVID and mania ranged between 0 and 28 days (mean: 16.25, median: 14 days); it was observed to be shorter in patients with a family history of mood disorders but not in those receiving corticosteroids. Alongside a descriptive overview of our sample, we provide detailed narrative descriptions of two of the cases for illustrative purposes and discuss our observations in the context of other cases reported elsewhere and the state-of-the-art regarding infectious diseases, COVID-19, and bipolar disorder as reported in previous literature. Conclusion Our case series documents observational and naturalistic evidence from a dozen of cases of mania in the context of acute COVID-19, which, while limited, calls for analytical research of the phenomenon, and points at a family history of bipolar disorder and the use of corticosteroids as factors for particular focus.
Collapse
Affiliation(s)
- Mahdieh Saeidi
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Tara Rezvankhah
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Rafieian
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Shariati
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Soode Tajik Esmaeeli
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Emamikhah
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Kaveh Alavi
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Amir Shabani
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Soraya
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kashaninasab
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Mirfazeli
- Department of Psychiatry, Mental Health Research Center, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Fatemeh Sadat Mirfazeli,
| |
Collapse
|
25
|
Kazour F, Atanasova B, Mourad M, El Hachem C, Desmidt T, Richa S, El-Hage W. Mania associated olfactory dysfunction: A comparison between bipolar subjects in mania and remission. J Psychiatr Res 2022; 156:330-338. [PMID: 36323136 DOI: 10.1016/j.jpsychires.2022.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The aim of this study was to assess the olfactory functions of patients with bipolar disorder in manic phase and to compare them to those of bipolar subjects in remission and healthy controls. METHODS We recruited 96 participants divided in 3 groups: bipolar mania (MB), euthymic bipolar in remission (EB) and healthy controls (HC). All participants underwent an assessment of their olfactory functions using the Sniffin' sticks threshold and identification tests. Odors' pleasantness, intensity, familiarity and emotion were assessed. All participants were screened for the presence of psychiatric disorder through the MINI questionnaire. Clinical evaluation explored dimensions of mania, depression, anxiety respectively through YMRS, MADRS and STAI scales. Anhedonia was explored through the Chapman physical and social anhedonia questionnaire. RESULTS Patients in mania had deficits in identifying positive smells compared to bipolar subjects in remission and to healthy controls (MB < EB < HC; p < 0.001). Hedonic (MB < EB = HC; p < 0.001) and emotional (MB < EB = HC; p < 0.001) ratings of positive smells were lower in patients in manic phase compared to remitted subjects or controls. Mania was associated to higher emotion rating of negative smells compared to remitted subjects and controls (MB > EB = HC; p < 0.001). There was no difference between the 3 groups in the ratings of intensity and familiarity of smells, as well as in the olfactory threshold testing. The 3 groups showed no difference in the identification of negative smells. CONCLUSIONS Patients in manic episodes showed deficits in identifying positive odors. They evaluated these smells as less pleasant and less emotional compared to remitted bipolar subjects and healthy controls. These olfactory dysfunctions may constitute potential indicators of manic state. The persistence of olfactory dysfunction in remission phase (deficit in the olfactory identification of positive odors compared to healthy controls) may constitute a potential trait indicator of bipolarity.
Collapse
Affiliation(s)
- Francois Kazour
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; Clinique Psychiatrique Universitaire, CHU de Tours, Tours, France; Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.
| | | | - Marc Mourad
- Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Charline El Hachem
- Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Thomas Desmidt
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; Clinique Psychiatrique Universitaire, CHU de Tours, Tours, France
| | - Sami Richa
- Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Wissam El-Hage
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; Clinique Psychiatrique Universitaire, CHU de Tours, Tours, France
| |
Collapse
|
26
|
Chen WY, Huang MC, Chiu CC, Cheng YC, Kuo CJ, Chen PY, Kuo PH. The interactions between vitamin D and neurofilament light chain levels on cognitive domains in bipolar disorder. BJPsych Open 2022; 8:e207. [PMID: 36437810 PMCID: PMC9707506 DOI: 10.1192/bjo.2022.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bipolar disorder is a chronic mental disorder related to cognitive deficits. Low serum vitamin D levels are significantly associated with compromised cognition in neuropsychiatric disorders. Although patients with bipolar disorder frequently exhibit hypovitaminosis D, the association between vitamin D and cognition in bipolar disorder, and their neuroaxonal integrity, is unclear. AIMS To investigate the interaction effects between vitamin D and neurofilament light chain (NfL) levels on cognitive domains in bipolar disorder. METHOD Serum vitamin D and NfL levels were determined in 100 euthymic patients with bipolar disorder in a cross-sectional study. Cognitive function was measured with the Brief Assessment of Cognition in Affective Disorders. We stratified by age groups and used general linear models to identify associations between vitamin D and NfL levels and their interaction effects on cognitive domains. RESULTS The mean vitamin D and NfL levels were 16.46 ng/nL and 11.10 pg/mL, respectively; 72% of patients were vitamin D deficient. In the older group, more frequent hospital admissions and lower physical activity were identified in the group with versus without vitamin D deficiency. The age-modified interaction effect of vitamin D and NfL was associated with composite neurocognitive scores and verbal fluency in both age groups, and with processing speed domain in the younger group. CONCLUSIONS We observed a high vitamin D deficiency prevalence in bipolar disorder. We identified the interaction of vitamin D and NfL on cognitive domains, and the effect was modified by age. Longitudinal or randomised controlled studies enrolling patients with various illness durations and mood statuses are required to validate our findings.
Collapse
Affiliation(s)
- Wen-Yin Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Chih Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Ying-Chih Cheng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; and Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Taiwan
| | - Chian-Jue Kuo
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Po-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taiwan; and Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taiwan
| |
Collapse
|
27
|
Bibliometric Analysis of Psychomotricity Research Trends: The Current Role of Childhood. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121836. [PMID: 36553280 PMCID: PMC9777408 DOI: 10.3390/children9121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Psychomotricity is a wide broad term, which encompasses different bodily action approaches to support children and adolescents to achieve their highest potential. A search on the Web of Science (WoS) Core Collection database was performed on this topic, using traditional bibliometric laws. Finally, 118 publications (112 articles and 6 reviews) documents were found. Annual publications presented an exponentially growing trend (R2 = 84.7%). Spain was the most productive country/region worldwide. Paola Magioncalda, Matteo Martino y Víctor Arufe Giraldez were highlighted as the most prolific co-authors. "Retos Nuevas Tendencias en Educación Física, Deporte y Recreación" was the most productive journal and the "International Journal of Environmental Research and Public Health", was the second most productive; the third in the list was the most productive in the JCR ranking. Thus, research on psychomotricity is experiencing exponential growth, causing this topic to generate great interest among researchers, publishers and journals. The most cited paper was "Neurocognitive Effects of Alcohol Hangover". The author keywords that were first raised together with psychomotricity were related to rehabilitation and psychomotor development, while the current trend was focused on physical activity and early childhood education.
Collapse
|
28
|
Mandal PK, Gaur S, Roy RG, Samkaria A, Ingole R, Goel A. Schizophrenia, Bipolar and Major Depressive Disorders: Overview of Clinical Features, Neurotransmitter Alterations, Pharmacological Interventions, and Impact of Oxidative Stress in the Disease Process. ACS Chem Neurosci 2022; 13:2784-2802. [PMID: 36125113 DOI: 10.1021/acschemneuro.2c00420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Psychiatric disorders are one of the leading causes of disability worldwide and affect the quality of life of both individuals and the society. The current understanding of these disorders points toward receptor dysfunction and neurotransmitter imbalances in the brain. Treatment protocols are hence oriented toward normalizing these imbalances and ameliorating the symptoms. However, recent literature has indicated the possible role of depleted levels of antioxidants like glutathione (GSH) as well as an alteration in the levels of the pro-oxidant, iron in the pathogenesis of major psychiatric diseases, viz., schizophrenia (Sz), bipolar disorder (BD), and major depressive disorder (MDD). This review aims to highlight the involvement of oxidative stress (OS) in these psychiatric disorders. An overview of the clinical features, neurotransmitter abnormalities, and pharmacological treatments concerning these psychiatric disorders has also been presented. Furthermore, it attempts to synthesize literature from existing magnetic resonance spectroscopy (MRS) and quantitative susceptibility mapping (QSM) studies for these disorders, assessing GSH and iron, respectively. This manuscript is a sincere attempt to stimulate research discussion to advance the knowledge base for further understanding of the pathoetiology of Sz, BD, and MDD.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India.,The Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3052, Australia
| | - Shradha Gaur
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | | | - Anshika Goel
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| |
Collapse
|
29
|
Mathematical Model of Interaction of Therapist and Patients with Bipolar Disorder: A Systematic Literature Review. J Pers Med 2022; 12:jpm12091469. [PMID: 36143254 PMCID: PMC9503456 DOI: 10.3390/jpm12091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Mood swings in patients with bipolar disorder (BD) are difficult to control and can lead to self-harm and suicide. The interaction between the therapist and BD will determine the success of therapy. The interaction model between the therapist and BD begins by reviewing the models that were previously developed using the Systematic Literature Review and Bibliometric methods. The limit of articles used was sourced from the Science Direct, Google Scholar, and Dimensions databases from 2009 to 2022. The results obtained were 67 articles out of a total of 382 articles, which were then re-selected. The results of the selection of the last articles reviewed were 52 articles. Using VOSviewer version 1.6.16, a visualization of the relationship between the quotes “model”, “therapy”, “emotions”, and “bipolar disorder” can be seen. This study also discusses the types of therapy that can be used by BD, as well as treatment innovations and the mathematical model of the therapy itself. The results of this study are expected to help further researchers to develop an interaction model between therapists and BD to improve the quality of life of BD.
Collapse
|
30
|
Tao S, Zhang Y, Wang Q, Qiao C, Deng W, Liang S, Wei J, Wei W, Yu H, Li X, Li M, Guo W, Ma X, Zhao L, Li T. Identifying transdiagnostic biological subtypes across schizophrenia, bipolar disorder, and major depressive disorder based on lipidomics profiles. Front Cell Dev Biol 2022; 10:969575. [PMID: 36133917 PMCID: PMC9483200 DOI: 10.3389/fcell.2022.969575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence has demonstrated overlapping biological abnormalities underlying schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD); these overlapping abnormalities help explain the high heterogeneity and the similarity of patients within and among diagnostic categories. This study aimed to identify transdiagnostic subtypes of these psychiatric disorders based on lipidomics abnormalities. We performed discriminant analysis to identify lipids that classified patients (N = 349, 112 with SCZ, 132 with BP, and 105 with MDD) and healthy controls (N = 198). Ten lipids that mainly regulate energy metabolism, inflammation, oxidative stress, and fatty acylation of proteins were identified. We found two subtypes (named Cluster 1 and Cluster 2 subtypes) across patients with SCZ, BP, and MDD by consensus clustering analysis based on the above 10 lipids. The distribution of clinical diagnosis, functional impairment measured by Global Assessment of Functioning (GAF) scales, and brain white matter abnormalities measured by fractional anisotropy (FA) and radial diffusivity (RD) differed in the two subtypes. Patients within the Cluster 2 subtype were mainly SCZ and BP patients and featured significantly elevated RD along the genu of corpus callosum (GCC) region and lower GAF scores than patients within the Cluster 1 subtype. The SCZ and BP patients within the Cluster 2 subtype shared similar biological patterns; that is, these patients had comparable brain white matter abnormalities and functional impairment, which is consistent with previous studies. Our findings indicate that peripheral lipid abnormalities might help identify homogeneous transdiagnostic subtypes across psychiatric disorders.
Collapse
Affiliation(s)
- Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yamin Zhang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Qiao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sugai Liang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinxue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- *Correspondence: Tao Li,
| |
Collapse
|
31
|
Zheng H, Savitz J. Effect of Cytomegalovirus Infection on the Central Nervous System: Implications for Psychiatric Disorders. Curr Top Behav Neurosci 2022; 61:215-241. [PMID: 35505056 DOI: 10.1007/7854_2022_361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytomegalovirus (CMV) is a common herpesvirus that establishes lifelong latent infections and interacts extensively with the host immune system, potentially contributing to immune activation and inflammation. Given its proclivity for infecting the brain and its reactivation by inflammatory stimuli, CMV is well known for causing central nervous system complications in the immune-naïve (e.g., in utero) and in the immunocompromised (e.g., in neonates, individuals receiving transplants or cancer chemotherapy, or people living with HIV). However, its potentially pathogenic role in diseases that are characterized by more subtle immune dysregulation and inflammation such as psychiatric disorders is still a matter of debate. In this chapter, we briefly summarize the pathogenic role of CMV in immune-naïve and immunocompromised populations and then review the evidence (i.e., epidemiological studies, serological studies, postmortem studies, and recent neuroimaging studies) for a link between CMV infection and psychiatric disorders with a focus on mood disorders and schizophrenia. Finally, we discuss the potential mechanisms through which CMV may cause CNS dysfunction in the context of mental disorders and conclude with a summary of the current state of play as well as potential future research directions in this area.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.,Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
32
|
Haddad HW, Boardman E, Williams B, Mouhaffel R, Kaye AM, Kaye AD. Combination Olanzapine and Samidorphan for the Management of Schizophrenia and Bipolar 1 Disorder in Adults: A Narrative Review. Health Psychol Res 2022; 10:34224. [DOI: 10.52965/001c.34224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
| | | | | | | | - Adam M. Kaye
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific
| | | |
Collapse
|
33
|
Bi B, Che D, Bai Y. Neural network of bipolar disorder: Toward integration of neuroimaging and neurocircuit-based treatment strategies. Transl Psychiatry 2022; 12:143. [PMID: 35383150 PMCID: PMC8983759 DOI: 10.1038/s41398-022-01917-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Bipolar disorder (BD) is a complex psychiatric disorder characterized by dysfunctions in three domains including emotional processing, cognitive processing, and psychomotor dimensions. However, the neural underpinnings underlying these clinical profiles are not well understood. Based on the reported data, we hypothesized that (i) the core neuropathology in BD is damage in fronto-limbic network, which is associated with emotional dysfunction; (ii) changes in intrinsic brain network, such as sensorimotor network, salience network, default-mode network, central executive network are associated with impaired cognition function; and (iii) beyond the dopaminergic-driven basal ganglia-thalamo-cortical motor circuit modulated by other neurotransmitter systems, such as serotonin (subcortical-cortical modulation), the sensorimotor network and related motor function modulated by other non-motor networks such as the default-mode network are involved in psychomotor function. In this review, we propose a neurocircuit-based clinical characteristics and taxonomy to guide the treatment of BD. We draw on findings from neuropsychological and neuroimaging studies in BD and link variations in these clinical profiles to underlying neurocircuit dysfunctions. We consider pharmacological, psychotherapy, and neuromodulatory treatments that could target those specific neurocircuit dysfunctions in BD. Finally, it is suggested that the methods of testing the neurocircuit-based taxonomy and important limitations to this approach should be considered in future.
Collapse
Affiliation(s)
- Bo Bi
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Dongfang Che
- grid.452787.b0000 0004 1806 5224Neurosurgery department, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuyin Bai
- grid.12981.330000 0001 2360 039XDepartment of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
34
|
Cerebrospinal fluid proteomic study of two bipolar disorder cohorts. Mol Psychiatry 2022; 27:4568-4574. [PMID: 35986174 PMCID: PMC9734044 DOI: 10.1038/s41380-022-01724-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022]
Abstract
The pathophysiology of bipolar disorder remains to be elucidated and there are no diagnostic or prognostic biomarkers for the condition. In this explorative proteomic study, we analyzed 201 proteins in cerebrospinal fluid (CSF) from mood stable bipolar disorder patients and control subjects sampled from two independent cohorts, amounting to a total of 204 patients and 144 controls. We used three Olink Multiplex panels, whereof one specifically targets immune biomarkers, to assess a broad set of CSF protein concentrations. After quality control and removal of proteins with a low detection rate, 105 proteins remained for analyses in relation to case-control status and clinical variables. Only case-control differences that replicated across cohorts were considered. Results adjusted for potential confounders showed that CSF concentrations of growth hormone were lower in bipolar disorder compared with controls in both cohorts. The effect size was larger when the analysis was restricted to bipolar disorder type 1 and controls. We found no indications of immune activation or other aberrations. Growth hormone exerts many effects in the central nervous system and our findings suggest that growth hormone might be implicated in the pathophysiology of bipolar disorder.
Collapse
|
35
|
Ionescu TM, Amend M, Hafiz R, Biswal BB, Maurer A, Pichler BJ, Wehrl HF, Herfert K. Striatal and prefrontal D2R and SERT distributions contrastingly correlate with default-mode connectivity. Neuroimage 2021; 243:118501. [PMID: 34428573 DOI: 10.1016/j.neuroimage.2021.118501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 11/28/2022] Open
Abstract
Although brain research has taken important strides in recent decades, the interaction and coupling of its different physiological levels is still not elucidated. Specifically, the molecular substrates of resting-state functional connectivity (rs-FC) remain poorly understood. The aim of this study was elucidating interactions between dopamine D2 receptors (D2R) and serotonin transporter (SERT) availabilities in the striatum (CPu) and medial prefrontal cortex (mPFC), two of the main dopaminergic and serotonergic projection areas, and the default-mode network. Additionally, we delineated its interaction with two other prominent resting-state networks (RSNs), the salience network (SN) and the sensorimotor network (SMN). To this extent, we performed simultaneous PET/fMRI scans in a total of 59 healthy rats using [11C]raclopride and [11C]DASB, two tracers used to image quantify D2R and SERT respectively. Edge, node and network-level rs-FC metrics were calculated for each subject and potential correlations with binding potentials (BPND) in the CPu and mPFC were evaluated. We found widespread negative associations between CPu D2R availability and all the RSNs investigated, consistent with the postulated role of the indirect basal ganglia pathway. Correlations between D2Rs in the mPFC were weaker and largely restricted to DMN connectivity. Strikingly, medial prefrontal SERT correlated both positively with anterior DMN rs-FC and negatively with rs-FC between and within the SN, SMN and the posterior DMN, underlining the complex role of serotonergic neurotransmission in this region. Here we show direct relationships between rs-FC and molecular properties of the brain as assessed by simultaneous PET/fMRI in healthy rodents. The findings in the present study contribute to the basic understanding of rs-FC by revealing associations between inter-subject variances of rs-FC and receptor and transporter availabilities. Additionally, since current therapeutic strategies typically target neurotransmitter systems with the aim of normalizing brain function, delineating associations between molecular and network-level brain properties is essential and may enhance the understanding of neuropathologies and support future drug development.
Collapse
Affiliation(s)
- Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mario Amend
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rakibul Hafiz
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Hans F Wehrl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
36
|
Chen YL, Tu PC, Huang TH, Bai YM, Su TP, Chen MH, Wu YT. Identifying subtypes of bipolar disorder based on clinical and neurobiological characteristics. Sci Rep 2021; 11:17082. [PMID: 34429498 PMCID: PMC8385023 DOI: 10.1038/s41598-021-96645-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
The ability to classify patients with bipolar disorder (BD) is restricted by their heterogeneity, which limits the understanding of their neuropathology. Therefore, we aimed to investigate clinically discernible and neurobiologically distinguishable BD subtypes. T1-weighted and resting-state functional magnetic resonance images of 112 patients with BD were obtained, and patients were segregated according to diagnostic subtype (i.e., types I and II) and clinical patterns, including the number of episodes and hospitalizations and history of suicide and psychosis. For each clinical pattern, fewer and more occurrences subgroups and types I and II were classified through nested cross-validation for robust performance, with minimum redundancy and maximum relevance, in feature selection. To assess the proportion of variance in cognitive performance explained by the neurobiological markers, multiple linear regression between verbal memory and the selected features was conducted. Satisfactory performance (mean accuracy, 73.60%) in classifying patients with a high or low number of episodes was attained through functional connectivity, mostly from default-mode and motor networks. Moreover, these neurobiological markers explained 62% of the variance in verbal memory. The number of episodes is a potentially critical aspect of the neuropathology of BD. Neurobiological markers can help identify BD neuroprogression.
Collapse
Affiliation(s)
- Yen-Ling Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pei-Chi Tu
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Tzu-Hsuan Huang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Department of Psychiatry, Cheng-Hsin General Hospital, Taipei, 112, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, 112, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|