1
|
Kielhold ML, Jacobs DS, Torrado-Pacheco A, Lebowitz JJ, Langdon AJ, Williams JT, Zweifel LS, Moghaddam B. Reductions of Grin2a in adolescent dopamine neurons confers aberrant salience and related psychosis phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620713. [PMID: 39554173 PMCID: PMC11565768 DOI: 10.1101/2024.10.28.620713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Psychosis is a hallmark of schizophrenia. It typically emerges in late adolescence and is associated with dopamine abnormalities and aberrant salience. Most genes associated with schizophrenia risk involve ubiquitous targets that may not explain delayed emergence of dopaminergic disruptions. This includes GRIN2A, the gene encoding the GluN2A subunit of the NMDA receptor. Both common and rare variants of GRIN2A are considered genetic risk factors for schizophrenia diagnosis. We find that Grin2a knockout in dopamine neurons during adolescence is sufficient to produce a behavioral phenotype that mirrors aspects of psychosis. These include disruptions in effort optimization, salience attribution, and ability to utilize feedback to guide behavior. We also find a selective effect of this manipulation on dopamine release during prediction error signaling. These data provide mechanistic insight into how variants of GRIN2A may lead to the latent presentation of aberrant salience and abnormalities in dopamine dynamics. This etiologically relevant model may aid future discovery of course altering treatments for schizophrenia.
Collapse
|
2
|
Choe E, Kim M, Choi S, Oh H, Jang M, Park S, Kwon JS. MRI textural plasticity in limbic gray matter associated with clinical response to electroconvulsive therapy for psychosis. Mol Psychiatry 2024:10.1038/s41380-024-02755-7. [PMID: 39327507 DOI: 10.1038/s41380-024-02755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Electroconvulsive therapy (ECT) is effective against treatment-resistant psychosis, but its mechanisms remain unclear. Conventional volumetry studies have revealed plasticity in limbic structures following ECT but with inconsistent clinical relevance, as they potentially overlook subtle histological alterations. Our study analyzed microstructural changes in limbic structures after ECT using MRI texture analysis and demonstrated a correlation with clinical response. 36 schizophrenia or schizoaffective patients treated with ECT and medication, 27 patients treated with medication only, and 70 healthy controls (HCs) were included in this study. Structural MRI data were acquired before and after ECT for the ECT group and at equivalent intervals for the medication-only group. The gray matter volume and MRI texture, calculated from the gray level size zone matrix (GLSZM), were extracted from limbic structures. After normalizing texture features to HC data, group-time interactions were estimated with repeated-measures mixed models. Repeated-measures correlations between clinical variables and texture were analyzed. Volumetric group-time interactions were observed in seven of fourteen limbic structures. Group-time interactions of the normalized GLSZM large area emphasis of the left hippocampus and the right amygdala reached statistical significance. Changes in these texture features were correlated with changes in psychotic symptoms in the ECT group but not in the medication-only group. These findings provide in vivo evidence that microstructural changes in key limbic structures, hypothetically reflected by MRI texture, are associated with clinical response to ECT for psychosis. These findings support the neuroplasticity hypothesis of ECT and highlight the hippocampus and amygdala as potential targets for neuromodulation in psychosis.
Collapse
Affiliation(s)
- Eugenie Choe
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Harin Oh
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Moonyoung Jang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunghyun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Hanyang University Hospital, Seoul, South Korea
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, South Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
3
|
Soleimani MF, Ayubi E, Khosronezhad S, Hasler G, Amiri MR, Beikpour F, Jalilian FA. Human endogenous retroviruses type W (HERV-) activation and schizophrenia: A meta-analysis. Schizophr Res 2024; 271:220-227. [PMID: 39053037 DOI: 10.1016/j.schres.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Human endogenous retroviruses (HERV) are the remnants of infections that occurred million years ago. They gradually integrated into the human genome, comprising 8 % of it. There are growing reports suggesting their potential role in various diseases, including schizophrenia. Schizophrenia, a serious psychiatric disorder, is caused by the interaction of genetic and environmental factors. In the present paper, we investigated studies focusing on the association between schizophrenia and HERV-W. METHODS We registered this study at PROSPERO (registration number: CRD42022301122). The entire steps of this study were based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. We searched PubMed, Scopus, Web of Science, and Google Scholar up to 1 August 2022. Heterogeneity was estimated through I2 statistics, and the association was measured using the first estimate and penalization methods. RESULTS Finally, 13 eligible studies were analyzed, including 698 cases and 728 controls. The overall odds ratio indicated a significant association in both the first estimate (OR = 9.34, 95 % CI = 4.92-17.75; P = 0.002) and penalization (OR = 7.38, 95 % CI = 4.15-13.10; P = 0.003) methods. In the subgroup analysis, among HERV-W fragments, the HERV-W envelope protein or RNA (OR = 11.41, 95 % CI: 5.67-22.97; P = 0.03) showed the strongest association with schizophrenia. CONCLUSION Our meta-analysis showed that HERV-W is significantly associated with schizophrenia. More studies are required to determine the pathophysiological mechanism and the diagnostic, prognostic, and therapeutic value of HERV-W in schizophrenia.
Collapse
Affiliation(s)
| | - Erfan Ayubi
- Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saman Khosronezhad
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gregor Hasler
- University of Fribourg, Center for Psychiatric Research, Switzerland
| | - Mohammad Reza Amiri
- Department of Medical Library and Information Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzad Beikpour
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Farid Azizi Jalilian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Taira M, Millard SJ, Verghese A, DiFazio LE, Hoang IB, Jia R, Sias A, Wikenheiser A, Sharpe MJ. Dopamine Release in the Nucleus Accumbens Core Encodes the General Excitatory Components of Learning. J Neurosci 2024; 44:e0120242024. [PMID: 38969504 PMCID: PMC11358529 DOI: 10.1523/jneurosci.0120-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Dopamine release in the nucleus accumbens core (NAcC) is generally considered to be a proxy for phasic firing of the ventral tegmental area dopamine (VTADA) neurons. Thus, dopamine release in NAcC is hypothesized to reflect a unitary role in reward prediction error signaling. However, recent studies reveal more diverse roles of dopamine neurons, which support an emerging idea that dopamine regulates learning differently in distinct circuits. To understand whether the NAcC might regulate a unique component of learning, we recorded dopamine release in NAcC while male rats performed a backward conditioning task where a reward is followed by a neutral cue. We used this task because we can delineate different components of learning, which include sensory-specific inhibitory and general excitatory components. Furthermore, we have shown that VTADA neurons are necessary for both the specific and general components of backward associations. Here, we found that dopamine release in NAcC increased to the reward across learning while reducing to the cue that followed as it became more expected. This mirrors the dopamine prediction error signal seen during forward conditioning and cannot be accounted for temporal-difference reinforcement learning. Subsequent tests allowed us to dissociate these learning components and revealed that dopamine release in NAcC reflects the general excitatory component of backward associations, but not their sensory-specific component. These results emphasize the importance of examining distinct functions of different dopamine projections in reinforcement learning.
Collapse
Affiliation(s)
- Masakazu Taira
- Department of Psychology, University of Sydney, Camperdown, New South Wales 2006, Australia
- Department of Psychology, University of California, Los Angeles 90095, California
| | - Samuel J Millard
- Department of Psychology, University of California, Los Angeles 90095, California
| | - Anna Verghese
- Department of Psychology, University of California, Los Angeles 90095, California
| | - Lauren E DiFazio
- Department of Psychology, University of California, Los Angeles 90095, California
| | - Ivy B Hoang
- Department of Psychology, University of California, Los Angeles 90095, California
| | - Ruiting Jia
- Department of Psychology, University of California, Los Angeles 90095, California
| | - Ana Sias
- Department of Psychology, University of California, Los Angeles 90095, California
| | - Andrew Wikenheiser
- Department of Psychology, University of California, Los Angeles 90095, California
| | - Melissa J Sharpe
- Department of Psychology, University of Sydney, Camperdown, New South Wales 2006, Australia
- Department of Psychology, University of California, Los Angeles 90095, California
| |
Collapse
|
5
|
Akgül Ö, Fide E, Özel F, Alptekin K, Bora E, Akdede BB, Yener G. Early and late contingent negative variation (CNV) reflect different aspects of deficits in schizophrenia. Eur J Neurosci 2024; 59:2875-2889. [PMID: 38658367 DOI: 10.1111/ejn.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Abnormal reward processing and psychomotor slowing are well-known in schizophrenia (SZ). As a slow frontocentral potential, contingent negative variation (CNV) is associated with anticipatory attention, motivation and motor planning. The present study aims to evaluate the early and late amplitude and latencies of CNV in patients with SZ compared to healthy controls during a reward processing task and to show its association with clinical symptoms. We recruited 21 patients with SZ and 22 healthy controls to compare early and late CNV amplitude and latency values during a Monetary Incentive Delay (MID) Task between groups. Patients' symptom severity, levels of negative symptoms and depressive symptoms were assessed. Clinical features of the patients were further examined for their relation with CNV components. In conclusion, we found decreased early CNV amplitudes in SZ during the reward condition. They also displayed diminished and shortened late CNV responses for incentive cues, specifically at the central location. Furthermore, early CNV amplitudes exhibited a significant correlation with positive symptoms. Both CNV latencies were linked with medication dosage and the behavioural outcomes of the MID task. We revealed that early and late CNV exhibit different functions in neurophysiology and correspond to various facets of the deficits observed in patients. Our findings also emphasized that slow cortical potentials are indicative of deficient motivational processes as well as impaired reaction preparation in SZ. To gain a deeper understanding of the cognitive and motor impairments associated with psychosis, future studies must compare the effects of CNV in the early and late phases.
Collapse
Affiliation(s)
- Özge Akgül
- Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
- Faculty of Arts and Sciences, Department of Psychology, Izmir Democracy University, Izmir, Turkey
| | - Ezgi Fide
- Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
- Faculty of Health, Department of Psychology, York University, Toronto, Canada
| | - Fatih Özel
- Faculty of Medicine, Department of Psychiatry, Dokuz Eylül University, Izmir, Turkey
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Köksal Alptekin
- Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
- Faculty of Medicine, Department of Psychiatry, Dokuz Eylül University, Izmir, Turkey
| | - Emre Bora
- Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
- Faculty of Medicine, Department of Psychiatry, Dokuz Eylül University, Izmir, Turkey
| | - Berna Binnur Akdede
- Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
- Faculty of Medicine, Department of Psychiatry, Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
- Faculty of Medicine, Department of Neurology, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
6
|
Wang X, Yan C, Yang PY, Xia Z, Cai XL, Wang Y, Kwok SC, Chan RCK. Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data. Psychiatry Clin Neurosci 2024; 78:157-168. [PMID: 38013639 DOI: 10.1111/pcn.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
The emergence of machine learning (ML) techniques has opened up new avenues for identifying biomarkers associated with schizophrenia (SCZ) using task-related fMRI (t-fMRI) designs. To evaluate the effectiveness of this approach, we conducted a comprehensive meta-analysis of 31 t-fMRI studies using a bivariate model. Our findings revealed a high overall sensitivity of 0.83 and specificity of 0.82 for t-fMRI studies. Notably, neuropsychological domains modulated the classification performance, with selective attention demonstrating a significantly higher specificity than working memory (β = 0.98, z = 2.11, P = 0.04). Studies involving older, chronic patients with SCZ reported higher sensitivity (P <0.015) and specificity (P <0.001) than those involving younger, first-episode patients or high-risk individuals for psychosis. Additionally, we found that the severity of negative symptoms was positively associated with the specificity of the classification model (β = 7.19, z = 2.20, P = 0.03). Taken together, these results support the potential of using task-based fMRI data in combination with machine learning techniques to identify biomarkers related to symptom outcomes in SCZ, providing a promising avenue for improving diagnostic accuracy and treatment efficacy. Future attempts to deploy ML classification should consider the factors of algorithm choice, data quality and quantity, as well as issues related to generalization.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| | | | - Zheng Xia
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xin-Lu Cai
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Sze Chai Kwok
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan University, Kunshan, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Charaf K, Agoub M, Boussaoud D. Associative learning and facial expression recognition in schizophrenic patients: Effects of social presence. Schizophr Res Cogn 2024; 35:100295. [PMID: 38025824 PMCID: PMC10663675 DOI: 10.1016/j.scog.2023.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Schizophrenia (SCZ) is a psychiatric disorder that alters both general and social cognition. However, the exact mechanisms that are altered remain to be elucidated. In this study, we investigated associative learning (AL) and facial expression recognition (FER) in the same patients, using emotional expressions and abstract images. Our main aim was to investigate how these cognitive abilities are affected by SCZ and to assess the role of mere social presence, a factor that has not been considered before. The study compared the behavioral performance of 60 treated outpatients with SCZ and 103 demographically matched healthy volunteers. In the AL task, participants had to associate abstract images or facial expressions with key presses, guided by feedback on each trial. In the FER task, they had to report whether two successively presented facial expressions were the same or different. All participants performed the two tasks under two social context conditions: alone or in the presence of a passive but attentive audience. The results showed a severe learning impairment in patients compared to controls, with a slight advantage for facial expressions compared to abstract images, and a gender-dependent effect of social presence. In contrast, facial expression recognition was partially spared in patients and facilitated by social presence. We conclude that cognitive abilities are impaired in patients with SCZ, but their investigation needs to take into account the social context in which they are assessed.
Collapse
Affiliation(s)
- Khansa Charaf
- Laboratoire de Neurosciences Cliniques, Faculté de Médecine, Université Hassan II, Casablanca, Morocco
| | - Mohamed Agoub
- Laboratoire de Neurosciences Cliniques, Faculté de Médecine, Université Hassan II, Casablanca, Morocco
| | - Driss Boussaoud
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
8
|
Diao M, Demchenko I, Asare G, Chen Y, Debruille JB. Quantifying the effects of practicing a semantic task according to subclinical schizotypy. Sci Rep 2024; 14:2900. [PMID: 38316943 PMCID: PMC10844607 DOI: 10.1038/s41598-024-53468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The learning ability of individuals within the schizophrenia spectrum is crucial for their psychosocial rehabilitation. When selecting a treatment, it is thus essential to consider the impact of medications on practice effects, an important type of learning ability. To achieve this end goal, a pre-treatment test has to be developed and tested in healthy participants first. This is the aim of the current work, which takes advantage of the schizotypal traits present in these participants to preliminary assess the test's validity for use among patients. In this study, 47 healthy participants completed the Schizotypal Personality Questionnaire (SPQ) and performed a semantic categorization task twice, with a 1.5-hour gap between sessions. Practice was found to reduce reaction times (RTs) in both low- and high-SPQ scorers. Additionally, practice decreased the amplitudes of the N400 event-related brain potentials elicited by semantically matching words in low SPQ scorers only, which shows the sensitivity of the task to schizotypy. Across the two sessions, both RTs and N400 amplitudes had good test-retest reliability. This task could thus be a valuable tool. Ongoing studies are currently evaluating the impact of fully deceptive placebos and of real antipsychotic medications on these practice effects. This round of research should subsequently assist psychiatrists in making informed decisions about selecting the most suitable medication for the psychosocial rehabilitation of a patient.
Collapse
Affiliation(s)
- Mingyi Diao
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Neurosciences, McGill University, Montreal, QC, Canada
| | - Ilya Demchenko
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Neurosciences, McGill University, Montreal, QC, Canada
| | - Gifty Asare
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Yelin Chen
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - J Bruno Debruille
- Douglas Mental Health University Institute, Montreal, QC, Canada.
- Department of Neurosciences, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Ricci V, Di Muzio I, Ceci F, Di Carlo F, Mancusi G, Piro T, Paggi A, Pettorruso M, Vellante F, De Berardis D, Martinotti G, Maina G. Aberrant salience in cannabis-induced psychosis: a comparative study. Front Psychiatry 2024; 14:1343884. [PMID: 38260781 PMCID: PMC10801803 DOI: 10.3389/fpsyt.2023.1343884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Background Natural Cannabis (NC) and Synthetic Cannabinoids (SCs) use can increase the risk and exacerbate the course of psychotic disorders. These could be influenced by the Aberrant Salience (AS) construct. It refers to an excess of attribution of meaning to stimuli that are otherwise regarded as neutral, thereby transform them into adverse, dangerous, or mysterious entities. This leads the patient to engage in aberrant and consequently incorrect interpretative efforts concerning the normal perception of reality and its relationship with our analytical abilities. AS appears to play a significant role in the onset and perpetuation of psychotic disorders. The internal conflict arising from aberrant attributions of significance leads to delusional thoughts, ultimately culminating in the establishment of a self-sustaining psychosis. Aims To examine the differences between psychoses course not associated with cannabis use and those associated with NC-use and SCs-use, in terms of psychotic and dissociative symptoms, AS, global functioning and suicidal ideation. Methods A sample of 62 patients with First Episode Psychosis (FEP) was divided into 3 groups: non cannabis users (non-users, N = 20); NC-users or rather Delta-9-tetrahydrocannabinol (THC) users (THC-users, N = 21); SCs-users, commonly referred to as SPICE-users (SPICE-users, N = 20). Each group underwent assessments at the onset of psychotic symptoms, as well as at the 3 months and 6 months marks, utilizing a range of psychopathological scales. These included the Positive and Negative Syndrome Scale (PANSS) for investigating psychotic symptoms, the Global Assessment of Functioning (GAF) scale for assessing overall functioning, the Dissociative Experiences Scale (DES-II) for measuring dissociative symptoms, the Scale for Suicide Ideation (SSI) for evaluating suicidal ideation and the Aberrant Salience Inventory (ASI) scale for gauging AS. Results SPICE-users showed more severe and persistent positive symptoms, while negative symptoms were mostly represented among non-users. Non-users showed better recovery than SPICE-users in global functioning. All groups showed a decrease in both ASI scores and subscale scores. SPICE-users exhibited higher global AS scores and less improvement in this aspect compared to other groups. Conclusion This study may help understanding the role of AS in both non-substance-related and substance-induced psychosis. This knowledge may lead clinician to a better diagnosis and identify patient-tailored psychopharmacological treatment.
Collapse
Affiliation(s)
- Valerio Ricci
- Department of Neuroscience, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Ilenia Di Muzio
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - Franca Ceci
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - Francesco Di Carlo
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - Gianluca Mancusi
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - Tommaso Piro
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - Andrea Paggi
- Department of Neuroscience, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Mauro Pettorruso
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio Chieti-Pescara, Chieti, Italy
- Department of Mental Health, ASL Lanciano-Vasto-Chieti, Chieti, Italy
| | - Federica Vellante
- Department of Mental Health, ASL Lanciano-Vasto-Chieti, Chieti, Italy
| | - Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital “G. Mazzini”, Teramo, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio Chieti-Pescara, Chieti, Italy
- Department of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Giuseppe Maina
- Department of Neuroscience, San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
10
|
Sharpe MJ. The cognitive (lateral) hypothalamus. Trends Cogn Sci 2024; 28:18-29. [PMID: 37758590 PMCID: PMC10841673 DOI: 10.1016/j.tics.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Despite the physiological complexity of the hypothalamus, its role is typically restricted to initiation or cessation of innate behaviors. For example, theories of lateral hypothalamus argue that it is a switch to turn feeding 'on' and 'off' as dictated by higher-order structures that render when feeding is appropriate. However, recent data demonstrate that the lateral hypothalamus is critical for learning about food-related cues. Furthermore, the lateral hypothalamus opposes learning about information that is neutral or distal to food. This reveals the lateral hypothalamus as a unique arbitrator of learning capable of shifting behavior toward or away from important events. This has relevance for disorders characterized by changes in this balance, including addiction and schizophrenia. Generally, this suggests that hypothalamic function is more complex than increasing or decreasing innate behaviors.
Collapse
Affiliation(s)
- Melissa J Sharpe
- Department of Psychology, University of Sydney, Camperdown, NSW 2006, Australia; Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Cooper C, Meso AI. Cognitive-perceptual traits associated with autism and schizotypy influence use of physics during predictive visual tracking. Eur J Neurosci 2023; 58:4236-4254. [PMID: 37850610 DOI: 10.1111/ejn.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Schizophrenia and autism spectrum disorder (ASD) can disrupt cognition and consequently behaviour. Traits of ASD and the subclinical manifestation of schizophrenia called schizotypy have been studied in healthy populations with overlap found in trait profiles linking ASD social deficits to negative schizotypy and ASD attention to detail to positive schizotypy. Here, we probed the relationship between subtrait profiles, cognition and behaviour, using a predictive tracking task to measure individuals' eye movements under three gravity conditions. A total of 48 healthy participants tracked an on-screen projected ball under familiar gravity, inverted upward acceleration (against gravity) and horizontal gravity control conditions while eye movements were recorded and dynamic performance quantified. Participants completed ASD and schizotypy inventories generating highly correlated scores, r = 0.73. All tracked best under the gravity condition, producing anticipatory downward responses from stimulus onset which were delayed under upward inverted gravity. Tracking performance was not associated with overall ASD or schizotypy trait levels. Combining measures using principal components analysis (PCA), we decomposed the inventories into subtraits unveiling interesting patterns. Positive schizotypy was associated with ASD dimensions of rigidity, odd behaviour and face processing, which all linked to anticipatory tracking responses under inverted gravity. In contrast, negative schizotypy was associated with ASD dimensions of social interactions and rigidity and to early stimulus-driven tracking under gravity. There was also substantial nonspecific overlap between ASD and schizotypy dissociated from tracking. Our work links positive-odd traits with anticipatory tracking when physics rules are violated and negative-social traits with exploitation of physics laws of motion.
Collapse
Affiliation(s)
- Chloe Cooper
- Acute Inpatient Psychology, Dorset Healthcare University NHS Foundation Trust, Poole, UK
- Psychology and Interdisciplinary Neuroscience Group, Bournemouth University, Poole, UK
| | - Andrew Isaac Meso
- Psychology and Interdisciplinary Neuroscience Group, Bournemouth University, Poole, UK
- Neuroimaging Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
12
|
Kanakaraj L, Nayok SB, Bose A, Pathak H, Bagali KB, Sreeraj VS, Shivakumar V, Venkatasubramanian G. Extended accelerated tDCS and correction of prediction error signalling in Schizophrenia with atypical hallucinations: A case report. Asian J Psychiatr 2023; 88:103730. [PMID: 37625328 PMCID: PMC7616979 DOI: 10.1016/j.ajp.2023.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Affiliation(s)
- Logesh Kanakaraj
- Department of Psychiatry, National Institute of Mental Health And Neuro Sciences, India
| | - Swarna Buddha Nayok
- Department of Psychiatry, National Institute of Mental Health And Neuro Sciences, India; Department of Clinical Neurosciences, National Institute of Mental Health And Neuro Sciences, India
| | - Anushree Bose
- Department of Psychiatry, National Institute of Mental Health And Neuro Sciences, India.
| | - Harsh Pathak
- Department of Psychiatry, National Institute of Mental Health And Neuro Sciences, India
| | | | - Vanteemar S Sreeraj
- Department of Psychiatry, National Institute of Mental Health And Neuro Sciences, India
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health And Neuro Sciences, India
| | | |
Collapse
|
13
|
Vinnakota C, Hudson MR, Jones NC, Sundram S, Hill RA. Potential Roles for the GluN2D NMDA Receptor Subunit in Schizophrenia. Int J Mol Sci 2023; 24:11835. [PMID: 37511595 PMCID: PMC10380280 DOI: 10.3390/ijms241411835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
14
|
Chen EYH, Wong SMY, Tang EYH, Lei LKS, Suen YN, Hui CLM. Spurious Autobiographical Memory of Psychosis: A Mechanistic Hypothesis for the Resolution, Persistence, and Recurrence of Positive Symptoms in Psychotic Disorders. Brain Sci 2023; 13:1069. [PMID: 37509001 PMCID: PMC10376952 DOI: 10.3390/brainsci13071069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Psychotic disorders are complex disorders with multiple etiologies. While increased dopamine synthesis capacity has been proposed to underlie psychotic episodes, dopamine-independent processes are also involved (less responsive to dopamine receptor-blocking medications). The underlying mechanism(s) of the reduction in antipsychotic responsiveness over time, especially after repeated relapses, remain unclear. Despite the consistent evidence of dopamine overactivity and hippocampal volume loss in schizophrenia, few accounts have been provided based on the interactive effect of dopamine on hippocampal synapse plasticity mediating autobiographical memory processes. The present hypothesis builds upon previous works showing the potential effects of dopamine overactivity on hippocampal-mediated neuroplasticity underlying autobiographical memory, alongside known patterns of autobiographical memory dysfunction in psychosis. We propose that spurious autobiographical memory of psychosis (SAMP) produced during active psychosis may be a key mechanism mediating relapses and treatment non-responsiveness. In a hyperdopaminergic state, SAMP is expected to be generated at an increased rate during active psychosis. Similar to other memories, it will undergo assimilation, accommodation, and extinction processes. However, if SAMP fails to integrate with existing memory, a discontinuity in autobiographical memory may result. Inadequate exposure to normalizing experiences and hyposalience due to overmedication or negative symptoms may also impede the resolution of SAMP. Residual SAMP is hypothesized to increase the propensity for relapse and treatment non-responsiveness. Based on recent findings on the role of dopamine in facilitating hippocampal synapse plasticity and autobiographical memory formation, the SAMP hypothesis is consistent with clinical observations of DUP effects, including the repetition of contents in psychotic relapses as well as the emergence of treatment non-responsiveness after repeated relapses. Clinical implications of the hypothesis highlight the importance of minimizing active psychosis, integrating psychosis memory, avoiding over-medication, and fostering normalizing experiences.
Collapse
Affiliation(s)
- Eric Y H Chen
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Stephanie M Y Wong
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eric Y H Tang
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lauren K S Lei
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi-Nam Suen
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christy L M Hui
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Speers LJ, Bilkey DK. Maladaptive explore/exploit trade-offs in schizophrenia. Trends Neurosci 2023; 46:341-354. [PMID: 36878821 DOI: 10.1016/j.tins.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
Schizophrenia is a complex disorder that remains poorly understood, particularly at the systems level. In this opinion article we argue that the explore/exploit trade-off concept provides a holistic and ecologically valid framework to resolve some of the apparent paradoxes that have emerged within schizophrenia research. We review recent evidence suggesting that fundamental explore/exploit behaviors may be maladaptive in schizophrenia during physical, visual, and cognitive foraging. We also describe how theories from the broader optimal foraging literature, such as the marginal value theorem (MVT), could provide valuable insight into how aberrant processing of reward, context, and cost/effort evaluations interact to produce maladaptive responses.
Collapse
Affiliation(s)
- Lucinda J Speers
- Department of Psychology, University of Otago, Dunedin 9016, New Zealand
| | - David K Bilkey
- Department of Psychology, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
16
|
Brandl F, Knolle F, Avram M, Leucht C, Yakushev I, Priller J, Leucht S, Ziegler S, Wunderlich K, Sorg C. Negative symptoms, striatal dopamine and model-free reward decision-making in schizophrenia. Brain 2023; 146:767-777. [PMID: 35875972 DOI: 10.1093/brain/awac268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Negative symptoms, such as lack of motivation or social withdrawal, are highly prevalent and debilitating in patients with schizophrenia. Underlying mechanisms of negative symptoms are incompletely understood, thereby preventing the development of targeted treatments. We hypothesized that in patients with schizophrenia during psychotic remission, impaired influences of both model-based and model-free reward predictions on decision-making ('reward prediction influence', RPI) underlie negative symptoms. We focused on psychotic remission, because psychotic symptoms might confound reward-based decision-making. Moreover, we hypothesized that impaired model-based/model-free RPIs depend on alterations of both associative striatum dopamine synthesis and storage (DSS) and executive functioning. Both factors influence RPI in healthy subjects and are typically impaired in schizophrenia. Twenty-five patients with schizophrenia with pronounced negative symptoms during psychotic remission and 24 healthy controls were included in the study. Negative symptom severity was measured by the Positive and Negative Syndrome Scale negative subscale, model-based/model-free RPI by the two-stage decision task, associative striatum DSS by 18F-DOPA positron emission tomography and executive functioning by the symbol coding task. Model-free RPI was selectively reduced in patients and associated with negative symptom severity as well as with reduced associative striatum DSS (in patients only) and executive functions (both in patients and controls). In contrast, model-based RPI was not altered in patients. Results provide evidence for impaired model-free reward prediction influence as a mechanism for negative symptoms in schizophrenia as well as for reduced associative striatum dopamine and executive dysfunction as relevant factors. Data suggest potential treatment targets for patients with schizophrenia and pronounced negative symptoms.
Collapse
Affiliation(s)
- Felix Brandl
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Franziska Knolle
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Department of Psychiatry, University of Cambridge, Cambridge CB20SZ, UK
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Claudia Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Neuropsychiatry, Charité-Universitätsmedizin Berlin, and DZNE, Berlin, 10117, Germany.,UK DRI at University of Edinburgh, Edinburgh EH16 4SB, UK.,IoPPN, King's College London, London SE5 8AF, UK
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Department of Psychosis studies, King's College London, London, UK
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - Klaus Wunderlich
- Department of Psychology, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - Christian Sorg
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| |
Collapse
|
17
|
Griffiths O, Jack BN, Pearson D, Elijah R, Mifsud N, Han N, Libesman S, Rita Barreiros A, Turnbull L, Balzan R, Le Pelley M, Harris A, Whitford TJ. Disrupted auditory N1, theta power and coherence suppression to willed speech in people with schizophrenia. Neuroimage Clin 2023; 37:103290. [PMID: 36535137 PMCID: PMC9792888 DOI: 10.1016/j.nicl.2022.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The phenomenon of sensory self-suppression - also known as sensory attenuation - occurs when a person generates a perceptible stimulus (such as a sound) by performing an action (such as speaking). The sensorimotor control system is thought to actively predict and then suppress the vocal sound in the course of speaking, resulting in lowered cortical responsiveness when speaking than when passively listening to an identical sound. It has been hypothesized that auditory hallucinations in schizophrenia result from a reduction in self-suppression due to a disruption of predictive mechanisms required to anticipate and suppress a specific, self-generated sound. It has further been hypothesized that this suppression is evident primarily in theta band activity. Fifty-one people, half of whom had a diagnosis of schizophrenia, were asked to repeatedly utter a single syllable, which was played back to them concurrently over headphones while EEG was continuously recorded. In other conditions, recordings of the same spoken syllables were played back to participants while they passively listened, or were played back with their onsets preceded by a visual cue. All participants experienced these conditions with their voice artificially shifted in pitch and also with their unaltered voice. Suppression was measured using event-related potentials (N1 component), theta phase coherence and power. We found that suppression was generally reduced on all metrics in the patient sample, and when voice alteration was applied. We additionally observed reduced theta coherence and power in the patient sample across all conditions. Visual cueing affected theta coherence only. In aggregate, the results suggest that sensory self-suppression of theta power and coherence is disrupted in schizophrenia.
Collapse
Affiliation(s)
- Oren Griffiths
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia; Flinders Institute for Mental Health and Wellbeing, Adelaide, Australia.
| | - Bradley N Jack
- Research School of Psychology, Australian National University, Canberra, Australia
| | | | - Ruth Elijah
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Nathan Mifsud
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Nathan Han
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Sol Libesman
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Ana Rita Barreiros
- Specialty of Psychiatry, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, Australia; Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Luke Turnbull
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia
| | - Ryan Balzan
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia; Flinders Institute for Mental Health and Wellbeing, Adelaide, Australia
| | | | - Anthony Harris
- Specialty of Psychiatry, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, Australia; Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Thomas J Whitford
- Specialty of Psychiatry, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, Australia
| |
Collapse
|
18
|
Oliveras I, Cañete T, Sampedro-Viana D, Río-Álamos C, Tobeña A, Corda MG, Giorgi O, Fernández-Teruel A. Neurobehavioral Profiles of Six Genetically-based Rat Models of Schizophrenia- related Symptoms. Curr Neuropharmacol 2023; 21:1934-1952. [PMID: 36809938 PMCID: PMC10514524 DOI: 10.2174/1570159x21666230221093644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/24/2023] Open
Abstract
Schizophrenia is a chronic and severe mental disorder with high heterogeneity in its symptoms clusters. The effectiveness of drug treatments for the disorder is far from satisfactory. It is widely accepted that research with valid animal models is essential if we aim at understanding its genetic/ neurobiological mechanisms and finding more effective treatments. The present article presents an overview of six genetically-based (selectively-bred) rat models/strains, which exhibit neurobehavioral schizophrenia-relevant features, i.e., the Apomorphine-susceptible (APO-SUS) rats, the Low-prepulse inhibition rats, the Brattleboro (BRAT) rats, the Spontaneously Hypertensive rats (SHR), the Wisket rats and the Roman High-Avoidance (RHA) rats. Strikingly, all the strains display impairments in prepulse inhibition of the startle response (PPI), which remarkably, in most cases are associated with novelty-induced hyperlocomotion, deficits of social behavior, impairment of latent inhibition and cognitive flexibility, or signs of impaired prefrontal cortex (PFC) function. However, only three of the strains share PPI deficits and dopaminergic (DAergic) psychostimulant-induced hyperlocomotion (together with prefrontal cortex dysfunction in two models, the APO-SUS and RHA), which points out that alterations of the mesolimbic DAergic circuit are a schizophrenia-linked trait that not all models reproduce, but it characterizes some strains that can be valid models of schizophrenia-relevant features and drug-addiction vulnerability (and thus, dual diagnosis). We conclude by putting the research based on these genetically-selected rat models in the context of the Research Domain Criteria (RDoC) framework, suggesting that RDoC-oriented research programs using selectively-bred strains might help to accelerate progress in the various aspects of the schizophrenia-related research agenda.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
19
|
Salminen I, Read S, Crespi B. Do the diverse phenotypes of Prader-Willi syndrome reflect extremes of covariation in typical populations? Front Genet 2022; 13:1041943. [PMID: 36506301 PMCID: PMC9731222 DOI: 10.3389/fgene.2022.1041943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The phenotypes of human imprinted neurogenetic disorders can be hypothesized as extreme alterations of typical human phenotypes. The imprinted neurogenetic disorder Prader-Willi syndrome (PWS) features covarying phenotypes that centrally involve altered social behaviors, attachment, mood, circadian rhythms, and eating habits, that can be traced to altered functioning of the hypothalamus. Here, we conducted analyses to investigate the extent to which the behavioral variation shown in typical human populations for a set of PWAS-associated traits including autism spectrum cognition, schizotypal cognition, mood, eating, and sleeping phenotypes shows covariability that recapitulates the covariation observed in individuals with PWS. To this end, we collected data from 296 typical individuals for this set of phenotypes, and showed, using principal components analysis, evidence of a major axis reflecting key covarying PWS traits. We also reviewed the literature regarding neurogenetic syndromes that overlap in their affected traits with PWS, to determine their prevalence and properties. These findings demonstrate that a notable suite of syndromes shows phenotypic overlap with PWS, implicating a large set of imprinted and non-imprinted genes, some of which interact, in the phenotypes of this disorder. Considered together, these findings link variation in and among neurogenetic disorders with variation in typical populations, especially with regard to pleiotropic effects mediated by the hypothalamus. This work also implicates effects of imprinted gene variation on cognition and behavior in typical human populations.
Collapse
|
20
|
Dourron HM, Strauss C, Hendricks PS. Self-Entropic Broadening Theory: Toward a New Understanding of Self and Behavior Change Informed by Psychedelics and Psychosis. Pharmacol Rev 2022; 74:982-1027. [DOI: 10.1124/pharmrev.121.000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
|
21
|
Canonica T, Zalachoras I. Motivational disturbances in rodent models of neuropsychiatric disorders. Front Behav Neurosci 2022; 16:940672. [PMID: 36051635 PMCID: PMC9426724 DOI: 10.3389/fnbeh.2022.940672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Motivated behavior is integral to the survival of individuals, continuously directing actions toward rewards or away from punishments. The orchestration of motivated behavior depends on interactions among different brain circuits, primarily within the dopaminergic system, that subserve the analysis of factors such as the effort necessary for obtaining the reward and the desirability of the reward. Impairments in motivated behavior accompany a wide range of neuropsychiatric disorders, decreasing the patients’ quality of life. Despite its importance, motivation is often overlooked as a parameter in neuropsychiatric disorders. Here, we review motivational impairments in rodent models of schizophrenia, depression, and Parkinson’s disease, focusing on studies investigating effort-related behavior in operant conditioning tasks and on pharmacological interventions targeting the dopaminergic system. Similar motivational disturbances accompany these conditions, suggesting that treatments aimed at ameliorating motivation levels may be beneficial for various neuropsychiatric disorders.
Collapse
|
22
|
Frankle L. Entropy, Amnesia, and Abnormal Déjà Experiences. Front Psychol 2022; 13:794683. [PMID: 35967717 PMCID: PMC9364811 DOI: 10.3389/fpsyg.2022.794683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Previous research has contrasted fleeting erroneous experiences of familiarity with equally convincing, and often more stubborn erroneous experiences of remembering. While a subset of the former category may present as nonpathological “déjà vu,” the latter, termed “déjà vécu” can categorize a delusion-like confabulatory phenomenon first described in elderly dementia patients. Leading explanations for this experience include the dual process view, in which erroneous familiarity and erroneous recollection are elicited by inappropriate activation of the parahippocampal cortex and the hippocampus, respectively, and the more popular encoding-as-retrieval explanation in which normal memory encoding processes are falsely flagged and interpreted as memory retrieval. This paper presents a novel understanding of this recollective confabulation that builds on the encoding-as-retrieval hypothesis but more adequately accounts for the co-occurrence of persistent déjà vécu with both perceptual novelty and memory impairment, the latter of which occurs not only in progressive dementia but also in transient epileptic amnesia (TEA) and psychosis. It makes use of the growing interdisciplinary understanding of the fluidity of time and posits that the functioning of memory and the perception of novelty, long known to influence the subjective experience of time, may have a more fundamental effect on the flow of time.
Collapse
|
23
|
Seitz BM, Hoang IB, DiFazio LE, Blaisdell AP, Sharpe MJ. Dopamine errors drive excitatory and inhibitory components of backward conditioning in an outcome-specific manner. Curr Biol 2022; 32:3210-3218.e3. [PMID: 35752165 DOI: 10.1016/j.cub.2022.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023]
Abstract
For over two decades, phasic activity in midbrain dopamine neurons was considered synonymous with the prediction error in temporal-difference reinforcement learning.1-4 Central to this proposal is the notion that reward-predictive stimuli become endowed with the scalar value of predicted rewards. When these cues are subsequently encountered, their predictive value is compared to the value of the actual reward received, allowing for the calculation of prediction errors.5,6 Phasic firing of dopamine neurons was proposed to reflect this computation,1,2 facilitating the backpropagation of value from the predicted reward to the reward-predictive stimulus, thus reducing future prediction errors. There are two critical assumptions of this proposal: (1) that dopamine errors can only facilitate learning about scalar value and not more complex features of predicted rewards, and (2) that the dopamine signal can only be involved in anticipatory cue-reward learning in which cues or actions precede rewards. Recent work7-15 has challenged the first assumption, demonstrating that phasic dopamine signals across species are involved in learning about more complex features of the predicted outcomes, in a manner that transcends this value computation. Here, we tested the validity of the second assumption. Specifically, we examined whether phasic midbrain dopamine activity would be necessary for backward conditioning-when a neutral cue reliably follows a rewarding outcome.16-20 Using a specific Pavlovian-to-instrumental transfer (PIT) procedure,21-23 we show rats learn both excitatory and inhibitory components of a backward association, and that this association entails knowledge of the specific identity of the reward and cue. We demonstrate that brief optogenetic inhibition of VTADA neurons timed to the transition between the reward and cue reduces both of these components of backward conditioning. These findings suggest VTADA neurons are capable of facilitating associations between contiguously occurring events, regardless of the content of those events. We conclude that these data may be in line with suggestions that the VTADA error acts as a universal teaching signal. This may provide insight into why dopamine function has been implicated in myriad psychological disorders that are characterized by very distinct reinforcement-learning deficits.
Collapse
Affiliation(s)
- Benjamin M Seitz
- Department of Psychology, University of California, Los Angeles, Portola Plaza, Los Angeles, CA 91602, USA
| | - Ivy B Hoang
- Department of Psychology, University of California, Los Angeles, Portola Plaza, Los Angeles, CA 91602, USA
| | - Lauren E DiFazio
- Department of Psychology, University of California, Los Angeles, Portola Plaza, Los Angeles, CA 91602, USA
| | - Aaron P Blaisdell
- Department of Psychology, University of California, Los Angeles, Portola Plaza, Los Angeles, CA 91602, USA
| | - Melissa J Sharpe
- Department of Psychology, University of California, Los Angeles, Portola Plaza, Los Angeles, CA 91602, USA.
| |
Collapse
|
24
|
Postdiction in Visual Awareness in Schizophrenia. Behav Sci (Basel) 2022; 12:bs12060198. [PMID: 35735408 PMCID: PMC9219622 DOI: 10.3390/bs12060198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The mistiming of predictive thought and real perception leads to postdiction in awareness. Individuals with high delusive thinking confuse prediction and perception, which results in impaired reality testing. The present observational study investigated how antipsychotic medications and cognitive-behavioral therapy (CBT) modulate postdiction in schizophrenia. We hypothesized that treatment reduces postdiction, especially when antipsychotics and CBT are combined. Methods: We enrolled patients with schizophrenia treated in a natural clinical setting and not in a randomized controlled trial. We followed up two schizophrenia groups matched for age, sex, education, and illness duration: patients on antipsychotics (n = 25) or antipsychotics plus CBT (n = 25). The treating clinician assigned the patients to the two groups. Participants completed a postdiction and a temporal discrimination task at weeks 0 and 12. Results: At week 0, postdiction was enhanced in patients relative to controls at a short prediction–perception time interval, which correlated with PANSS positive symptoms and delusional conviction. At week 12, postdiction was reduced in schizophrenia, especially when they received antipsychotics plus CBT. Patients with schizophrenia were also impaired on the temporal discrimination task, which did not change during the treatment. During the 12-week observational period, all PANSS scores were significantly reduced in both clinical groups, but the positive symptoms and emotional distress exhibited a more pronounced response in the antipsychotics plus CBT group. Conclusion: Perceptual postdiction is a putative neurocognitive marker of delusive thinking. Combined treatment with antipsychotics and CBT significantly ameliorates abnormally elevated postdiction in schizophrenia.
Collapse
|
25
|
Corlett PR, Mollick JA, Kober H. Meta-analysis of human prediction error for incentives, perception, cognition, and action. Neuropsychopharmacology 2022; 47:1339-1349. [PMID: 35017672 PMCID: PMC9117315 DOI: 10.1038/s41386-021-01264-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022]
Abstract
Prediction errors (PEs) are a keystone for computational neuroscience. Their association with midbrain neural firing has been confirmed across species and has inspired the construction of artificial intelligence that can outperform humans. However, there is still much to learn. Here, we leverage the wealth of human PE data acquired in the functional neuroimaging setting in service of a deeper understanding, using an MKDA (multi-level kernel-based density) meta-analysis. Studies were identified with Google Scholar, and we included studies with healthy adult participants that reported activation coordinates corresponding to PEs published between 1999-2018. Across 264 PE studies that have focused on reward, punishment, action, cognition, and perception, consistent with domain-general theoretical models of prediction error we found midbrain PE signals during cognitive and reward learning tasks, and an insula PE signal for perceptual, social, cognitive, and reward prediction errors. There was evidence for domain-specific error signals--in the visual hierarchy during visual perception, and the dorsomedial prefrontal cortex during social inference. We assessed bias following prior neuroimaging meta-analyses and used family-wise error correction for multiple comparisons. This organization of computation by region will be invaluable in building and testing mechanistic models of cognitive function and dysfunction in machines, humans, and other animals. Limitations include small sample sizes and ROI masking in some included studies, which we addressed by weighting each study by sample size, and directly comparing whole brain vs. ROI-based results.
Collapse
Affiliation(s)
| | | | - Hedy Kober
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
26
|
Iwakura Y, Kawahara-Miki R, Kida S, Sotoyama H, Gabdulkhaev R, Takahashi H, Kunii Y, Hino M, Nagaoka A, Izumi R, Shishido R, Someya T, Yabe H, Kakita A, Nawa H. Elevation of EGR1/zif268, a Neural Activity Marker, in the Auditory Cortex of Patients with Schizophrenia and its Animal Model. Neurochem Res 2022; 47:2715-2727. [PMID: 35469366 DOI: 10.1007/s11064-022-03599-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
The family of epidermal growth factor (EGF) including neuregulin-1 are implicated in the neuropathology of schizophrenia. We established a rat model of schizophrenia by exposing perinatal rats to EGF and reported that the auditory pathophysiological traits of this model such as prepulse inhibition, auditory steady-state response, and mismatch negativity are relevant to those of schizophrenia. We assessed the activation status of the auditory cortex in this model, as well as that in patients with schizophrenia, by monitoring the three neural activity-induced proteins: EGR1 (zif268), c-fos, and Arc. Among the activity markers, protein levels of EGR1 were significantly higher at the adult stage in EGF model rats than those in control rats. The group difference was observed despite an EGF model rat and a control rat being housed together, ruling out the contribution of rat vocalization effects. These changes in EGR1 levels were seen to be specific to the auditory cortex of this model. The increase in EGR1 levels were detectable at the juvenile stage and continued until old ages but displayed a peak immediately after puberty, whereas c-fos and Arc levels were nearly indistinguishable between groups at all ages with an exception of Arc decrease at the juvenile stage. A similar increase in EGR1 levels was observed in the postmortem superior temporal cortex of patients with schizophrenia. The commonality of the EGR1 increase indicates that the EGR1 elevation in the auditory cortex might be one of the molecular signatures of this animal model and schizophrenia associating with hallucination.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan.
| | | | - Satoshi Kida
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ramil Gabdulkhaev
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
27
|
Frydecka D, Misiak B, Piotrowski P, Bielawski T, Pawlak E, Kłosińska E, Krefft M, Al Noaimy K, Rymaszewska J, Moustafa AA, Drapała J. The Role of Dopaminergic Genes in Probabilistic Reinforcement Learning in Schizophrenia Spectrum Disorders. Brain Sci 2021; 12:brainsci12010007. [PMID: 35053751 PMCID: PMC8774082 DOI: 10.3390/brainsci12010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Schizophrenia spectrum disorders (SZ) are characterized by impairments in probabilistic reinforcement learning (RL), which is associated with dopaminergic circuitry encompassing the prefrontal cortex and basal ganglia. However, there are no studies examining dopaminergic genes with respect to probabilistic RL in SZ. Thus, the aim of our study was to examine the impact of dopaminergic genes on performance assessed by the Probabilistic Selection Task (PST) in patients with SZ in comparison to healthy control (HC) subjects. In our study, we included 138 SZ patients and 188 HC participants. Genetic analysis was performed with respect to the following genetic polymorphisms: rs4680 in COMT, rs907094 in DARP-32, rs2734839, rs936461, rs1800497, and rs6277 in DRD2, rs747302 and rs1800955 in DRD4 and rs28363170 and rs2975226 in DAT1 genes. The probabilistic RL task was completed by 59 SZ patients and 95 HC subjects. SZ patients performed significantly worse in acquiring reinforcement contingencies during the task in comparison to HCs. We found no significant association between genetic polymorphisms and RL among SZ patients; however, among HC participants with respect to the DAT1 rs28363170 polymorphism, individuals with 10-allele repeat genotypes performed better in comparison to 9-allele repeat carriers. The present study indicates the relevance of the DAT1 rs28363170 polymorphism in RL in HC participants.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
- Correspondence:
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Patryk Piotrowski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Edyta Pawlak
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigel Street 12, 53-114 Wroclaw, Poland;
| | - Ewa Kłosińska
- Day-Care Psychiatric Unit, University Clinical Hospital, Pasteur Street 10, 50-367 Wroclaw, Poland;
| | - Maja Krefft
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Kamila Al Noaimy
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Ahmed A. Moustafa
- School of Psychology, Marcs Institute for Brain and Behaviour, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia;
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| | - Jarosław Drapała
- Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego Street 27, 50-370 Wrocław, Poland;
| |
Collapse
|
28
|
Smoking as a Common Modulator of Sensory Gating and Reward Learning in Individuals with Psychotic Disorders. Brain Sci 2021; 11:brainsci11121581. [PMID: 34942883 PMCID: PMC8699526 DOI: 10.3390/brainsci11121581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Motivational and perceptual disturbances co-occur in psychosis and have been linked to aberrations in reward learning and sensory gating, respectively. Although traditionally studied independently, when viewed through a predictive coding framework, these processes can both be linked to dysfunction in striatal dopaminergic prediction error signaling. This study examined whether reward learning and sensory gating are correlated in individuals with psychotic disorders, and whether nicotine—a psychostimulant that amplifies phasic striatal dopamine firing—is a common modulator of these two processes. We recruited 183 patients with psychotic disorders (79 schizophrenia, 104 psychotic bipolar disorder) and 129 controls and assessed reward learning (behavioral probabilistic reward task), sensory gating (P50 event-related potential), and smoking history. Reward learning and sensory gating were correlated across the sample. Smoking influenced reward learning and sensory gating in both patient groups; however, the effects were in opposite directions. Specifically, smoking was associated with improved performance in individuals with schizophrenia but impaired performance in individuals with psychotic bipolar disorder. These findings suggest that reward learning and sensory gating are linked and modulated by smoking. However, disorder-specific associations with smoking suggest that nicotine may expose pathophysiological differences in the architecture and function of prediction error circuitry in these overlapping yet distinct psychotic disorders.
Collapse
|