1
|
Wu D, Li H, Wang L, Hu Y, Huang H, Li J, Yang Y, Wu X, Ye X, Mao R, Li J, Shi X, Xie C, Yang C. Echinocystic acid inhibits sepsis-associated renal inflammation and apoptosis by targeting protein tyrosine phosphatase 1B. Int Immunopharmacol 2024; 142:113076. [PMID: 39298825 DOI: 10.1016/j.intimp.2024.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Thefruits of Gleditsia sinensis Lam. have been utilized to treat inflammatory diseases in China. Echinocystic acid (EA), one pentacyclic triterpenoid isolated from thefruits of G. sinensis, exhibits an anti-inflammatory effect. However, its anti-sepsis activity and mechanism of action, especially the protective effect against sepsis-associated acute kidney injury (SA-AKI), are not investigated yet. This study is to explore the efficacy and potential mechanism of EA on SA-AKI. EA elevated the function of multiple organs and effectively reduced the increased inflammation and apoptosis of kidney tissue and HK-2 cells. DARTS, CETSA, and molecular docking experiments revealed that EA could directly bind to protein tyrosine phosphatase 1B (PTP1B), a widespread prototype non-receptor tyrosine phosphatase. Collectively, EA can alleviate murine SA-AKI though restraining inflammation and apoptosis and may be a potential natural drug for remedying SA-AKI.
Collapse
Affiliation(s)
- Dan Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Lin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Yayue Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Hong Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Jinhe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ying Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Xi Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Xiaoman Ye
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Ruiqi Mao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Jiahang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Xue Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| |
Collapse
|
2
|
Li G, Liu W, Da X, Li Z, Pu J. The natural flavonoid pinocembrin shows antithrombotic activity and suppresses septic thrombosis. Int Immunopharmacol 2024; 142:113237. [PMID: 39340994 DOI: 10.1016/j.intimp.2024.113237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Sepsis, an extreme host response to systemic infection, remains one of the leading causes of mortality worldwide. Platelets, which are integral to both thrombosis and inflammation, play a crucial role in the pathophysiology of sepsis. Excessive platelet activation and aggregation significantly increase the risk of thrombosis, thereby elevating mortality in septic patients. However, the etiology and treatment of this condition have not been comprehensively studied. This study identifies pinocembrin, a natural flavonoid compound derived from propolis, as a potential therapeutic agent for mitigating platelet activation and treating sepsis. In vivo, pinocembrin effectively inhibited FeCl3-induced carotid arterial occlusive thrombus formation and collagen/epinephrine-induced pulmonary thromboembolism in mouse models. In vitro, pinocembrin treatment suppressed multiple facets of platelet activation, including aggregation, secretion, and αIIbβ3-mediated signaling events. Mechanistically, pinocembrin repressed platelet functions by inhibiting Src/Syk/PLCγ2/MAPK signaling pathway. Using cecal ligation and puncture (CLP) mouse model to simulate human sepsis, pinocembrin reduced inflammatory cytokine release and septic thrombosis, thereby improving the survival rate of septic mice. Lipopolysaccharide (LPS)-induced model further substantiated these results. Overall, the inhibition of platelet activity by pinocembrin demonstrates significant therapeutic potential for managing life-threatening septic thrombosis.
Collapse
Affiliation(s)
- Gaoxiang Li
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhua Liu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwen Da
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyan Li
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
He Y, Liu Z, Li S, Liao S, Tang B, Lin Y. A Tetrahedral Framework DNA-Based Bioswitchable miR-150 Delivery System for Sepsis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58477-58488. [PMID: 39422161 DOI: 10.1021/acsami.4c14928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sepsis is a disease with high morbidity and mortality, for which effective treatments are lacking. In recent years, microRNAs (miRs) have been shown to regulate numerous biological processes and can function as therapeutic options for various diseases. However, the poor stability and cell entry properties of miRs have greatly limited their clinical application. In this study, we developed a tetrahedral framework nucleic acid (tFNA)-based bioswitchable miR delivery system (BiRDS) to deliver miR-150 for the treatment of sepsis. BiRDS showed anti-inflammatory effects both in vitro and in vivo by regulating the NF-κB and Notch1 pathways. Therefore, this system holds promise as an ideal candidate for tackling systemic inflammation and multiorgan dysfunction in septic patients in the future.
Collapse
Affiliation(s)
- Yutian He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengnan Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Huang X, Wei P, Fang C, Yu M, Yang S, Qiu L, Wang Y, Xu A, Hoo RLC, Chang J. Compromised endothelial Wnt/β-catenin signaling mediates the blood-brain barrier disruption and leads to neuroinflammation in endotoxemia. J Neuroinflammation 2024; 21:265. [PMID: 39427196 PMCID: PMC11491032 DOI: 10.1186/s12974-024-03261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
The blood-brain barrier (BBB) is a critical interface that maintains the central nervous system homeostasis by controlling the exchange of substances between the blood and the brain. Disruption of the BBB plays a vital role in the development of neuroinflammation and neurological dysfunction in sepsis, but the mechanisms by which the BBB becomes disrupted during sepsis are not well understood. Here, we induced endotoxemia, a major type of sepsis, in mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS acutely increased BBB permeability, activated microglia, and heightened inflammatory responses in brain endothelium and parenchyma. Concurrently, LPS or proinflammatory cytokines activated the NF-κB pathway, inhibiting Wnt/β-catenin signaling in brain endothelial cells in vitro and in vivo. Cell culture study revealed that NF-κB p65 directly interacted with β-catenin to suppress Wnt/β-catenin signaling. Pharmacological NF-κB pathway inhibition restored brain endothelial Wnt/β-catenin signaling activity and mitigated BBB disruption and neuroinflammation in septic mice. Furthermore, genetic or pharmacological activation of brain endothelial Wnt/β-catenin signaling substantially alleviated LPS-induced BBB leakage and neuroinflammation, while endothelial conditional ablation of the Wnt7a/7b co-receptor Gpr124 exacerbated the BBB leakage caused by LPS. Mechanistically, Wnt/β-catenin signaling activation rectified the reduced expression levels of tight junction protein ZO-1 and transcytosis suppressor Mfsd2a in brain endothelial cells of mice with endotoxemia, inhibiting both paracellular and transcellular permeability of the BBB. Our findings demonstrate that endotoxemia-associated systemic inflammation decreases endothelial Wnt/β-catenin signaling through activating NF-κB pathway, resulting in acute BBB disruption and neuroinflammation. Targeting the endothelial Wnt/β-catenin signaling may offer a promising therapeutic strategy for preserving BBB integrity and treating neurological dysfunction in sepsis.
Collapse
Affiliation(s)
- Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pengju Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Linhui Qiu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ruby Lai Chong Hoo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Ge J, Deng Q, Zhou R, Hu Y, Zhang X, Zheng Z. Identification of key biomarkers and therapeutic targets in sepsis through coagulation-related gene expression and immune pathway analysis. Front Immunol 2024; 15:1470842. [PMID: 39430765 PMCID: PMC11486639 DOI: 10.3389/fimmu.2024.1470842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
Sepsis, characterized by a widespread and dysregulated immune response to infection leading to organ dysfunction, presents significant challenges in diagnosis and treatment. In this study, we investigated 203 coagulation-related genes in sepsis patients to explore their roles in the disease. Through differential gene expression analysis, we identified 20 genes with altered expression patterns. Subsequent correlation analysis, visualized through circos plots and heatmaps, revealed significant relationships among these genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that these genes are involved in immune response activation, coagulation, and immune receptor activity. Disease Ontology (DO) enrichment analysis further linked these genes to autoimmune hemolytic anemia and tumor-related signaling pathways. Additionally, the CIBERSORT analysis highlighted differences in immune cell composition in sepsis patients, revealing an increase in neutrophils and monocytes and a decrease in inactive NK cells, CD8 T cells, and B cells. We employed machine learning techniques, including random forest and SVM, to construct a diagnostic model, identifying FCER1G and FYN as key biomarkers. These biomarkers were validated through their expression levels and ROC curve analysis in an independent validation cohort, demonstrating strong diagnostic potential. Single-cell analysis from the GSE167363 dataset further confirmed the distinct expression profiles of these genes across various cell types, with FCER1G predominantly expressed in monocytes, NK cells, and platelets, and FYN in CD4+ T cells and NK cells. Enrichment analysis via GSEA and ssGSEA revealed that these genes are involved in critical pathways, including intestinal immune networks, fatty acid synthesis, and antigen processing. In conclusion, our comprehensive analysis identifies FCER1G and FYN as promising biomarkers for sepsis, providing valuable insights into the molecular mechanisms of this complex condition. These findings offer new avenues for the development of targeted diagnostic and therapeutic strategies in sepsis management.
Collapse
Affiliation(s)
- Jing Ge
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qijie Deng
- Grade 2020, The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yahui Hu
- Department of Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaotong Zhang
- Department of Ultrasound, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Zemao Zheng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Alves PT, de Souza AG, Bastos VAF, Miguel EL, Ramos ACS, Cameron LC, Goulart LR, Cunha TM. The Modulation of Septic Shock: A Proteomic Approach. Int J Mol Sci 2024; 25:10641. [PMID: 39408970 PMCID: PMC11476436 DOI: 10.3390/ijms251910641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Sepsis poses a significant challenge due its lethality, involving multiple organ dysfunction and impaired immune responses. Among several factors affecting sepsis, monocytes play a crucial role; however, their phenotype, proteomic profile, and function in septic shock remain unclear. Our aim was to fully characterize the subpopulations and proteomic profiles of monocytes seen in septic shock cases and discuss their possible impact on the disease. Peripheral blood monocyte subpopulations were phenotype based on CD14/CD16 expression by flow cytometry, and proteins were extracted from the monocytes of individuals with septic shock and healthy controls to identify changes in the global protein expression in these cells. Analysis using 2D-nanoUPLC-UDMSE identified 67 differentially expressed proteins in shock patients compared to controls, in which 44 were upregulated and 23 downregulated. These proteins are involved in monocyte reprogramming, immune dysfunction, severe hypotension, hypo-responsiveness to vasoconstrictors, vasodilation, endothelial dysfunction, vascular injury, and blood clotting, elucidating the disease severity and therapeutic challenges of septic shock. This study identified critical biological targets in monocytes that could serve as potential biomarkers for the diagnosis, prognosis, and treatment of septic shock, providing new insights into the pathophysiology of the disease.
Collapse
Affiliation(s)
- Patrícia Terra Alves
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil (T.M.C.)
| | - Aline Gomes de Souza
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14040-900, SP, Brazil;
| | - Victor Alexandre F. Bastos
- Laboratory of Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Eduarda L. Miguel
- School of Medicine, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil; (E.L.M.); (A.C.S.R.)
| | - Augusto César S. Ramos
- School of Medicine, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil; (E.L.M.); (A.C.S.R.)
| | - L. C. Cameron
- Arthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, RJ, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil (T.M.C.)
| | - Thúlio M. Cunha
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil (T.M.C.)
- School of Medicine, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil; (E.L.M.); (A.C.S.R.)
| |
Collapse
|
8
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Zhao Q, Zhang R, Wang Y, Li T, Xue J, Chen Z. FOXQ1, deubiquitinated by USP10, alleviates sepsis-induced acute kidney injury by targeting the CREB5/NF-κB signaling axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167331. [PMID: 38960057 DOI: 10.1016/j.bbadis.2024.167331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is a severe and frequent complication that occurs during sepsis. This study aimed to understand the role of FOXQ1 in S-AKI and its potential upstream and downstream regulatory mechanisms. A cecal ligation and puncture induced S-AKI mouse model in vivo and an LPS-induced HK-2 cell model in vitro were used. FOXQ1 was significantly upregulated in CLP mice and downregulated in the LPS-induced HK-2 cells. Upregulation of FOXQ1 improved kidney injury and dysfunction in CLP mice. Overexpression of FOXQ1 remarkably suppressed the apoptosis and inflammatory response via down-regulating oxidative stress indicators and pro-inflammatory factors (IL-1β, IL-6, and TNF-α), both in vivo and in vitro. From online analysis, the CREB5/NF-κB axis was identified as the downstream target of FOXQ1. FOXQ1 transcriptionally activated CREB5, upregulating its expression. Overexpression of FOXQ1 suppressed the phosphorylation level and nucleus transport of p65. Rescue experiments showed that CREB5 mediates the protective role of FOXQ1 on S-AKI. Furthermore, FOXQ1 was identified as a substrate of USP10, a deubiquitinating enzyme. Ectopic expression of USP10 reduced the ubiquitination of FOXQ1, promoting its protein stability. USP10 upregulation alleviated LPS-induced cell apoptosis and inflammatory response, while suppression of FOXQ1 augmented these trends. Collectively, our results suggest that FOXQ1, deubiquitinated by USP10, plays a protective role in S-AKI induced inflammation and apoptosis by targeting CREB5/NF-κB axis.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ran Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Van Dender C, Timmermans S, Paakinaho V, Vanderhaeghen T, Vandewalle J, Claes M, Garcia B, Roman B, De Waele J, Croubels S, De Bosscher K, Meuleman P, Herpain A, Palvimo JJ, Libert C. A critical role for HNF4α in polymicrobial sepsis-associated metabolic reprogramming and death. EMBO Mol Med 2024; 16:2485-2515. [PMID: 39261648 PMCID: PMC11473810 DOI: 10.1038/s44321-024-00130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
In sepsis, limited food intake and increased energy expenditure induce a starvation response, which is compromised by a quick decline in the expression of hepatic PPARα, a transcription factor essential in intracellular catabolism of free fatty acids. The mechanism upstream of this PPARα downregulation is unknown. We found that sepsis causes a progressive hepatic loss-of-function of HNF4α, which has a strong impact on the expression of several important nuclear receptors, including PPARα. HNF4α depletion in hepatocytes dramatically increases sepsis lethality, steatosis, and organ damage and prevents an adequate response to IL6, which is critical for liver regeneration and survival. An HNF4α agonist protects against sepsis at all levels, irrespectively of bacterial loads, suggesting HNF4α is crucial in tolerance to sepsis. In conclusion, hepatic HNF4α activity is decreased during sepsis, causing PPARα downregulation, metabolic problems, and a disturbed IL6-mediated acute phase response. The findings provide new insights and therapeutic options in sepsis.
Collapse
Affiliation(s)
- Céline Van Dender
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Maarten Claes
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno Garcia
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, Center Hospitalier Universitaire de Lille, 59000, Lille, France
| | - Bart Roman
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Karolien De Bosscher
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, St.-Pierre University Hospital, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Feng J, Liu L, Liu J, Wang J. Immunological alterations in the endothelial barrier: a new predictive and therapeutic paradigm for sepsis. Expert Rev Clin Immunol 2024; 20:1205-1217. [PMID: 38850066 DOI: 10.1080/1744666x.2024.2366301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Despite the fact incidence and mortality vary widely among regions, sepsis remains a major cause of morbidity and cost worldwide. The importance of the endothelial barrier in sepsis and infectious diseases is increasingly recognized; however, the underlying pathophysiology of the endothelial barrier in sepsis remains poorly understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of immunological alterations in endothelial dysfunction, discussing the central role of endothelial barrier involved in sepsis to provide new predictive and therapeutic paradigm for sepsis. EXPERT OPINION Given its physiological and immunological functions in infectious diseases, the endothelial barrier has been dramatically altered in sepsis, suggesting that endothelial dysfunction may play a critical role in the pathogenesis of sepsis. Although many reliable biomarkers have been investigated to monitor endothelial activation and injury in an attempt to find diagnostic and therapeutic tools, there are no specific therapies to treat sepsis due to its complex pathophysiology. Since sepsis is initiated by both hyperinflammation and immunoparalysis occurring simultaneously, a 'one-treatment-fits-all' strategy for sepsis-induced immune injury and immunoparalysis is bound to fail, and an individualized 'precision medicine' approach is required.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junya Liu
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Chen G, Song J, Zhou Y, Wu Y, Yang C, Wang Y, Zhong M. Ethyl palmitate ameliorates lethal endotoxemia by inducing hepatic fetuin-A secretion: an in vivo and in vitro experiment. J Thorac Dis 2024; 16:6024-6036. [PMID: 39444871 PMCID: PMC11494534 DOI: 10.21037/jtd-24-1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
Background Ethyl palmitate (EP) is known to promote hepatic fetuin-A production and modulate inflammatory responses, but its potential role in lethal endotoxemia and sepsis remains unclear. This study investigates the plasma fetuin-A levels and further evaluates the impact of hepatic fetuin-A induced by EP on systemic inflammation and macrophage polarization in lethal endotoxemia and sepsis. Methods Blood samples from 55 sepsis patients and 18 non-septic controls with similar age and sex ratio were collected to perform proteomic analyses and identify significantly different proteins. Serum fetuin-A levels in lipopolysaccharide (LPS) induced endotoxemia mice were assayed by enzyme-linked immunosorbent assay (ELISA). The mouse hepatocyte cell (AML-12) was exposed to different concentrations of EP. In vivo experiments were conducted in which adult male C57BL/6J mice were given EP with or without intraperitoneal LPS. Fetuin-A was determined via western blot and immunohistochemical staining. Survival rates, lung and liver injury and levels of pro-inflammatory cytokines were also monitored and assessed using histology, real-time quantitative polymerase chain reaction (RT-qPCR) and ELISA. Additionally, the proportion of macrophages and M1/M2 subtypes in the lung and liver tissues were evaluated by flow cytometry. Results Our proteomic results revealed that the plasma fetuin-A levels were significantly decreased in sepsis patients compared with non-septic controls. Similarly, the serum fetuin-A levels were also reduced in endotoxemia mice compared with the control group. EP effectively promoted the production of fetuin-A in AML-12 cells and murine liver tissues. Subsequently, activation of fetuin-A by EP dramatically reduced LPS-induced murine mortality, alleviated lung and liver injury, down-regulated pro-inflammatory mediators and macrophage infiltration. Furthermore, EP regulated macrophage polarization from the M1 (CD45+CD11b+F4/80+CD86+) to the M2 (CD45+CD11b+F4/80+CD206+) subtype in murine liver tissue. Conclusions EP-induced production of fetuin-A prevents sepsis and endotoxemia progression by promoting M2 polarization of macrophages.
Collapse
Affiliation(s)
- Guannan Chen
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieqiong Song
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Wu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenghang Yang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingqin Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| |
Collapse
|
13
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
14
|
Hook JS, Matheis AD, Kavanaugh JS, Horswill AR, Moreland JG. Role for IRAK-4 and p38 in Neutrophil Signaling in Response to Bacterial Lipoproteins from Staphylococcus aureus. Inflammation 2024:10.1007/s10753-024-02147-7. [PMID: 39302496 DOI: 10.1007/s10753-024-02147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Neutrophils, polymorphonuclear leukocytes (PMN), express numerous pattern recognition receptors, including TLRs, capable of recognizing a wide variety of pathogens. Receptor engagement initiates a cascade of PMN responses with some occurring in seconds, and some requiring de novo protein synthesis over the course of many hours. Although numerous species of bacteria and bacterial products have been shown to activate PMN via TLRs, the signaling intermediates required for distinct PMN responses have not been well-defined in human PMN. Given the potential for host tissue damage by overexuberant PMN activity, a better understanding of neutrophil signaling is needed to generate effective therapies. We hypothesized that PMN responses to a lipoprotein-containing cell membrane preparation from methicillin-resistant S. aureus (MRSA-CMP) would activate signaling via IRAK4 and p38, with potentially distinct pathways for early vs. late responses. Using human PMN we investigated MRSA-CMP-elicited reactive oxygen species (ROS) production, elastase activity, NET formation, IL-8 production, and the role of IRAK4 and p38 activation. MRSA-CMP elicited ROS in a concentration and lipoprotein-dependent manner. MRSA-CMP elicited phosphorylation of p38 MAPK, and MRSA-CMP-elicited ROS production was partially dependent on p38 MAPK and IRAK4 activation. Inhibition of IRAK4 resulted in a reduction of p38 phosphorylation. MRSA-CMP-elicited elastase activity and NET formation was partially dependent on p38 MAPK activation, but independent of IRAK4 activation. MRSA-CMP-elicited IL-8 production required both p38 and IRAK4 activation. In conclusion, MRSA-CMP elicits PMN responses via distinct signaling pathways. There is potential to target components of the neutrophil inflammatory response without compromising critical pathogen-specific immune functions.
Collapse
Affiliation(s)
- Jessica S Hook
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Austin D Matheis
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Jessica G Moreland
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Microbiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8504, USA.
| |
Collapse
|
15
|
Refaie MMM, El-Hussieny M, Bayoumi AMA, Abdelraheem WM, Abdel-Hakeem EA, Shehata S. Sacubitril/valsartan alleviates sepsis-induced myocardial injury in rats via dual angiotensin receptor-neprilysin inhibition and modulation of inflammasome/caspase 1/IL1β pathway. Eur J Pharmacol 2024; 979:176834. [PMID: 39038638 DOI: 10.1016/j.ejphar.2024.176834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Sepsis is a life-threatening situation that ultimately affects cardiac function, leading to cardiomyopathy and myocardial injury as a result of uncontrolled response to infection.Till now, there is limited effective treatment to rescue those cases. Thus, novel therapeutic strategies should be identified to achieve better outcomes for septic patients. For the first time, we aimed to evaluate the effect of sacubitril/valsartan (Sac/Val) on sepsis-induced cardiac injury. Wistar male adult albino rats were randomly divided into four groups; Group I received the vehicle; Group II was given the vehicle plus 1 ml saline containing viable Escherichia coli (E. coli) (2.1 × 109 cfu) by intraperitoneal (i.p.) injection on the 1st and 2nd days; Group III received i.p. injection as group II plus oral administration of Sac/Val (30 mg/kg/day) and Nitro- ω-L-arginine (L-NNA) (25 mg/kg/day) for 7 days. Group IV was administered i.p. injection as group II plus oral administration of Sac/Val (30 mg/kg/day) for 7 days. Our data (n = 10) revealed successful induction of sepsis as it showed a significant increase in the measured cardiac enzymes, malondialdehyde (MDA), angiotensin II (Ang II), neprilysin, inflammasome, caspase 1, interleukin (IL)1β, and caspase 3 with cardiac histopathological changes, but there was a significant decrease in the antioxidants and blood pressure (BP). Co-administration of Sac/Val could obviously improve these changes. Interestingly, L-NNA given group showed a decrease in the cardioprotective effect of Sac/Val. Sac/Val could ameliorate sepsis induced cardiac damage via inhibition of Ang II and neprilysin with anti-inflammatory, anti-oxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt.
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519, El-Minia, Egypt.
| | - Wedad M Abdelraheem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt.
| | - Elshymaa A Abdel-Hakeem
- Department of Medical Physiology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt.
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt.
| |
Collapse
|
16
|
Kirti, Sharma AK, Yashavarddhan MH, Kumar R, Shaw P, Kalonia A, Shukla SK. Exosomes: A new perspective for radiation combined injury as biomarker and therapeutics. Tissue Cell 2024; 91:102563. [PMID: 39270512 DOI: 10.1016/j.tice.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Radiation Combined Injuries (RCI) pose formidable public health risks, particularly in the context of nuclear incidents, necessitating specialized treatments and development of biomarkers. RCI encompasses instances where ionizing radiation exposure coincides with burns, wounds, or trauma. However, the limited understanding of cellular responses hinders progress in developing effective therapies. This article underscores the pivotal role of exosomes, nano-sized particles (30-120 nm) actively secreted by cells, in addressing the intricate challenges posed by RCI. Exosomes serve as vehicles for the transportation of bioactive molecules, including proteins, lipids, and miRNA, thereby facilitating processes critical to radiotherapy, burn injury, and wound healing. Exosomes hold significant promise for the transformation of RCI management by reducing inflammation, promoting wound healing, managing sepsis, altering immunological responses, and modulating signal transduction pathways. Moreover, exosomes are also being explored as biomarker for various diseases and stress conditions including radiation exposure and associated injuries. This comprehensive review highlights the burgeoning potential of exosomes in advancing the management of RCI, thereby enhancing public health preparedness and response.
Collapse
Affiliation(s)
- Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| | - M H Yashavarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| |
Collapse
|
17
|
Liu B, Li N, Liu Y, Zhang Y, Qu L, Cai H, Li Y, Wu X, Geng Q. BRD3308 suppresses macrophage oxidative stress and pyroptosis via upregulating acetylation of H3K27 in sepsis-induced acute lung injury. BURNS & TRAUMA 2024; 12:tkae033. [PMID: 39224841 PMCID: PMC11367671 DOI: 10.1093/burnst/tkae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/04/2024] [Indexed: 09/04/2024]
Abstract
Background Sepsis-induced acute lung injury (ALI) leads to severe hypoxemia and respiratory failure, contributing to poor prognosis in septic patients. Endotoxin dissemination triggers oxidative stress and the release of inflammatory cytokines in macrophages, initiating diffuse alveolar damage. The role of epigenetic histone modifications in organ injury is increasingly recognized. The present study aimed to investigate the use of a histone modification inhibitor to alleviate sepsis-induced ALI, revealing a new strategy for improving sepsis patient survival. Methods In vivo models of ALI were established through the intraperitoneal injection of lipopolysaccharide and cecal ligation and puncture surgery. Furthermore, the disease process was simulated in vitro by stimulating Tamm-Horsfall protein-1 (THP-1) cells with lipopolysaccharide. Hematoxylin and eosin staining, blood gas analysis and pulmonary function tests were utilized to assess the extent of lung tissue damage. Western blot analysis, real-time polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescence were used to measure the levels and distribution of the indicated indicators within cells and tissues. Reactive oxygen species and autophagic flux alterations were detected using specific probes. Results BRD3308, which is a inhibitor of histone deacetylase 3, improved lung tissue damage, inflammatory infiltration and edema in ALI by inhibiting Nod-like receptor protein3-mediated pyroptosis in macrophages. By upregulating autophagy, BRD3308 improved the disruption of redox balance in macrophages and reduced the accumulation of reactive oxygen species. Mechanistically, BRD3308 inhibited histone deacetylase 3 activity by binding to it and altering its conformation. Following histone deacetylase 3 inhibition, acetylation of H3K27 was significantly increased. Moreover, the increase in H3K27Ac led to the upregulation of autophagy-related gene 5, a key component of autophagosomes, thereby activating autophagy. Conclusions BRD3308 inhibits oxidative stress and pyroptosis in macrophages by modulating histone acetylation, thereby preventing sepsis-induced ALI. The present study provides a potential strategy and theoretical basis for the clinical treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, China
| | - Yan Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Limei Qu
- Department of Pathology, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Hongfei Cai
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Yang Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
- Organ Transplantation Center, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, China
| |
Collapse
|
18
|
Zhang W, Lee PCW, Jin JO. Anti-Inflammatory Effect of Fucoidan from Costaria costata Inhibited Lipopolysaccharide-Induced Inflammation in Mice. Mar Drugs 2024; 22:401. [PMID: 39330282 PMCID: PMC11433612 DOI: 10.3390/md22090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Seaweed extracts, especially fucoidan, are well known for their immune-modulating abilities. In this current study, we extracted fucoidan from Costaria costata, a seaweed commonly found in coastal Asia, and examined its anti-inflammatory effect. Fucoidan was extracted from dried C. costata (FCC) using an alcohol extraction method at an extraction rate of 4.5 ± 0.21%. The extracted FCC comprised the highest proportion of carbohydrates, along with sulfate and uronic acid. The immune regulatory effect of FCC was examined using bone marrow-derived dendritic cells (BMDCs). Pretreatment with FCC dose-dependently decreased the lipopolysaccharide (LPS)-induced upregulation of co-stimulatory molecules and major histocompatibility complex. In addition, FCC prevented morphological changes in LPS-induced BMDCs. Moreover, treatment of LPS-induced BMDCs with FCC suppressed the secretion of pro-inflammatory cytokines. In C57BL/6 mice, oral administration of FCC suppressed LPS-induced lung inflammation, reducing the secretion of pro-inflammatory cytokines in the bronchoalveolar lavage fluid. Finally, the administration of FCC suppressed LPS-induced sepsis. Therefore, FCC could be developed as a health supplement based on the observed anti-inflammatory effects.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China;
| | - Peter C. W. Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
19
|
Aydın Ö, Apaydın Yıldırım B. Determination of systemic inflammation response index (SIRI), systemic inflammatory index (SII), HMGB1, Mx1 and TNF levels in neonatal calf diarrhea with systemic inflammatory response syndrome. Vet Immunol Immunopathol 2024; 275:110815. [PMID: 39153273 DOI: 10.1016/j.vetimm.2024.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The objective of this study was to examine the values of MX dynamin-like GTPase 1 (Mx1), high mobility group box-1 (HMGB1), systemic inflammatory response index (SIRI), systemic inflammatory index (SII), tumor necrosis factor (TNF), and other hematological indices in calves with systemic inflammatory response syndrome (SIRS). The study material was divided into two groups: the SIRS group (comprising 13 calves) and the control group (comprising 10 calves). The independent samples t-test and Mann-Whitney U test were employed for normally distributed and non-normally distributed data, respectively. The relationship between the two groups was determined using Spearman correlation coefficient analysis. Significant differences were identified between the SIRS group and the control group with regard to white blood cell (WBC; P < 0.05), neutrophil (NEU; P < 0.01), and neutrophil-to-lymphocyte ratio (NLR; P < 0.001) values, in addition to SIRI (P < 0.05), SII (P < 0.01) values. Furthermore, HMGB1 (P < 0.001), Mx1 (P < 0.05), and TNF values (P < 0.001) demonstrated notable disparities between the two groups. As a result of this study, it was concluded that there were significant increases in inflammatory hematological indices, as well as in the levels of HMGB1, Mx1, and TNF, in calves with SIRS.
Collapse
Affiliation(s)
- Ömer Aydın
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Betül Apaydın Yıldırım
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
20
|
Wu Y, Chen X, Zeng Z, Chen B, Wang Z, Song Z, Xie H. Self-assembled carbon monoxide nanogenerators managing sepsis through scavenging multiple inflammatory mediators. Bioact Mater 2024; 39:595-611. [PMID: 38883313 PMCID: PMC11179263 DOI: 10.1016/j.bioactmat.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Sepsis, a life-threatening syndrome of organ damage resulting from dysregulated inflammatory response, is distinguished by overexpression of inflammatory cytokines, excessive generation of reactive oxygen/nitrogen species (RONS), heightened activation of pyroptosis, and suppression of autophagy. However, current clinical symptomatic supportive treatment has failed to reduce the high mortality. Herein, we developed self-assembled multifunctional carbon monoxide nanogenerators (Nano CO), as sepsis drug candidates, which can release CO in response to ROS, resulting in clearing bacteria and activating the heme oxygenase-1/CO system. This activation strengthened endogenous protection and scavenged multiple inflammatory mediators to alleviate the cytokine storm, including scavenging RONS and cfDNA, inhibiting macrophage activation, blocking pyroptosis and activating autophagy. Animal experiments show that Nano CO has a good therapeutic effect on mice with LPS-induced sepsis, which is manifested in hypothermia recovery, organ damage repair, and a 50% decrease in mortality rates. Taken together, these results illustrated the efficacy of multifunctional Nano CO to target clearance of multiple mediators in sepsis treatment and act against other refractory inflammation-related diseases.
Collapse
Affiliation(s)
- Yang Wu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xia Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bei Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhiyong Song
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
21
|
Yang Z, Gao Y, Zhao L, Lv X, Du Y. Molecular mechanisms of Sepsis attacking the immune system and solid organs. Front Med (Lausanne) 2024; 11:1429370. [PMID: 39267971 PMCID: PMC11390691 DOI: 10.3389/fmed.2024.1429370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Remarkable progress has been achieved in sepsis treatment in recent times, the mortality rate of sepsis has experienced a gradual decline as a result of the prompt administration of antibiotics, fluid resuscitation, and the implementation of various therapies aimed at supporting multiple organ functions. However, there is still significant mortality and room for improvement. The mortality rate for septic patients, 22.5%, is still unacceptably high, accounting for 19.7% of all global deaths. Therefore, it is crucial to thoroughly comprehend the pathogenesis of sepsis in order to enhance clinical diagnosis and treatment methods. Here, we summarized classic mechanisms of sepsis progression, activation of signal pathways, mitochondrial quality control, imbalance of pro-and anti- inflammation response, diseminated intravascular coagulation (DIC), cell death, presented the latest research findings for each mechanism and identify potential therapeutic targets within each mechanism.
Collapse
Affiliation(s)
- Zhaoyun Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yan Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yanwei Du
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
22
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
23
|
Wang RY, Wang MG, Tang HZ, Du H, Luo Y, Li Q, Zhang XH, Fu J, Lv CZ. The Protective Effects of Ruscogenin Against Lipopolysaccharide-Induced Myocardial Injury in Septic Mice. J Cardiovasc Pharmacol 2024; 84:175-187. [PMID: 38547523 DOI: 10.1097/fjc.0000000000001563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/09/2024] [Indexed: 08/09/2024]
Abstract
ABSTRACT Sepsis-induced myocardial dysfunction commonly occurs in individuals with sepsis and is a severe complication with high morbidity and mortality rates. This study aimed to investigate the effects and potential mechanisms of the natural steroidal sapogenin ruscogenin (RUS) against lipopolysaccharide (LPS)-induced myocardial injury in septic mice. We found that RUS effectively alleviated myocardial pathological damage, normalized cardiac function, and increased survival in septic mice. RNA sequencing demonstrated that RUS administration significantly inhibited the activation of the NOD-like receptor signaling pathway in the myocardial tissues of septic mice. Subsequent experiments further confirmed that RUS suppressed myocardial inflammation and pyroptosis during sepsis. In addition, cultured HL-1 cardiomyocytes were challenged with LPS, and we observed that RUS could protect these cells against LPS-induced cytotoxicity by suppressing inflammation and pyroptosis. Notably, both the in vivo and in vitro findings indicated that RUS inhibited NOD-like receptor protein-3 (NLRP3) upregulation in cardiomyocytes stimulated with LPS. As expected, knockdown of NLRP3 blocked the LPS-induced activation of inflammation and pyroptosis in HL-1 cells. Furthermore, the cardioprotective effects of RUS on HL-1 cells under LPS stimulation were abolished by the novel NLRP3 agonist BMS-986299. Taken together, our results suggest that RUS can alleviate myocardial injury during sepsis, at least in part by suppressing NLRP3-mediated inflammation and pyroptosis, highlighting the potential of this molecule as a promising candidate for sepsis-induced myocardial dysfunction therapy.
Collapse
Affiliation(s)
- Rui-Yu Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming-Gui Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Han-Zhang Tang
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Du
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Luo
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Hong Zhang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Fu
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan-Zhu Lv
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China; and
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
| |
Collapse
|
24
|
Gupta S, Dalpati N, Rai SK, Sehrawat A, Pai V, Sarangi PP. A synthetic bioactive peptide of the C-terminal fragment of adhesion protein Fibulin7 attenuates the inflammatory functions of innate immune cells in LPS-induced systemic inflammation. Inflamm Res 2024; 73:1333-1348. [PMID: 38836870 DOI: 10.1007/s00011-024-01903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVE Systemic inflammation is associated with improper localization of hyperactive neutrophils and monocytes in visceral organs. Previously, a C-terminal fragment of adhesion protein Fibulin7 (Fbln7-C) was shown to regulate innate immune functionality during inflammation. Recently, a shorter bioactive peptide of Fbln7-C, FC-10, via integrin binding was shown to reduce ocular angiogenesis. However, the role of FC-10 in regulating the neutrophils and monocyte functionality during systemic inflammatory conditions is unknown. The study sought to explore the role of FC-10 peptide on the functionality of innate immune cells during inflammation and endotoxemic mice. METHODS Neutrophils and monocytes were isolated from healthy donors and septic patient clinical samples and Cell adhesion assay was performed using a UV spectrophotometer. Gene expression studies were performed using qPCR. Protein level expression was measured using ELISA and flow cytometry. ROS assay, and activation markers analysis in vitro, and in vivo were done using flow cytometry. TREATMENT Cells were stimulated with LPS (100 ng/mL) and studied in the presence of peptides (10 μg, and 20 μg/mL) in vitro. In an in vivo study, mice were administered with LPS (36.8 mg/kg bw) and peptide (20 μg). RESULTS This study demonstrates that human neutrophils and monocytes adhere to FC-10 via integrin β1, inhibit spreading, ROS, surface activation markers (CD44, CD69), phosphorylated Src kinase, pro-inflammatory genes, and protein expression, compared to scrambled peptide in cells isolated from healthy donors and clinical sample. In line with the in vitro data, FC-10 (20 μg) administration significantly decreases innate cell infiltration at inflammatory sites, improves survival in endotoxemia animals & reduces the inflammatory properties of neutrophils and monocytes isolated from septic patients. CONCLUSION FC-10 peptide can regulate neutrophils and monocyte functions and has potential to be used as an immunomodulatory therapeutic in inflammatory diseases.
Collapse
Affiliation(s)
- Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Amit Sehrawat
- All India Institute of Medical Sciences Rishikesh, Rishikesh, Uttarakhand, India
| | - Venkatesh Pai
- All India Institute of Medical Sciences Rishikesh, Rishikesh, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
25
|
Zhang C, Singla RK, Tang M, Shen B. Natural products act as game-changer potentially in treatment and management of sepsis-mediated inflammation: A clinical perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155710. [PMID: 38759311 DOI: 10.1016/j.phymed.2024.155710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Sepsis, a life-threatening condition resulting from uncontrolled host responses to infection, poses a global health challenge with limited therapeutic options. Due to high heterogeneity, sepsis lacks specific therapeutic drugs. Additionally, there remains a significant gap in the clinical management of sepsis regarding personalized and precise medicine. PURPOSE This review critically examines the scientific landscape surrounding natural products in sepsis and sepsis-mediated inflammation, highlighting their clinical potential. METHODS Following the PRISMA guidelines, we retrieved articles from PubMed to explore potential natural products with therapeutic effects in sepsis-mediated inflammation. RESULTS 434 relevant in vitro and in vivo studies were identified and screened. Ultimately, 55 studies were obtained as the supporting resources for the present review. We divided the 55 natural products into three categories: those influencing the synthesis of inflammatory factors, those affecting surface receptors and modulatory factors, and those influencing signaling pathways and the inflammatory cascade. CONCLUSION Natural products' potential as game-changers in sepsis-mediated inflammation management lies in their ability to modulate hallmarks in sepsis, including inflammation, immunity, and coagulopathy, which provides new therapeutic avenues that are readily accessible and capable of undergoing rapid clinical validation and deployment, offering a gift from nature to humanity. Innovative techniques like bioinformatics, metabolomics, and systems biology offer promising solutions to overcome these obstacles and facilitate the development of natural product-based therapeutics, holding promise for personalized and precise sepsis management and improving patient outcomes. However, standardization, bioavailability, and safety challenges arise during experimental validation and clinical trials of natural products.
Collapse
Affiliation(s)
- Chi Zhang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Min Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; West China School of Nursing, Sichuan University, Chengdu, PR China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China.
| |
Collapse
|
26
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
27
|
Cao X, Zhao M, Wang X, Lin J, Yang M, Zhong L, Liang L, Yue Y, Du J, Li J, Zhou T, Yu J, Liang Y, Shi R, Luo R, Shen X, Chen Y, Wang Y, Shu Z. Multi-metabolomics and intestine microbiome analysis: YZC extract ameliorates septic-ALI by modulating intestine microbiota to reduce TMAO/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155345. [PMID: 38810555 DOI: 10.1016/j.phymed.2024.155345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sepsis causes inflammation in response to infection, often leading to acute lung injury (ALI). Yazhicao (Commelina communis L., YZC) is widely distributed in the global tropics and has good anti-respiratory inflammatory activity; however, the protection of YZC against septic-ALI has not been established. PURPOSE The role of YZC in septic-ALI will be investigated in this study. METHODS AND RESULTS In this study, YZC was shown to inhibit excessive inflammation and alleviate septic-ALI. Network pharmacology predicts that Quercetin, Acacetin and Diosmetin have the potential to serve as the pharmacological substance basis of YZC in alleviating septic-ALI. The metabolomics results indicated that YZC could improve the metabolic disorders caused by septic-ALI, which were mostly concerned with energy metabolism and amino acid metabolism, with Trimethylamine (TMA)/Trimethylamine N-oxide (TMAO) being potential small molecule metabolic markers for the clinical diagnosis and treatment of septic-ALI. YZC inhibits the initiation and progression of septic-ALI by controlling the TMA/TMAO metabolites. Our results also suggest that YZC protects the intestinal barrier from damage. Furthermore, our research indicated that YZC reduces TMAO synthesis by inhibiting TMA production through remodeling the intestine microbiota. We investigated the mechanism of YZC-mediated protection against septic-ALI and showed that YZC reduced the expression of proteins associated with NLRP3 inflammatory vesicles in the lung by inhibiting the expression of NF-κB. CONCLUSION These results show that YZC inhibits the NF-κB/NLRP3 signaling pathway by regulating metabolic and intestinal flora disorders in septic-ALI mice to reduce TMAO synthesis. This study presents a theoretical groundwork for the advancement of novel medications and clinical use of YZC to enhance septic-ALI and furnishes a theoretical rationale for regulating intestinal microbiota as a therapeutic instrument to treat sepsis and septic-ALI.
Collapse
Affiliation(s)
- Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazi Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiming Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiamin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongfeng Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Pharmacy, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou 514000, China.
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Jun L, Wang Z, Wang S, Liao X, Qin T, Guo W. Circular RNAs as potential biomarkers for male severe sepsis. Open Life Sci 2024; 19:20220900. [PMID: 39071490 PMCID: PMC11282911 DOI: 10.1515/biol-2022-0900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Circular RNAs (circRNAs) play important roles in many human diseases. However, their role in the development of severe sepsis, a condition that remains one of the main causes of death in intensive care units, has not yet been defined. In this study, we interrogated the molecular mechanisms of circRNAs in severe sepsis. We profiled the expression levels of 5,680 circRNAs in plasma extracted from blood samples of 9 severe sepsis cases or 9 controls (male, age 78 ± 7) using the Human circRNA Array. To enrich protein-coding genes hosting severe sepsis-related circRNAs, we conducted gene ontology and pathways analyses. Out of the identified 760 differentially expressed circRNAs, 404 were upregulated while 356 were downregulated (fold change [FC] ≥2 or ≤-2, and false discovery ratio <0.05). Circ-0008285 (located in exons of CDYL), showed significant upregulation in severe sepsis with an FC of 13.7, and Bonferroni-corrected P < 0.05/5. In silico analysis identified Circ-0008285 interacting microRNAs as well as protein-coding genes. We systematically investigated the differential expression pattern of circRNAs in severe sepsis. The circRNAs we identified might serve as potential biomarkers for diagnosis and prognosis of sepsis.
Collapse
Affiliation(s)
- Liang Jun
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, China
| | - Zhonghua Wang
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, China
| | - Shouhong Wang
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, China
| | - Xiaolong Liao
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, China
| | - Tiehe Qin
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, China
| | - Weixin Guo
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Road, Guangzhou510080, China
| |
Collapse
|
29
|
Mun SJ, Cho E, Kim HK, Gil WJ, Yang CS. Enhancing acute inflammatory and sepsis treatment: superiority of membrane receptor blockade. Front Immunol 2024; 15:1424768. [PMID: 39081318 PMCID: PMC11286478 DOI: 10.3389/fimmu.2024.1424768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Conditions such as acute pancreatitis, ulcerative colitis, delayed graft function and infections caused by a variety of microorganisms, including gram-positive and gram-negative organisms, increase the risk of sepsis and therefore mortality. Immune dysfunction is a characterization of sepsis, so timely and effective treatment strategies are needed. The conventional approaches, such as antibiotic-based treatments, face challenges such as antibiotic resistance, and cytokine-based treatments have shown limited efficacy. To address these limitations, a novel approach focusing on membrane receptors, the initiators of the inflammatory cascade, is proposed. Membrane receptors such as Toll-like receptors, interleukin-1 receptor, endothelial protein C receptor, μ-opioid receptor, triggering receptor expressed on myeloid cells 1, and G-protein coupled receptors play pivotal roles in the inflammatory response, offering opportunities for rapid regulation. Various membrane receptor blockade strategies have demonstrated efficacy in both preclinical and clinical studies. These membrane receptor blockades act as early stage inflammation modulators, providing faster responses compared to conventional therapies. Importantly, these blockers exhibit immunomodulatory capabilities without inducing complete immunosuppression. Finally, this review underscores the critical need for early intervention in acute inflammatory and infectious diseases, particularly those posing a risk of progressing to sepsis. And, exploring membrane receptor blockade as an adjunctive treatment for acute inflammatory and infectious diseases presents a promising avenue. These novel approaches, when combined with antibiotics, have the potential to enhance patient outcomes, particularly in conditions prone to sepsis, while minimizing risks associated with antibiotic resistance and immune suppression.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Hyo Keun Kim
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Woo Jin Gil
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
30
|
Wang S, Yin F, Sun W, Li R, Guo Z, Wang Y, Zhang Y, Sun C, Sun D. The causal relationship between gut microbiota and nine infectious diseases: a two-sample Mendelian randomization analysis. Front Immunol 2024; 15:1304973. [PMID: 39050854 PMCID: PMC11266007 DOI: 10.3389/fimmu.2024.1304973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Evidence from observational studies and clinical trials has associated gut microbiota with infectious diseases. However, the causal relationship between gut microbiota and infectious diseases remains unclear. Methods We identified gut microbiota based on phylum, class, order, family, and genus classifications, and obtained infectious disease datasets from the IEU OpenGWAS database. The two-sample Mendelian Randomization (MR) analysis was then performed to determine whether the gut microbiota were causally associated with different infectious diseases. In addition, we performed reverse MR analysis to test for causality. Results Herein, we characterized causal relationships between genetic predispositions in the gut microbiota and nine infectious diseases. Eight strong associations were found between genetic predisposition in the gut microbiota and infectious diseases. Specifically, the abundance of class Coriobacteriia, order Coriobacteriales, and family Coriobacteriaceae was found to be positively associated with the risk of lower respiratory tract infections (LRTIs). On the other hand, family Acidaminococcaceae, genus Clostridiumsensustricto1, and class Bacilli were positively associated with the risk of endocarditis, cellulitis, and osteomyelitis, respectively. We also discovered that the abundance of class Lentisphaeria and order Victivallales lowered the risk of sepsis. Conclusion Through MR analysis, we found that gut microbiota were causally associated with infectious diseases. This finding offers new insights into the microbe-mediated infection mechanisms for further clinical research.
Collapse
Affiliation(s)
- Song Wang
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Fangxu Yin
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Wei Sun
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Rui Li
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Zheng Guo
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Yuchao Wang
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Yiyuan Zhang
- Department of Reproductive Endocrinology, Second Hospital of Shandong University, Jinan, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| |
Collapse
|
31
|
Chen Q, Lao J. Interference with Histone Deacetylase 4 Regulates c-Jun N-terminal Kinase/Activating Protein-1 Signaling to Ameliorate Sepsis-induced Alveolar Epithelial Cell Injury. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:174-186. [PMID: 39133038 DOI: 10.4103/ejpi.ejpi-d-24-00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/26/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT Sepsis is a syndrome of systemic inflammatory response resulting from infection, which can lead to severe lung injury. Histone deacetylase 4 (HDAC4) is a key protein known to regulate a wide range of cellular processes. This study was designed to investigate the role of HDAC4 in lipopolysaccharide (LPS)-induced alveolar epithelial cell injury as well as to disclose its potential molecular mechanisms. The alveolar epithelial cell injury model was established by inducing A549 cells with LPS. A549 cell viability was detected by cell counting kit-8 assay and the transfection efficiency of small interfering RNA targeting HDAC4 was appraised utilizing Western blot. The levels of inflammatory cytokines and oxidative stress markers were detected using corresponding assay kits. Dichloro-dihydro-fluorescein diacetate assay was used for the measurement of reactive oxygen species (ROS) content. Flow cytometry, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide-1 staining, adenosine triphosphate (ATP) assay kits, and MitoSOX Red assay kits were employed to estimate cell apoptosis, mitochondrial membrane potential, ATP level, and mitochondrial ROS level, respectively. The oxygen consumption rate of A549 cells was evaluated with XF96 extracellular flux analyzer. Western blot was applied for the evaluation of HDAC4, apoptosis- and c-Jun N-terminal kinase (JNK)/activating protein-1 (AP-1) signaling pathway-related proteins. HDAC4 expression was found to be increased in LPS-induced A549 cells and HDAC4 silence inhibited inflammatory damage, repressed oxidative stress, alleviated cell apoptosis, improved mitochondrial function, and blocked JNK/AP-1 signaling in A549 cells stimulated by LPS, which were all reversed by JNK activator anisomycin. Collectively, the interference with HDAC4 could ameliorate LPS-induced alveolar epithelial cell injury, and such protective effect may be potentially mediated through the JNK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Qunyan Chen
- Department of Emergency Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | | |
Collapse
|
32
|
Zhang X, Yuan S, Fan H, Zhang W, Zhang H. Liensinine alleviates sepsis-induced acute liver injury by inhibiting the NF-κB and MAPK pathways in an Nrf2-dependent manner. Chem Biol Interact 2024; 396:111030. [PMID: 38692452 DOI: 10.1016/j.cbi.2024.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Sepsis remains a serious public health issue that needs to be addressed globally. Severe liver injury caused by sepsis increases the risk of death in patients with sepsis. Liensinine (Lie) is one of the primary active components in Plumula nelumbinis and has anti-inflammatory and antioxidant effects. Nevertheless, the effects of Lie on septic liver injury are unclear. This research investigated the protective effect of Lie (10, 20 and 40 mg/kg) on liver damage via intraperitoneal administration of LPS (10 mg/kg) to C57BL/6 mice. Lie was given through intraperitoneal injection once a day for five days. Mice were treated with LPS intraperitoneally for 6 h at 1 h after Lie administration on the last day. The results suggested that Lie could decrease AST and ALT levels in serum, ameliorate histopathological changes and inhibit cell apoptosis in mice with LPS-induced septic liver injury. In addition, Lie inhibited increases in the mRNA levels of TNF-α, IL-1β, iNOS and IL-6. Lie also increased the mRNA level of IL-10. Lie reduced the content of MDA, a marker of lipid peroxidation, and increased the activity of the antioxidant enzymes GSH-Px, CAT and SOD. Our results also showed that Lie could suppress the LPS-activated MAPK and NF-κB pathways and trigger the Nrf2 signaling pathway both in vitro and in vivo. Additionally, an Nrf2 inhibitor (ML385) weakened the suppressive effect of Lie on the MAPK and NF-κB pathways. Our results demonstrated that the suppressive effect of Lie on the MAPK and NF-κB pathways was partially reliant on activation of the Nrf2 pathway. In summary, these results indicate that Lie can improve inflammation and oxidative stress by activating Nrf2, which is a prospective therapeutic drug for alleviating septic liver injury.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Silong Yuan
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Honggang Zhang
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China.
| |
Collapse
|
33
|
Zhu YB, Liu TL, Dai Q, Liu SF, Xiong P, Huang H, Yuan Y, Zhang TN, Chen Y. Characteristics and Risk Factors for Pediatric Sepsis. Curr Med Sci 2024; 44:648-656. [PMID: 38748371 DOI: 10.1007/s11596-024-2870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Sepsis is considered a major cause of health loss in children and had high mortality and morbidity. Currently, there is no reliable model for predicting the prognosis of pediatric patients with sepsis. This study aimed to analyze the clinical characteristics of sepsis in children and assess the risk factors associated with poor prognosis in pediatric sepsis patients to identify timely interventions and improve their outcomes. METHODS This study analyzed the clinical indicators and laboratory results of septic patients hospitalized in the Pediatric Intensive Care Unit of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, from January 1, 2019, to December 31, 2021. Risk factors for sepsis were identified by logistic regression analyses. RESULTS A total of 355 children with sepsis were enrolled, with 333 children (93.8%) in the good prognosis group, and 22 children (6.2%) in the poor prognosis group. Among them, there were 255 patients (71.8%) in the sepsis group, and 100 patients (28.2%) in the severe sepsis group. The length of hospital stay in the poor prognosis group was longer than that in the good prognosis group (P<0.01). The levels of interleukin 1β (IL-1β) in the poor prognosis group were higher than those in the good prognosis group (P>0.05), and the platelet (PLT), albumin (ALB), and hemoglobin (Hb) levels were lower in the poor prognosis group (P<0.01). The IL-8 levels in the severe sepsis group were higher than those in the sepsis group (P<0.05). Multiple logistic regression analysis suggested that lower Hb levels, ALB levels, peak PLT counts, and higher IL-1β levels were independent risk factors for poor prognosis in children with sepsis. CONCLUSION Lower Hb, ALB, and PLT counts and elevated IL-1β are independent risk factors for poor prognosis in children with sepsis.
Collapse
Affiliation(s)
- Yong-Bing Zhu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tong-Lin Liu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Dai
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu-Fan Liu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Xiong
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Huang
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Yuan
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian-Nan Zhang
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Chen
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
34
|
Khan MAO, Suvvari TK, Harooni SAS, Khan AA, Anees S, Bushra. Assessment of soluble thrombomodulin and soluble endoglin as endothelial dysfunction biomarkers in seriously ill surgical septic patients: correlation with organ dysfunction and disease severity. Eur J Trauma Emerg Surg 2024; 50:897-904. [PMID: 37741913 DOI: 10.1007/s00068-023-02369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Sepsis, a complex condition characterized by dysregulated immune response and organ dysfunction, is a leading cause of mortality in ICU patients. Current diagnostic and prognostic approaches primarily rely on non-specific biomarkers and illness severity scores, despite early endothelial activation being a key feature of sepsis. This study aimed to evaluate the levels of soluble thrombomodulin and soluble endoglin in seriously ill surgical septic patients and explore their association with organ dysfunction and disease severity. METHODOLOGY A case control study was conducted from March 2022 to November 2022, involving seriously ill septic surgical patients. Baseline clinical and laboratory data were collected within 24 h of admission to the Surgical Intensive Care Unit. This included information such as age, sex, hemodynamic parameters, blood chemistry, SOFA score, qSOFA score, and APACHE-II score. A proforma was filled out to record these details. The outcome of each patient was noted at the time of discharge. RESULTS The study found significantly elevated levels of soluble thrombomodulin and soluble endoglin in seriously ill surgical septic patients. The RTqPCR analysis revealed a positive correlation between soluble thrombomodulin and soluble endoglin levels with the qSOFA score, as well as, there was a positive association between RTqPCR soluble thrombomodulin and the SOFA score. These findings indicate a correlation between these biomarkers and organ dysfunction and disease severity. CONCLUSION The study concludes that elevated levels of soluble thrombomodulin and soluble endoglin can serve as endothelial biomarkers for early diagnosis and prognostication in seriously ill surgical septic patients.
Collapse
Affiliation(s)
| | - Tarun Kumar Suvvari
- Rangaraya Medical College, Kakinada, India
- Squad Medicine and Research (SMR), Vizag, Andhra Pradesh, India
| | | | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad, Telangana, India
| | - Syyeda Anees
- Department of Biochemistry, Deccan College of Medical Sciences, Hyderabad, Telangana, India
| | - Bushra
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
35
|
He J, Qin W, Jiang S, Lin Y, Lin Y, Yang R, Xu M, Liu Q. Oxymatrine attenuates sepsis-induced inflammation and organ injury via inhibition of HMGB1/RAGE/NF-κB signaling pathway. Drug Dev Res 2024; 85:e22219. [PMID: 38845211 DOI: 10.1002/ddr.22219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/21/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junbing He
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Wanbing Qin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Shusong Jiang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Yao Lin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Yingying Lin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Ruoxuan Yang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Mingwei Xu
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Qinghua Liu
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
36
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
37
|
Tang Y, Wu J, Sun X, Tan S, Li W, Yin S, Liu L, Chen Y, Liu Y, Tan Q, Jiang Y, Yang W, Huang W, Weng C, Wu Q, Lu Y, Yuan H, Xiao Q, Chen AF, Xu Q, Billiar TR, Cai J. Cardiolipin oxidized by ROS from complex II acts as a target of gasdermin D to drive mitochondrial pore and heart dysfunction in endotoxemia. Cell Rep 2024; 43:114237. [PMID: 38753484 DOI: 10.1016/j.celrep.2024.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.
Collapse
Affiliation(s)
- Yan Tang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Junru Wu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xuejing Sun
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shasha Tan
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbo Li
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Siyu Yin
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lun Liu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Chen
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Liu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qian Tan
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Youxiang Jiang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenjing Yang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wei Huang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chunyan Weng
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qing Wu
- Center for High-Performance Computing, Central South University, Changsha 410000, China
| | - Yao Lu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hong Yuan
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts, and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Alex F Chen
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Cardiology, Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jingjing Cai
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
38
|
Chang Z, Lu J, Zhang Q, Wu H, Liang Z, Pan X, Li B, Cheng ZJ, Sun B. Clinical biomarker profiles reveals gender differences and mortality factors in sepsis. Front Immunol 2024; 15:1413729. [PMID: 38835774 PMCID: PMC11148215 DOI: 10.3389/fimmu.2024.1413729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Background Sepsis is a major contributor to global morbidity and mortality, affecting millions each year. Notwithstanding the decline in sepsis incidence and mortality over decades, gender disparities in sepsis outcomes persist, with research suggesting higher mortality rates in males. Methods This retrospective study aims to delineate gender-specific clinical biomarker profiles impacting sepsis progression and mortality by examining sepsis cases and related clinical data from the past three years. Propensity score matching was used to select age-matched healthy controls for comparison. Results Among 265 sepsis patients, a significantly higher proportion were male (60.8%, P<0.001). While mortality did not significantly differ by gender, deceased patients were significantly older (mean 69 vs 43 years, P=0.003), more likely to have hypertension (54% vs 25%, P=0.019), and had higher SOFA scores (mean ~10 vs 4, P<0.01) compared to survivors. Principal Component Analysis (PCA) showed clear separation between sepsis patients and healthy controls. 48 serum biomarkers were significantly altered in sepsis, with Triiodothyronine, Apolipoprotein A, and Serum cystatin C having the highest diagnostic value by ROC analysis. Gender-stratified comparisons identified male-specific (e.g. AFP, HDLC) and female-specific (e.g. Rheumatoid factor, Interleukin-6) diagnostic biomarkers. Deceased patients significantly differed from survivors, with 22 differentially expressed markers; Antithrombin, Prealbumin, HDL cholesterol, Urea nitrogen and Hydroxybutyrate had the highest diagnostic efficiency for mortality. Conclusion These findings enhance our understanding of gender disparities in sepsis and may guide future therapeutic strategies. Further research is warranted to validate these biomarker profiles and investigate the molecular mechanisms underlying these gender differences in sepsis outcomes.
Collapse
Affiliation(s)
- Zhenglin Chang
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Jiancai Lu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qitai Zhang
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haojie Wu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiman Liang
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaocong Pan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bishan Li
- State Key Laboratory of Respiratory Disease, Department of Blood Transfusion, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhangkai J Cheng
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Oliveira L, Silva MC, Gomes AP, Santos RF, Cardoso MS, Nóvoa A, Luche H, Cavadas B, Amorim I, Gärtner F, Malissen B, Mallo M, Carmo AM. CD5L as a promising biological therapeutic for treating sepsis. Nat Commun 2024; 15:4119. [PMID: 38750020 PMCID: PMC11096381 DOI: 10.1038/s41467-024-48360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.
Collapse
Affiliation(s)
- Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - M Carolina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- Universidade de Aveiro, Aveiro, Portugal
| | - Ana P Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
40
|
Wu H, Jia S, Liao B, Ji T, Huang J, Luo Y, Cao T, Ma K. Establishment of a mortality risk nomogram for predicting in-hospital mortality of sepsis: cohort study from a Chinese single center. Front Med (Lausanne) 2024; 11:1360197. [PMID: 38765257 PMCID: PMC11100418 DOI: 10.3389/fmed.2024.1360197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Objective To establish a mortality risk nomogram for predicting in-hospital mortality of sepsis patients in the Chinese population. Methods Data were obtained from the medical records of sepsis patients enrolled at the Affiliated Huadu Hospital, Southern Medical University, between 2019 and 2021. A total of 696 sepsis patients were initially included in our research, and 582 cases were finally enrolled after screening and divided into the survival group (n = 400) and the non-survival group (n = 182) according to the incidence of mortality during hospitalization. Twenty-eight potential sepsis-related risk factors for mortality were identified. Least absolute shrinkage and selection operator (LASSO) regression was used to optimize variable selection by running cyclic coordinate descent with k-fold (tenfold in this case) cross-validation. We used binary logistic regression to build a model for predicting mortality from the variables based on LASSO regression selection. Binary logistic regression was used to establish a nomogram based on independent mortality risk factors. To validate the prediction accuracy of the nomogram, receiver operating characteristic curve (ROC) analysis, decision curve analysis (DCA) and restricted cubic spline (RCS) analysis were employed. Eventually, the Hosmer-Lemeshow test and calibration curve were used for nomogram calibration. Results LASSO regression identified a total of ten factors, namely, chronic heart disease (CHD), lymphocyte count (LYMP), neutrophil-lymphocyte ratio (NLR), red blood cell distribution width (RDW), C reactive protein (CRP), Procalcitonin (PCT), lactic acid, prothrombin time (PT), alanine aminotransferase (ALT), total bilirubin (Tbil), interleukin-6 (IL6), that were incorporated into the multivariable analysis. Finally, a nomogram including CHD, LYMP, NLR, RDW, lactic acid, PT, CRP, PCT, Tbil, ALT, and IL6 was established by multivariable logistic regression. The ROC curves of the nomogram in the training and validation sets were 0.9836 and 0.9502, respectively. DCA showed that the nomogram could be applied clinically if the risk threshold was between 29.52 and 99.61% in the training set and between 31.32 and 98.49% in the testing set. RCS showed that when the value of independent risk factors from the predicted model exceeded the median, the mortality hazard ratio increased sharply. The results of the Hosmer-Lemeshow test (χ2 = 0.1901, df = 2, p = 0.9091) and the calibration curves of the training and validation sets showed good agreement with the actual results, which indicated good stability of the model. Conclusion Our nomogram, including CHD, LYMP, NLR, RDW, lactic acid, PT, CRP, PCT, Tbil, ALT, and IL6, exhibits good performance for predicting mortality risk in adult sepsis patients.
Collapse
Affiliation(s)
- Hongsheng Wu
- Hepatobiliary Pancreatic Surgery Department, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Shichao Jia
- Information Network Center, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Biling Liao
- Hepatobiliary Pancreatic Surgery Department, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Tengfei Ji
- Hepatobiliary Pancreatic Surgery Department, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Jianbin Huang
- Hepatobiliary Pancreatic Surgery Department, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Yumei Luo
- Hepatobiliary Pancreatic Surgery Department, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Tiansheng Cao
- Hepatobiliary Pancreatic Surgery Department, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Keqiang Ma
- Hepatobiliary Pancreatic Surgery Department, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
41
|
Windoloski KA, Janum S, Berg RMG, Olufsen MS. Characterization of differences in immune responses during bolus and continuous infusion endotoxin challenges using mathematical modelling. Exp Physiol 2024; 109:689-710. [PMID: 38466166 PMCID: PMC11061636 DOI: 10.1113/ep091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Endotoxin administration is commonly used to study the inflammatory response, and though traditionally given as a bolus injection, it can be administered as a continuous infusion over multiple hours. Several studies hypothesize that the latter better represents the prolonged and pronounced inflammation observed in conditions like sepsis. Yet very few experimental studies have administered endotoxin using both strategies, leaving significant gaps in determining the underlying mechanisms responsible for their differing immune responses. We used mathematical modelling to analyse cytokine data from two studies administering a 2 ng kg-1 dose of endotoxin, one as a bolus and the other as a continuous infusion over 4 h. Using our model, we simulated the dynamics of mean and subject-specific cytokine responses as well as the response to long-term endotoxin administration. Cytokine measurements revealed that the bolus injection led to significantly higher peaks for interleukin (IL)-8, while IL-10 reaches higher peaks during continuous administration. Moreover, the peak timing of all measured cytokines occurred later with continuous infusion. We identified three model parameters that significantly differed between the two administration methods. Monocyte activation of IL-10 was greater during the continuous infusion, while tumour necrosis factor α $ {\alpha} $ and IL-8 recovery rates were faster for the bolus injection. This suggests that a continuous infusion elicits a stronger, longer-lasting systemic reaction through increased stimulation of monocyte anti-inflammatory mediator production and decreased recovery of pro-inflammatory catalysts. Furthermore, the continuous infusion model exhibited prolonged inflammation with recurrent peaks resolving within 2 days during long-term (20-32 h) endotoxin administration.
Collapse
Affiliation(s)
| | - Susanne Janum
- Frederiksberg and Bispebjerg HospitalsFrederiksbergDenmark
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ronan M. G. Berg
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical Physiology and Nuclear Medicine and, Centre for Physical Activity ResearchCopenhagen University HospitalCopenhagenDenmark
- Neurovascular Research LaboratoryUniversity of South WalesPontypriddUK
| | - Mette S. Olufsen
- Department of MathematicsNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
42
|
Eralp Inan O, Kocaturk M, Cansev M, Ozarda Y, Yilmaz Z, Ulus IH. Thromboelastographic evaluation of the effectiveness of choline or CDP-choline treatment on endotoxin-induced hemostatic alterations in dogs. Res Vet Sci 2024; 171:105205. [PMID: 38479101 DOI: 10.1016/j.rvsc.2024.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Sepsis/endotoxemia associates with coagulation abnormalities. We showed previously that exogenous choline treatment reversed the changes in platelet count and function as well as prevented disseminated intravascular coagulation (DIC) in endotoxemic dogs. The aim of this follow-up study was to evaluate the effect of treatment with choline or cytidine-5'-diphosphocholine (CDP-choline), a choline donor, on endotoxin-induced hemostatic alterations using thromboelastography (TEG). Dogs were randomized to six groups and received intravenously (iv) saline, choline (20 mg/kg) or CDP-choline (70 mg/kg) in the control groups, whereas endotoxin (0.1 mg/kg, iv) was used alone or in combination with choline or CDP-choline at the same doses in the treatment groups. TEG variables including R- and K-time (clot formation), maximum amplitude (MA) and α-angle (clot stability), G value (clot elasticity), and EPL, A, and LY30 (fibrinolysis), as well as overall assessment of coagulation (coagulation index - CI), were measured before and at 0.5-48 h after the treatments. TEG parameters did not change significantly in the control groups, except for CI parameter after choline administration. Endotoxemia resulted in increased R-time and A value (P < 0.05), decreased K-time (P < 0.05), α-angle (P < 0.001) and CI values (P < 0.01) at different time points. Treatment with either choline or CDP-choline attenuated or prevented completely the alterations in TEG parameters in endotoxemic dogs with CDP-choline being more effective. These results confirm and extend the effectiveness of choline or CDP-choline in endotoxemia by further demonstrating their efficacy in attenuating or preventing the altered viscoelastic properties of blood clot measured by TEG.
Collapse
Affiliation(s)
- Oya Eralp Inan
- Department of Animal Science, Eskisehir Osmangazi University Faculty of Agriculture, Eskisehir, Turkey.
| | - Meric Kocaturk
- Department of Internal Medicine, Bursa Uludag University Faculty of Veterinary Medicine, Bursa, Turkey.
| | - Mehmet Cansev
- Department of Pharmacology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey.
| | - Yesim Ozarda
- Department of Biochemistry, Yeditepe University Faculty of Medicine, Istanbul, Turkey.
| | - Zeki Yilmaz
- Department of Internal Medicine, Bursa Uludag University Faculty of Veterinary Medicine, Bursa, Turkey.
| | - Ismail Hakki Ulus
- Department of Pharmacology, Istanbul Okan University Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
43
|
Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomed Pharmacother 2024; 174:116512. [PMID: 38574617 DOI: 10.1016/j.biopha.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
GPX4 (Glutathione peroxidase 4) serves as a crucial intracellular regulatory factor, participating in various physiological processes and playing a significant role in maintaining the redox homeostasis within the body. Ferroptosis, a form of iron-dependent non-apoptotic cell death, has gained considerable attention in recent years due to its involvement in multiple pathological processes. GPX4 is closely associated with ferroptosis and functions as the primary inhibitor of this process. Together, GPX4 and ferroptosis contribute to the pathophysiology of several diseases, including sepsis, nervous system diseases, ischemia reperfusion injury, cardiovascular diseases, and cancer. This review comprehensively explores the regulatory roles and impacts of GPX4 and ferroptosis in the development and progression of these diseases, with the aim of providing insights for identifying potential therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yang Liu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
44
|
Zhou Y, Zhu Y, Wu Y, Xiang X, Ouyang X, Liu L, Li T. 4-phenylbutyric acid improves sepsis-induced cardiac dysfunction by modulating amino acid metabolism and lipid metabolism via Comt/Ptgs2/Ppara. Metabolomics 2024; 20:46. [PMID: 38641695 PMCID: PMC11031492 DOI: 10.1007/s11306-024-02112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Cardiac dysfunction after sepsis the most common and severe sepsis-related organ failure. The severity of cardiac damage in sepsis patients was positively associated to mortality. It is important to look for drugs targeting sepsis-induced cardiac damage. Our previous studies found that 4-phenylbutyric acid (PBA) was beneficial to septic shock by improving cardiovascular function and survival, while the specific mechanism is unclear. OBJECTIVES We aimed to explore the specific mechanism and PBA for protecting cardiac function in sepsis. METHODS The cecal ligation and puncture-induced septic shock models were used to observe the therapeutic effects of PBA on myocardial contractility and the serum levels of cardiac troponin-T. The mechanisms of PBA against sepsis were explored by metabolomics and network pharmacology. RESULTS The results showed that PBA alleviated the sepsis-induced cardiac damage. The metabolomics results showed that there were 28 metabolites involving in the therapeutic effects of PBA against sepsis. According to network pharmacology, 11 hub genes were found that were involved in lipid metabolism and amino acid transport following PBA treatment. The further integrated analysis focused on 7 key targets, including Comt, Slc6a4, Maoa, Ppara, Pparg, Ptgs2 and Trpv1, as well as their core metabolites and pathways. In an in vitro assay, PBA effectively inhibited sepsis-induced reductions in Comt, Ptgs2 and Ppara after sepsis. CONCLUSIONS PBA protects sepsis-induced cardiac injury by targeting Comt/Ptgs2/Ppara, which regulates amino acid metabolism and lipid metabolism. The study reveals the complicated mechanisms of PBA against sepsis.
Collapse
Affiliation(s)
- Yuanqun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xingnan Ouyang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
45
|
Liu L, Lin L, Wang Y, Yan X, Li R, He M, Li H, Zhuo C, Li L, Zhang D, Wang X, Huang W, Li X, Mao Y, Chen H, Wu S, Jiang W, Zhu L. L-AP Alleviates Liver Injury in Septic Mice by Inhibiting Macrophage Activation via Suppressing NF-κB and NLRP3 Inflammasome/Caspase-1 Signal Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8460-8475. [PMID: 38564364 DOI: 10.1021/acs.jafc.3c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1β, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1β, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1β and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.
Collapse
Affiliation(s)
- Linling Liu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lan Lin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yingling Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Yan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ruli Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - He Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Caili Zhuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lingyu Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Die Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xuemei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Huang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xinyue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan Mao
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongying Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Sisi Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ling Zhu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
46
|
Zhu J, Jin Z, Wang J, Wu Z, Xu T, Tong G, Shen E, Fan J, Jiang C, Wang J, Li X, Cong W, Lin L. FGF21 ameliorates septic liver injury by restraining proinflammatory macrophages activation through the autophagy/HIF-1α axis. J Adv Res 2024:S2090-1232(24)00134-6. [PMID: 38599281 DOI: 10.1016/j.jare.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Sepsis, a systemic immune syndrome caused by severe trauma or infection, poses a substantial threat to the health of patients worldwide. The progression of sepsis is heavily influenced by septic liver injury, which is triggered by infection and cytokine storms, and has a significant impact on the tolerance and prognosis of septic patients. The objective of our study is to elucidate the biological role and molecular mechanism of fibroblast growth factor 21 (FGF21) in the process of sepsis. OBJECTIVES This study was undertaken in an attempt to elucidate the function and molecular mechanism of FGF21 in therapy of sepsis. METHODS Serum concentrations of FGF21 were measured in sepsis patients and septic mice. Liver injury was compared between mice FGF21 knockout (KO) mice and wildtype (WT) mice. To assess the therapeutic potential, recombinant human FGF21 was administered to septic mice. Furthermore, the molecular mechanism of FGF21 was investigated in mice with myeloid-cell specific HIF-1α overexpression mice (LyzM-CreDIO-HIF-1α) and myeloid-cell specific Atg7 knockout mice (Atg7△mye). RESULTS Serum level of FGF21 was significantly increased in sepsis patients and septic mice. Through the use of recombinant human FGF21 (rhFGF21) and FGF21 KO mice, we found that FGF21 mitigated septic liver injury by inhibiting the initiation and propagation of inflammation. Treatment with rhFGF21 effectively suppressed the activation of proinflammatory macrophages by promoting macroautophagy/autophagy degradation of hypoxia-inducible factor-1α (HIF-1α). Importantly, the therapeutic effect of rhFGF21 against septic liver injury was nullified in LyzM-CreDIO-HIF-1α mice and Atg7△mye mice. CONCLUSIONS Our findings demonstrate that FGF21 considerably suppresses inflammation upon septic liver injury through the autophagy/ HIF-1α axis.
Collapse
Affiliation(s)
- Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jie Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Zhaohang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Tianpeng Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Chunhui Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; Haihe Laboratory of Cell Ecosystem, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Li Lin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
47
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
48
|
Wang C, Liu J, Wu Q, Wang Z, Hu B, Bo L. The role of TIM-3 in sepsis: a promising target for immunotherapy? Front Immunol 2024; 15:1328667. [PMID: 38576606 PMCID: PMC10991702 DOI: 10.3389/fimmu.2024.1328667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis remains a significant cause of mortality and morbidity worldwide, with limited effective treatment options. The T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) has emerged as a potential therapeutic target in various immune-related disorders. This narrative review aims to explore the role of TIM-3 in sepsis and evaluate its potential as a promising target for immunotherapy. We discuss the dynamic expression patterns of TIM-3 during sepsis and its involvement in regulating immune responses. Furthermore, we examine the preclinical studies investigating the regulation of TIM-3 signaling pathways in septic models, highlighting the potential therapeutic benefits and challenges associated with targeting TIM-3. Overall, this review emphasizes the importance of TIM-3 in sepsis pathogenesis and underscores the promising prospects of TIM-3-based immunotherapy as a potential strategy to combat this life-threatening condition.
Collapse
Affiliation(s)
- Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinhai Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Wu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
49
|
Chen B, Li YF, Fang Z, Cai WY, Tian ZQ, Li D, Wang ZM. Epigallocatechin-3-gallate protects sepsis-induced myocardial dysfunction by inhibiting the nuclear factor-κB signaling pathway. Heliyon 2024; 10:e27163. [PMID: 38449632 PMCID: PMC10915574 DOI: 10.1016/j.heliyon.2024.e27163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) has become one of the most lethal complications of sepsis, while the treatment was limited by a shortage of pertinent drugs. Epigallocatechin-3-gallate (EGCG) is the highest content of active substances in green tea, and its application in cardiovascular diseases has broad prospects. This study was conducted to test the hypothesis that EGCG was able to inhibit lipopolysaccharide (LPS) induced myocardial dysfunction and investigate the underlying molecular mechanisms. The cardiac systolic function was assessed by echocardiography. The cardiomyocyte apoptosis was determined by TUNEL staining. The expression of inflammatory factors and apoptosis-related protein, cardiac markers were examined by Western Blot and qRT-PCR. EGCG effectively improve LPS-induced cardiac function damage, enhance left ventricular systolic function, and restore myocardial cell vitality. It can effectively inhibit the upregulation of TLR4 expression induced by LPS and inhibit IκB α/NF- κB/p65 signaling pathway, thereby inhibiting cardiomyocyte apoptosis and improving myocarditis. In conclusion, EGCG protects against SIMD through anti-inflammatory and anti-apoptosis effects; it was mediated by the inhibition of the TLR4/NF-κB signal pathway. Our results demonstrated that EGCG might be a possible medicine for SIMD prevention and treatment.
Collapse
Affiliation(s)
- Bei Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ya-Fei Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Zhang Fang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wen-Yi Cai
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhi-Qiang Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Dianfu Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
50
|
Boucher R, Haigh O, Barreau E, Champiat S, Lambotte O, Adam C, Labetoulle M, Rousseau A. Ocular surface toxicities associated with modern anticancer therapies. Surv Ophthalmol 2024; 69:198-210. [PMID: 37806566 DOI: 10.1016/j.survophthal.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Cancer treatments have recently shifted from broad-spectrum cytotoxic therapies to more focused treatments, maximizing anticancerous activity while reducing toxicity to healthy cells. These modern anticancer therapies (MATs) encompass a wide range of innovative molecules that include immune checkpoint inhibitors and other targeted anticancer therapies, comprising antibody drug conjugates and inhibitors of signal transduction. Some MATs are associated with ocular surface adverse events that can cause severe discomfort and even lead to loss of vision. While these complications remain rare, they are probably underreported. It is likely that both oncologists and ophthalmologists will come across MATs-associated ocular surface-adverse events in their practices, owing to the increasing number of patients being treated with MATs. Rapid identification of ocular surface-adverse events is crucial, as early intervention can manage these conditions to avoid vision loss and reduce negative impacts on quality of life. We discuss characteristics of ocular surface pathologies attributed to MATs, describe the suspected underlying pathophysiological mechanisms, and outline the main lines of treatment.
Collapse
Affiliation(s)
- Rafael Boucher
- Service d'Ophtalmologie, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay. Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
| | - Oscar Haigh
- Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
| | - Emmanuel Barreau
- Service d'Ophtalmologie, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay. Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France
| | - Stéphane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Olivier Lambotte
- Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France; Department of Internal Medicine and Immunology, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Clovis Adam
- Department of Pathology, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marc Labetoulle
- Service d'Ophtalmologie, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay. Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
| | - Antoine Rousseau
- Service d'Ophtalmologie, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay. Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France.
| |
Collapse
|