1
|
Chen Y, Li W, Lv L, Yue W. Shared Genetic Determinants of Schizophrenia and Autism Spectrum Disorder Implicate Opposite Risk Patterns: A Genome-Wide Analysis of Common Variants. Schizophr Bull 2024; 50:1382-1395. [PMID: 38616054 PMCID: PMC11548934 DOI: 10.1093/schbul/sbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The synaptic pruning hypothesis posits that schizophrenia (SCZ) and autism spectrum disorder (ASD) may represent opposite ends of neurodevelopmental disorders: individuals with ASD exhibit an overabundance of synapses and connections while SCZ was characterized by excessive pruning of synapses and a reduction. Given the strong genetic predisposition of both disorders, we propose a shared genetic component, with certain loci having differential regulatory impacts. STUDY DESIGN Genome-Wide single nucleotide polymorphism (SNP) data of European descent from SCZ (N cases = 53 386, N controls = 77 258) and ASD (N cases = 18 381, N controls = 27 969) were analyzed. We used genetic correlation, bivariate causal mixture model, conditional false discovery rate method, colocalization, Transcriptome-Wide Association Study (TWAS), and Phenome-Wide Association Study (PheWAS) to investigate the genetic overlap and gene expression pattern. STUDY RESULTS We found a positive genetic correlation between SCZ and ASD (rg = .26, SE = 0.01, P = 7.87e-14), with 11 genomic loci jointly influencing both conditions (conjFDR <0.05). Functional analysis highlights a significant enrichment of shared genes during early to mid-fetal developmental stages. A notable genetic region on chromosome 17q21.31 (lead SNP rs2696609) showed strong evidence of colocalization (PP.H4.abf = 0.85). This SNP rs2696609 is linked to many imaging-derived brain phenotypes. TWAS indicated opposing gene expression patterns (primarily pseudogenes and long noncoding RNAs [lncRNAs]) for ASD and SCZ in the 17q21.31 region and some genes (LRRC37A4P, LINC02210, and DND1P1) exhibit considerable variation in the cerebellum across the lifespan. CONCLUSIONS Our findings support a shared genetic basis for SCZ and ASD. A common genetic variant, rs2696609, located in the Chr17q21.31 locus, may exert differential risk regulation on SCZ and ASD by altering brain structure. Future studies should focus on the role of pseudogenes, lncRNAs, and cerebellum in synaptic pruning and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Wenqiang Li
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang Medical University, Xinxiang, Henan, China
| | - Luxian Lv
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Province People’s Hospital, Zhengzhou, Henan, China
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Christensen ZP, Freedman EG, Foxe JJ. Autism is associated with in vivo changes in gray matter neurite architecture. Autism Res 2024; 17:2261-2277. [PMID: 39324563 DOI: 10.1002/aur.3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Postmortem investigations in autism have identified anomalies in neural cytoarchitecture across limbic, cerebellar, and neocortical networks. These anomalies include narrow cell mini-columns and variable neuron density. However, difficulty obtaining sufficient post-mortem samples has often prevented investigations from converging on reproducible measures. Recent advances in processing magnetic resonance diffusion weighted images (DWI) make in vivo characterization of neuronal cytoarchitecture a potential alternative to post-mortem studies. Using extensive DWI data from the Adolescent Brain Cognitive Developmentsm (ABCD®) study 142 individuals with an autism diagnosis were compared with 8971 controls using a restriction spectrum imaging (RSI) framework that characterized total neurite density (TND), its component restricted normalized directional diffusion (RND), and restricted normalized isotropic diffusion (RNI). A significant decrease in TND was observed in autism in the right cerebellar cortex (β = -0.005, SE =0.0015, p = 0.0267), with significant decreases in RNI and significant increases in RND found diffusely throughout posterior and anterior aspects of the brain, respectively. Furthermore, these regions remained significant in post-hoc analysis when the autism sample was compared against a subset of 1404 individuals with other psychiatric conditions (pulled from the original 8971). These findings highlight the importance of characterizing neuron cytoarchitecture in autism and the significance of their incorporation as physiological covariates in future studies.
Collapse
Affiliation(s)
- Zachary P Christensen
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Edward G Freedman
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - John J Foxe
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
3
|
Liu N, Lencer R, Andreou C, Avram M, Handels H, Zhang W, Hui S, Yang C, Borgwardt S, Sweeney JA, Lui S, Korda AI. Altered brain complexity in first-episode antipsychotic-naïve patients with schizophrenia: A whole-brain voxel-wise study. Neuroimage Clin 2024; 44:103686. [PMID: 39406039 PMCID: PMC11525771 DOI: 10.1016/j.nicl.2024.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Measures of cortical topology are believed to characterize large-scale cortical networks. Previous studies used region of interest (ROI)-based approaches with predefined templates that limit analyses to linear pair-wise interactions between regions. As cortical topology is inherently complex, a non-linear dynamic model that measures the brain complexity at the voxel level is suggested to characterize topological complexities of brain regions and cortical folding. METHODS T1-weighted brain images of 150 first-episode antipsychotic-naïve schizophrenia (FES) patients and 161 healthy comparison participants (HC) were examined. The Chaos analysis approach was applied to detect alterations in brain structural complexity using the largest Lyapunov exponent (Lambda) as the key measure. Then, the Lambda spatial series was mapped in the frequency domain using the correlation of the Morlet wavelet to reflect cortical folding complexity. RESULTS A widespread voxel-wise decrease in Lambda values in space and frequency domains was observed in FES, especially in frontal, parietal, temporal, limbic, basal ganglia, thalamic, and cerebellar regions. The widespread decrease indicates a general loss of brain topological complexity and cortical folding. An additional pattern of increased Lambda values in certain regions highlights the redistribution of complexity measures in schizophrenia at an early stage with potential progression as the illness advances. Strong correlations were found between the duration of untreated psychosis and Lambda values related to the cerebellum, temporal, and occipital gyri. CONCLUSIONS Our findings support the notion that defining brain complexity by non-linear dynamic analyses offers a novel approach for identifying structural brain alterations related to the early stages of schizophrenia.
Collapse
Affiliation(s)
- Naici Liu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, and Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; Institute for Translational Psychiatry and Otto-Creutzfeldt Center for Behavioral and Cognitive Neuroscience, University of Münster, Münster, Germany
| | - Christina Andreou
- Department of Psychiatry and Psychotherapy, and Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Mihai Avram
- Department of Psychiatry and Psychotherapy, and Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, Lübeck, Germany; German Research Center for Artificial Intelligence, Lübeck, Germany
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Sun Hui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, and Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - John A Sweeney
- Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, USA
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Alexandra I Korda
- Department of Psychiatry and Psychotherapy, and Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
4
|
Amelink JS, Postema MC, Kong XZ, Schijven D, Carrión-Castillo A, Soheili-Nezhad S, Sha Z, Molz B, Joliot M, Fisher SE, Francks C. Imaging genetics of language network functional connectivity reveals links with language-related abilities, dyslexia and handedness. Commun Biol 2024; 7:1209. [PMID: 39342056 PMCID: PMC11438961 DOI: 10.1038/s42003-024-06890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Language is supported by a distributed network of brain regions with a particular contribution from the left hemisphere. A multi-level understanding of this network requires studying its genetic architecture. We used resting-state imaging data from 29,681 participants (UK Biobank) to measure connectivity between 18 left-hemisphere regions involved in multimodal sentence-level processing, as well as their right-hemisphere homotopes, and interhemispheric connections. Multivariate genome-wide association analysis of this total network, based on genetic variants with population frequencies >1%, identified 14 genomic loci, of which three were also associated with asymmetry of intrahemispheric connectivity. Polygenic dispositions to lower language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry of functional connectivity. Exome-wide association analysis based on rare, protein-altering variants (frequencies <1%) suggested 7 additional genes. These findings shed new light on genetic contributions to language network organization and related behavioural traits.
Collapse
Affiliation(s)
- Jitse S Amelink
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Merel C Postema
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China
- Department of Psychiatry of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Amaia Carrión-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Molz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Commissariat à L'énergie Atomique et aux Énergies Alternatives, CNRS, Université de Bordeaux, Bordeaux, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Sukno FM, Kelly BD, Lane A, Katina S, Rojas MA, Whelan PF, Waddington JL. Loss of normal facial asymmetry in schizophrenia and bipolar disorder: Implications for development of brain asymmetry in psychotic illness. Psychiatry Res 2024; 342:116213. [PMID: 39326274 DOI: 10.1016/j.psychres.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Development of the craniofacies occurs in embryological intimacy with development of the brain and both show normal left-right asymmetries. While facial dysmorphology occurs to excess in psychotic illness, facial asymmetry has yet to be investigated as a putative index of brain asymmetry. Ninety-three subjects (49 controls, 22 schizophrenia, 22 bipolar disorder) received 3D laser surface imaging of the face. On geometric morphometric analysis with (x, y, z) visualisations of statistical models for facial asymmetries, in controls the upper face and periorbital region, which share embryological intimacy with the forebrain, showed marked asymmetries. Their geometry included: along the x-axis, rightward asymmetry in its dorsal-medial aspects and leftward asymmetry in its ventral-lateral aspects; along the z-axis, anterior protrusion in its right ventral-lateral aspect. In both schizophrenia and bipolar disorder these normal facial asymmetries were diminished, with residual retention of asymmetries in bipolar disorder. This geometry of normal facial asymmetries shows commonalities with that of normal frontal lobe asymmetries. These findings indicate a trans-diagnostic process that involves loss of facial asymmetries in both schizophrenia and bipolar disorder. Embryologically, they implicate loss of face-brain asymmetries across gestational weeks 7-14 in processes that involve genes previously associated with risk for schizophrenia.
Collapse
Affiliation(s)
- Federico M Sukno
- Department of Information and Communication Technologies, Pompeu Fabra University, Barcelona, Spain
| | - Brendan D Kelly
- St. John of God Hospital, Stillorgan, Co. Dublin, Ireland; Department of Psychiatry, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland
| | - Abbie Lane
- St. John of God Hospital, Stillorgan, Co. Dublin, Ireland; School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Stanislav Katina
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK; Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
| | - Mario A Rojas
- Centre for Image Processing and Analysis, Dublin City University, Dublin, Ireland
| | - Paul F Whelan
- Centre for Image Processing and Analysis, Dublin City University, Dublin, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Jin X, Zhang K, Lu B, Li X, Yan CG, Du Y, Liu Y, Lu J, Luo X, Gao X, Liu J. Shared atypical spontaneous brain activity pattern in early onset schizophrenia and autism spectrum disorders: evidence from cortical surface-based analysis. Eur Child Adolesc Psychiatry 2024; 33:2387-2396. [PMID: 38147111 PMCID: PMC11255015 DOI: 10.1007/s00787-023-02333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
Schizophrenia and autism spectrum disorders (ASD) were considered as two neurodevelopmental disorders and had shared clinical features. we hypothesized that they have some common atypical brain functions and the purpose of this study was to explored the shared brain spontaneous activity strength alterations in early onset schizophrenia (EOS) and ASD in the children and adolescents with a multi-center large-sample study. A total of 171 EOS patients (aged 14.25 ± 1.87), 188 ASD patients (aged 9.52 ± 5.13), and 107 healthy controls (aged 11.52 ± 2.82) had scanned with Resting-fMRI and analyzed surface-based amplitude of low-frequency fluctuations (ALFF). Results showed that both EOS and ASD had hypoactivity in the primary sensorimotor regions (bilateral primary and early visual cortex, left ventral visual stream, left primary auditory cortex) and hyperactivity in the high-order transmodal regions (bilateral SFL, bilateral DLPFC, right frontal eye fields), and bilateral thalamus. EOS had more severe abnormality than ASD. This study revealed shared functional abnormalities in the primary sensorimotor regions and the high-order transmodal regions in EOS and ASD, which provided neuroimaging evidence of common changes in EOS and ASD, and may help with better early recognition and precise treatment for EOS and ASD.
Collapse
Affiliation(s)
- Xingyue Jin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Kun Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yasong Du
- Shanghai Mental Health Center, No.600 Wanping Nan Road, Shanghai, China
| | - Yi Liu
- Shanghai Mental Health Center, No.600 Wanping Nan Road, Shanghai, China
| | - Jianping Lu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Xuerong Luo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Xueping Gao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
7
|
Yang X, Liu N, Sun H, Li X, Li H, Gong Q, Lui S. Sex-related cortical asymmetry in antipsychotic-naïve first-episode schizophrenia. Cereb Cortex 2024; 34:bhae173. [PMID: 38706137 DOI: 10.1093/cercor/bhae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/07/2024] Open
Abstract
Schizophrenia has been considered to exhibit sex-related clinical differences that might be associated with distinctly abnormal brain asymmetries between sexes. One hundred and thirty-two antipsychotic-naïve first-episode patients with schizophrenia and 150 healthy participants were recruited in this study to investigate whether cortical asymmetry would exhibit sex-related abnormalities in schizophrenia. After a 1-yr follow-up, patients were rescanned to obtain the effect of antipsychotic treatment on cortical asymmetry. Male patients were found to show increased lateralization index while female patients were found to exhibit decreased lateralization index in widespread regions when compared with healthy participants of the corresponding sex. Specifically, the cortical asymmetry of male and female patients showed contrary trends in the cingulate, orbitofrontal, parietal, temporal, occipital, and insular cortices. This result suggested male patients showed a leftward shift of asymmetry while female patients showed a rightward shift of asymmetry in these above regions that related to language, vision, emotion, and cognition. Notably, abnormal lateralization indices remained stable after antipsychotic treatment. The contrary trends in asymmetry between female and male patients with schizophrenia together with the persistent abnormalities after antipsychotic treatment suggested the altered brain asymmetries in schizophrenia might be sex-related disturbances, intrinsic, and resistant to the effect of antipsychotic therapy.
Collapse
Affiliation(s)
- Xiyue Yang
- Department of Radiology and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Huaxi MR Research Center, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
| | - Naici Liu
- Department of Radiology and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Huaxi MR Research Center, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
| | - Hui Sun
- Department of Radiology and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Huaxi MR Research Center, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
| | - Xing Li
- Department of Radiology and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Huaxi MR Research Center, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
| | - Hongwei Li
- Department of Radiology and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Huaxi MR Research Center, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, No. 190 Jiannan Road East, Youxian District, Mianyang, Sichuan Province 621000, China
| | - Qiyong Gong
- Department of Radiology and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Huaxi MR Research Center, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, Xiamen, Fujian 361021, China
| | - Su Lui
- Department of Radiology and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Huaxi MR Research Center, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
8
|
Gu Y, Maria-Stauffer E, Bedford SA, Romero-Garcia R, Grove J, Børglum AD, Martin H, Baron-Cohen S, Bethlehem RA, Warrier V. Polygenic scores for autism are associated with neurite density in adults and children from the general population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.10.24305539. [PMID: 38645251 PMCID: PMC11030520 DOI: 10.1101/2024.04.10.24305539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genetic variants linked to autism are thought to change cognition and behaviour by altering the structure and function of the brain. Although a substantial body of literature has identified structural brain differences in autism, it is unknown whether autism-associated common genetic variants are linked to changes in cortical macro- and micro-structure. We investigated this using neuroimaging and genetic data from adults (UK Biobank, N = 31,748) and children (ABCD, N = 4,928). Using polygenic scores and genetic correlations we observe a robust negative association between common variants for autism and a magnetic resonance imaging derived phenotype for neurite density (intracellular volume fraction) in the general population. This result is consistent across both children and adults, in both the cortex and in white matter tracts, and confirmed using polygenic scores and genetic correlations. There were no sex differences in this association. Mendelian randomisation analyses provide no evidence for a causal relationship between autism and intracellular volume fraction, although this should be revisited using better powered instruments. Overall, this study provides evidence for shared common variant genetics between autism and cortical neurite density.
Collapse
Affiliation(s)
- Yuanjun Gu
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | | | - Saashi A. Bedford
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | | | | | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, 41013, Sevilla, Spain, 41013
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, 8210, Denmark
- Center for Genomics and Personalized Medicine (CGPM), Aarhus University, Aarhus, 8000, Denmark
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, 8000, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark, 8000
| | - Anders D. Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, 8210, Denmark
- Center for Genomics and Personalized Medicine (CGPM), Aarhus University, Aarhus, 8000, Denmark
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, 8000, Denmark
| | - Hilary Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | - Varun Warrier
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
9
|
Schijven D, Soheili-Nezhad S, Fisher SE, Francks C. Exome-wide analysis implicates rare protein-altering variants in human handedness. Nat Commun 2024; 15:2632. [PMID: 38565598 PMCID: PMC10987538 DOI: 10.1038/s41467-024-46277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.
Collapse
Affiliation(s)
- Dick Schijven
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sourena Soheili-Nezhad
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Zhan L, Gao Y, Huang L, Zhang H, Huang G, Wang Y, Sun J, Xie Z, Li M, Jia X, Cheng L, Yu Y. Brain functional connectivity alterations of Wernicke's area in individuals with autism spectrum conditions in multi-frequency bands: A mega-analysis. Heliyon 2024; 10:e26198. [PMID: 38404781 PMCID: PMC10884452 DOI: 10.1016/j.heliyon.2024.e26198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Characterized by severe deficits in communication, most individuals with autism spectrum conditions (ASC) experience significant language dysfunctions, thereby impacting their overall quality of life. Wernicke's area, a classical and traditional brain region associated with language processing, plays a substantial role in the manifestation of language impairments. The current study carried out a mega-analysis to attain a comprehensive understanding of the neural mechanisms underpinning ASC, particularly in the context of language processing. The study employed the Autism Brain Image Data Exchange (ABIDE) dataset, which encompasses data from 443 typically developing (TD) individuals and 362 individuals with ASC. The objective was to detect abnormal functional connectivity (FC) between Wernicke's area and other language-related functional regions, and identify frequency-specific altered FC using Wernicke's area as the seed region in ASC. The findings revealed that increased FC in individuals with ASC has frequency-specific characteristics. Further, in the conventional frequency band (0.01-0.08 Hz), individuals with ASC exhibited increased FC between Wernicke's area and the right thalamus compared with TD individuals. In the slow-5 frequency band (0.01-0.027 Hz), increased FC values were observed in the left cerebellum Crus II and the right lenticular nucleus, pallidum. These results provide novel insights into the potential neural mechanisms underlying communication deficits in ASC from the perspective of language impairments.
Collapse
Affiliation(s)
- Linlin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Yanyan Gao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Yang Yu
- Psychiatry Department, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
11
|
Piszczek L, Kaczanowska J, Haubensak W. Towards correlative archaeology of the human mind. Biol Chem 2024; 405:5-12. [PMID: 37819768 PMCID: PMC10687516 DOI: 10.1515/hsz-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Retracing human cognitive origins started out at the systems level with the top-down interpretation of archaeological records spanning from man-made artifacts to endocasts of ancient skulls. With emerging evolutionary genetics and organoid technologies, it is now possible to deconstruct evolutionary processes on a molecular/cellular level from the bottom-up by functionally testing archaic alleles in experimental models. The current challenge is to complement these approaches with novel strategies that allow a holistic reconstruction of evolutionary patterns across human cognitive domains. We argue that computational neuroarcheology can provide such a critical mesoscale framework at the brain network-level, linking molecular/cellular (bottom-up) to systems (top-down) level data for the correlative archeology of the human mind.
Collapse
Affiliation(s)
- Lukasz Piszczek
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, A-Vienna, Austria
| | | | - Wulf Haubensak
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, A-Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030Vienna, Austria
| |
Collapse
|
12
|
Jameei H, Rakesh D, Zalesky A, Cairns MJ, Reay WR, Wray NR, Di Biase MA. Linking Polygenic Risk of Schizophrenia to Variation in Magnetic Resonance Imaging Brain Measures: A Comprehensive Systematic Review. Schizophr Bull 2024; 50:32-46. [PMID: 37354489 PMCID: PMC10754175 DOI: 10.1093/schbul/sbad087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is highly heritable, with a polygenic effect of many genes conferring risk. Evidence on whether cumulative risk also predicts alterations in brain morphology and function is inconsistent. This systematic review examined evidence for schizophrenia polygenic risk score (sczPRS) associations with commonly used magnetic resonance imaging (MRI) measures. We expected consistent evidence to emerge for significant sczPRS associations with variation in structure and function, specifically in frontal, temporal, and insula cortices that are commonly implicated in schizophrenia pathophysiology. STUDY DESIGN In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched MEDLINE, Embase, and PsycINFO for peer-reviewed studies published between January 2013 and March 2022. Studies were screened against predetermined criteria and National Institutes of Health (NIH) quality assessment tools. STUDY RESULTS In total, 57 studies of T1-weighted structural, diffusion, and functional MRI were included (age range = 9-80 years, Nrange = 64-76 644). We observed moderate, albeit preliminary, evidence for higher sczPRS predicting global reductions in cortical thickness and widespread variation in functional connectivity, and to a lesser extent, region-specific reductions in frontal and temporal volume and thickness. Conversely, sczPRS does not predict whole-brain surface area or gray/white matter volume. Limited evidence emerged for sczPRS associations with diffusion tensor measures of white matter microstructure in a large community sample and smaller cohorts of children and young adults. These findings were broadly consistent across community and clinical populations. CONCLUSIONS Our review supports the hypothesis that schizophrenia is a disorder of disrupted within and between-region brain connectivity, and points to specific whole-brain and regional MRI metrics that may provide useful intermediate phenotypes.
Collapse
Affiliation(s)
- Hadis Jameei
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Nemati SS, Sadeghi L, Dehghan G, Sheibani N. Lateralization of the hippocampus: A review of molecular, functional, and physiological properties in health and disease. Behav Brain Res 2023; 454:114657. [PMID: 37683813 DOI: 10.1016/j.bbr.2023.114657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The hippocampus is a part of the brain's medial temporal lobe that is located under the cortex. It belongs to the limbic system and helps to collect and transfer information from short-term to long-term memory, as well as spatial orientation in each mammalian brain hemisphere. After more than two centuries of research in brain asymmetry, the hippocampus has attracted much attention in the study of brain lateralization. The hippocampus is very important in cognitive disorders, related to seizures and dementia, such as epilepsy and Alzheimer's disease. In addition, the motivation to study the hippocampus has increased significantly due to the asymmetry in the activity of the left and right hippocampi in healthy people, and its disruption during some neurological diseases. After a general review of the hippocampal structure and its importance in related diseases, the asymmetry in the brain with a focus on the hippocampus during the growth and maturation of healthy people, as well as the differences created in patients at the molecular, functional, and physiological levels are discussed. Most previous work indicates that the hippocampus is lateralized in healthy people. Also, lateralization at different levels remarkably changes in patients, and it appears that the most complex cognitive disorder is caused by a new dominant asymmetric system.
Collapse
Affiliation(s)
- Seyed Saman Nemati
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Leila Sadeghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
14
|
Lorents A, Colin ME, Bjerke IE, Nougaret S, Montelisciani L, Diaz M, Verschure P, Vezoli J. Human Brain Project Partnering Projects Meeting: Status Quo and Outlook. eNeuro 2023; 10:ENEURO.0091-23.2023. [PMID: 37669867 PMCID: PMC10481639 DOI: 10.1523/eneuro.0091-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
As the European Flagship Human Brain Project (HBP) ends in September 2023, a meeting dedicated to the Partnering Projects (PPs), a collective of independent research groups that partnered with the HBP, was held on September 4-7, 2022. The purpose of this meeting was to allow these groups to present their results, reflect on their collaboration with the HBP and discuss future interactions with the European Research Infrastructure (RI) EBRAINS that has emerged from the HBP. In this report, we share the tour-de-force that the Partnering Projects that were present in the meeting have made in furthering knowledge concerning various aspects of Brain Research with the HBP. We describe briefly major achievements of the HBP Partnering Projects in terms of a systems-level understanding of the functional architecture of the brain and its possible emulation in artificial systems. We then recapitulate open discussions with EBRAINS representatives about the evolution of EBRAINS as a sustainable Research Infrastructure for the Partnering Projects after the HBP, and also for the wider scientific community.
Collapse
Affiliation(s)
| | | | - Ingvild Elise Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway
| | - Simon Nougaret
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Luca Montelisciani
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Marissa Diaz
- Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Paul Verschure
- Donders Center for Neuroscience (DCN-FNWI), Radboud University, Nijmegen 6500HD, The Netherlands
| | - Julien Vezoli
- Ernst Strügmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
- Institut National de la Santé et de la Recherche Médicale Unité 1208, Stem Cell and Brain Research Institute, Université Claude Bernard Lyon 1, Bron 69500, France
| |
Collapse
|
15
|
Wang J, Ma S, Yu P, He X. Evolution of Human Brain Left-Right Asymmetry: Old Genes with New Functions. Mol Biol Evol 2023; 40:msad181. [PMID: 37561991 PMCID: PMC10473864 DOI: 10.1093/molbev/msad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
The human brain is generally anatomically symmetrical, boasting mirror-like brain regions in the left and right hemispheres. Despite this symmetry, fine-scale structural asymmetries are prevalent and are believed to be responsible for distinct functional divisions within the brain. Prior studies propose that these asymmetric structures are predominantly primate specific or even unique to humans, suggesting that the genes contributing to the structural asymmetry of the human brain might have evolved recently. In our study, we identified approximately 1,500 traits associated with human brain asymmetry by collecting paired brain magnetic resonance imaging features from the UK Biobank. Each trait is measured in a specific region of one hemisphere and mirrored in the corresponding region of the other hemisphere. Conducting genome-wide association studies on these traits, we identified over 1,000 quantitative trait loci. Around these index single nucleotide polymorphisms, we found approximately 200 genes that are enriched in brain-related Gene Ontology terms and are predominantly upregulated in brain tissues. Interestingly, most of these genes are evolutionarily old, originating just prior to the emergence of Bilateria (bilaterally symmetrical animals) and Euteleostomi (bony vertebrates with a brain), at a significantly higher ratio than expected. Further analyses of these genes reveal a brain-specific upregulation in humans relative to other mammalian species. This suggests that the structural asymmetry of the human brain has been shaped by evolutionarily ancient genes that have assumed new functions over time.
Collapse
Affiliation(s)
- Jianguo Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sidi Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peijie Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | |
Collapse
|
16
|
Guo LK, Su Y, Zhang YYN, Yu H, Lu Z, Li WQ, Yang YF, Xiao X, Yan H, Lu TL, Li J, Liao YD, Kang ZW, Wang LF, Li Y, Li M, Liu B, Huang HL, Lv LX, Yao Y, Tan YL, Breen G, Everall I, Wang HX, Huang Z, Zhang D, Yue WH. Prediction of treatment response to antipsychotic drugs for precision medicine approach to schizophrenia: randomized trials and multiomics analysis. Mil Med Res 2023; 10:24. [PMID: 37269009 DOI: 10.1186/s40779-023-00459-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/05/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Choosing the appropriate antipsychotic drug (APD) treatment for patients with schizophrenia (SCZ) can be challenging, as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers. Previous studies have indicated the association between treatment response and genetic and epigenetic factors, but no effective biomarkers have been identified. Hence, further research is imperative to enhance precision medicine in SCZ treatment. METHODS Participants with SCZ were recruited from two randomized trials. The discovery cohort was recruited from the CAPOC trial (n = 2307) involved 6 weeks of treatment and equally randomized the participants to the Olanzapine, Risperidone, Quetiapine, Aripiprazole, Ziprasidone, and Haloperidol/Perphenazine (subsequently equally assigned to one or the other) groups. The external validation cohort was recruited from the CAPEC trial (n = 1379), which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine, Risperidone, and Aripiprazole groups. Additionally, healthy controls (n = 275) from the local community were utilized as a genetic/epigenetic reference. The genetic and epigenetic (DNA methylation) risks of SCZ were assessed using the polygenic risk score (PRS) and polymethylation score, respectively. The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis, methylation quantitative trait loci, colocalization, and promoter-anchored chromatin interaction. Machine learning was used to develop a prediction model for treatment response, which was evaluated for accuracy and clinical benefit using the area under curve (AUC) for classification, R2 for regression, and decision curve analysis. RESULTS Six risk genes for SCZ (LINC01795, DDHD2, SBNO1, KCNG2, SEMA7A, and RUFY1) involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response. The developed and externally validated prediction model, which incorporated clinical information, PRS, genetic risk score (GRS), and proxy methylation level (proxyDNAm), demonstrated positive benefits for a wide range of patients receiving different APDs, regardless of sex [discovery cohort: AUC = 0.874 (95% CI 0.867-0.881), R2 = 0.478; external validation cohort: AUC = 0.851 (95% CI 0.841-0.861), R2 = 0.507]. CONCLUSIONS This study presents a promising precision medicine approach to evaluate treatment response, which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ. Trial registration Chinese Clinical Trial Registry ( https://www.chictr.org.cn/ ), 18. Aug 2009 retrospectively registered: CAPOC-ChiCTR-RNC-09000521 ( https://www.chictr.org.cn/showproj.aspx?proj=9014 ), CAPEC-ChiCTR-RNC-09000522 ( https://www.chictr.org.cn/showproj.aspx?proj=9013 ).
Collapse
Affiliation(s)
- Liang-Kun Guo
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yi Su
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, China
| | - Yu-Ya-Nan Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhe Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Wen-Qiang Li
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435001, Henan, China
| | - Yong-Feng Yang
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435001, Henan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Tian-Lan Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Jun Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yun-Dan Liao
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Zhe-Wei Kang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Li-Fang Wang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yue Li
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, WC2R 2LS, UK
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Hai-Liang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Lu-Xian Lv
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435001, Henan, China
| | - Yin Yao
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yun-Long Tan
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, China
| | - Gerome Breen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, WC2R 2LS, UK
| | - Ian Everall
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, WC2R 2LS, UK
| | - Hong-Xing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory for Neuroscience for Ministry of Education, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Wei-Hua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
17
|
Pinto D, Martins R, Macedo A, Castelo Branco M, Valente Duarte J, Madeira N. Brain Hemispheric Asymmetry in Schizophrenia and Bipolar Disorder. J Clin Med 2023; 12:jcm12103421. [PMID: 37240527 DOI: 10.3390/jcm12103421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND This study aimed to compare brain asymmetry in patients with schizophrenia (SCZ), bipolar disorder (BPD), and healthy controls to test whether asymmetry patterns could discriminate and set boundaries between two partially overlapping severe mental disorders. METHODS We applied a fully automated voxel-based morphometry (VBM) approach to assess structural brain hemispheric asymmetry in magnetic resonance imaging (MRI) anatomical scans in 60 participants (SCZ = 20; BP = 20; healthy controls = 20), all right-handed and matched for gender, age, and education. RESULTS Significant differences in gray matter asymmetry were found between patients with SCZ and BPD, between SCZ patients and healthy controls (HC), and between BPD patients and HC. We found a higher asymmetry index (AI) in BPD patients when compared to SCZ in Brodmann areas 6, 11, and 37 and anterior cingulate cortex and an AI higher in SCZ patients when compared to BPD in the cerebellum. CONCLUSION Our study found significant differences in brain asymmetry between patients with SCZ and BPD. These promising results could be translated to clinical practice, given that structural brain changes detected by MRI are good candidates for exploration as biological markers for differential diagnosis, besides helping to understand disease-specific abnormalities.
Collapse
Affiliation(s)
- Diogo Pinto
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
| | - Ricardo Martins
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal
| | - Miguel Castelo Branco
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Valente Duarte
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal
| |
Collapse
|
18
|
Schijven D, Postema MC, Fukunaga M, Matsumoto J, Miura K, de Zwarte SMC, van Haren NEM, Cahn W, Hulshoff Pol HE, Kahn RS, Ayesa-Arriola R, Ortiz-García de la Foz V, Tordesillas-Gutierrez D, Vázquez-Bourgon J, Crespo-Facorro B, Alnæs D, Dahl A, Westlye LT, Agartz I, Andreassen OA, Jönsson EG, Kochunov P, Bruggemann JM, Catts SV, Michie PT, Mowry BJ, Quidé Y, Rasser PE, Schall U, Scott RJ, Carr VJ, Green MJ, Henskens FA, Loughland CM, Pantelis C, Weickert CS, Weickert TW, de Haan L, Brosch K, Pfarr JK, Ringwald KG, Stein F, Jansen A, Kircher TTJ, Nenadić I, Krämer B, Gruber O, Satterthwaite TD, Bustillo J, Mathalon DH, Preda A, Calhoun VD, Ford JM, Potkin SG, Chen J, Tan Y, Wang Z, Xiang H, Fan F, Bernardoni F, Ehrlich S, Fuentes-Claramonte P, Garcia-Leon MA, Guerrero-Pedraza A, Salvador R, Sarró S, Pomarol-Clotet E, Ciullo V, Piras F, Vecchio D, Banaj N, Spalletta G, Michielse S, van Amelsvoort T, Dickie EW, Voineskos AN, Sim K, Ciufolini S, Dazzan P, Murray RM, Kim WS, Chung YC, Andreou C, Schmidt A, Borgwardt S, McIntosh AM, Whalley HC, Lawrie SM, du Plessis S, Luckhoff HK, Scheffler F, Emsley R, Grotegerd D, Lencer R, Dannlowski U, Edmond JT, Rootes-Murdy K, Stephen JM, Mayer AR, Antonucci LA, Fazio L, Pergola G, Bertolino A, Díaz-Caneja CM, Janssen J, Lois NG, Arango C, Tomyshev AS, Lebedeva I, Cervenka S, Sellgren CM, Georgiadis F, Kirschner M, Kaiser S, Hajek T, Skoch A, Spaniel F, Kim M, Kwak YB, Oh S, Kwon JS, James A, Bakker G, Knöchel C, Stäblein M, Oertel V, Uhlmann A, Howells FM, Stein DJ, Temmingh HS, Diaz-Zuluaga AM, Pineda-Zapata JA, López-Jaramillo C, Homan S, Ji E, Surbeck W, Homan P, Fisher SE, Franke B, Glahn DC, Gur RC, Hashimoto R, Jahanshad N, Luders E, Medland SE, Thompson PM, Turner JA, van Erp TGM, Francks C. Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proc Natl Acad Sci U S A 2023; 120:e2213880120. [PMID: 36976765 PMCID: PMC10083554 DOI: 10.1073/pnas.2213880120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
Collapse
Affiliation(s)
- Dick Schijven
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
| | - Merel C. Postema
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam1081 HZ, The Netherlands
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Sonja M. C. de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Neeltje E. M. van Haren
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Sophia Children's Hospital, Rotterdam3015 CN, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - René S. Kahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, New York, NY10468
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Instituto de Investigación Marqués de Valdecilla, University Hospital Marqués de Valdecilla, Santander39008, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander39011, Spain
| | - Víctor Ortiz-García de la Foz
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Psychiatry, Marqués de Valdecilla University Hospital, Instituto de Investigación Sanitaria Valdecilla, School of Medicine, University of Cantabria, Santander39011, Spain
| | - Diana Tordesillas-Gutierrez
- Department of Radiology, Instituto de Investigación Marqués de Valdecilla, Marqués de Valdecilla University Hospital, Santander39011, Spain
- Advanced Computing and e-Science, Instituto de Física de Cantabria, Universidad de Cantabria - Consejo Superior de Investigaciones Científicas, Santander39005, Spain
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Instituto de Investigación Marqués de Valdecilla, University Hospital Marqués de Valdecilla, Santander39008, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Psychiatry, School of Medicine, University of Sevilla, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas - Instituto de Biomedicina de Sevilla, Sevilla41013, Spain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychology, University of Oslo, Oslo0373, Norway
- Bjørknes College, Oslo0456, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Oslo0373, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychology, University of Oslo, Oslo0373, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo0372, Norway
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo0450, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo0373, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo0372, Norway
| | - Erik G. Jönsson
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD21201
| | - Jason M. Bruggemann
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Edith Collins Centre (Translational Research in Alcohol, Drugs & Toxicology), Sydney Local Health District, Sydney2050, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney2006, Australia
| | - Stanley V. Catts
- School of Medicine, The University of Queensland, Brisbane4006, Australia
| | - Patricia T. Michie
- School of Psychological Sciences, University of Newcastle, Newcastle2308, Australia
| | - Bryan J. Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane4072, Australia
- Queensland Centre for Mental Health Research, The University of Queensland, Brisbane4076, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Paul E. Rasser
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle2308, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle2308, Australia
- Hunter Medical Research Institute, Newcastle2305, Australia
| | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle2308, Australia
| | - Rodney J. Scott
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle2308, Australia
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Frans A. Henskens
- School of Medicine and Public Health, University of Newcastle, Newcastle2308, Australia
- PRC for Health Behaviour, Hunter Medical Research Institute, Newcastle2305, Australia
| | - Carmel M. Loughland
- School of Medicine and Public Health, University of Newcastle, Newcastle2308, Australia
- Hunter New England Mental Health Service, Newcastle2305, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne3053, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY13210
| | - Thomas W. Weickert
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY13210
| | - Lieuwe de Haan
- Early Psychosis Department, Department of Psychiatry, Amsterdam UMC (location AMC), Amsterdam1105 AZ, The Netherlands
- Arkin Institute for Mental Health, Amsterdam1033 NN, The Netherlands
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Kai G. Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
- Core-Facility Brainimaging, Faculty of Medicine, Philipps-Universität Marburg, Marburg35032, Germany
| | - Tilo T. J. Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Bernd Krämer
- Department of General Psychiatry, Section for Experimental Psychopathology and Neuroimaging, Heidelberg University, Heidelberg69115, Germany
| | - Oliver Gruber
- Department of General Psychiatry, Section for Experimental Psychopathology and Neuroimaging, Heidelberg University, Heidelberg69115, Germany
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA19104
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Juan Bustillo
- Department of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM87106
| | - Daniel H. Mathalon
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA94121
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
| | - Vince D. Calhoun
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA30303
| | - Judith M. Ford
- San Francisco VA Medical Center, University of California, San Francisco, CA94121
| | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
- Long Beach VA Health Care System, Long Beach, CA90822
| | - Jingxu Chen
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Hong Xiang
- Chongqing University Three Gorges Hospital, Chongqing404188, P.R. China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Technische Universität Dresden, University Hospital C.G. Carus, Dresden01307, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden01307, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Technische Universität Dresden, University Hospital C.G. Carus, Dresden01307, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden01307, Germany
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Maria Angeles Garcia-Leon
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Benito Menni Complex Assistencial en Salut Mental, Barcelona08830, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX77030
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Erin W. Dickie
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoM5S 2S1, Canada
- Department of Psychiatry, University of Toronto, TorontoM5T 1R8, Canada
| | - Aristotle N. Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoM5S 2S1, Canada
- Department of Psychiatry, University of Toronto, TorontoM5T 1R8, Canada
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore539747, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228, Singapore
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju54896, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju54896, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju54896, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju54896, Republic of Korea
| | - Christina Andreou
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
| | - André Schmidt
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
| | - Andrew M. McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Stephen M. Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
- Stellenbosch University Genomics of Brain Disorders Research Unit, South African Medical Research Council, Cape Town7505, South Africa
| | - Hilmar K. Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
| | - Freda Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Jesse T. Edmond
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
| | - Kelly Rootes-Murdy
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
| | | | | | - Linda A. Antonucci
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari70121, Italy
| | - Leonardo Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
- Psychiatry Unit, Bari University Hospital, Bari70121, Italy
| | - Covadonga M. Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
- School of Medicine, Universidad Complutense, Madrid28040, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
| | - Noemi G. Lois
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
- School of Medicine, Universidad Complutense, Madrid28040, Spain
| | - Alexander S. Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow115522, Russian Federation
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow115522, Russian Federation
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala751 85, Sweden
| | - Carl M. Sellgren
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm171 65, Sweden
| | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Montreal Neurological Institute, McGill University, MontrealH3A 2B4, Canada
| | - Stefan Kaiser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Department of Psychiatry, Division of Adult Psychiatry, Geneva University Hospitals, Geneva1202, Switzerland
| | - Tomas Hajek
- National Institute of Mental Health, Klecany250 67, Czech Republic
- Department of Psychiatry, Dalhousie University, HalifaxB3H 2E2, Canada
| | - Antonin Skoch
- National Institute of Mental Health, Klecany250 67, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany250 67, Czech Republic
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul08826, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul08826, Republic of Korea
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul08826, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Anthony James
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Geor Bakker
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Michael Stäblein
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Dresden01187, Germany
| | - Fleur M. Howells
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town7505, South Africa
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
| | - Ana M. Diaz-Zuluaga
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Julian A. Pineda-Zapata
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Carlos López-Jaramillo
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich8050, Switzerland
| | - Ellen Ji
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Werner Surbeck
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY11030
- Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY11004
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, New York, NY11549
| | - Simon E. Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - David C. Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA02115
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT06102
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA19104
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA19104
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland1010, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, Uppsala752 37, Sweden
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Sarah E. Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane4006, Australia
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Jessica A. Turner
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA30303
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA92697
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| |
Collapse
|
19
|
Dimitriadis SI, Perry G, Lancaster TM, Tansey KE, Singh KD, Holmans P, Pocklington A, Davey Smith G, Zammit S, Hall J, O’Donovan MC, Owen MJ, Jones DK, Linden DE. Genetic risk for schizophrenia is associated with increased proportion of indirect connections in brain networks revealed by a semi-metric analysis: evidence from population sample stratified for polygenic risk. Cereb Cortex 2023; 33:2997-3011. [PMID: 35830871 PMCID: PMC10016061 DOI: 10.1093/cercor/bhac256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Research studies based on tractography have revealed a prominent reduction of asymmetry in some key white-matter tracts in schizophrenia (SCZ). However, we know little about the influence of common genetic risk factors for SCZ on the efficiency of routing on structural brain networks (SBNs). Here, we use a novel recall-by-genotype approach, where we sample young adults from a population-based cohort (ALSPAC:N genotyped = 8,365) based on their burden of common SCZ risk alleles as defined by polygenic risk score (PRS). We compared 181 individuals at extremes of low (N = 91) or high (N = 90) SCZ-PRS under a robust diffusion MRI-based graph theoretical SBN framework. We applied a semi-metric analysis revealing higher SMR values for the high SCZ-PRS group compared with the low SCZ-PRS group in the left hemisphere. Furthermore, a hemispheric asymmetry index showed a higher leftward preponderance of indirect connections for the high SCZ-PRS group compared with the low SCZ-PRS group (PFDR < 0.05). These findings might indicate less efficient structural connectivity in the higher genetic risk group. This is the first study in a population-based sample that reveals differences in the efficiency of SBNs associated with common genetic risk variants for SCZ.
Collapse
Affiliation(s)
- S I Dimitriadis
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Neuroinformatics Group, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - T M Lancaster
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Department of Psychology, Bath University, Claverton Down BA2 7AY, Bath, Wales, UK
| | - K E Tansey
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
| | - K D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - P Holmans
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - A Pocklington
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - S Zammit
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - J Hall
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M C O’Donovan
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M J Owen
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D E Linden
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40 UNS40 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
20
|
Sha Z, Schijven D, Fisher SE, Francks C. Genetic architecture of the white matter connectome of the human brain. SCIENCE ADVANCES 2023; 9:eadd2870. [PMID: 36800424 PMCID: PMC9937579 DOI: 10.1126/sciadv.add2870] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
White matter tracts form the structural basis of large-scale brain networks. We applied brain-wide tractography to diffusion images from 30,810 adults (U.K. Biobank) and found significant heritability for 90 node-level and 851 edge-level network connectivity measures. Multivariate genome-wide association analyses identified 325 genetic loci, of which 80% had not been previously associated with brain metrics. Enrichment analyses implicated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, microglia, and neurons. The multivariate association profiles implicated 31 loci in connectivity between core regions of the left-hemisphere language network. Polygenic scores for psychiatric, neurological, and behavioral traits also showed significant multivariate associations with structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed common genetic contributions to variation in the structural connectome of the human brain.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
21
|
Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Confirmation from structural, functional, and behavioral studies agree and suggest a configuration of atypical lateralization in individuals with autistic spectrum disorders (ASD). It is suggested that patterns of cortical and behavioral atypicality are evident in individuals with ASDs with atypical lateralization being common in individuals with ASDs. The paper endeavors to better understand the relationship between alterations in typical cortical asymmetries and functional lateralization in ASD in evolutionary terms. We have proposed that both early genetic and/or environmental influences can alter the developmental process of cortical lateralization. There invariably is a “chicken or egg” issue that arises whether atypical cortical anatomy associated with abnormal function, or alternatively whether functional atypicality generates abnormal structure.
Collapse
|
22
|
Neuropsychological profile of executive functions in autism spectrum disorder and schizophrenia spectrum disorders: a comparative group study in adults. Eur Arch Psychiatry Clin Neurosci 2022; 273:719-730. [PMID: 36063233 PMCID: PMC10085899 DOI: 10.1007/s00406-022-01466-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022]
Abstract
As assessed by numerous neuropsychological tasks, individuals with autism spectrum disorder (ASD) and schizophrenia spectrum disorders (SSDs) have similar impairments related to executive functions (EFs). The neuropsychological profile of these two conditions was examined using the three-component EFs' framework of Miyake and Friedman (Cogn Psychol 41(1):49-100, 2000). This approach assesses Inhibition (suppression of unwanted and irrelevant information/responses), Updating (use and control of contents of working memory), and Shifting (disengagement between activities or mental tasks) using nine different tasks. In line with previous research, we expected greater performance deficits in ASD in all three components compared to SSD, as well as faster responses for the SSD group. A self-paced task format allowed us to examine whether unlimited time given for a task would lead to better performance. The sample was constituted by the control group (N = 25), ASD group (N = 24), and SSD group (N = 12). Groups did not differ on Inhibition performance. In Updating, individuals with SSD performed poorer than the other groups. As for Shifting, both groups demonstrated poorer performance compared to controls, with the SSD group presenting the greatest difficulties. In terms of reaction time (RT), SSD participants' RT were the slowest on Inhibition and Shifting tasks. There was a positive correlation between performance and time spent on Inhibition and Shifting only for the SSD group, which demonstrates that their performance improves when there are no time constraints. Our work provides a better understanding of spared and impaired EFs, which could be useful for designing strategies aimed at improving specific EFs in each group.
Collapse
|
23
|
Brain Functional Connectivity Asymmetry: Left Hemisphere Is More Modular. Symmetry (Basel) 2022. [DOI: 10.3390/sym14040833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Graph-theoretical approaches are increasingly used to study the brain and may enhance our understanding of its asymmetries. In this paper, we hypothesize that the structure of the left hemisphere is, on average, more modular. To this end, we analyzed resting-state functional magnetic resonance imaging data of 90 healthy subjects. We computed functional connectivity by Pearson’s correlation coefficient, turned the matrix into an unweighted graph by keeping a certain percentage of the strongest connections, and quantified modularity separately for the subgraph formed by each hemisphere. Our results show that the left hemisphere is more modular. The result is consistent across a range of binarization thresholds, regardless of whether the two hemispheres are thresholded together or separately. This illustrates that graph-theoretical analysis can provide a robust characterization of lateralization of brain functional connectivity.
Collapse
|
24
|
Abstract
Brain asymmetry is a hallmark of the human brain. Recent studies report a certain degree of abnormal asymmetry of brain lateralization between left and right brain hemispheres can be associated with many neuropsychiatric conditions. In this regard, some questions need answers. First, the accelerated brain asymmetry is programmed during the pre-natal period that can be called “accelerated brain decline clock”. Second, can we find the right biomarkers to predict these changes? Moreover, can we establish the dynamics of these changes in order to identify the right time window for proper interventions that can reverse or limit the neurological decline? To find answers to these questions, we performed a systematic online search for the last 10 years in databases using keywords. Conclusion: we need to establish the right in vitro model that meets human conditions as much as possible. New biomarkers are necessary to establish the “good” or the “bad” borders of brain asymmetry at the epigenetic and functional level as early as possible.
Collapse
|
25
|
Năstase MG, Vlaicu I, Trifu SC, Trifu SC. Genetic polymorphism and neuroanatomical changes in schizophrenia. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:307-322. [PMID: 36374137 PMCID: PMC9801677 DOI: 10.47162/rjme.63.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article is a review of the latest meta-analyses regarding the genetic spectrum in schizophrenia, discussing the risks given by the disrupted-in-schizophrenia 1 (DISC1), catechol-O-methyltransferase (COMT), monoamine oxidases-A∕B (MAO-A∕B), glutamic acid decarboxylase 67 (GAD67) and neuregulin 1 (NRG1) genes, and dysbindin-1 protein. The DISC1 polymorphism significantly increases the risk of schizophrenia, as well injuries from the prefrontal cortex that affect connectivity. NRG1 is one of the most important proteins involved. Its polymorphism is associated with the reduction of areas in the corpus callosum, right uncinate, inferior lateral fronto-occipital fascicle, right external capsule, fornix, right optic tract, gyrus. NRG1 and the ErbB4 receptor (tyrosine kinase receptor) are closely related to the N-methyl-D-aspartate receptor (NMDAR) (glutamate receptor). COMT is located on chromosome 22 and together with interleukin-10 (IL-10) have an anti-inflammatory and immunosuppressive function that influences the dopaminergic system. MAO gene methylation has been associated with mental disorders. MAO-A is a risk gene in the onset of schizophrenia, more precisely a certain type of single-nucleotide polymorphism (SNP), at the gene level, is associated with schizophrenia. In schizophrenia, we find deficits of the γ-aminobutyric acid (GABA)ergic neurotransmitter, the dysfunctions being found predominantly at the level of the substantia nigra. In schizophrenia, missing an allele at GAD67, caused by a SNP, has been correlated with decreases in parvalbumin (PV), somatostatin receptor (SSR), and GAD ribonucleic acid (RNA). Resulting in the inability to mature PV and SSR neurons, which has been associated with hyperactivity.
Collapse
Affiliation(s)
- Mihai Gabriel Năstase
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | - Ilinca Vlaicu
- Department of Psychiatry, Hospital for Psychiatry, Săpunari, Călăraşi County, Romania
| | - Simona Corina Trifu
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|
26
|
Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proc Natl Acad Sci U S A 2021; 118:2113095118. [PMID: 34785596 PMCID: PMC8617418 DOI: 10.1073/pnas.2113095118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 01/01/2023] Open
Abstract
Left-handedness occurs in roughly 10% of people, but whether it involves altered brain anatomy has remained unclear. We measured left to right asymmetry of the cerebral cortex in 28,802 right-handers and 3,062 left-handers. There were small average differences between the two handedness groups in brain regions important for hand control, language, vision, and working memory. Genetic influences on handedness were associated with some of these brain asymmetries, especially of language-related regions. This suggests links between handedness and language during human development and evolution. One implicated gene is NME7, which also affects placement of the visceral organs (heart, liver, etc.) on the left to right body axis—a possible connection between brain and body asymmetries in embryonic development. Roughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We resampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers compared to right-handers showed average differences of surface area asymmetry within the fusiform cortex, the anterior insula, the anterior middle cingulate cortex, and the precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2, and NME7—mutations in the latter can cause left to right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in left-handedness: on the postcentral gyrus and the inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas nonheritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference.
Collapse
|