1
|
Zhou T, Li X, Zhao F, Zhou J, Sun B. Lactamase β reprograms lipid metabolism to inhibit the progression of endometrial cancer through attenuating MDM2-mediated p53 ubiquitination and degradation. Arch Biochem Biophys 2025; 764:110287. [PMID: 39746389 DOI: 10.1016/j.abb.2024.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Lactamase β (LACTB) inhibits the metastasis and progression of multiple malignant tumors. However, little is known about its role in endometrial cancer (EC). Our study aimed to investigate the function and potential molecular mechanism of LACTB in modulating EC progression. METHODS LACTB expression was measured via immunohistochemistry staining, Western blot and qRT-PCR. The role of LACTB in EC was investigated both in vivo and in vitro by employing xenograft mice models and using colony formation, EdU, and Transwell assays, along with flow cytometric analysis. In addition, to assess LACTB function on lipid metabolism, lipid droplets in EC cells were labeled with Nile red. Western blot, immunofluorescence staining, co-immunoprecipitation, ubiquitination assay, and cycloheximide chase assay and rescue experiments were performed to confirm the interaction between LACTB, p53, and MDM2 in EC. RESULTS LACTB expression was downregulated in EC. LACTB inhibited the malignant phenotypes and reprogramed lipid metabolism in EC cells. Moreover, LACTB significantly upregulated p53 by attenuating the MDM2-mediated ubiquitination and degradation of p53. Besides, LACTB silencing facilitated the malignant phenotypes and reprogramed lipid metabolism in EC cells; this was reversed with p53 overexpression. LACTB knockdown facilitated EC progression via downregulating p53 in vivo. CONCLUSION LACTB repressed EC cell proliferation and metastasis, and reprogramed lipid metabolism via attenuating the MDM2-mediated ubiquitination and degradation of p53.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Xiaorong Li
- Department of Obstetrics and Gynecology, Weihaiwei People's Hospital, Weihai, 264299, Shandong, China
| | - Fangfang Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Binghui Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China.
| |
Collapse
|
2
|
Zhang M, Wu B, Gu J. The Pivotal Role of LACTB in the Process of Cancer Development. Int J Mol Sci 2025; 26:1279. [PMID: 39941048 PMCID: PMC11818536 DOI: 10.3390/ijms26031279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The mitochondrial serine β-lactamase-like protein LACTB has emerged as a critical regulator in cancer biology, distinguished by its unique structural and functional attributes. Defined by its conserved penicillin-binding proteins and β-lactamases (PBP-βLs) domain and SXXK catalytic motif, LACTB demonstrates properties distinct from its prokaryotic homologs, including the ability to polymerize into filaments. These structural characteristics enable LACTB to modulate mitochondrial organization and enzymatic activity, influencing lipid metabolism and indirectly affecting cellular proliferation. Importantly, the expression and functional roles of LACTB exhibit cancer-type-specific variation, underscoring its dual function as both a tumor suppressor and an oncogene. Decreased LACTB expression is associated with poor clinical outcomes in cancers such as breast cancer, lung cancer, and colorectal cancer, while specific mutations and regulatory mechanisms have been linked to its oncogenic activity in osteosarcoma and pancreatic adenocarcinoma. Mechanistically, LACTB regulates key processes in cancer progression, including mitochondrial dynamics, epithelial-mesenchymal transition (EMT), and cell death pathways. This duality highlights LACTB as a promising therapeutic target and underscores its relevance in advancing precision oncology strategies. This review provides a comprehensive analysis of expression level, structure-function relationships, and the diverse roles of LACTB in oncogenesis, underscoring its promise as a focal point for precision cancer therapies.
Collapse
Affiliation(s)
- Minghui Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China; (M.Z.); (B.W.)
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Bowen Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China; (M.Z.); (B.W.)
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jinke Gu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China; (M.Z.); (B.W.)
| |
Collapse
|
3
|
Huang G, Zhang J, Xu Y, Wu F, Fu Y, Zhang X, Yin H, You Y, Zhao P, Liu W, Shen J, Yin J. SNPs Give LACTB Oncogene-Like Functions and Prompt Tumor Progression via Dual-Regulating p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405907. [PMID: 39324579 DOI: 10.1002/advs.202405907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Indexed: 09/27/2024]
Abstract
LACTB is identified as a tumor suppressor in several tumors. However, preliminary study reveals that LACTB is overexpressed in osteosarcoma and indicates poor prognosis. Two missense mutations (rs34317102 and rs2729835) exist simultaneously in 92.31% of osteosarcoma patients and cause M5L and R469K double mutations in LACTB, suggesting the biologic function of LACTB protein may be altered in osteosarcoma. Moreover, LACTBM5L+R469K overexpression can promote malignant progression in different tumors, which suggests that the M5L and R469K mutations confer oncogene-like functions to LACTB. Mechanistically, LACTBM5L+R469K not only reduces the wild type p53 via enhancing PSMB7 catalytic activity, but also protects p53R156P protein from lysosomal degradation, which suggesting LACTBM5L+R469K is a dual-regulator for wt-p53 and mutant p53, and derive oncogene-like functions. More importantly, clavulanate potassium, a bacterial β-lactamase inhibitor, can inhibit osteosarcoma proliferation and sensitize osteosarcoma to cisplatin by binding and blocking LACTBM5L+R469K. These findings revealed that the M5L and R469K double mutations can diminish the tumor suppressive ability of wild type LACTB and provide oncogene-like functions to LACTB. Inhibiting LACTBM5L+R469K can suppress the progression of osteosarcoma harbouring wild-type or mutant p53. Clavulanate potassium is a promising drug by targeting LACTBM5L+R469K-p53 pathway for the treatment of osteosarcoma patients.
Collapse
Affiliation(s)
- Guanyu Huang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiajun Zhang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fei Wu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiwei Fu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuelin Zhang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hanxiao Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weihai Liu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Jia L, Meng Q, Xu X. Autophagy-related miRNAs, exosomal miRNAs, and circRNAs in tumor progression and drug-and radiation resistance in colorectal cancer. Pathol Res Pract 2024; 263:155597. [PMID: 39426141 DOI: 10.1016/j.prp.2024.155597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Targeted therapies are often more tolerable than traditional cytotoxic ones. Nurses play a critical role in providing patients and caregivers with information about the disease, available therapies, and the kind, severity, and identification of any potential adverse events. By doing this, it may be possible to ensure that any adverse effects are managed quickly, maximizing the therapeutic benefit. In colorectal cancer (CRC), autophagy-related activities are significantly influenced by miRNAs and exosomal miRNAs. CRC development and treatment resistance have been associated with the cellular process of autophagy. miRNAs, which are short non-coding RNA molecules, have the ability to control the expression of genes by binding to the 3' untranslated region (UTR) of target mRNAs and either preventing or suppressing translation. It has been discovered that several miRNAs are significant regulators of CRC autophagy. By preventing autophagy, these miRNAs enhance the survival and growth of cancer cells. Exosomes are small membrane vesicles that are released by cells and include miRNAs among other bioactive compounds. Exosomes have the ability to modify recipient cells' biological processes by delivering their cargo, which includes miRNAs. It has been demonstrated that exosomal miRNAs control autophagy in CRC in both autocrine and paracrine ways. We will discuss the potential roles of miRNAs, exosomal miRNAs, and circRNAs in CRC autophagy processes and how nursing care can reduce unfavorable outcomes.
Collapse
Affiliation(s)
- Liting Jia
- Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 102413, China
| | - Qingyun Meng
- Gastroenterology Department, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Xiaofeng Xu
- Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266000, China.
| |
Collapse
|
5
|
Shukla M, Narayan M. Proteostasis and Its Role in Disease Development. Cell Biochem Biophys 2024:10.1007/s12013-024-01581-6. [PMID: 39422790 DOI: 10.1007/s12013-024-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, Madhya Pradesh, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
6
|
Zeng K, Huang N, Liu N, Deng X, Mu Y, Zhang X, Zhang J, Zhang C, Li Y, Li Z. LACTB suppresses liver cancer progression through regulation of ferroptosis. Redox Biol 2024; 75:103270. [PMID: 39047638 PMCID: PMC11321384 DOI: 10.1016/j.redox.2024.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
Ferroptosis, driven by iron-dependent phospholipid peroxidation, is emerging as an intrinsic cancer defense mechanism. However, the regulatory networks involved in ferroptosis remain largely unknown. Here, we found that serine beta-lactamase-like protein (LACTB) inhibits liver cancer progression by regulating ferroptosis. LACTB is downregulated in liver cancer, and the ectopic expression of LACTB markedly inhibits cell viability, colony formation, and tumour growth. LACTB knockout exerts the opposite effects. Further investigation revealed that LACTB blocks HSPA8 transcription in a p53-dependent manner, resulting in the elevation of NCOA4-mediated ferritinophagy and inhibition of SLC7A11/GSH/GPX4 signalling, thereby triggering ferroptosis and suppressing liver cancer progression. Liver cancer cells with an endogenous mutation of p53 binding site in the HSPA8 promoter exhibited increased resistance to ferroptosis inducers, and the ferroptosis-promoting effect of LACTB was significantly weakened in these mutant cells. Importantly, LACTB is identified as a downstream target of lenvatinib, and adeno-associated virus-mediated overexpression and knockdown of LACTB notably enhance and attenuate the anti-tumour efficacy of lenvatinib in vivo, respectively. Taken together, our study reveals a novel action of LACTB and provides potential therapeutic strategies for enhancing the efficacy of lenvatinib in liver cancer.
Collapse
Affiliation(s)
- Kaixuan Zeng
- Department of Geriatric Hepatobiliary, Pancreatic and Spleen Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Tumor and Immunology Center of Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Na Huang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Tumor and Immunology Center of Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Nanbin Liu
- Department of Geriatric Hepatobiliary, Pancreatic and Spleen Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xi Deng
- Department of Geriatric Hepatobiliary, Pancreatic and Spleen Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yanhua Mu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Tumor and Immunology Center of Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xurui Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Tumor and Immunology Center of Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Zhang
- Department of Geriatric Hepatobiliary, Pancreatic and Spleen Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Tumor and Immunology Center of Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Chongyu Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Tumor and Immunology Center of Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yong Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Tumor and Immunology Center of Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zongfang Li
- Department of Geriatric Hepatobiliary, Pancreatic and Spleen Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Tumor and Immunology Center of Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
7
|
Song Z, Tao Y, Liu Y, Li J. Advances in delivery systems for CRISPR/Cas-mediated cancer treatment: a focus on viral vectors and extracellular vesicles. Front Immunol 2024; 15:1444437. [PMID: 39281673 PMCID: PMC11392784 DOI: 10.3389/fimmu.2024.1444437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024] Open
Abstract
The delivery of CRISPR/Cas systems holds immense potential for revolutionizing cancer treatment, with recent advancements focusing on extracellular vesicles (EVs) and viral vectors. EVs, particularly exosomes, offer promising opportunities for targeted therapy due to their natural cargo transport capabilities. Engineered EVs have shown efficacy in delivering CRISPR/Cas components to tumor cells, resulting in inhibited cancer cell proliferation and enhanced chemotherapy sensitivity. However, challenges such as off-target effects and immune responses remain significant hurdles. Viral vectors, including adeno-associated viruses (AAVs) and adenoviral vectors (AdVs), represent robust delivery platforms for CRISPR/Cas systems. AAVs, known for their safety profile, have already been employed in clinical trials for gene therapy, demonstrating their potential in cancer treatment. AdVs, capable of infecting both dividing and non-dividing cells, offer versatility in CRISPR/Cas delivery for disease modeling and drug discovery. Despite their efficacy, viral vectors present several challenges, including immune responses and off-target effects. Future directions entail refining delivery systems to enhance specificity and minimize adverse effects, heralding personalized and effective CRISPR/Cas-mediated cancer therapies. This article underscores the importance of optimized delivery mechanisms in realizing the full therapeutic potential of CRISPR/Cas technology in oncology. As the field progresses, addressing these challenges will be pivotal for translating CRISPR/Cas-mediated cancer treatments from bench to bedside.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Liu
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, China
| | - Jian Li
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Huang G, Zhang X, Xu Y, Chen S, Cao Q, Liu W, Fu Y, Jia Q, Shen J, Yin J, Zhang J. Prognostic and predictive value of super-enhancer-derived signatures for survival and lung metastasis in osteosarcoma. J Transl Med 2024; 22:88. [PMID: 38254188 PMCID: PMC10801997 DOI: 10.1186/s12967-024-04902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Risk stratification and personalized care are crucial in managing osteosarcoma due to its complexity and heterogeneity. However, current prognostic prediction using clinical variables has limited accuracy. Thus, this study aimed to explore potential molecular biomarkers to improve prognostic assessment. METHODS High-throughput inhibitor screening of 150 compounds with broad targeting properties was performed and indicated a direction towards super-enhancers (SEs). Bulk RNA-seq, scRNA-seq, and immunohistochemistry (IHC) were used to investigate SE-associated gene expression profiles in osteosarcoma cells and patient tissue specimens. Data of 212 osteosarcoma patients who received standard treatment were collected and randomized into training and validation groups for retrospective analysis. Prognostic signatures and nomograms for overall survival (OS) and lung metastasis-free survival (LMFS) were developed using Cox regression analyses. The discriminatory power, calibration, and clinical value of nomograms were evaluated. RESULTS High-throughput inhibitor screening showed that SEs significantly contribute to the oncogenic transcriptional output in osteosarcoma. Based on this finding, focus was given to 10 SE-associated genes with distinct characteristics and potential oncogenic function. With multi-omics approaches, the hyperexpression of these genes was observed in tumor cell subclusters of patient specimens, which were consistently correlated with poor outcomes and rapid metastasis, and the majority of these identified SE-associated genes were confirmed as independent risk factors for poor outcomes. Two molecular signatures were then developed to predict survival and occurrence of lung metastasis: the SE-derived OS-signature (comprising LACTB, CEP55, SRSF3, TCF7L2, and FOXP1) and the SE-derived LMFS-signature (comprising SRSF3, TCF7L2, FOXP1, and APOLD1). Both signatures significantly improved prognostic accuracy beyond conventional clinical factors. CONCLUSIONS Oncogenic transcription driven by SEs exhibit strong associations with osteosarcoma outcomes. The SE-derived signatures developed in this study hold promise as prognostic biomarkers for predicting OS and LMFS in patients undergoing standard treatments. Integrative prognostic models that combine conventional clinical factors with these SE-derived signatures demonstrate substantially improved accuracy, and have the potential to facilitate patient counseling and individualized management.
Collapse
Affiliation(s)
- Guanyu Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xuelin Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuo Chen
- Department of Orthopedics, Jishuitan Hospital of Beijing, Beijing, China
| | - Qinghua Cao
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weihai Liu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yiwei Fu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiang Jia
- Guangzhou City Polytechnic, Guangzhou, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jiajun Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
11
|
Nie W, Hu L, Yan Z, Wang Y, Shi Q, He S, Wang Q, Yang F. A potential therapeutic approach for gastric cancer: inhibition of LACTB transcript 1. Aging (Albany NY) 2023; 15:15213-15227. [PMID: 38149985 PMCID: PMC10781463 DOI: 10.18632/aging.205345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND This study sought to investigate the role of LACTB transcript 1 in regulating adaptive immune resistance and stemness in gastric cancer and its potential as a therapeutic target for precision medicine. METHODS Bioinformatics analysis and RT-qPCR were used to analyze the expression level of LACTB and its transcripts in gastric cancer cells. The effects of LACTB transcript 1 on adaptive immune resistance and stemness were evaluated using in vitro cell experiments and western blotting experiments. RESULTS Our study findings revealed that LACTB transcript 1 modulated adaptive immune resistance and inhibited the stemness of gastric cancer cells. Knocking down the expression level of LACTB transcript 1 activated autophagy and inhibited EMT. As expected, overexpression of LACTB transcript 1 yielded the opposite findings. The expression level of LACTB transcript 1 in the peripheral blood of gastric cancer patients was consistent with the bioinformatics analysis, suggesting its potential as a biomarker of gastric cancer. CONCLUSIONS LACTB transcript 1 is a promising therapeutic target for precision medicine in gastric cancer by modulating immune evasion mechanisms and stemness. These findings provide insights into leveraging long non-coding RNAs (lncRNAs) in immunotherapy, radiotherapy, and chemotherapy to enhance cancer therapy efficacy, particularly in the context of targeting tumor heterogeneity and stemness.
Collapse
Affiliation(s)
- Wei Nie
- Center of Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Hu
- Department of Basic Clinical Laboratory and Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Zhiqiang Yan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yang Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qianyun Shi
- Department of Basic Clinical Laboratory and Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Shui He
- Department of Basic Clinical Laboratory and Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Qian Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fang Yang
- Center of Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Basic Clinical Laboratory and Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Zeng K, Peng J, Xing Y, Zhang L, Zeng P, Li W, Zhang W, Pan Z, Zhou C, Lin J. A positive feedback circuit driven by m 6A-modified circular RNA facilitates colorectal cancer liver metastasis. Mol Cancer 2023; 22:202. [PMID: 38087322 PMCID: PMC10717141 DOI: 10.1186/s12943-023-01848-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Liver metastasis is the leading cause of death in patients with colorectal cancer (CRC). Emerge evidence suggests that circular RNA (circRNA) is a pivotal player in cancer progression. However, its role in CRC liver metastasis remains largely unknown. METHODS Circ-YAP expression was detected by qRT-PCR and in situ hybridization. The function of circ-YAP was tested by wound healing, transwell and CCK-8 assays. RNA immunoprecipitation, pull-down, luciferase reporter, chromatin immunoprecipitation assays were used to investigate the mechanism underlying circ-YAP promoting CRC liver metastasis. CRC liver metastasis animal model was established to assess the effect of circ-YAP in vivo. RESULTS Circ-YAP was notably upregulated in CRC with liver metastasis, which was associated with dismal prognosis. Circ-YAP promoted CRC cell migration and invasion in vitro, and facilitated liver metastasis in patient-derived xenografts (PDX) models in vivo. Mechanistically, circ-YAP encoded a novel truncated protein containing 220 amino acids, termed as YAP-220aa, which competitively bound to LATS1, resulting in YAP dephosphorylation and nuclear translocation, thereby activating a cohort of metastasis-promoting genes. Importantly, N6-methyladenosine (m6A) modification orchestrated efficient initiation of circ-YAP translation, requiring m6A reader YTHDF3 and eIF4G2 translation initiation complex. Intriguingly, circ-YAP was transcriptionally enhanced by YAP/TEAD complex, thus forming a positive regulatory feed-forward loop. CONCLUSIONS Our findings reveal a previously uncharacterized oncoprotein encoded by circ-YAP, implying a promising biomarker and therapeutic target for CRC patients with liver metastasis.
Collapse
Affiliation(s)
- Kaixuan Zeng
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Linjie Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China
| | - Peishan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Weihao Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China
| | - Weili Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China.
| | - Chi Zhou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China.
| | - Junzhong Lin
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China.
| |
Collapse
|
13
|
Hu Y, Liu L, Jiang Q, Fang W, Chen Y, Hong Y, Zhai X. CRISPR/Cas9: a powerful tool in colorectal cancer research. J Exp Clin Cancer Res 2023; 42:308. [PMID: 37993945 PMCID: PMC10664500 DOI: 10.1186/s13046-023-02901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant cancers worldwide and seriously threatens human health. The clustered regulatory interspaced short palindromic repeat/CRISPR-associate nuclease 9 (CRISPR/Cas9) system is an adaptive immune system of bacteria or archaea. Since its introduction, research into various aspects of treatment approaches for CRC has been accelerated, including investigation of the oncogenes, tumor suppressor genes (TSGs), drug resistance genes, target genes, mouse model construction, and especially in genome-wide library screening. Furthermore, the CRISPR/Cas9 system can be utilized for gene therapy for CRC, specifically involving in the molecular targeted drug delivery or targeted knockout in vivo. In this review, we elucidate the mechanism of the CRISPR/Cas9 system and its comprehensive applications in CRC. Additionally, we discussed the issue of off-target effects associated with CRISPR/Cas9, which serves to restrict its practical application. Future research on CRC should in-depth and systematically utilize the CRISPR/Cas9 system thereby achieving clinical practice.
Collapse
Affiliation(s)
- Yang Hu
- Department of Gastroenterology, The First People's Hospital of Jiande, Hangzhou, 311600, China
| | - Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qi Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Weiping Fang
- Department of Gastroenterology, The First People's Hospital of Jiande, Hangzhou, 311600, China
| | - Yazhu Chen
- West China Hospital of Sichuan University, Chengdu, 610044, China.
| | - Yuntian Hong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiang Zhai
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
14
|
Zhao Q, He W, Liu Z, Huang L, Yang X, Liu Y, Chen R, Min X, Yang Y. LASS2 enhances p53 protein stability and nuclear import to suppress liver cancer progression through interaction with MDM2/MDMX. Cell Death Discov 2023; 9:414. [PMID: 37963859 PMCID: PMC10646090 DOI: 10.1038/s41420-023-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
LASS2 functions as a tumor suppressor in hepatocellular carcinoma (HCC), the most common type of primary liver cancer, but the underlying mechanism of its action remains largely unknown. Moreover, details on its role and the downstream mechanisms in Cholangiocarcinoma (CCA) and hepatoblastoma (HB), are rarely reported. Herein, LASS2 overexpression was found to significantly inhibit proliferation, migration, invasion and induce apoptosis in hepatoma cells with wild-type (HB cell line HepG2) and mutated p53 (HCC cell line HCCLM3 and CCA cell line HuCCT1). Gene set enrichment analysis determined the enrichment of the differentially expressed genes caused by LASS2 in the p53 signaling pathway. Moreover, the low expression of LASS2 in HCC and CCA tumor tissues was correlated with the advanced tumor-node-metastasis (TNM) stage, and the protein expression of LASS2 positively correlated with acetylated p53 (Lys373) protein levels. At least to some extent, LASS2 exerts its tumor-suppressive effects in a p53-dependent manner, in which LASS2 interacts with MDM2/MDMX and causes dual inhibition to disrupt p53 degradation by MDM2/MDMX. In addition, LASS2 induces p53 phosphorylation at ser15 and acetylation at lys373 to promote translocation from cytoplasm to nucleus. These findings provide new insights into the LASS2-induced tumor suppression mechanism in liver cancer and suggest LASS2 could serve as a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei He
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhouheng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Liangliang Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Xiaoli Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Liu
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
15
|
Wang S, Wang Y, Li Q, Li X, Feng X, Zeng K. The novel β-TrCP protein isoform hidden in circular RNA confers trastuzumab resistance in HER2-positive breast cancer. Redox Biol 2023; 67:102896. [PMID: 37783059 PMCID: PMC10551893 DOI: 10.1016/j.redox.2023.102896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Trastuzumab notably improves the outcome of human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients, however, resistance to trastuzumab remains a major hurdle to clinical treatment. In the present study, we identify a circular RNA intimately linked to trastuzumab resistance. circ-β-TrCP, derived from the back-splicing of β-TrCP exon 7 and 13, confers trastuzumab resistance by regulating NRF2-mediated antioxidant pathway in a KEAP1-independent manner. Concretely, circ-β-TrCP encodes a novel truncated 343-amino acid peptide located in the nucleus, referred as β-TrCP-343aa, which competitively binds to NRF2, blocks SCFβ-TrCP-mediated NRF2 proteasomal degradation, and this protective effect of β-TrCP-343aa on NRF2 protein requires GSK3 activity. Subsequently, the elevated NRF2 transcriptionally upregulates a cohort of antioxidant genes, giving rise to trastuzumab resistance. Moreover, the translation ability of circ-β-TrCP is inhibited by eIF3j under both basal and oxidative stress conditions, and eIF3j is transcriptionally repressed by NRF2, thus forming a positive feedback circuit between β-TrCP-343aa and NRF2, expediting trastuzumab resistance. Collectively, our data demonstrate that circ-β-TrCP-encoded β-TrCP protein isoform drives HER2-targeted therapy resistance in a NRF2-dependent manner, which provides potential therapeutic targets for overcoming trastuzumab resistance.
Collapse
Affiliation(s)
- Shengting Wang
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Yufang Wang
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Qian Li
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Xiaoming Li
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Xinghua Feng
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Kaixuan Zeng
- Precision Medical Research Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
16
|
Zeng K, Li W, Wang Y, Zhang Z, Zhang L, Zhang W, Xing Y, Zhou C. Inhibition of CDK1 Overcomes Oxaliplatin Resistance by Regulating ACSL4-mediated Ferroptosis in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301088. [PMID: 37428466 PMCID: PMC10477855 DOI: 10.1002/advs.202301088] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/31/2023] [Indexed: 07/11/2023]
Abstract
Oxaliplatin is a widely used chemotherapy drug for patients with advanced colorectal cancer (CRC); however, frequent drug resistance limits its therapeutic efficacy in patients. Here, this work identifies cyclin-dependent kinase 1 (CDK1) as a critical contributor to oxaliplatin resistance via in vitro and in vivo CRISPR/Cas9 screening. CDK1 is highly expressed in oxaliplatin-resistant cells and tissues due to the loss of N6-methyladenosine modification. Genetic and pharmacological blockade of CDK1 restore the susceptibility of CRC cells to oxaliplatin in vitro and in cell/patient-derived xenograft models. Mechanistically, CDK1 directly binds to and phosphorylates Acyl-CoA synthetase long-chain family 4 (ACSL4) at S447, followed by recruitment of E3 ubiquitin ligase UBR5 and polyubiquitination of ACSL4 at K388, K498, and K690, which leads to ACSL4 protein degradation. Reduced ACSL4 subsequently blocks the biosynthesis of polyunsaturated fatty acid containing lipids, thereby inhibiting lipid peroxidation and ferroptosis, a unique iron-dependent form of oxidative cell death. Moreover, treatment with a ferroptosis inhibitor nullifies the enhancement of CRC cell sensitivity to oxaliplatin by CDK1 blockade in vitro and in vivo. Collectively, the findings indicate that CDK1 confers oxaliplatin resistance to cells by suppressing ferroptosis. Therefore, administration of a CDK1 inhibitor may be an attractive strategy to treat patients with oxaliplatin-resistant CRC.
Collapse
Affiliation(s)
- Kaixuan Zeng
- Precision Medical Research Institutethe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710000China
| | - Weihao Li
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yue Wang
- Department of Gastroenterologythe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Zifei Zhang
- IIT Project Management Officethe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Linjie Zhang
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Weili Zhang
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Chi Zhou
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
17
|
Luo Y, Zhang Y, Pang S, Min J, Wang T, Wu D, Lin C, Xiao Z, Xiang Q, Li Q, Ma L. PCBP1 protects bladder cancer cells from mitochondria injury and ferroptosis by inducing LACTB mRNA degradation. Mol Carcinog 2023. [PMID: 37157950 DOI: 10.1002/mc.23533] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Although Poly C Binding Protein 1 (PCBP1) affects cellular ferroptosis and mitochondrial dysfunction, the mechanisms by which PCBP1 regulates bladder cancer (BC) cell functions are unknown. In this study, two BC cell lines (T24 and UMUC3) were treated with different doses of ferroptosis inducer erastin to analyze the effect of PCBP1. Online databases (RPISeq and CatRAPID) were used to predict the possible direct interaction between PCBP1 protein and serine β-lactamase-like protein (LACTB) mRNA, which was further validated via RNA pull-down, RNA immunoprecipitation, and luciferase reporter assays. Mitochondria injury and ferroptosis were evaluated using CCK-8 assay, TUNEL staining, flow cytometry, corresponding kits, and JC-1 staining. In vivo experiments were conducted using tumor xenograft models. Quantitative reverse-transcription polymerase chain reaction was used to detect transcript expression levels, while protein levels were analyzed using western blot and immunohistochemistry. PCBP1 expression was significantly upregulated in BC tissues and cell lines. Also, PCBP1 knockdown increased erastin-mediated ferroptosis in T24 and UMUC3 cells, while PCBP1 overexpression decreased erastin-mediated ferroptosis in T24 and UMUC3 cells. Mechanistic results showed that LACTB mRNA is a novel PCBP1-binding transcript. LACTB upregulation promoted erastin-induced ferroptosis and mitochondrial dysfunction. Furthermore, LACTB overexpression reversed PCBP1-mediated ferroptosis protection, including decreased ROS and enhanced mitochondrial function, which were further alleviated after phosphatidylserine decarboxylase (PISD) overexpression. Moreover, PCBP1 silencing significantly enhanced tumor inhibition effect of sulfasalazine in xenograft mice transplanted with T24 and UMUC3 cells, leading to LACTB upregulation and PISD downregulation. In conclusion, PCBP1 protects BC cells against mitochondria injury and ferroptosis via LACTB/PISD axis.
Collapse
Affiliation(s)
- Yang Luo
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yunli Zhang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingxian Min
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Wang
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Dali Wu
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chun Lin
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zebin Xiao
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qi Xiang
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qing Li
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lili Ma
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Luan L, Li N, Zhang K, Wang X, Pan H. Diversin upregulates the proliferative ability of colorectal cancer by inducing cell cycle proteins. Exp Mol Pathol 2023; 129:104850. [PMID: 36623636 DOI: 10.1016/j.yexmp.2023.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Colorectal cancer (CRC) is a common gastrointestinal tumour with increasing incidence worldwide. However, the underlying molecular mechanism of CRC proliferation is not completely clear. Diversin,as an ankyrin repeat-containing protein, is upregulated in various solid tumours and accelerates cancer progression by promoting cell proliferation and increasing S phase fraction of cells. In this study, 71 CRC samples and corresponding adjacent tissue samples were included. The expression of diversin in tissues was verified via immunohistochemical analysis. The MTS assay and flow cytometry (FCM) was used to measure cell proliferation and cell cycle. Results of immunohistochemical analysis revealed that diversin was highly expressed in human CRC tissues and was significantly associated with tumour differentiation, clinical stage and lymph node metastasis. The analysis based on the CRC data from The Cancer Genome Atlas (TCGA) database showed that a high expression of diversin correlated with the poor prognosis of CRC. Results of the MTS assay indicated that the overexpression of diversin promoted the proliferation of CRC cells, while its downregulation had an inhibitory effect on CRC cell proliferation. FCM analysises presented that diversin increased the flux of the CRC cell cycle from G1 to S and regulated cycle-related proteins, namely, P21, P27, cyclin E, CDK2, cyclin D and CDK4. The results suggest that diversin contributes to CRC proliferation that involves the distribution of the cell cycle. In CRC tissues, the expression of diversin has closely related to the prognosis. The higher the expression levels of diversin, the worse the prognosis. In vitro, diversin could increase the proliferative ability of CRC cells through the G1-S checkpoint and JNK signalling pathway, confirming that diversin contributes to CRC development.
Collapse
Affiliation(s)
- Lan Luan
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Nanyang Li
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Keyuan Zhang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Xiaojie Wang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Hai Pan
- Central Laboratory, Department of Neurosurgery and Dean's office, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China.
| |
Collapse
|
19
|
Gonzalez-Morena JM, Escudeiro-Lopes S, Ferreira-Mendes JM, Jakoube P, Cutano V, Vinaixa-Forner J, Kralova Viziova P, Hartmanova A, Sedlacek R, Machado S, Malcekova B, Keckesova Z. LACTB induces cancer cell death through the activation of the intrinsic caspase-independent pathway in breast cancer. Apoptosis 2023; 28:186-198. [PMID: 36282364 PMCID: PMC9950249 DOI: 10.1007/s10495-022-01775-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND LACTB was recently identified as a mitochondrial tumour suppressor that negatively affects cancer cell proliferation by inducing cell death and/or differentiation, depending on the cell type and tissue. However, the detailed mechanism underlying the LACTB-induced cancer cell death is largely unknown. METHODS We used cell-based, either in 2D or 3D conditions, and in vivo experiments to understand the LACTB mechanisms. In this regard, protein array followed by an enrichment analysis, cell proliferation assays using different compounds, western blot analysis, flow cytometry and immunofluorescence were performed. Differences between quantitative variables following normal distribution were valuated using Student t test for paired or no-paired samples according to the experiment. For in vivo experiments differences in tumour growth were analyzed by 2-way ANOVA. RESULTS We show, that LACTB expression leads to cell cycle arrest in G1 phase and increase of DNA oxidation that leads to activation of intrinsic caspase-independent cell death pathway. This is achieved by an increase of mitochondrial reactive oxygen species since early time points of LACTB induction. CONCLUSION Our work provides a deeper mechanistic insight into LACTB-mediated cancer-cell death and shows the dynamics of the cellular responses a particular tumor suppressive stimulus might evoke under different genetic landscapes.
Collapse
Affiliation(s)
- Juan M Gonzalez-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Escudeiro-Lopes
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Judith Vinaixa-Forner
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Kralova Viziova
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Andrea Hartmanova
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Susana Machado
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Beata Malcekova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
20
|
Chen XQ, Shen T, Fang SJ, Sun XM, Li GY, Li YF. Protein homeostasis in aging and cancer. Front Cell Dev Biol 2023; 11:1143532. [PMID: 36875752 PMCID: PMC9978402 DOI: 10.3389/fcell.2023.1143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Aging is a major risk factor for cancer development. As dysfunction in protein homeostasis, or proteostasis, is a universal hallmark of both the aging process and cancer, a comprehensive understanding of the proteostasis system and its roles in aging and cancer will shed new light on how we can improve health and quality of life for older individuals. In this review, we summarize the regulatory mechanisms of proteostasis and discuss the relationship between proteostasis and aging and age-related diseases, including cancer. Furthermore, we highlight the clinical application value of proteostasis maintenance in delaying the aging process and promoting long-term health.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Shao-Jun Fang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Xiao-Min Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Guo-Yu Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
21
|
Tan P, Sun H, Xu M, Liu X, Qin J, Nie J, Qin X, Wang S, Pan Y. Circular RNA circ0104103 inhibits colorectal cancer progression through interactions with HuR and miR-373-5p. Cancer Sci 2022; 114:1396-1409. [PMID: 36562402 PMCID: PMC10067388 DOI: 10.1111/cas.15695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence has suggested that circular RNAs (circRNAs) have vital functions during the initiation and progression of various diseases. However, circRNA potential mechanisms in colorectal cancer (CRC) are largely unknown. Here, we sought to investigate the role and underlying regulatory mechanism of circ0104103 in CRC. circ0104103 was validated by quantitative RT-PCR (qRT-PCR) and Sanger sequencing. Gain- and loss-of-function assays in cell lines and mouse xenograft models were utilized to investigate the effects of circ0104103 in CRC. RNA pull-down assays, RNA immunoprecipitation assays, bioinformatics analyses, RNA FISH, and luciferase reporter assays were used to elucidate the potential mechanism of circ0104103 in CRC. We identified circ0104103, which is strongly downregulated in CRC tissues and cell lines. Functional studies revealed that circ0104103 inhibited CRC cell growth, migration, and invasion both in vitro and in vivo. Mechanistically, circ0104103 binds to HuR, a functional RNA-binding protein commonly expressed in CRC. HuR binds to the 3'UTR of LACTB mRNA to facilitate stabilization and increase its expression. Moreover, circ0104103 was verified as a competing endogenous RNA (ceRNA) via negative regulation of miR-373-5p to increase LACTB expression, resulting in inhibiting the occurrence and progression of CRC. Taken together, our study revealed that circ0104103 acts as a tumor suppressor and may be a novel biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Pei Tan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Junjie Nie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaodan Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Bennett JA, Steward LR, Rudolph J, Voss AP, Aydin H. The structure of the human LACTB filament reveals the mechanisms of assembly and membrane binding. PLoS Biol 2022; 20:e3001899. [PMID: 36534696 PMCID: PMC9815587 DOI: 10.1371/journal.pbio.3001899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/05/2023] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are complex organelles that play a central role in metabolism. Dynamic membrane-associated processes regulate mitochondrial morphology and bioenergetics in response to cellular demand. In tumor cells, metabolic reprogramming requires active mitochondrial metabolism for providing key metabolites and building blocks for tumor growth and rapid proliferation. To counter this, the mitochondrial serine beta-lactamase-like protein (LACTB) alters mitochondrial lipid metabolism and potently inhibits the proliferation of a variety of tumor cells. Mammalian LACTB is localized in the mitochondrial intermembrane space (IMS), where it assembles into filaments to regulate the efficiency of essential metabolic processes. However, the structural basis of LACTB polymerization and regulation remains incompletely understood. Here, we describe how human LACTB self-assembles into micron-scale filaments that increase their catalytic activity. The electron cryo-microscopy (cryoEM) structure defines the mechanism of assembly and reveals how highly ordered filament bundles stabilize the active state of the enzyme. We identify and characterize residues that are located at the filament-forming interface and further show that mutations that disrupt filamentation reduce enzyme activity. Furthermore, our results provide evidence that LACTB filaments can bind lipid membranes. These data reveal the detailed molecular organization and polymerization-based regulation of human LACTB and provide new insights into the mechanism of mitochondrial membrane organization that modulates lipid metabolism.
Collapse
Affiliation(s)
- Jeremy A. Bennett
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Lottie R. Steward
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Adam P. Voss
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
23
|
Zhou S, Miao L, Li T, Liu P, Zhou H. Clinical Significance of β-Lactamase Expression in Colorectal Cancer. Cancer Biother Radiopharm 2022; 37:939-944. [PMID: 33259719 DOI: 10.1089/cbr.2020.3866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Colorectal cancer (CRC) has seriously endangered human health. Despite significant advances in clinical treatment of CRC in recent years, clinically effective treatment options for CRC patients remain rare. Therefore, reducing the incidence and mortality of CRC is still a worldwide concern. This study aims to explore the clinical significance of lactamase beta (LACTB)-like expression in CRC tissues. Materials and Methods: The expression of LACTB in CRC tissues and adjacent tissues in The Cancer Genome Atlas database was analyzed and the analysis results were verified by immunohistochemistry. The correlation between the expression level of LACTB and pathological factors and prognosis was analyzed. Results: There was statistical difference in the expression of LACTB in CRC tissues and adjacent tissues (p < 0.01). The expression of LACTB in CRC tissues was correlated with clinical stage (p < 0.01). The expression of LACTB in CRC patients with lymph node metastasis was significantly lower than that in CRC patients without lymph node metastasis (p < 0.01). Low expression of LACTB contributed to the poor prognosis of CRC patients. The 5-year survival rate of CRC patients with low LACTB expression was significantly lower than that of CRC patients with high LACTB expression (p = 0.010, p = 0.047). Conclusions: The expression of LACTB in CRC tissues was significantly lower than that in normal tissues, and it was significantly correlated with clinical prognosis, suggesting that LACTB could inhibit the CRC invasion and metastasis. This indicated to some extent that LACTB could be used as a prognostic marker and a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Shaofei Zhou
- Department of General Surgery, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, , People's Republic of China
| | - Lei Miao
- Department of General Surgery, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, , People's Republic of China
| | - Tiantian Li
- Department of General Surgery, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, , People's Republic of China
| | - Pu Liu
- Department of General Surgery, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, , People's Republic of China
| | - Houmin Zhou
- Department of General Surgery, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, , People's Republic of China
| |
Collapse
|
24
|
LACTB suppresses migration and invasion of glioblastoma via downregulating RHOC/Cofilin signaling pathway. Biochem Biophys Res Commun 2022; 629:17-25. [PMID: 36088805 DOI: 10.1016/j.bbrc.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma (GBM) is the most malignant tumor in human brain. High invasiveness of this tumor is the main reason causing treatment failure and recurrence. Previous study has found that LACTB is a novel tumor suppressor in breast cancer. Moreover, the function of LACTB in other tumors and mechanisms involving LACTB were also reported. However, the role and relevant mechanisms of LACTB in GBM invasion remains to be revealed. Our aim is to investigate the role LACTB in GBM migration and invasion. We found that LACTB was downregulated in gliomas compared to normal brain tissues. Overexpression of LACTB suppressed migration and invasion of LN229 and U87 cell lines. Mechanistically, LACTB overexpression downregulated the mesenchymal markers. Moreover, LACTB overexpression downregulated the expression of RHOC and inhibited RHOC/Cofilin signaling pathway. The study suggests that LACTB suppresses migration and invasion of GBM cell lines via downregulating RHOC/Cofilin signaling pathway. These findings suggest that LACTB may be a potential treatment target of GBM.
Collapse
|
25
|
Li X, Ren Z, Huang X, Yu T. LACTB, a Metabolic Therapeutic Target in Clinical Cancer Application. Cells 2022; 11:cells11172749. [PMID: 36078157 PMCID: PMC9454609 DOI: 10.3390/cells11172749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Serine beta-lactamase-like protein (LACTB) is the only mammalian mitochondrial homolog evolved from penicillin-binding proteins and β-lactamases (PBP-βLs) in bacteria. LACTB, an active-site serine protease, polymerizes into stable filaments, which are localized to the intermembrane space (IMS) of mitochondrion and involved in the submitochondrial organization, modulating mitochondrial lipid metabolism. Cancer pathogenesis and progression are relevant to the alterations in mitochondrial metabolism. Metabolic reprogramming contributes to cancer cell behavior. This article (1) evidences the clinical implications of LACTB on neoplastic cell proliferation and migration and tumor growth and metastasis as well as LACTB’s involvement in chemotherapeutic and immunotherapeutic responses; (2) sketches the structural basis for LACTB activity and function; and (3) highlights the relevant regulatory mechanisms to LACTB. The abnormal expression of LACTB has been associated with clinicopathological features of cancer tissues and outcomes of anticancer therapies. With the current pioneer researches on the tumor-suppressed function, structural basis, and regulatory mechanism of LACTB, the perspective hints at a great appeal of enzymic property, polymerization, mutation, and epigenetic and post-translational modifications in investigating LACTB’s role in cancer pathogenesis. This perspective provides novel insights for LACTB as a metabolic regulator with potential to develop targeted cancer therapies or neoadjuvant therapeutic interventions.
Collapse
Affiliation(s)
- Xiaohua Li
- School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China or
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China or
| | - Xiaohong Huang
- Shandong Institute of Traumatic Orthopedics, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266590, China
- Correspondence: (X.H.); (T.Y.)
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China or
- Institute of Sports Medicine and Rehabilitation, Qingdao University, Qingdao 266071, China
- Correspondence: (X.H.); (T.Y.)
| |
Collapse
|
26
|
Wang L, Shi J, Liu S, Huang Y, Ding H, Zhao B, Liu Y, Wang W, Yang J, Chen Z. RAC3 Inhibition Induces Autophagy to Impair Metastasis in Bladder Cancer Cells via the PI3K/AKT/mTOR Pathway. Front Oncol 2022; 12:915240. [PMID: 35847878 PMCID: PMC9279623 DOI: 10.3389/fonc.2022.915240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bladder cancer (BCa) is one of the most frequent malignant tumors globally, with a significant morbidity and mortality rate. Gene expression dysregulation has been proven to play a critical role in tumorigenesis. Ras-related C3 botulinum toxin substrate3 (RAC3), which is overexpressed in several malignancies and promotes tumor progression, has been identified as an oncogene. However, RAC3 has important but not fully understood biological functions in cancer. Our research aims to reveal the new functions and potential mechanisms of RAC3 involved in BCa progression. Methods We explored the expression level of RAC3 and its relationship with prognosis by publicly accessible BCa datasets, while the correlation of RAC3 expression with clinicopathological variables of patients was analyzed. In vitro and in vivo proliferation, migration, autophagy, and other phenotypic changes were examined by constructing knockdown(KD)/overexpression(OE) RAC3 cells and their association with PI3K/AKT/mTOR pathway was explored by adding autophagy-related compounds. Results Compared with non-tumor samples, RAC3 was highly expressed in BCa and negatively correlated with prognosis. KD/OE RAC3 inhibited/promoted the proliferation and migration of BCa cells. Knockdown RAC3 caused cell cycle arrest and decreased adhesion without affecting apoptosis. Inhibition of RAC3 activates PI3K/AKT/mTOR mediated autophagy and inhibits proliferation and migration of BCa cells in vivo and in vitro. Autophagy inhibitor 3MA can partially rescue the metastasis and proliferation inhibition effect caused by RAC3 inhibition. Inhibit/activate mTOR enhanced/impaired autophagy, resulting in shRAC3-mediated migration defect exacerbated/rescued. Conclusion RAC3 is highly expressed in BCa. It is associated with advanced clinicopathological variables and poor prognosis. Knockdown RAC3 exerts an antitumor effect by enhancing PI3K/AKT/mTOR mediated autophagy. Targeting RAC3 and autophagy simultaneously is a potential therapeutic strategy for inhibiting BCa progression and prolonging survival.
Collapse
Affiliation(s)
- Liwei Wang
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Unit 32357 of People’s Liberation Army, Pujiang, China
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sha Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Ding
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Baixiong Zhao
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuting Liu
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wuxing Wang
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiwen Chen
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
27
|
Cascone A, Lalowski M, Lindholm D, Eriksson O. Unveiling the Function of the Mitochondrial Filament-Forming Protein LACTB in Lipid Metabolism and Cancer. Cells 2022; 11:cells11101703. [PMID: 35626737 PMCID: PMC9139886 DOI: 10.3390/cells11101703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
LACTB is a relatively unknown mitochondrial protein structurally related to the bacterial penicillin-binding and beta-lactamase superfamily of serine proteases. LACTB has recently gained an increased interest due to its potential role in lipid metabolism and tumorigenesis. To date, around ninety studies pertaining to LACTB have been published, but the exact biochemical and cell biological function of LACTB still remain elusive. In this review, we summarise the current knowledge about LACTB with particular attention to the implications of the recently published study on the cryo-electron microscopy structure of the filamentous form of LACTB. From this and other studies, several specific properties of LACTB emerge, suggesting that the protein has distinct functions in different physiological settings. Resolving these issues by further research may ultimately lead to a unified model of LACTB’s function in cell and organismal physiology. LACTB is the only member of its protein family in higher animals and LACTB may, therefore, be of particular interest for future drug targeting initiatives.
Collapse
Affiliation(s)
- Annunziata Cascone
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.C.); (D.L.)
| | - Maciej Lalowski
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.C.); (D.L.)
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Ove Eriksson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.C.); (D.L.)
- Correspondence:
| |
Collapse
|
28
|
Xu Y, Liu Y, Huang W, Yang C, Wang Y. LOC100130075 Promotes Cervical Cancer Progression by Activating MDM2 Transcription through E2F1. Reprod Sci 2022; 29:1439-1448. [PMID: 35201567 DOI: 10.1007/s43032-021-00806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022]
Abstract
Cervical cancer (CC) represents one of the most frequent gynecological tumors worldwide and it takes a big part in cancer-related deaths in women. The mouse double minute 2 (MDM2) gene has been elucidated to be deregulated in cancers and exert its oncogenic activity. Through ENCODE ( https://www.encodeproject.org/ ), LOC100130075 was discovered to be a nearby gene of MDM2. Emerged as a novel long non-coding RNA (lncRNA), LOC100130075 has not been studied in cancers. Therefore, we aim to figure out the function of LOC100130075 and its interaction with MDM2 in CC progression. The high expression pattern of LOC100130075 and MDM2 and a positive correlation between them were firstly verified in CC cells. Then, it was verified that LOC100130075 interference suppressed the proliferation and enhanced the apoptosis of CC cells. Furthermore, we verified through mechanism assays including ChIP, RNA pull-down, as well as luciferase reporter assays that LOC100130075 bound to E2F transcription factor 1 (E2F1) to activate MDM2 transcription. Furthermore, the result of rescue assays manifested that MDM2 overexpression reversed the inhibitory function of LOC100130075 deficiency on CC development. In a word, LOC100130075 promoted CC malignancy by activating MDM2 transcription through E2F1, which may provide a new direction in the advancement of CC treatments.
Collapse
Affiliation(s)
- Ye Xu
- Department of Gynecology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150080, Heilongjiang, China
| | - Yunduo Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150080, Heilongjiang, China
| | - Wei Huang
- Department of Gynecology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150080, Heilongjiang, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150080, Heilongjiang, China
| | - Yaoxian Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150080, Heilongjiang, China.
| |
Collapse
|
29
|
Zhang M, Zhang L, Guo R, Xiao C, Yin J, Zhang S, Yang M. Structural basis for the catalytic activity of filamentous human serine beta-lactamase-like protein LACTB. Structure 2022; 30:685-696.e5. [PMID: 35247327 DOI: 10.1016/j.str.2022.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/16/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023]
Abstract
Serine beta-lactamase-like protein (LACTB) is a mammalian mitochondrial serine protease that can specifically hydrolyze peptide bonds adjacent to aspartic acid residues and is structurally related to prokaryotic penicillin-binding proteins. Here, we determined the cryoelectron microscopy structures of human LACTB (hLACTB) filaments from wild-type protein, a middle region deletion mutant, and in complex with the inhibitor Z-AAD-CMK at 3.0-, 3.1-, and 2.8-Å resolution, respectively. Structural analysis and activity assays revealed that three interfaces are required for the assembly of hLACTB filaments and that the formation of higher order helical structures facilitates its cleavage activity. Further structural and enzymatic analyses of middle region deletion constructs indicated that, while this region is necessary for substrate hydrolysis, it is not required for filament formation. Moreover, the inhibitor-bound structure showed that hLACTB may cleave peptide bonds adjacent to aspartic acid residues. These findings provide the structural basis underlying hLACTB catalytic activity.
Collapse
Affiliation(s)
- Minghui Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chun Xiao
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
30
|
Xu Y, Shi H, Wang M, Huang P, Xu M, Han S, Li H, Wang Y. LACTB suppresses carcinogenesis in lung cancer and regulates the EMT pathway. Exp Ther Med 2022; 23:247. [PMID: 35222724 PMCID: PMC8815028 DOI: 10.3892/etm.2022.11172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
Lung cancer causes thousands of deaths worldwide every year, and present therapeutics show little benefit for advanced-stage patients. Researchers do not know why and how lung cancer begins. Lactamase β (LACTB) is a tumor-suppressor in some cancers. However, its role in lung cancer is unknown. By analyzing the TCGA database and Kaplan-Meier Plotter database, LACTB was found to be downregulated in lung cancer tissues but the methylation level was increased. Patients with high LACTB expression exhibited improved survival. Then, in vitro assays demonstrated that LACTB overexpression inhibited cell migration and invasion, and induced apoptosis in H1299 and H1975 cells. Knockdown of LACTB caused the reverse effects. Moreover, a much higher apoptotic rate and more potent inhibitory effects on H1299 and H1975 cells were obtained when LACTB was combined with docetaxel. In addition, members of the epithelial-mesenchymal transition (EMT) signaling pathway were assessed using western blot analysis. The expression of E-cadherin was decreased while levels of N-cadherin and vimentin were increased after knockdown of LACTB in lung cancer cells. By contrast, overexpression of LACTB increased the level of E-cadherin but decreased N-cadherin and vimentin. Therefore, LACTB is a tumor suppressor in lung cancer that inhibits cell migration and invasion and induces cell apoptosis. Meanwhile, LACTB was found to strengthen the anticancer role of docetaxel and to suppress the EMT pathway in lung cancer.
Collapse
Affiliation(s)
- Yihui Xu
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Hubo Shi
- Department of Thoracic Surgery, Shangdong Public Health Clinical Center, Jinan, Shandong 250102, P.R. China
| | - Min Wang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Ping Huang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Mingjie Xu
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Shuyi Han
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Huanjie Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunshan Wang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
31
|
Targeting Post-Translational Regulation of p53 in Colorectal Cancer by Exploiting Vulnerabilities in the p53-MDM2 Axis. Cancers (Basel) 2022; 14:cancers14010219. [PMID: 35008383 PMCID: PMC8750794 DOI: 10.3390/cancers14010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
The role played by the key tumor suppressor gene p53 and the implications of p53 mutations for the development and progression of neoplasia continue to expand. This review focuses on colorectal cancer and the regulators of p53 expression and activity identified over the past decade. These newly recognized regulatory mechanisms include (1) direct regulation of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase; (2) modulation of the MDM2-p53 interaction; (3) MDM2-independent p53 degradation; and (4) inhibition of p53 nuclear translocation. We positioned these regulatory mechanisms in the context of p53 missense mutations, which not only evade canonical p53 degradation machinery but also exhibit gain-of-function phenotypes that enhance tumor survival and metastasis. Lastly, we discuss current and potential therapeutic strategies directed against p53 mutant-bearing tumors.
Collapse
|
32
|
Liu J, Yang L, Yuan X, Xiong M, Zhu J, Wu W, Ren M, Long J, Xu X, Gou M. Targeted Nanotherapeutics Using LACTB Gene Therapy Against Melanoma. Int J Nanomedicine 2021; 16:7697-7709. [PMID: 34819728 PMCID: PMC8607278 DOI: 10.2147/ijn.s331519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction β-lactamase (LACTB) is a tumor suppressor gene in various tumors including melanoma. However, it remains challenging to efficiently deliver the LACTB gene into melanoma. Recently, we designed a nonviral nanocarrier iRGD/DOTAP/MPEG-PDLLA (iDPP) that could deliver gene targetedly to melanoma efficiently without obvious adverse effects. Methods In this study, the tumor-targeted nanoparticle iDPP was prepared to deliver LACTB gene to treat melanoma in vitro and in vivo. First, the expression level of LACTB in 6 clinical specimens of melanoma patients was evaluated. Subsequently, the characteristics of iDPP/LACTB nanocomplexes were studied. Afterwards, the in vitro and in vivo anti-tumor efficacy of the iDPP/LACTB nanocomplexes were explored utilizing the B16-F10 mouse melanoma cell line and the B16-F10 subcutaneous melanoma model. Results Compared with the normal epithelium, the expression level of LACTB in melanoma tissues was significantly downregulated. In vitro B16-F10 cell tests showed iDPP/LACTB nanocomplexes could increase the mRNA levels of P21, Bid, Bax, Pidd1, and Sival genes and up-regulate the p53 signaling pathway of melanoma cells, thus promoting cell apoptosis and blocking the cell cycle. Injected intravenously, iDPP nanoparticles could deliver DNA to the subcutaneous melanoma targetedly. Based on in vivo mouse xenograft model, iDPP/LACTB nanocomplexes could effectively inhibit tumor proliferation and induce tumor apoptosis, thus significantly inhibiting melanoma growth (tumor inhibition rate is about 68%) in the subcutaneous B16-F10 melanoma model. Conclusion The downregulated LACTB might be a potential target for melanoma therapy. The iDPP/LACTB nanocomplexes could inhibit the growth of the mouse melanoma without obvious side effects, which provide a new option for melanoma gene therapy research.
Collapse
Affiliation(s)
- Jinlu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ling Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xin Yuan
- Department of Plastic and Burn Surgery, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiao Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Min Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jianlin Long
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
33
|
Jakoube P, Cutano V, González-Morena JM, Keckesova Z. Mitochondrial Tumor Suppressors-The Energetic Enemies of Tumor Progression. Cancer Res 2021; 81:4652-4667. [PMID: 34183354 PMCID: PMC9397617 DOI: 10.1158/0008-5472.can-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. Although nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here, we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
Collapse
Affiliation(s)
- Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Juan M. González-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Corresponding Author: Zuzana Keckesova, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 16000, Czech Republic. Phone: 420-2201-83584; E-mail:
| |
Collapse
|
34
|
Tomicic MT, Dawood M, Efferth T. Epigenetic Alterations Upstream and Downstream of p53 Signaling in Colorectal Carcinoma. Cancers (Basel) 2021; 13:cancers13164072. [PMID: 34439227 PMCID: PMC8394868 DOI: 10.3390/cancers13164072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) belongs to the most common tumor types, and half of all CRC harbor missense mutations in the TP53 tumor suppressor gene. In addition to genetically caused loss of function of p53, epigenetic alterations (DNA methylation, histone modifications, micro-RNAs) contribute to CRC development. In this review, we focused on epigenetic alterations related to the entire p53 signaling pathway upstream and downstream of p53. Methylation of genes which activate p53 function has been reported, and methylation of APC and MGMT was associated with increased mutation rates of TP53. The micro-RNA 34a activates TP53 and was methylated in CRC. Proteins that regulate TP53 DNA methylation, mutations, and acetylation of TP53-related histones were methylated in CRC. P53 regulates the activity of numerous downstream proteins. Even if TP53 is not mutated, the function of wildtype p53 may be compromised if corresponding downstream genes are epigenetically inactivated. Thus, the role of p53 for CRC development, therapy response, and survival prognosis of patients may be much more eminent than previously estimated. Therefore, we propose that novel diagnostic devices measuring the entirety of genetic and epigenetic changes in the "p53 signalome" have the potential to improve the predictive and prognostic power in CRC diagnostics and management.
Collapse
Affiliation(s)
- Maja T. Tomicic
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany;
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-3925751; Fax: +49-6131-3923752
| |
Collapse
|
35
|
Ding L, Zhang Z, Zhao C, Chen L, Chen Z, Zhang J, Liu Y, Nie Y, He Y, Liao K, Zhang X. Ribosomal L1 domain-containing protein 1 coordinates with HDM2 to negatively regulate p53 in human colorectal Cancer cells. J Exp Clin Cancer Res 2021; 40:245. [PMID: 34362424 PMCID: PMC8344204 DOI: 10.1186/s13046-021-02057-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal L1 domain-containing protein 1 (RSL1D1) is a nucleolar protein that is essential in cell proliferation. In the current opinion, RSL1D1 translocates to the nucleoplasm under nucleolar stress and inhibits the E3 ligase activity of HDM2 via direct interaction, thereby leading to stabilization of p53. METHODS Gene knockdown was achieved in HCT116p53+/+, HCT116p53-/-, and HCT-8 human colorectal cancer (CRC) cells by siRNA transfection. A lentiviral expression system was used to establish cell strains overexpressing genes of interest. The mRNA and protein levels in cells were evaluated by qRT-PCR and western blot analyses. Cell proliferation, cell cycle, and cell apoptosis were determined by MTT, PI staining, and Annexin V-FITC/PI double staining assays, respectively. The level of ubiquitinated p53 protein was assessed by IP. The protein-RNA interaction was investigated by RIP. The subcellular localization of proteins of interest was determined by IFA. Protein-protein interaction was investigated by GST-pulldown, BiFC, and co-IP assays. The therapeutic efficacy of RSL1D1 silencing on tumor growth was evaluated in HCT116 tumor-bearing nude mice. RESULTS RSL1D1 distributed throughout the nucleus in human CRC cells. Silencing of RSL1D1 gene induced cell cycle arrest at G1/S and cell apoptosis in a p53-dependent manner. RSL1D1 directly interacted with and recruited p53 to HDM2 to form a ternary RSL1D1/HDM2/p53 protein complex and thereby enhanced p53 ubiquitination and degradation, leading to a decrease in the protein level of p53. Destruction of the ternary complex increased the level of p53 protein. RSL1D1 also indirectly decreased the protein level of p53 by stabilizing HDM2 mRNA. Consequently, the negative regulation of p53 by RSL1D1 facilitated cell proliferation and survival and downregulation of RSL1D1 remarkably inhibited the growth of HCT116p53+/+ tumors in a nude mouse model. CONCLUSION We report, for the first time, that RSL1D1 is a novel negative regulator of p53 in human CRC cells and more importantly, a potential molecular target for anticancer drug development.
Collapse
Affiliation(s)
- Li Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiping Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chenhong Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lei Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiqiang Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yaxian Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yesen Nie
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yanzhi He
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kai Liao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University (26116120), Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
36
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
37
|
Zhong M, Zhou L, Zou J, He Y, Fang Z, Xiang X. Cullin-4B promotes cell proliferation and invasion through inactivation of p53 signaling pathway in colorectal cancer. Pathol Res Pract 2021; 224:153520. [PMID: 34153655 DOI: 10.1016/j.prp.2021.153520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Cullin 4B (CUL4B) is a member of the Cullin RING E3 ligase family, which is found to be overexpressed in multiple cancers, thus facilitating tumorigenesis and progression. However, the correlation between CUL4B and p53 in colorectal cancer cells (CRC) remains to be further elucidated. In this study, we newly identified that CUL4B functions as a negative regulator of p53, thereby facilitating CRC tumorigenesis and progression. Our data has demonstrated that CUL4B was frequently overexpressed in CRC tissues, and its upregulation was closely correlated with disease progression and poor prognosis. Moreover, CUL4B knockdown suppressed cell proliferation, invasion and epithelial-mesenchymal transition (EMT) of CRC cells. Mechanistically, CUL4B depletion increased the expression of p53 protein and its downstream targets p21, PUMA and MDM2. Furthermore, CUL4B depletion prolonged the half-life of p53 protein, and CUL4B is a binding partner of MDM2. In conclusion, our study shed new lights on the complex regulatory network between CUL4B and p53, and clarifies this CUL4B-p53 axis contributes greatly to CRC tumorigenesis and progression.
Collapse
Affiliation(s)
- Min Zhong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Ling Zhou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jianping Zou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yan He
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Ziling Fang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Xiaojun Xiang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
38
|
Feng Y, Nouri K, Schimmer AD. Mitochondrial ATP-Dependent Proteases-Biological Function and Potential Anti-Cancer Targets. Cancers (Basel) 2021; 13:2020. [PMID: 33922062 PMCID: PMC8122244 DOI: 10.3390/cancers13092020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Cells must eliminate excess or damaged proteins to maintain protein homeostasis. To ensure protein homeostasis in the cytoplasm, cells rely on the ubiquitin-proteasome system and autophagy. In the mitochondria, protein homeostasis is regulated by mitochondria proteases, including four core ATP-dependent proteases, m-AAA, i-AAA, LonP, and ClpXP, located in the mitochondrial membrane and matrix. This review will discuss the function of mitochondrial proteases, with a focus on ClpXP as a novel therapeutic target for the treatment of malignancy. ClpXP maintains the integrity of the mitochondrial respiratory chain and regulates metabolism by degrading damaged and misfolded mitochondrial proteins. Inhibiting ClpXP genetically or chemically impairs oxidative phosphorylation and is toxic to malignant cells with high ClpXP expression. Likewise, hyperactivating the protease leads to increased degradation of ClpXP substrates and kills cancer cells. Thus, targeting ClpXP through inhibition or hyperactivation may be novel approaches for patients with malignancy.
Collapse
Affiliation(s)
- Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kazem Nouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
39
|
Yang F, Yan Z, Nie W, Liu Z, Cheng X, Wang W, Shao C, Fu G, Yu Y. LACTB and LC3 could serve as potential biomarkers of gastric cancer to neoadjuvant chemotherapy with oxaliplatin plus S-1. Oncol Lett 2021; 21:470. [PMID: 33907580 PMCID: PMC8063359 DOI: 10.3892/ol.2021.12731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
The present study investigated and evaluated the correlation between the expression of LACTB and LC3 and the clinical outcomes of patients with advanced gastric cancer treated with oxaliplatin plus S-1 neoadjuvant chemotherapy (NACT). A total of 51 patients with advanced gastric cancer underwent NACT treatment between June 2015 and June 2017. Pathomorphological changes in gastric cancer were analyzed by H&E staining. The expression level and subcellular localization of LACTB and LC3 in paraffin-embedded biopsies were detected by immunohistochemistry and immunofluorescence. The mRNA and protein expression of LACTB were investigated by reverse transcription quantitative polymerase chain reaction and Western blotting, respectively. Statistical analysis was performed to determine the association between the expression of LACTB and LC3 and clinical chemotherapy efficacy of NACT for gastric cancer. Among the 51 patients, 3 (5.88%), 27 (52.94%), 13 (25.49%) and 8 (15.69%) displayed complete remission, partial remission, stable disease and progressive disease, respectively. The rate of decreased LACTB expression was 68.6%, while the rate of increased LC3 expression was 60.8%. Furthermore, there was a significant negative correlation between the expression of LACTB and that of LC3 following NACT (P<0.001). High expression of LC3 (P<0.01) and low expression of LACTB (P<0.01) were associated with a poor response of patients with advanced gastric cancer to NACT. In conclusion, the expression of LACTB and LC3 may serve as a promising novel biomarker for determining the prognosis of patients with advanced gastric cancer receiving NACT, while its potential clinical significance requires further elucidation.
Collapse
Affiliation(s)
- Fang Yang
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Zhiqiang Yan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wei Nie
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zeying Liu
- Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Xingzhen Cheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wei Wang
- Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Chunyan Shao
- Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Gui Fu
- Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Yanni Yu
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
40
|
Huang H, Park S, Zhang H, Park S, Kwon W, Kim E, Zhang X, Jang S, Yoon D, Choi SK, Yi JK, Kim SH, Dong Z, Lee MH, Ryoo Z, Kim MO. Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:114. [PMID: 33785035 PMCID: PMC8010944 DOI: 10.1186/s13046-021-01895-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Enugyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Soyoung Jang
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbuk-do Livestock Research Institute, Yeongju, South Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Korea
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, 58245, Republic of Korea.
| | - Zaeyoung Ryoo
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
41
|
Ma Y, Wang L, He F, Yang J, Ding Y, Ge S, Fan X, Zhou Y, Xu X, Jia R. LACTB suppresses melanoma progression by attenuating PP1A and YAP interaction. Cancer Lett 2021; 506:67-82. [PMID: 33675985 DOI: 10.1016/j.canlet.2021.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 02/03/2023]
Abstract
Very limited progress has been made in the management of advanced melanoma, especially melanoma of uveal origin. Lactamase β (LACTB) is a novel tumor suppressor; however, its biological function in melanoma remains unknown. Herein we demonstrated markedly lower LACTB expression levels in melanoma tissues and cell lines. Overexpression of LACTB suppressed the proliferation, migration and invasion of melanoma cells in vitro. Mechanistically, LACTB inhibited the activity of yes-associated protein (YAP). We showed that the level of phospho-YAP (Serine 127) was increased upon LACTB overexpression, which prevented the translocation of YAP to the nucleus. Further, LACTB could directly bind to PP1A and attenuate the interaction between PP1A and YAP, resulting in decreased YAP dephosphorylation and inactivation in a LATS1-independent manner. Additionally, transfection of phosphorylation-defective YAP mutants reversed LACTB-induced tumor suppression. Upstream, we demonstrated that SOX10 binds to the LACTB promoter and negatively regulates its transcription. Overexpression of LACTB also suppressed the tumorigenicity and lung metastasis of MUM2B uveal melanoma cells in vivo. Taken together, our findings indicate a novel SOX10/LACTB/PP1A signaling cascade that renders YAP inactive and modulates melanoma progression, offering a new therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Lihua Wang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Fanglin He
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yi Ding
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
42
|
Wang H, Xing J, Wang W, Lv G, He H, Lu Y, Sun M, Chen H, Li X. Molecular Characterization of the Oncogene BTF3 and Its Targets in Colorectal Cancer. Front Cell Dev Biol 2021; 8:601502. [PMID: 33644029 PMCID: PMC7905040 DOI: 10.3389/fcell.2020.601502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Guifen Lv
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Haiyan He
- Department of Digestive Endoscopy, Changhai Hospital, Shanghai, China
| | - Yeqing Lu
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Mei Sun
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Haiyan Chen
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
43
|
Yao Z, Zhang Q, Guo F, Guo S, Yang B, Liu B, Li P, Li J, Guan S, Liu X. Long Noncoding RNA PCED1B-AS1 Promotes the Warburg Effect and Tumorigenesis by Upregulating HIF-1α in Glioblastoma. Cell Transplant 2021; 29:963689720906777. [PMID: 32326742 PMCID: PMC7444212 DOI: 10.1177/0963689720906777] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence suggests that long noncoding RNA (lncRNA) functions as a critical regulator in cancer biology. Here, we characterized the role of lncRNA PCED1B antisense RNA 1 (PCED1B-AS1) in glioblastoma (GBM). PCED1B-AS1 was notably upregulated in GBM tissues and cell lines and closely associated with larger tumor size and higher grade. Patients with high PCED1B-AS1 had shorter survival time than those with low PCED1B-AS1. Functional experiments showed that depletion of PCED1B-AS1 significantly inhibited, while overexpression of PCED1B-AS1 promoted cell proliferation, glucose uptake, and lactate release. Mechanistically, PCED1B-AS1 was able to directly bind to the 5'-UTR of HIF-1α mRNA and potentiate HIF-1α translation, leading to increased HIF-1α protein level, thereby promoting the Warburg effect and tumorigenesis. Importantly, PCED1B-AS1 lost the carcinogenic properties in the absence of HIF-1α. In addition, we also confirmed the existence of the PCED1B-AS1/HIF-1α regulatory axis in vivo. Taken together, our findings demonstrate that PCED1B-AS1 is a novel oncogenic lncRNA in GBM and functions in a HIF-1α-dependent manner, which provides a promising prognostic biomarker and druggable target for GBM.
Collapse
Affiliation(s)
- Zhiqiang Yao
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Qiansheng Zhang
- Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Shewei Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Binghui Liu
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Panxing Li
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Jinyi Li
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Sheng Guan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
44
|
Xie J, Peng Y, Chen X, Li Q, Jian B, Wen Z, Liu S. LACTB mRNA expression is increased in pancreatic adenocarcinoma and high expression indicates a poor prognosis. PLoS One 2021; 16:e0245908. [PMID: 33507917 PMCID: PMC7842907 DOI: 10.1371/journal.pone.0245908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to find the prognostic value of Beta-lactamase-like (LACTB) in pancreatic adenocarcinoma (PAAD) patients. The mRNA expression of LACTB was upregulated in PAAD and was correlated with vital status (P = 0.0199). The immunoreactive scores of LACTB protein in human PAAD tissues were significantly higher than those in adjacent noncancerous pancreatic tissues. Receiver operating characteristic (ROC) curve assessment showed that LACTB mRNA expression has high diagnostic value in PAAD. Kaplan-Meier curve and Cox analyses suggested that patients with high LACTB mRNA expression have a poor prognosis, indicating that LACTB mRNA is an independent prognostic factor for overall survival [hazard ratio (HR) = 1.72, P = 0.015, 95% confidence interval (CI) = 1.106–2.253] and disease-specific survival (HR = 1.97, P = 0.004, 95% CI = 1.238–3.152) of PAAD patients. Gene set enrichment analysis (GSEA) revealed that hallmark_g2m_checkpoint, hallmark_myc_targets_v1, hallmark_e2f_targets, and kegg_cell_cycle were differentially enriched in phenotypes with high LACTB expression. In addition, CDC20, CDK4, MCM6, MAD2L1, MCM2 and MCM5 were leading genes intersecting in these four pathways, and a positive correlation between mRNA expression and LACTB was observed in most normal and cancer tissues. Finally, elevated LACTB mRNA expression was significantly related to multiple immune marker sets. Our results elucidate that LACTB is involved in the development of cancer, and that high LACTB expression in patients with PAAD can predict a poor prognosis. High LACTB expression was significantly correlated with cell cycle-related genes and multiple immune marker sets.
Collapse
Affiliation(s)
- Jian Xie
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Chen
- Department of Prevention and Health Protection, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qigang Li
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Jian
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zelin Wen
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
45
|
Xu Z, Wu W, Yan H, Hu Y, He Q, Luo P. Regulation of p53 stability as a therapeutic strategy for cancer. Biochem Pharmacol 2021; 185:114407. [PMID: 33421376 DOI: 10.1016/j.bcp.2021.114407] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The tumor suppressor protein p53 participates in the control of key biological functions such as cell death, metabolic homeostasis and immune function, which are closely related to various diseases such as tumors, metabolic disorders, infection and neurodegeneration. The p53 gene is also mutated in approximately 50% of human cancer cells. Mutant p53 proteins escape from the ubiquitination-dependent degradation, gain oncogenic function and promote the carcinogenesis, malignant progression, metastasis and chemoresistance. Therefore, the stability of both wild type and mutant p53 needs to be precisely regulated to maintain normal functions and targeting the p53 stability is one of the therapeutic strategies against cancer. Here, we focus on compound-induced degradation of p53 by both the ubiquitination-dependent proteasome and autophagy-lysosome degradation pathways. We also review other posttranslational modifications which control the stability of p53 and the biological functions involved in these processes. This review provides the current theoretical basis for the regulation of p53 abundance and its possible applications in different diseases.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Jiang L, Yang Y, Feng H, Zhou Q, Liu Y. Pinocembrin Inhibits the Proliferation, Migration, Invasiveness, and Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Regulating LACTB. Cancer Biother Radiopharm 2020; 37:527-536. [PMID: 33395536 DOI: 10.1089/cbr.2020.4052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Colorectal cancer (CRC) is a common malignancy of digestive tract. Pinocembrin (PINO) has been discovered to have proapoptotic effect on CRC. This study aimed to elucidate how other biological behaviors of CRC cells were affected under PINO treatment. Materials & Methods: The effect of PINO on HT29 and HCT116 cells were detected through treatment of different concentrations of PINO. The role of LACTB in PINO treatment was investigated by transfection of siRNA-LACTB. Cell counting kit-8 assay, wound healing assay, and Transwell assay were conducted to evaluate the proliferation, migration, and invasiveness of CRC cells, respectively. Western blot or quantitative reverse transcription-polymerase chain reaction was carried out to measure the expressions of LACTB, matrix metalloproteinase (MMP)-2, E-cadherin, and N-cadherin. Results: Gradient PINO inhibited the viability, migration, invasiveness, and expressions of MMP-2 and N-cadherin in CRC cells, while promoted E-cadherin and LACTB expressions. Silencing LACTB promoted the viability, migration, invasiveness, and expressions of MMP-2 and N-cadherin in CRC cells and inhibited E-cadherin expression. PINO counteracted the effect of silenced LACTB, and yet silencing LACTB partially abolished the effect of PINO on CRC cells. Conclusion: PINO inhibited the proliferation, migration, invasiveness, and epithelial-to-mesenchymal transition of CRC cells by regulating LACTB.
Collapse
Affiliation(s)
- Lai Jiang
- Department of Colorectal Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yongbo Yang
- Department of Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Haiyang Feng
- Department of Colorectal Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qinfei Zhou
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yong Liu
- Department of Colorectal Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Wang C, Shi Z, Hong Z, Pan J, Chen Z, Qiu C, Zhuang H, Zheng X. MicroRNA-1276 Promotes Colon Cancer Cell Proliferation by Negatively Regulating LACTB. Cancer Manag Res 2020; 12:12185-12195. [PMID: 33273855 PMCID: PMC7705278 DOI: 10.2147/cmar.s278566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose LACTB, regulated by a variety of microRNAs (miRNAs), is proven to be a tumor suppressor. However, there are few reports that LACTB in colon cancer cells is regulated by miRNA. Therefore, the aim of this study was to explore the miRNAs that regulate LACTB in colon cancer. Patients and Methods Data from TCGA were analyzed in starBase and GEPIA2, and Western blot and quantitative PCR (qPCR) were used to detect the expression of LACTB in colon cancer cell lines. MiRNAs targeting LACTB were predicted by MicroT-CDS, starBase, miRDB, mirDIP, and DIANA. The relationship between LACTB and miRNA was explored by dual-luciferase assay. MTT, propidium iodide (PI), Western blot, Annexin V-FITC/PI Kit, qPCR and transwell assay were used to detect the changes in cell proliferation, cell cycle, autophagy, apoptosis, epithelial-to-mesenchymal transition (EMT), cell migration, and invasiveness in colon cancer cells that overexpressed miR-1276 and/or LACTB. Results The results showed that the LACTB mRNA level was lower and the miR-1276 level was higher in colon cancer than in normal tissue. MiR-1276 inhibited the expression of LACTB. Furthermore, overexpression of miR-1276 in colon cancer cells increased proliferation, migration, invasiveness and EMT, and decreased autophagy and apoptosis. Supplementing LACTB suppressed these effects of miR-1276. Conclusion In conclusion, miR-1276, which may be a potential therapy for colon cancer, inhibits cell growth and promotes apoptosis by targeting LACTB in colon cancer cells.
Collapse
Affiliation(s)
- Chunxiao Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Zesheng Shi
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Zhongshi Hong
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Jianpeng Pan
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Zhichuan Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Haibin Zhuang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Xuecong Zheng
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| |
Collapse
|
48
|
Montrose K, López Cabezas RM, Paukštytė J, Saarikangas J. Winter is coming: Regulation of cellular metabolism by enzyme polymerization in dormancy and disease. Exp Cell Res 2020; 397:112383. [PMID: 33212148 DOI: 10.1016/j.yexcr.2020.112383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Metabolism feeds growth. Accordingly, metabolism is regulated by nutrient-sensing pathways that converge growth promoting signals into biosynthesis by regulating the activity of metabolic enzymes. When the environment does not support growth, organisms invest in survival. For cells, this entails transitioning into a dormant, quiescent state (G0). In dormancy, the activity of biosynthetic pathways is dampened, and catabolic metabolism and stress tolerance pathways are activated. Recent work in yeast has demonstrated that dormancy is associated with alterations in the physicochemical properties of the cytoplasm, including changes in pH, viscosity and macromolecular crowding. Accompanying these changes, numerous metabolic enzymes transition from soluble to polymerized assemblies. These large-scale self-assemblies are dynamic and depolymerize when cells resume growth. Here we review how enzyme polymerization enables metabolic plasticity by tuning carbohydrate, nucleic acid, amino acid and lipid metabolic pathways, with particular focus on its potential adaptive value in cellular dormancy.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Neuroscience Center, University of Helsinki, Finland.
| |
Collapse
|
49
|
Peng LX, Wang MD, Xie P, Yang JP, Sun R, Zheng LS, Mei Y, Meng DF, Peng XS, Lang YH, Qiang YY, Li CZ, Xu L, Liu ZJ, Guo LL, Xie DH, Shu DT, Lin ST, Luo FF, Huang BJ, Qian CN. LACTB promotes metastasis of nasopharyngeal carcinoma via activation of ERBB3/EGFR-ERK signaling resulting in unfavorable patient survival. Cancer Lett 2020; 498:165-177. [PMID: 33152401 DOI: 10.1016/j.canlet.2020.10.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Nasopharyngeal carcinoma (NPC) originates in the nasopharyngeal epithelium and has the highest metastatic rate among head and neck cancers. Distant metastasis is the main reason for treatment failure with the underlying mechanisms remaining unclear. By comparing the expression profiling of NPCs versus non-cancerous nasopharyngeal tissues, we found LACTB was highly expressed in the tumor tissues. We found that elevated expression of the LACTB protein in primary NPCs correlated with poorer patient survival. LACTB is known to be a serine protease and a ubiquitous mitochondrial protein localized in the intermembrane space. Its role in tumor biology remains controversial. We found that the different methylation pattern of LACTB promoter led to its differential expression in NPC cells. Overexpressing LACTB in NPC cells promoted their motility in vitro and metastasis in vivo. While knocking down LACTB reduced the metastasis capability of NPC cells. However, LACTB did not influence cellular proliferation. We further found the role of LACTB in promoting NPC metastasis depended on the activation of ERBB3/EGFR-ERK signaling, which in turn, affected the stability and the following acetylation of histone H3. These findings may shed light on unveiling the mechanisms of NPC metastasis.
Collapse
Affiliation(s)
- Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Dian Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ping Xie
- Department of Radiation Oncology, Xiang an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jun-Ping Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Rui Sun
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dong-Fang Meng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xing-Si Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Hong Lang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Yuan Qiang
- Ningxia Key Laboratory for Cerebrocranical Disease, Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Chang-Zhi Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liang Xu
- Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhi-Jie Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ling-Ling Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - De-Huan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Di-Tian Shu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Si-Ting Lin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fei-Fei Luo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
50
|
Wang S, Wang T, Wang L, Zhong L, Li K. Overexpression of RNF126 Promotes the Development of Colorectal Cancer via Enhancing p53 Ubiquitination and Degradation. Onco Targets Ther 2020; 13:10917-10929. [PMID: 33149608 PMCID: PMC7604871 DOI: 10.2147/ott.s271855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/27/2020] [Indexed: 12/23/2022] Open
Abstract
Background RING finger protein 126 (RNF126), as a novel E3 ubiquitin ligase, plays an oncogenic role in several solid cancers. But its potential role in colorectal cancer (CRC) that harbored 50% mutant p53, to our knowledge, is rarely reported. Materials and Methods We investigated the clinical significance and relationship of RNF126 and p53 in CRC tissues and cells. Meanwhile, WB, qRT-PCR, co-IP, MTT, and transwell were used to investigate the function and molecular mechanism of RNF126 in regulating malignant biology in vitro. Results RNF126 was overexpressed in human CRC specimens, which was tightly associated with tumor size (P=0.021), T stage (P=0.030), lymph node metastasis (P=0.006), TNM stage (P=0.001), and the poor survival (P=0.003) of CRC patients. RNF126 had no association with p53 mutation in CRC specimens, and in p53 mutant Colo-205 and SW620 cells. However, in p53 wildtype HCT116 and HCT-8 cells, RNF126 silencing upregulated p53 and p21 but inhibited Rb phosphorylation at Serine 780 (pRb), which was inhibited by p53siRNA. Conversely, RNF126 overexpression downregulated p53 and p21 but promoted pRb expression, which was reversed by a classic proteasome inhibitor, MG132. However, the mRNA levels of above target genes were unchanged, implying a ubiquitination dependent post-translational modification involving in above regulation. Meanwhile, RNF126 was co-immunoprecipitated with p53 and p21 to form a triple complex. RNF126 silencing and overexpression inhibited and promoted p53 ubiquitination and degradation in vitro, respectively. In addition, p53siRNA reversed RNF126 silencing-inhibited cell proliferation, drug resistance, and cell mobility in HCT116 cells. Conversely, MG132 inhibited RNF126 overexpression-promoted above cell biology in HCT-8 cells. Conclusion Overexpression of RNF126 was remarkably associated with multiple advanced clinical characters of CRC patients independent of mutant p53. RNF126 promotes cell proliferation, mobility, and drug resistance in CRC via enhancing p53 ubiquitination and degradation.
Collapse
Affiliation(s)
- Shiyang Wang
- Department of Geriatric Surgery, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China.,Department of Surgical Oncology, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Tianlong Wang
- Department of Geriatric Surgery, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Li Wang
- Department of Geriatric Surgery, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Liansheng Zhong
- Department of Bioinformatics, College of Life Science, China Medical University, Shenyang 110001, People's Republic of China
| | - Kai Li
- Department of Surgical Oncology, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|