1
|
Ye J, Duan C, Han J, Chen J, Sun N, Li Y, Yuan T, Peng D. Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. Neural Regen Res 2025; 20:1541-1554. [PMID: 38934398 PMCID: PMC11688552 DOI: 10.4103/nrr.nrr-d-23-01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
Collapse
Affiliation(s)
- Jinmei Ye
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Duan
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Han
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinrong Chen
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Daihui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Pradhan AK, Rupprecht R, Rammes G. Translocator protein and neurodegeneration: insights from Alzheimer's disease. Neural Regen Res 2025; 20:1090-1091. [PMID: 38989945 PMCID: PMC11438353 DOI: 10.4103/nrr.nrr-d-24-00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Arpit Kumar Pradhan
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Gerhard Rammes
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
3
|
Fischer L, Paschke B, Gareis F, Schumacher M, Liere P, Hiergeist A, Gessner A, Rupprecht R, Neumann ID, Bosch OJ. The translocator protein 18 kDa (TSPO) ligand etifoxine in an animal model of anxiety: line- and sex-dependent effects on emotionality, stress reactivity, spine density, oxytocin receptors, steroids, and microbiome composition. Neuropharmacology 2024:110282. [PMID: 39725124 DOI: 10.1016/j.neuropharm.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO). We tested the TSPO ligand etifoxine (ETX) in a rat model of hyper-anxiety and depression-like behavior, i.e., in female and male HAB (high anxiety-related behavior) rats, as well as in respective low anxiety (LAB) and non-selected control (NAB) rats for behavioral, molecular, cellular, and physiological parameters. Daily acute i.p. treatment with ETX or vehicle over 5 or 9 days revealed that ETX was most effective in female HAB rats; it reduced anxiety levels (5 days) and OXT-R binding brain site-specifically (5 and 9 days), and increased spine density (5 days). The behavioral ETX effect exclusively found in female HABs was accompanied by increased 3β5α-THDOC levels, without any effect in female LABs and NABs and on other neurosteroids. In males of all breeding lines, ETX changed a total of 10 out of 23 brain steroids. Passive stress-coping during 10-min forced swimming was not affected by 9-day treatment with ETX, the resulting stress-induced plasma corticosterone levels were higher in ETX-treated NAB rats of both sexes compared with their VEH-treated groups. The fecal bacterial composition was similar but beta diversity differed between HABs and LABs and from NABs independent of sex; ETX treatment had no effect. Therefore, we propose considering the aspect of sex in treatment strategies for anxiety disorders. This is particularly important to establish better treatment regimens for women.
Collapse
Affiliation(s)
- Lilith Fischer
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Bjarne Paschke
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Franziska Gareis
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany.
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany.
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Yan X, Siméon FG, Liow JS, Morse CL, Jana S, Montero Santamaria JA, Jenkins M, Zoghbi SS, Pike VW, Innis RB, Zanotti-Fregonara P. [ 18F]SF51, a novel 18F-labeled PET radioligand for translocator protein 18kDa (TSPO) in brain, works well in monkeys but fails in humans. J Cereb Blood Flow Metab 2024:271678X241304924. [PMID: 39654356 PMCID: PMC11629344 DOI: 10.1177/0271678x241304924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
[18F]SF51 is a novel radioligand for imaging translocator protein 18 kDa (TSPO) that previously displayed excellent imaging properties in nonhuman primates. This study assessed its performance in human brain and its dosimetry. Seven healthy participants underwent brain PET imaging to measure TSPO binding using a two-tissue compartment model (2TCM) to calculate total distribution volume (VT). This cohort included two high-affinity binders (HABs), three mixed-affinity binders (MABs), and two low-affinity binders (LABs). Two other participants received whole-body scans to assess radiation exposure. Peak brain radioactivity reached a standardized uptake value (SUV) of 1.4 at 3 minutes post-injection, diminishing to 30% of peak by 120 minutes. The average VT for all genotype groups was notably low (<1 mL·cm-3), emphasizing the radioligand's poor binding in brain. [18F]SF51 remained sensitive to the TSPO polymorphism in vivo, as shown by a two-fold difference in VT between HABs and LABs. VT stabilization by 80 minutes post-injection suggested minimal radiometabolite accumulation in brain. The average effective dose was 13.8 ± 0.9 µSv/MBq. Contrary to previously published animal data, [18F]SF51 showed low binding to human TSPO, with uptake remaining influenced by the rs6971 polymorphism. These findings highlight the challenges of developing TSPO radioligands and underscore the significant species differences that may influence translational outcomes.ClinicalTrials.gov identifier: NCT05564429; registered 10/03/2022.
Collapse
Affiliation(s)
- Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Fabrice G Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Madeline Jenkins
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Wang S, Ren J, Jing Y, Qu J, Liu GH. Perspectives on biomarkers of reproductive aging for fertility and beyond. NATURE AGING 2024; 4:1697-1710. [PMID: 39672897 DOI: 10.1038/s43587-024-00770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
Reproductive aging, spanning an age-related functional decline in the female and male reproductive systems, compromises fertility and leads to a range of health complications. In this Perspective, we first introduce a comprehensive framework for biomarkers applicable in clinical settings and discuss the existing repertoire of biomarkers used in practice. These encompass functional, imaging-based and biofluid-based biomarkers, all of which reflect the physiological characteristics of reproductive aging and help to determine the reproductive biological age. Next, we delve into the molecular alterations associated with aging in the reproductive system, highlighting the gap between these changes and their potential as biomarkers. Finally, to enhance the precision and practicality of assessing reproductive aging, we suggest adopting cutting-edge technologies for identifying new biomarkers and conducting thorough validations in population studies before clinical applications. These advancements will foster improved comprehension, prognosis and treatment of subfertility, thereby increasing chances of preserving reproductive health and resilience in populations of advanced age.
Collapse
Affiliation(s)
- Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- Aging Biomarker Consortium, Beijing, China
- Key Laboratory of RNA Science and Engineering, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Qu
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
6
|
Bader S, Jahner T, Dörfelt A, Melchner D, Cardon I, Siegmund HI, Brochhausen C, Rupprecht R, Milenkovic VM, Wetzel CH. A Comprehensive Functional Investigation of the Human Translocator Protein 18 kDa (TSPO) in a Novel Human Neuronal Cell Knockout Model. Int J Mol Sci 2024; 25:12882. [PMID: 39684592 DOI: 10.3390/ijms252312882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The translocator protein 18 kDa (TSPO) is a multifunctional outer mitochondrial membrane protein associated with various aspects of mitochondrial physiology and multiple roles in health and disease. Here, we aimed to analyse the role of TSPO in the regulation of mitochondrial and cellular functions in a human neuronal cell model. We used the CRISPR/Cas9 technology and generated TSPO knockout (KO) and control (CTRL) variants of human-induced pluripotent stem cells (hiPSCs). In a multimodal phenotyping approach, we investigated cellular and mitochondrial functions in neural progenitor cells (NPCs), astrocytes, and neurons differentiated from hiPSC CTRL and TSPO KO cell lines. Our analysis revealed reduced mitochondrial respiration and glycolysis, altered Ca2+ levels in the cytosol and mitochondrial matrix, a depolarised MMP, and increased levels of reactive oxygen species, as well as a reduced cell size. Notably, TSPO deficiency was accompanied by reduced expression of the voltage-dependent anion channel (VDAC). We also observed a reduced TSPO and VDAC expression in cells derived from patients suffering from major depressive disorder (MDD). Considering the modulatory function of TSPO and the similar functional phenotype of cells derived from patients with depression, we discuss a role of TSPO in the etiology or pathology of MDD. In summary, our findings indicate a general impairment of mitochondrial function in TSPO knockout (KO) cells. This deepens our insight into the intricate role of TSPO in a range of physiological and pathological processes.
Collapse
Affiliation(s)
- Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Tatjana Jahner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Anett Dörfelt
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Doris Melchner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Iseline Cardon
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Heiko I Siegmund
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | | | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Cumbers GA, Harvey-Latham ED, Kassiou M, Werry EL, Danon JJ. Emerging TSPO-PET Radiotracers for Imaging Neuroinflammation: A Critical Analysis. Semin Nucl Med 2024; 54:856-874. [PMID: 39477764 DOI: 10.1053/j.semnuclmed.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
The translocator protein (TSPO) is a biomarker for imaging neuroinflammation via Positron Emission Tomography (PET) across a broad range of CNS conditions. Most clinically used PET ligands targeting TSPO have limitations, including high lipophilicity and off-target binding or poor binding to a mutated TSPO isoform present in up to 30% of the population. Research efforts over the past decade have focused on development of improved TSPO PET radiotracers that overcome these limitations. This review provides a critical analysis of the development and validation of these so-called "third-generation" radiotracers in clinical and preclinical settings. We also offer our perspective on the future directions of TSPO PET imaging, including recommendations for overcoming current challenges and capitalizing on emerging opportunities in molecular imaging for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Grace A Cumbers
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Edward D Harvey-Latham
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia.
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia; Central Clinical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Papageorgiou MP, Filiou MD. Mitochondrial dynamics and psychiatric disorders: The missing link. Neurosci Biobehav Rev 2024; 165:105837. [PMID: 39089419 DOI: 10.1016/j.neubiorev.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Elucidating the molecular mechanisms of psychopathology is crucial for optimized diagnosis and treatment. Accumulating data have underlined how mitochondrial bioenergetics affect major psychiatric disorders. However, how mitochondrial dynamics, a term addressing mitochondria quality control, including mitochondrial fission, fusion, biogenesis and mitophagy, is implicated in psychopathologies remains elusive. In this review, we summarize the existing literature on mitochondrial dynamics perturbations in psychiatric disorders/neuropsychiatric phenotypes. We include preclinical/clinical literature on mitochondrial dynamics recalibrations in anxiety, depression, post-traumatic stress disorder (PTSD), bipolar disorder and schizophrenia. We discuss alterations in mitochondrial network, morphology and shape, molecular markers of the mitochondrial dynamics machinery and mitochondrial DNA copy number (mtDNAcn) in animal models and human cohorts in brain and peripheral material. By looking for common altered mitochondrial dynamics patterns across diagnoses/phenotypes, we highlight mitophagy and biogenesis as regulators of anxiety and depression pathophysiology, respectively, as well as the fusion mediator dynamin-like 120 kDa protein (Opa1) as a molecular hub contributing to psychopathology. Finally, we comment on limitations and future directions in this novel neuropsychiatry field.
Collapse
Affiliation(s)
- Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece.
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece; Institute of Biosciences, University of Ioannina, Greece.
| |
Collapse
|
9
|
Cavallieri F, Lucchi C, Grisanti S, Monfrini E, Fioravanti V, Toschi G, Di Rauso G, Rossi J, Di Fonzo A, Biagini G, Valzania F. Neurosteroid Levels in GBA Mutated and Non-Mutated Parkinson's Disease: A Possible Factor Influencing Clinical Phenotype? Biomolecules 2024; 14:1022. [PMID: 39199409 PMCID: PMC11352262 DOI: 10.3390/biom14081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Neurosteroids are pleiotropic molecules involved in various neurodegenerative diseases with neuroinflammation. We assessed neurosteroids' serum levels in a cohort of Parkinson's Disease (PD) patients with heterozygous glucocerebrosidase (GBA) mutations (GBA-PD) compared with matched cohorts of consecutive non-mutated PD (NM-PD) patients and healthy subjects with (GBA-HC) and without (NM-HC) GBA mutations. A consecutive cohort of GBA-PD was paired for age, sex, disease duration, Hoehn and Yahr stage, and comorbidities with a cohort of consecutive NM-PD. Two cohorts of GBA-HC and HC were also considered. Clinical assessment included the Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and the Montreal Cognitive Assessment (MoCA). Serum samples were processed and analyzed by liquid chromatography coupled with the triple quadrupole mass spectrometry. Twenty-two GBA-PD (males: 11, age: 63.68), 22 NM-PD (males: 11, age: 63.05), 14 GBA-HC (males: 8; age: 49.36), and 15 HC (males: 4; age: 60.60) were studied. Compared to NM-PD, GBA-PD showed more hallucinations and psychosis (p < 0.05, Fisher's exact test) and higher MDS-UPDRS part-II (p < 0.05). Most of the serum neurosteroids were reduced in both GBA-PD and NM-PD compared to the respective control cohorts, except for 5α-dihydroprogesterone. Allopregnanolone was the only neurosteroid significantly lower (p < 0.01, Dunn's test) in NM-PD compared to GBA-PD patients. Only in GBA-PD, allopregnanolone, and pregnanolone levels correlated (Spearman) with a more severe MDS-UPDRS part-III. Allopregnanolone levels also negatively correlated with MoCA scores, and pregnanolone levels correlated with more pronounced bradykinesia. This pilot study provides the first observation of changes in neurosteroid peripheral levels in GBA-PD. The involvement of the observed changes in the development of neuropsychological and motor symptoms of GBA-PD deserves further attention.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Sara Grisanti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Edoardo Monfrini
- Neurology Unit, Fondazione IRCCS Ca’ Grande Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.M.); (A.D.F.)
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| | - Giulia Toschi
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| | - Giulia Di Rauso
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Jessica Rossi
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Grande Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.M.); (A.D.F.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| |
Collapse
|
10
|
Riebel M, Brunner LM, Nothdurfter C, Wein S, Schwarzbach J, Liere P, Schumacher M, Rupprecht R. Neurosteroids and translocator protein 18 kDa (TSPO) ligands as novel treatment options in depression. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01843-7. [PMID: 38976049 DOI: 10.1007/s00406-024-01843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Recently, the gamma-aminobutyric acid (GABA) system has come into focus for the treatment of anxiety, postpartum depression, and major depressive disorder. Endogenous 3α-reduced steroids such as allopregnanolone are potent positive allosteric modulators of GABAA receptors and have been known for decades. Current industry developments and first approvals by the U.S. food and drug administration (FDA) for the treatment of postpartum depression with exogenous analogues of these steroids represent a major step forward in the field. 3α-reduced steroids target both synaptic and extrasynaptic GABAA receptors, unlike benzodiazepines, which bind to synaptic receptors. The first FDA-approved 3α-reduced steroid for postpartum depression is brexanolone, an intravenous formulation of allopregnanolone. It has been shown to provide rapid relief of depressive symptoms. An orally available 3α-reduced steroid is zuranolone, which also received FDA approval in 2023 for the treatment of postpartum depression. Although a number of studies have been conducted, the efficacy data were not sufficient to achieve approval of zuranolone in major depressive disorder by the FDA in 2023. The most prominent side effects of these 3α-reduced steroids are somnolence, dizziness and headache. In addition to the issue of efficacy, it should be noted that current data limit the use of these compounds to two weeks. An alternative to exogenous 3α-reduced steroids may be the use of substances that induce endogenous neurosteroidogenesis, such as the translocator protein 18 kDa (TSPO) ligand etifoxine. TSPO has been extensively studied for its role in steroidogenesis, in addition to other functions such as anti-inflammatory and neuroregenerative properties. Currently, etifoxine is the only clinically available TSPO ligand in France for the treatment of anxiety disorders. Studies are underway to evaluate its antidepressant potential. Hopefully, neurosteroid research will lead to the development of fast-acting antidepressants.
Collapse
Affiliation(s)
- Marco Riebel
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany.
| | - Lisa-Marie Brunner
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Simon Wein
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, Le Kremlin-Bicêtre, Paris, 94276, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, Le Kremlin-Bicêtre, Paris, 94276, France
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| |
Collapse
|
11
|
Brunner LM, Riebel M, Wein S, Koller M, Zeman F, Huppertz G, Emmer T, Eberhardt Y, Schwarzbach J, Rupprecht R, Nothdurfter C. The translocator protein 18kDa ligand etifoxine in the treatment of depressive disorders-a double-blind, randomized, placebo-controlled proof-of-concept study. Trials 2024; 25:274. [PMID: 38650030 PMCID: PMC11034134 DOI: 10.1186/s13063-024-08120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Recent developments suggest that neurosteroids may achieve rapid antidepressant effects. As such, neurosteroidogenesis mediated by the translocator protein 18 kDa (TSPO) might constitute a promising option for the treatment of depression. Therefore, the current clinical trial aims to get the first evidence of whether TPSO ligands promote rapid antidepressant effects. Furthermore, we study which mechanisms of action, e.g., modulation of distinct neuronal networks, neurosteroidogenesis, endocrinological mechanisms, TSPO expression or microbiome composition, contribute to their putative antidepressant effects. METHODS This is a randomized, placebo-controlled, double-blind single-center trial of 2-week treatment with the TSPO ligand etifoxine versus placebo in depressive patients. Main eligibility criteria: male or female individuals aged 18 to 65 years with unipolar/bipolar depressive disorder with no other psychiatric main diagnosis or acute neurological/somatic disorder or drug/alcohol dependence during their lifetime. The primary endpoint is the time point at which 50% of the maximal effect has occurred (ET50) estimated by the scores of the Hamilton Depression Scale (HAMD-21). A total of 20 patients per group are needed to detect changes of therapeutic efficacy about 5% and changes of ET50 about 10% with a power of 70%. Assuming a drop-out rate of 10-20%, 50 patients will be randomized in total. The study will be conducted at the Department of Psychiatry and Psychotherapy of the University of Regensburg. DISCUSSION This study will provide a first proof-of-concept on the potential of the TSPO ligand etifoxine in the treatment of depressive disorders. TRIAL REGISTRATION Clinical Trials Register (EudraCT number: 2021-006773-38 , registration date: 14 September 2022) and German Register of Clinical Studies (DRKS number: DRKS00031099 , registration date: 23 January 2023).
Collapse
Affiliation(s)
- Lisa-Marie Brunner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Marco Riebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Simon Wein
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Michael Koller
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Gunnar Huppertz
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Tanja Emmer
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Yvonne Eberhardt
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
Jiang M, Wang L, Sheng H. Mitochondria in depression: The dysfunction of mitochondrial energy metabolism and quality control systems. CNS Neurosci Ther 2024; 30:e14576. [PMID: 38334212 PMCID: PMC10853899 DOI: 10.1111/cns.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Depression is the most disabling neuropsychiatric disorder, causing difficulties in daily life activities and social interactions. The exact mechanisms of depression remain largely unclear. However, some studies have shown that mitochondrial dysfunction would play a crucial role in the occurrence and development of depression. AIMS To summarize the known knowledge about the role of mitochondrial dysfunction in the pathogenesis of depression. METHODS We review the recent literature, including 105 articles, to summarize the mitochondrial energy metabolism and quality control systems in the occurrence and development of depression. Some antidepressants which may exert their effects by improving mitochondrial function are also discussed. RESULTS Impaired brain energy metabolism and (or) damaged mitochondrial quality control systems have been reported not only in depression patients but in animal models of depression. Although the classical antidepressants have not been specially designed to target mitochondria, the evidence suggests that many antidepressants may exert their effects by improving mitochondrial function. CONCLUSIONS This brief review focuses on the findings that implicate mitochondrial dysfunction and the quality control systems as important etiological factors in the context of depressive disorders. It will help us to understand the various concepts of mitochondrial dysfunction in the pathogenesis of depression, and to explore novel and more targeted therapeutic approaches for depression.
Collapse
Affiliation(s)
- Mengruo Jiang
- College of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Liyuan Wang
- Department of Physiology, College of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Hui Sheng
- Department of Physiology, College of Basic MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
13
|
Kokkosis AG, Madeira MM, Hage Z, Valais K, Koliatsis D, Resutov E, Tsirka SE. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior. Glia 2024; 72:111-132. [PMID: 37675659 PMCID: PMC10842267 DOI: 10.1002/glia.24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Chronic environmental stress and traumatic social experiences induce maladaptive behavioral changes and is a risk factor for major depressive disorder (MDD) and various anxiety-related psychiatric disorders. Clinical studies and animal models of chronic stress have reported that symptom severity is correlated with innate immune responses and upregulation of neuroinflammatory cytokine signaling in brain areas implicated in mood regulation (mPFC; medial Prefrontal Cortex). Despite increasing evidence implicating impairments of neuroplasticity and synaptic signaling deficits into the pathophysiology of stress-related mental disorders, how microglia may modulate neuronal homeostasis in response to chronic stress has not been defined. Here, using the repeated social defeat stress (RSDS) mouse model we demonstrate that microglial-induced inflammatory responses are regulating neuronal plasticity associated with psychosocial stress. Specifically, we show that chronic stress induces a rapid activation and proliferation of microglia as well as macrophage infiltration in the mPFC, and these processes are spatially related to neuronal activation. Moreover, we report a significant association of microglial inflammatory responses with susceptibility or resilience to chronic stress. In addition, we find that exposure to chronic stress exacerbates phagocytosis of synaptic elements and deficits in neuronal plasticity. Importantly, by utilizing two different CSF1R inhibitors (the brain penetrant PLX5622 and the non-penetrant PLX73086) we highlight a crucial role for microglia (and secondarily macrophages) in catalyzing the pathological manifestations linked to psychosocial stress in the mPFC and the resulting behavioral deficits usually associated with depression.
Collapse
Affiliation(s)
- Alexandros G. Kokkosis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Miguel M. Madeira
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Zachary Hage
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Kimonas Valais
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Dimitris Koliatsis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Emran Resutov
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
14
|
Maguire JL, Mennerick S. Neurosteroids: mechanistic considerations and clinical prospects. Neuropsychopharmacology 2024; 49:73-82. [PMID: 37369775 PMCID: PMC10700537 DOI: 10.1038/s41386-023-01626-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Like other classes of treatments described in this issue's section, neuroactive steroids have been studied for decades but have risen as a new class of rapid-acting, durable antidepressants with a distinct mechanism of action from previous antidepressant treatments and from other compounds covered in this issue. Neuroactive steroids are natural derivatives of progesterone but are proving effective as exogenous treatments. The best understood mechanism is that of positive allosteric modulation of GABAA receptors, where subunit selectivity may promote their profile of action. Mechanistically, there is some reason to think that neuroactive steroids may separate themselves from liabilities of other GABA modulators, although research is ongoing. It is also possible that intracellular targets, including inflammatory pathways, may be relevant to beneficial actions. Strengths and opportunities for further development include exploiting non-GABAergic targets, structural analogs, enzymatic production of natural steroids, precursor loading, and novel formulations. The molecular mechanisms of behavioral effects are not fully understood, but study of brain network states involved in emotional processing demonstrate a robust influence on affective states not evident with at least some other GABAergic drugs including benzodiazepines. Ongoing studies with neuroactive steroids will further elucidate the brain and behavioral effects of these compounds as well as likely underpinnings of disease.
Collapse
Affiliation(s)
- Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Steven Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Pradhan AK, Neumüller T, Klug C, Fuchs S, Schlegel M, Ballmann M, Tartler KJ, Pianos A, Garcia MS, Liere P, Schumacher M, Kreuzer M, Rupprecht R, Rammes G. Chronic administration of XBD173 ameliorates cognitive deficits and neuropathology via 18 kDa translocator protein (TSPO) in a mouse model of Alzheimer's disease. Transl Psychiatry 2023; 13:332. [PMID: 37891168 PMCID: PMC10611770 DOI: 10.1038/s41398-023-02630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid peptide (Aβ). It affects cognition and leads to memory impairment. The mitochondrial translocator protein (TSPO) plays an essential role in maintaining mitochondrial homeostasis and has been implicated in several neuronal disorders or neuronal injuries. Ligands targeting the mitochondrial translocator protein (18 kDa), promote neurosteroidogenesis and may be neuroprotective. To study whether the TSPO ligand XBD173 may exert early neuroprotective effects in AD pathology we investigated the impact of XBD173 on amyloid toxicity and neuroplasticity in mouse models of AD. We show that XBD173 (emapunil), via neurosteroid-mediated signaling and delta subunit-containing GABAA receptors, prevents the neurotoxic effect of Aβ on long-term potentiation (CA1-LTP) in the hippocampus and prevents the loss of spines. Chronic but not acute administration of XBD173 ameliorates spatial learning deficits in transgenic AD mice with arctic mutation (ArcAβ). The heterozygous TSPO-knockout crossed with the transgenic arctic mutation model of AD mice (het TSPOKO X ArcAβ) treated with XBD173 does not show this improvement in spatial learning suggesting TSPO is needed for procognitive effects of XBD173. The neuroprotective profile of XBD173 in AD pathology is further supported by a reduction in plaques and soluble Aβ levels in the cortex, increased synthesis of neurosteroids, rescued spine density, reduction of complement protein C1q deposits, and reduced astrocytic phagocytosis of functional synapses both in the hippocampus and cortex. Our findings suggest that XBD173 may exert therapeutic effects via TSPO in a mouse model of AD.
Collapse
Affiliation(s)
- Arpit Kumar Pradhan
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany.
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Tatjana Neumüller
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Claudia Klug
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Severin Fuchs
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Martin Schlegel
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Markus Ballmann
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Katharina Johanna Tartler
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Antoine Pianos
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Maria Sanchez Garcia
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Matthias Kreuzer
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Gerhard Rammes
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
16
|
Rupprecht R, Pradhan AK, Kufner M, Brunner LM, Nothdurfter C, Wein S, Schwarzbach J, Puig X, Rupprecht C, Rammes G. Neurosteroids and translocator protein 18 kDa (TSPO) in depression: implications for synaptic plasticity, cognition, and treatment options. Eur Arch Psychiatry Clin Neurosci 2023; 273:1477-1487. [PMID: 36574032 DOI: 10.1007/s00406-022-01532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022]
Abstract
There is need for novel fast acting treatment options in affective disorders. 3α-reduced neurosteroids such as allopregnanolone are powerful positive allosteric modulators of GABAA receptors and target also extrasynaptic receptors. Their synthesis is mediated by the translocator protein 18 kDa (TSPO). TSPO ligands not only promote endogenous neurosteroidogenesis, but also exert a broad spectrum of functions involving modulation of mitochondrial activity and acting as anti-inflammatory and neuroregenerative agents. Besides affective symptoms, in depression cognitive impairment can be frequently observed, which may be ameliorated through targeting of extrasynaptic GABAA receptors either via TSPO ligands or exogenously administered 3α-reduced neurosteroids. Interestingly, recent findings indicate an enhanced activation of the complement system, e.g., enhanced expression of C1q, both in depression and dementia. It is of note that benzodiazepines have been shown to reduce long-term potentiation and to cause cognitive decline. Intriguingly, TSPO may be crucial in mediating the effects of benzodiazepines on synaptic pruning. Here, we discuss how benzodiazepines and TSPO may interfere with synaptic pruning. Moreover, we highlight recent developments of TSPO ligands and 3α-reduced neurosteroids as therapeutic agents. Etifoxine is the only clinically available TSPO ligand so far and has been studied in anxiety disorders. Regarding 3α-reduced neurosteroids, brexanolone, an intravenous formulation of allopregnanolone, has been approved for the treatment of postpartum depression and zuranolone, an orally available 3α-reduced neurosteroid, is currently being studied in major depressive disorder and postpartum depression. As such, 3α-reduced neurosteroids and TSPO ligands may constitute promising treatment approaches for affective disorders.
Collapse
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany.
| | - Arpit Kumar Pradhan
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| | - Marco Kufner
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Lisa Marie Brunner
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Simon Wein
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Xenia Puig
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| | - Christian Rupprecht
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| | - Gerhard Rammes
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| |
Collapse
|
17
|
Weidner L, Lorenz J, Quach S, Braun FK, Rothhammer-Hampl T, Ammer LM, Vollmann-Zwerenz A, Bartos LM, Dekorsy FJ, Holzgreve A, Kirchleitner SV, Thon N, Greve T, Ruf V, Herms J, Bader S, Milenkovic VM, von Baumgarten L, Menevse AN, Hussein A, Sax J, Wetzel CH, Rupprecht R, Proescholdt M, Schmidt NO, Beckhove P, Hau P, Tonn JC, Bartenstein P, Brendel M, Albert NL, Riemenschneider MJ. Translocator protein (18kDA) (TSPO) marks mesenchymal glioblastoma cell populations characterized by elevated numbers of tumor-associated macrophages. Acta Neuropathol Commun 2023; 11:147. [PMID: 37697350 PMCID: PMC10496331 DOI: 10.1186/s40478-023-01651-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.
Collapse
Affiliation(s)
- Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Frank K Braun
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Laura-Marie Ammer
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | | | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Niklas Thon
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Tobias Greve
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ayse N Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nils O Schmidt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter Hau
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
18
|
Luscher B, Maguire JL, Rudolph U, Sibille E. GABA A receptors as targets for treating affective and cognitive symptoms of depression. Trends Pharmacol Sci 2023; 44:586-600. [PMID: 37543478 PMCID: PMC10511219 DOI: 10.1016/j.tips.2023.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 08/07/2023]
Abstract
In the past 20 years, our understanding of the pathophysiology of depression has evolved from a focus on an imbalance of monoaminergic neurotransmitters to a multifactorial picture including an improved understanding of the role of glutamatergic excitatory and GABAergic inhibitory neurotransmission. FDA-approved treatments targeting the glutamatergic [esketamine for major depressive disorder (MDD)] and GABAergic (brexanolone for peripartum depression) systems have become available. This review focuses on the GABAA receptor (GABAAR) system as a target for novel antidepressants and discusses the mechanisms by which modulation of δ-containing GABAARs with neuroactive steroids (NASs) or of α5-containing GABAARs results in antidepressant or antidepressant-like actions and discusses clinical data on NASs. Moreover, a potential mechanism by which α5-GABAAR-positive allosteric modulators (PAMs) may improve cognitive deficits in depression is presented.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Psychiatry, Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of the Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Nutma E, Fancy N, Weinert M, Tsartsalis S, Marzin MC, Muirhead RCJ, Falk I, Breur M, de Bruin J, Hollaus D, Pieterman R, Anink J, Story D, Chandran S, Tang J, Trolese MC, Saito T, Saido TC, Wiltshire KH, Beltran-Lobo P, Phillips A, Antel J, Healy L, Dorion MF, Galloway DA, Benoit RY, Amossé Q, Ceyzériat K, Badina AM, Kövari E, Bendotti C, Aronica E, Radulescu CI, Wong JH, Barron AM, Smith AM, Barnes SJ, Hampton DW, van der Valk P, Jacobson S, Howell OW, Baker D, Kipp M, Kaddatz H, Tournier BB, Millet P, Matthews PM, Moore CS, Amor S, Owen DR. Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases. Nat Commun 2023; 14:5247. [PMID: 37640701 PMCID: PMC10462763 DOI: 10.1038/s41467-023-40937-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Nurun Fancy
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Maria Weinert
- Department of Brain Sciences, Imperial College London, London, UK
| | - Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Irene Falk
- Viral Immunology Section, NIH, Bethesda, MD, USA
- Flow and Imaging Cytometry Core Facility, NIH, Bethesda, MD, USA
| | - Marjolein Breur
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Joy de Bruin
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Robin Pieterman
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Jasper Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - David Story
- UK Dementia Research Institute at Edinburgh, Edinburgh, UK
| | | | - Jiabin Tang
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Maria C Trolese
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Takaomi C Saido
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | | | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra Phillips
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Jack Antel
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Luke Healy
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Marie-France Dorion
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Dylan A Galloway
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Rochelle Y Benoit
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Quentin Amossé
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Kelly Ceyzériat
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | | | - Enikö Kövari
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Caterina Bendotti
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Carola I Radulescu
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Amy M Smith
- UK Dementia Research Institute at Imperial College London, London, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Samuel J Barnes
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | | | - Paul van der Valk
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | | | - Owain W Howell
- Institute of Life Science (ILS), Swansea University Medical School, Swansea, UK
| | - David Baker
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany
| | | | - Philippe Millet
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Division of Adult Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Craig S Moore
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands.
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK.
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany.
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| |
Collapse
|
20
|
Matthews DB, Scaletty S, Trapp S, Schreiber A, Rossmann G, Imhoff B, Petersilka Q, Kastner A, Pauly J, Nixon K. Chronic intermittent ethanol exposure during adolescence produces sex- and age-dependent changes in anxiety and cognition without changes in microglia reactivity late in life. Front Behav Neurosci 2023; 17:1223883. [PMID: 37589035 PMCID: PMC10427154 DOI: 10.3389/fnbeh.2023.1223883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Binge-like ethanol exposure during adolescence has been shown to produce long lasting effects in animal models including anxiety-like behavior that can last into young adulthood and impairments in cognition that can last throughout most of the lifespan. However, little research has investigated if binge-like ethanol exposure during adolescence produces persistent anxiety-like behavior and concomitantly impairs cognition late in life. Furthermore, few studies have investigated such behavioral effects in both female and male rats over the lifespan. Finally, it is yet to be determined if binge-like ethanol exposure during adolescence alters microglia activation in relevant brain regions late in life. In the present study female and male adolescent rats were exposed to either 3.0 or 5.0 g/kg ethanol, or water control, in a chronic intermittent pattern before being tested in the elevated plus maze and open field task over the next ∼18 months. Animals were then trained in a spatial reference task via the Morris water maze before having their behavioral flexibility tested. Finally, brains were removed, sectioned and presumptive microglia activation determined using autoradiography for [3H]PK11195 binding. Males, but not females, displayed an anxiety-like phenotype initially following the chronic intermittent ethanol exposure paradigm which resolved in adulthood. Further, males but not females had altered spatial reference learning and impaired behavioral flexibility late in life. Conversely, [3H]PK11195 binding was significantly elevated in females compared to males late in life and the level of microglia activation interacted as a function of sex and brain regions, but there was no long-term outcome related to adolescent alcohol exposure. These data further confirm that binge-like ethanol exposure during adolescence produces alterations in behavior that can last throughout the lifespan. In addition, the data suggest that microglia activation late in life is not exacerbated by prior binge-like ethanol exposure during adolescence but the expression is sex- and brain region-dependent across the lifespan.
Collapse
Affiliation(s)
- Douglas B. Matthews
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Samantha Scaletty
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Sarah Trapp
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Areonna Schreiber
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Gillian Rossmann
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Bailey Imhoff
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Quinn Petersilka
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Abigail Kastner
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Jim Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
21
|
Riebel M, von Pappenheim B, Kanig C, Nothdurfter C, Wetter TC, Rupprecht R, Schwarzbach J. GABAergic Effects of Etifoxine and Alprazolam Assessed by Double Pulse TMS. PHARMACOPSYCHIATRY 2023. [PMID: 37220781 DOI: 10.1055/a-2078-4823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
INTRODUCTION There is a need for novel anxiolytics with improved side effect profiles compared to benzodiazepines. A promising candidate with alternative pharmacodynamics is the translocator protein ligand, etifoxine. METHODS To get further insight into its mechanisms of action and side effects compared to the benzodiazepine alprazolam, we performed a double-blind, placebo-controlled, repeated-measures study in 36 healthy male subjects. Participants were examined for trait anxiety and side effects and underwent repeated transcranial magnetic stimulation (TMS) assessments, including motor evoked potentials (MEP), short intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). RESULTS We observed attenuation of MEPs by alprazolam but not by etifoxine. SICI was not significantly affected by alprazolam or etifoxine. However, the response pattern indicated a lowered SICI threshold after the administration of etifoxine and alprazolam compared to the placebo. ICF and CSP were influenced by neither medication. Alprazolam led to higher sedation and subjective impairment of concentration compared to etifoxine. Individual anxiety trait scores did not affect TMS parameters. DISCUSSION This study indicated a favorable side effect profile of etifoxine in healthy volunteers. Moreover, it revealed differential GABA-related effects on neuromuscular function by means of TMS. The side effects and TMS profile of etifoxine are compatible with the involvement of neurosteroidogenesis and a predominant α3 subunit modulation compared to alprazolam.
Collapse
Affiliation(s)
- Marco Riebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | | | - Carolina Kanig
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | | | - Thomas C Wetter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| |
Collapse
|
22
|
Bader S, Würfel T, Jahner T, Nothdurfter C, Rupprecht R, Milenkovic VM, Wetzel CH. Impact of Translocator Protein 18 kDa (TSPO) Deficiency on Mitochondrial Function and the Inflammatory State of Human C20 Microglia Cells. Cells 2023; 12:cells12060954. [PMID: 36980295 PMCID: PMC10046935 DOI: 10.3390/cells12060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Microglia are the resident immune cells of the central nervous system. Upon stimulus presentation, microglia polarize from a resting to an activated state. Microglial translocator protein 18 kDa (TSPO) is considered a marker of inflammation. Here, we characterized the role of TSPO by investigating the impact of TSPO deficiency on human microglia. We used TSPO knockout (TSPO-/-) variants of the human C20 microglia cell line. We found a significant reduction in the TSPO-associated protein VDAC1 in TSPO-/- cells compared to control cells. Moreover, we assessed the impact of TSPO deficiency on calcium levels and the mitochondrial membrane potential. Cytosolic and mitochondrial calcium concentrations were increased in TSPO-/- cell lines, whereas the mitochondrial membrane potential tended to be lower. Assessment of the mitochondrial DNA copy number via RT-PCR revealed a decreased amount of mtDNA in the TSPO-/- cells when compared to controls. Moreover, the metabolic profiles of C20 cells were strongly dependent on the glycolytic pathway. However, TSPO depletion did not affect the cellular metabolic profile. Measurement of the mRNA expression levels of the pro-inflammatory mediators revealed an attenuated response to pro-inflammatory stimuli in TSPO-depleted cells, implying a role for the TSPO protein in the process of microglial polarization.
Collapse
Affiliation(s)
- Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Thea Würfel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Tatjana Jahner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
23
|
You MJ, Rim C, Bang M, Sung S, Kim HJ, Lee SH, Kwon MS. A molecular characterization and clinical relevance of microglia-like cells derived from patients with panic disorder. Transl Psychiatry 2023; 13:48. [PMID: 36750547 PMCID: PMC9905570 DOI: 10.1038/s41398-023-02342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Few studies report the microglia involvement in the pathogenesis of panic disorder (PD), although the crucial role of microglia in other neuropsychiatric diseases is being emphasized. In addition, there is no report to characterize the phenotypic and functional levels of PD patient-derived microglia to find their clinical relevance. Herein, we used a model to induce patient-derived microglia-like cells (iMGs) to clarify the molecular characteristics and function of PD-iMGs. We established iMGs from 17 PD patients and 16 healthy controls (non-psychiatric controls, HC). PD-iMGs showed increased T-cell death-associated gene-8 expression per the proposal of a previous in vivo study. In addition, we found that patient-derived iMGs showed reduced phagocytosis and increased TREM2 expression. We analyzed the phenotype of the PD-iMGs by RNA sequencing. The PD-iMGs clustered together distinct from HC-iMGs. Gene set enrichment analysis revealed the involvement of cholesterol biosynthesis and steroid metabolism in PD-iMGs. Regarding the cholesterol synthesis pathway, we discovered ACAT2 and DHCR7 as the most impacted genes related to a character of PD-iMGs compared to HC-iMGs. The ACAT2, a major cholesterol esterifier, was increased in PD-iMGs. Nevertheless, PD-iMGs did not show lipid droplet accumulation. Interestingly, ACAT2 expression was inversely correlated with the severity of depression and anxiety sensitivity to publicly observable anxiety reactions. We propose that microglia of PD patients have unique characteristics with dysregulation of cholesterol biosynthesis pathway and impaired phagocytosis, reflecting clinical phenotype.
Collapse
Affiliation(s)
- Min-Jung You
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Chan Rim
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Minji Bang
- grid.452398.10000 0004 0570 1076Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 13497 Republic of Korea
| | - Soyoung Sung
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Hui-Ju Kim
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, 13497, Republic of Korea.
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
24
|
Liere P, Liu GJ, Pianos A, Middleton RJ, Banati RB, Akwa Y. The Comprehensive Steroidome in Complete TSPO/PBR Knockout Mice under Basal Conditions. Int J Mol Sci 2023; 24:ijms24032474. [PMID: 36768796 PMCID: PMC9916858 DOI: 10.3390/ijms24032474] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The 18 kDa translocator protein (TSPO/PBR) is a multifunctional evolutionary highly conserved outer mitochondrial membrane protein. Decades of research has reported an obligatory role of TSPO/PBR in both mitochondrial cholesterol transport and, thus, steroid production. However, the strict dependency of steroidogenesis on TSPO/PBR has remained controversial. The aim of this study was to provide insight into the steroid profile in complete C57BL/6-Tspotm1GuWu(GuwiyangWurra)-knockout male mice (TSPO-KO) under basal conditions. The steroidome in the brain, adrenal glands, testes and plasma was measured by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). We found that steroids present in wild-type (WT) mice were also detected in TSPO-KO mice, including pregnenolone (PREG), progestogens, mineralo-glucocorticosteroids and androgens. The concentrations of PREG and most metabolites were similar between genotypes, except a significant decrease in the levels of the 5α-reduced metabolites of progesterone (PROG) in adrenal glands and plasma and of the 5α-reduced metabolites of corticosterone (B) in plasma in TSPO-KO compared to WT animals, suggesting other regulatory functions for the TSPO/PBR. The expression levels of the voltage-dependent anion-selective channel (VDAC-1), CYP11A1 and 5α-reductase were not significantly different between both groups. Thus, the complete deletion of the tspo gene in male mice does not impair de novo steroidogenesis in vivo.
Collapse
Affiliation(s)
- Philippe Liere
- Disease and Hormones of the Nervous System, U1195 Inserm-Université Paris Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, Medical Imaging Sciences, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Antoine Pianos
- Disease and Hormones of the Nervous System, U1195 Inserm-Université Paris Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
| | - Richard B. Banati
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, Medical Imaging Sciences, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Yvette Akwa
- Disease and Hormones of the Nervous System, U1195 Inserm-Université Paris Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
- Correspondence: ; Tel.: +33-(0)1-49591878
| |
Collapse
|
25
|
Kikutani K, Hosokawa K, Giga H, Ota K, Matsumata M, Zhu M, Takemoto H, Ji B, Ohshimo S, Shime N, Aizawa H. GENETIC DELETION OF TRANSLOCATOR PROTEIN EXACERBATES POST-SEPSIS SYNDROME WITH ACTIVATION OF THE C1Q PATHWAY IN SEPTIC MOUSE MODEL. Shock 2023; 59:82-90. [PMID: 36703279 DOI: 10.1097/shk.0000000000002030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABSTRACT Significant numbers of patients who survive sepsis exhibit psychiatric and cognitive impairments, termed post-sepsis syndrome. Understanding the underlying pathophysiology is essential to develop effective therapies. Translocator protein 18 kDa (TSPO) is a multifaceted mitochondrial protein implicated in inflammation, oxidative stress, and steroidogenesis in the central nervous system. Despite accumulated evidence demonstrating TSPO is a biomarker in psychiatric and neurodegenerative disorders, the role of this protein in post-sepsis syndrome remains elusive. The aim of this study was to investigate the role of TSPO in the long-term impairment of mouse behavior associated with psychiatric and cognitive impairments following sepsis induced by cecal ligation and puncture (CLP) surgery. Animals were divided into three groups: (i) wild type (WT) + sham, (ii) WT + CLP, and (iii) TSPO knock out + CLP. Survival rate and body weight change were assessed up to 17 days after surgeries. Then, we also assessed anxiety-like behavior, depression-like behavior, cognitive function, locomotor activity, and forelimb muscle strength in surviving mice by elevated plus maze, tail suspension test, y-maze, open field test, and grip strength test, respectively. Deletion of the TSPO gene led to high mortality and prolonged weight loss and exacerbated anxiety-like and depressive-like behavior with cognitive impairment 17 days after, but not before, CLP surgery. RNA-seq analysis of the hippocampus revealed the upregulation of genes (C1qb, C1qc, and Tyrobp) in C1q complement pathways correlated significantly with anxiety-like behavior that appeared long after CLP surgery. The expressions of these genes predicted other behavioral traits, including depressive-like behavior in the tail suspension test and grip power impairment, supporting the role of the C1q pathway in post-sepsis syndrome. Because the C1q pathway has recently attracted interest as a tag for pathological synaptic elimination, the current study suggests the C1q pathway is involved in the psychiatric and cognitive impairments observed in post-sepsis syndrome.
Collapse
Affiliation(s)
| | - Koji Hosokawa
- Department of Anesthesiology and Reanimatology, Faculty of Medicine Sciences, University of Fukui, Japan
| | | | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Miho Matsumata
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Meina Zhu
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | | | | | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| |
Collapse
|
26
|
Bartos LM, Kirchleitner SV, Blobner J, Wind K, Kunze LH, Holzgreve A, Gold L, Zatcepin A, Kolabas ZI, Ulukaya S, Weidner L, Quach S, Messerer D, Bartenstein P, Tonn JC, Riemenschneider MJ, Ziegler S, von Baumgarten L, Albert NL, Brendel M. 18 kDa translocator protein positron emission tomography facilitates early and robust tumor detection in the immunocompetent SB28 glioblastoma mouse model. Front Med (Lausanne) 2022; 9:992993. [PMID: 36325388 PMCID: PMC9621314 DOI: 10.3389/fmed.2022.992993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/02/2022] [Indexed: 10/29/2023] Open
Abstract
Introduction The 18 kDa translocator protein (TSPO) receives growing interest as a biomarker in glioblastoma. Mouse models can serve as an important tool for the investigation of biomarkers in glioblastoma, but several glioblastoma models indicated only low TSPO-PET signals in contrast to high TSPO-PET signals of human glioblastoma. Thus, we aimed to investigate TSPO-PET imaging in the syngeneic immunocompetent SB28 mouse model, which is thought to closely represent the tumor microenvironment (TME) of human glioblastoma. Methods Dynamic TSPO-PET/CT imaging was performed for 60 min after injection of 13.6 ± 4.2 MBq [18F]GE-180. Contrast enhanced CT (ceCT) was acquired prior to PET and served for assessment of tumor volumes and attenuation correction. SB28 and sham mice were imaged at an early (week-1; n = 6 SB28, n = 6 sham) and a late time-point (week-3; n = 8 SB28, n = 9 sham) after inoculation. Standard of truth ex vivo tumor volumes were obtained for SB28 mice at the late time-point. Tracer kinetics were analyzed for the lesion site and the carotid arteries to establish an image derived input function (IDIF). TSPO-PET and ceCT lesion volumes were compared with ex vivo volumes by calculation of root-mean-square-errors (RMSE). Volumes of distribution (VTmax/mean) in the lesion were calculated using carotid IDIF and standardized uptake values (SUVmax/mean) were obtained for a 40-60 min time frame. Results Higher uptake rate constants (K1) were observed for week-1 SB28 tumor lesions when compared to week-3 SB28 tumor lesions. Highest agreement between TSPO-PET lesion volumes and ex vivo tumor volumes was achieved with a 50% maximum threshold (RMSE-VT: 39.7%; RMSE-SUV: 34.4%), similar to the agreement of ceCT tumor volumes (RMSE: 30.1%). Lesions of SB28 mice had higher PET signal when compared to sham mice at week-1 (VTmax 6.6 ± 2.9 vs. 3.9 ± 0.8, p = 0.035; SUVmax 2.3 ± 0.5 vs. 1.2 ± 0.1, p < 0.001) and PET signals remained at a similar level at week-3 (VTmax 5.0 ± 1.6 vs. 2.7 ± 0.8, p = 0.029; SUVmax 1.9 ± 0.5 vs. 1.2 ± 0.2, p = 0.0012). VTmax correlated with SUVmax (R 2 = 0.532, p < 0.001). Conclusion TSPO-PET imaging of immunocompetent SB28 mice facilitates early detection of tumor signals over sham lesions. SB28 tumors mirror high TSPO-PET signals of human glioblastoma and could serve as a valuable translational model to study TSPO as an imaging biomarker.
Collapse
Affiliation(s)
- Laura M. Bartos
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Jens Blobner
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lea H. Kunze
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lukas Gold
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Zeynep Ilgin Kolabas
- Helmholtz Center, Institute for Tissue Engineering and Regenerative Medicine (iTERM), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, Ludwig- Maximilians University Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Selin Ulukaya
- Helmholtz Center, Institute for Tissue Engineering and Regenerative Medicine (iTERM), Munich, Germany
- Faculty of Biology, Master of Science Program in Molecular and Cellular Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Denise Messerer
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joerg C. Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| |
Collapse
|
27
|
Eggerstorfer B, Kim JH, Cumming P, Lanzenberger R, Gryglewski G. Meta-analysis of molecular imaging of translocator protein in major depression. Front Mol Neurosci 2022; 15:981442. [PMID: 36226319 PMCID: PMC9549359 DOI: 10.3389/fnmol.2022.981442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular neuroimaging studies provide mounting evidence that neuroinflammation plays a contributory role in the pathogenesis of major depressive disorder (MDD). This has been the focus of a number of positron emission tomography (PET) studies of the 17-kDa translocator protein (TSPO), which is expressed by microglia and serves as a marker of neuroinflammation. In this meta-analysis, we compiled and analyzed all available molecular imaging studies comparing cerebral TSPO binding in MDD patients with healthy controls. Our systematic literature search yielded eight PET studies encompassing 238 MDD patients and 164 healthy subjects. The meta-analysis revealed relatively increased TSPO binding in several cortical regions (anterior cingulate cortex: Hedges' g = 0.6, 95% CI: 0.36, 0.84; hippocampus: g = 0.54, 95% CI: 0.26, 0.81; insula: g = 0.43, 95% CI: 0.17, 0.69; prefrontal cortex: g = 0.36, 95% CI: 0.14, 0.59; temporal cortex: g = 0.39, 95% CI: -0.04, 0.81). While the high range of effect size in the temporal cortex might reflect group-differences in body mass index (BMI), exploratory analyses failed to reveal any relationship between elevated TSPO availability in the other four brain regions and depression severity, age, BMI, radioligand, or the binding endpoint used, or with treatment status at the time of scanning. Taken together, this meta-analysis indicates a widespread ∼18% increase of TSPO availability in the brain of MDD patients, with effect sizes comparable to those in earlier molecular imaging studies of serotonin transporter availability and monoamine oxidase A binding.
Collapse
Affiliation(s)
- Benjamin Eggerstorfer
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Jong-Hoon Kim
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Neuroscience Research Institute, GAIHST, Gachon University, Incheon, South Korea
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Wongso H. Recent progress on the development of fluorescent probes targeting the translocator protein 18 kDa (TSPO). Anal Biochem 2022; 655:114854. [PMID: 35963341 DOI: 10.1016/j.ab.2022.114854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/06/2022] [Indexed: 11/01/2022]
Abstract
The translocator protein 18 kDa (TSPO) was first identified in 1997, and has now become one of the appealing subcellular targets in medicinal chemistry and its related fields. TSPO involves in a variety of diseases, covering neurodegenerative diseases, psychiatric disorders, cancers, and so on. To date, various high-affinity TSPO ligands labelled with single-photon emission computed tomography (SPECT)/positron emission tomography (PET) radionuclides have been reported, with some third-generation radioligands advanced to clinical trials. On the other hand, only a few number of TSPO ligands have been labelled with fluorophores for disease diagnosis. It is noteworthy that the majority of the TSPO fluorescent probes synthesised to date are based on visible fluorophores, suggesting that their applications are limited to in vitro studies, such as in vitro imaging of cancer cells, post-mortem analysis, and tissue biopsies examinations. In this context, the potential application of TSPO ligands can be broadened for in vivo investigations of human diseases by labelling with near-infrared (NIR)-fluorophores or substituting visible fluorophores with NIR-fluorophores on the currently developed fluorescent probes. In this review article, recent progress on fluorescent probes targeting the TSPO are summarised, with an emphasis on development trend in recent years and application prospects in the future.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia.
| |
Collapse
|