1
|
Chen J, Tang X, Sun Q, Ji X, Wang X, Liu Z, Zhang X, Xu H, Yang F, Sun J, Yang X. Nucleotide coordinated polymers, a ROS-based immunomodulatory antimicrobial, doubly kill Pseudomonas aeruginosa biofilms of implant infections. Bioact Mater 2025; 44:461-473. [PMID: 39559424 PMCID: PMC11570693 DOI: 10.1016/j.bioactmat.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
Pseudomonas aeruginosa causes high morbidity and mortality in nosocomial infections, and newly approved antibiotics have been declining for decades. A green and universal deprotonation-driven strategy is used to screen the guanylic acid-metal ion coordination polymer nanoparticles (GMC), instead of the failure of binding occurs when specific metal ion participation. We find that the precise pH-dependent oxidase-like activity of GMC-2 orchestrates a duple symphony of immune modulation for Pseudomonas aeruginosa biofilm infections. Specifically, GMC-2-mediated reactive oxygen species (ROS) regulation triggers mitochondrial dysfunction and releases damage-associated molecular patterns, engaging pattern recognition receptors and resulting in endogenous innate immune activation. Meanwhile, GMC-2-triggered ROS generation in a mildly acidic biofilm environment destroys the biofilm, exposing exogenous pathogen-associated molecular patterns. GMC-2 cannot cause resistance for Pseudomonas aeruginosa compared with conventional antibiotics. In an infected implant mouse model, Pseudomonas aeruginosa biofilms were effectively eliminated by GMC-2-mediated triggering of innate and adaptive immunity. These findings provide a universal approach for facilitating the binding of biomolecules with metal ions and highlight the precise ROS-regulating platform plays a critical role in initiating endogenous and exogenous immune activation targeted for bacterial biofilm infection.
Collapse
Affiliation(s)
- Jinghuang Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xianqing Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Xin Ji
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xingbo Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhendong Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xu Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fan Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, PR China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
2
|
Taslimi Eshkalak M, Mazloumi Jourkouyeh E, Faezi Ghasemi M, Zamani H, Zahmatkesh H, Rasti B. ZnO-Rutin nanostructure as a potent antibiofilm agent against Pseudomonasaeruginosa. Microb Pathog 2025; 198:107156. [PMID: 39608510 DOI: 10.1016/j.micpath.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Pseudomonas aeruginosa is a common human pathogen that is resistant to multiple antibiotics due to its ability to form biofilms. Developing novel nanoformulations capable of inhibiting and removing biofilms offers a promising solution for controlling biofilm-related infections. In this study, we investigated the anti-biofilm activity of rutin-conjugated ZnO nanoparticles (ZnO-Rutin NPs) in pathogenic strains of P. aeruginosa. The synthesized ZnO-Rutin NPs had amorphous shapes with sizes ranging from 14 to 100 nm. The broth microdilution assay revealed that ZnO-Rutin NPs, with an MIC value of 2 mg/mL, exhibit greater antimicrobial activity than ZnO NPs and rutin alone. Based on crystal violet staining, the biofilm inhibition rate by ½ MIC of the conjugated nanoparticles was recorded at above 90 %. The significant reduction in exopolysaccharide (62.75-66.37 %) and alginate (38.3-57.61 %) levels, as well as the formation of thin biofilms in the ZnO-Rutin NP-treated group, confirmed the anti-biofilm potential of these nanoparticles. Additionally, a significant decrease in the metabolic activity and viable cells of mature biofilms was observed after exposure to the conjugated nanoparticles. Furthermore, ZnO-Rutin NPs considerably attenuated the expression of the Las-Rhl quorum-sensing transcriptional regulator genes (lasR and rhlR) in P. aeruginosa by 0.39-0.40 and 0.25-0.42 folds, respectively. This work demonstrated that ZnO-Rutin NPs are remarkably capable of inhibiting the initial stage of biofilm formation and eradicating mature biofilms, suggesting they could be a useful agent for treating P. aeruginosa biofilm-related infections.
Collapse
Affiliation(s)
- Mahya Taslimi Eshkalak
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Edris Mazloumi Jourkouyeh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Faezi Ghasemi
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | | | - Hossein Zahmatkesh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| |
Collapse
|
3
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Kuc-Ciepluch D, Ciepluch K, Augustyniak D, Guła G, Maciejewska B, Kowalik A, Jop E, Drulis-Kawa Z, Arabski M. Exploiting gasdermin-mediated pyroptosis for enhanced antimicrobial activity of phage endolysin against Pseudomonas aeruginosa. mSystems 2024:e0110624. [PMID: 39714210 DOI: 10.1128/msystems.01106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
Pyroptosis is an inflammatory immune response of eukaryotic cells to bacterial lipopolysaccharide (LPS) and other pathological stimuli, leading to the activation of the gasdermin D (GSDMD) and secretion of pore-forming domain GSDMDNterm, facilitating the release of cytokines. Additionally, GSDMDNterm exhibits antibacterial properties through interactions with bacterial outer membranes (OM). We explored alternative antimicrobial strategy to determine whether inducing natural pyroptosis via GSDMD activation by P. aeruginosa LPS could enhance the effectiveness of recombinant phage endopeptidase KP27 (peptidoglycan-degrading enzyme) against P. aeruginosa, enabling penetration through OM and bacterial killing synergistically. Our findings demonstrated that recombinant GSDMD alone exhibited antibacterial effects against wild-type P. aeruginosa with smooth LPS, while recombinant GSDMDNterm efficiently permeabilized both smooth LPS-bearing and O-chain-deficient P. aeruginosa potentially synergizing with endolysin KP27. Transcriptomic analyses revealed the activation of the immune system pathways in response to LPS, mainly in monocytic cells, in contrast to epithelial A549 or HeLa cell lines. LPS-induced pyroptosis in monocytes led to GSDMD cleavage and the release of interleukins, regardless of the nature/origin of the LPS used. However, the pyroptosis stimulation by LPS in the antibacterial assay was not effective enough for bacterial OM permeabilization and enhancement of endolysin activity. We assume that leveraging pyroptosis induction in monocytic cells to augment the bactericidal activity of endolysins may be limited. IMPORTANCE Recombinant GSDMDNterm protein was able to efficiently permeabilize P. aeruginosa outer membranes and increase endolysin activity against bacteria, producing either long LPS O-chains or lack them entirely. The obtained results suggest the limited possibility of using the natural process of pyroptosis occurring in monocytic cells to enhance the bactericidal effect of recombinant phage endolysins against Gram-negative bacteria infection.
Collapse
Affiliation(s)
- Dorota Kuc-Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Daria Augustyniak
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Grzegorz Guła
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Barbara Maciejewska
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Artur Kowalik
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Molecular Diagnostics, Holy Cross Cancer Centre, Kielce, Poland
| | - Ewelina Jop
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Michał Arabski
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
5
|
Liu Y, Liu K, Lei L, Wang Q, Wang X, Meng X, Liu Q, Du J, Zhang L, Nazaré M, Hu HY. Aminopeptidase-Responsive NIR Photosensitizer for Precision Targeting and Eradication of Pseudomonas aeruginosa Biofilms. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39711235 DOI: 10.1021/acsami.4c16028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The emergence of resistance in Pseudomonas aeruginosa represents a significant global health challenge, particularly due to the hurdle of effectively penetrating biofilms with antimicrobials. Moreover, the rise of antibiotic-resistant pathogens has driven the urgent need for developing innovative therapeutic approaches to overcome antibiotic resistance. Antibacterial phototherapy strategies have shown great potential for combating pathogens due to their broad-spectrum antimicrobial activity, spatiotemporal controllability, and relatively low rate of resistance emergence. However, due to the lack of bacterial specificity and penetration, photosensitizers cause considerable damage to mammalian cells and normal tissues and are less effective against bacterial biofilms. Herein, we developed a novel dual-targeting antibacterial strategy to construct a near-infrared photosensitizer, Cy-NEO-Leu. Cy-NEO-Leu showed great bacterial targeting affinity, penetrating and accumulating in biofilms. At the site of infection, it was specifically activated by P. aeruginosa aminopeptidase (PaAP), producing Cy-NEO-NH2, which demonstrated outstanding photothermal (PTT) and photodynamic (PDT) properties, with a photothermal conversion efficiency of up to 70.34%. Both in vitro and in vivo results demonstrated that Cy-NEO-Leu significantly reduced the biofilm biomass and bacterial viability in P. aeruginosa biofilms. Moreover, phototherapy with Cy-NEO-Leu further activated the immune system, enhancing therapeutic efficacy and promoting wound healing. RNA-seq analysis revealed that the antibacterial mechanism of Cy-NEO-Leu-mediated phototherapy involves disruption of the transcriptional and translational processes of P. aeruginosa under laser irradiation. Overall, our results present a promising therapeutic approach against P. aeruginosa biofilms and inspire the development of next-generation antimicrobials.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kaixuan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ling Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiangchuan Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qian Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiacheng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Le Terrier C, Bouvier M, Kerbol A, Dell'Acqua C, Nordmann P, Poirel L. In-vitro activity of the novel β-lactam/β-lactamase inhibitor combinations and cefiderocol against carbapenem-resistant Pseudomonas spp. clinical isolates collected in Switzerland in 2022. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04994-6. [PMID: 39704920 DOI: 10.1007/s10096-024-04994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
To evaluate the in-vitro activity of the novel commercially-available drugs, including meropenem-vaborbactam (MEV), ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), imipenem-relebactam (IPR) as well as cefiderocol (FDC), against carbapenem-resistant Pseudomonas spp. (CRP) isolates. All CRP isolates collected at the Swiss National Reference Laboratory (NARA) over the year 2022 (n = 170) have been included. Most of these isolates (n = 121) were non-carbapenemase producers. Among the 49 carbapenemase producers, 47 isolates produced metallo-β-lactamases (MBL) including NDM-1 (n = 11), VIM-like (n = 28), IMP-like (n = 7), and both NDM-1 and VIM-2 (n = 1) and two isolates produced the class A carbapenemase GES-5. Susceptibility testing was determined by broth microdilution method (BMD), or disk diffusion test, and results interpreted following EUCAST guidelines. The susceptibility rates for MEV, CZA, C/T and IPR were found to be 41%, 45%, 59% and 58%, respectively, for the whole set of isolates tested. Among non-carbapenemase producers, susceptibility rates for these β-lactam/β-lactamase inhibitors (BL/BLI) combinations were higher, determined at 55%, 61%, 83%, and 82%, respectively. The overall susceptibility of carbapenemase-producing Pseudomonas spp. to novel BL/BLI was relatively low, while 80% of these isolates demonstrated susceptibility to FDC, with a similar proportion (79%) observed among MBL producers. A total of 10 MBL-producing isolates (6%), mainly NDM-1, were found to exhibit resistance to all drugs tested, with the exception of colistin. FDC exhibited an excellent in-vitro activity against this collection of CRP recovered from Switzerland in 2022, including MBL producers. The new BL/BLI combinations displayed significant activity against non-carbapenemase CRP, with IPR and C/T showing the highest susceptibility rates.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland
- Emergency Department, Fribourg Hospitals, Fribourg, Switzerland
| | - Maxime Bouvier
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Auriane Kerbol
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Chloé Dell'Acqua
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
7
|
Tenginakai P, Bhor S, Waasia FZ, Sharma S, Dinesh S. Comparative proteomic analysis to annotate the structural association of the hypothetical proteins from the conserved domain of P. aeruginosa as novel vaccine candidates. Biotechnol Lett 2024; 47:13. [PMID: 39702823 DOI: 10.1007/s10529-024-03546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/18/2024] [Accepted: 10/03/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Pseudomonas aeruginosa, identified as an ESKAPE pathogen, contributes to severe clinical diseases worldwide and despite its prevalence an effective vaccine or treatment remains elusive. Numerous computational methods are being employed to target hypothetical proteins (HPs). Presently, no studies have predicted multi-epitope vaccines for these HPs. RESULTS Totally, 877 HPs from P. aeruginosa were included in the study and the data showcased here illustrate a methodical approach to prioritize the proteome by employing diverse comparative proteomics. The study employed physicochemical property assessment and conserved domain analysis to identify stable and immunologically pertinent proteins for epitope prediction. The VaxiJen2.0 antigenicity assessment aided in epitope selection, contributing to the foundational steps in vaccine development by predicting T-cell and B-cell epitopes. Potential T and B cell epitopes with high antigenicity, non-toxic categorization, and robust binding affinities were identified in the investigation. The periplasmic HP WP_132813935.1 was predicted as conserved, stable, and soluble. The T-cell peptide RTSMRALAY and the B-cell peptide MPVYLYLM were predicted to be probable non-allergen and demonstrated strong binding with MHC class I allele HLA-C*03:03. CONCLUSIONS This research provides a comprehensive approach to predict T and B cell epitopes for conditions associated with P. aeruginosa, offering a candidate pool for tailored vaccine development. However, the efficacy of these epitopes in vaccine development necessitates clinical validation and testing for confirmation.
Collapse
Affiliation(s)
- Prajval Tenginakai
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| | - Samiksha Bhor
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| | | | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| |
Collapse
|
8
|
Ramezani H, Sazegar H, Rouhi L. Chitosan-casein as novel drug delivery system for transferring Phyllanthus emblica to inhibit Pseudomonas aeruginosa. BMC Biotechnol 2024; 24:101. [PMID: 39696307 DOI: 10.1186/s12896-024-00907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 12/20/2024] Open
Abstract
This study investigated the ability of Phyllanthus emblica encapsulated within chitosan-coated casein (CS-casein-Amla) nanoparticles to inhibit the growth of multi-drug-resistant Pseudomonas aeruginosa (P. aeruginosa) bacteria and prevent the formation of biofilms. The MDR strains underwent screening, and the morphological characteristics of the resulting nanoparticles were assessed using SEM, DLS, and FTIR. In addition, the efficacy of encapsulation, stability, and drug release were evaluated. The PpgL, BdlA, and GacA biofilm gene transcription quantities were quantified by quantitative real-time PCR. Simultaneously, the nanoparticles were assessed for their antibacterial and cytotoxic effects using the well diffusion and MTT procedures. CS-casein-Amla nanoparticles with a size of 500.73 ± 13 nm, encapsulation efficiency of 76.33 ± 0.81%, and stability for 60 days at 4 °C (Humidity 30%) were created. The biological analysis revealed that CS-casein-Amla nanoparticles exhibited strong antibacterial properties. This was shown by their capacity to markedly reduce the transcription of PpgL, BdlA, and GacA biofilm genes at a statistically significant value of p ≤ 0.01. The nanoparticles demonstrated decreased antibiotic resistance compared to unbound Amla and CS-casein. Compared to Amla, CS-casein-Amla nanoparticles showed very little toxicity against HDF cells at dosages ranging from 1.56 to 100 µg/mL (p ≤ 0.01). The results highlight the potential of CS-casein-Amla nanoparticles as a significant advancement in combating highly resistant P. aeruginosa. The powerful antibacterial properties of CS-casein-Amla nanoparticles against P. aeruginosa MDR strains, which are highly resistant pathogens of great concern, may catalyze the development of novel antibacterial research approaches.
Collapse
Affiliation(s)
- Helia Ramezani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hossein Sazegar
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Leila Rouhi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
9
|
Liu S, Rahman MR, Wu H, Qin W, Wang Y, Su G. Development and application of hydrogels in pathogenic bacteria detection in foods. J Mater Chem B 2024. [PMID: 39690945 DOI: 10.1039/d4tb01341g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Hydrogels are 3D networks of water-swollen hydrophilic polymers. It possesses unique properties (e.g., carrying biorecognition elements and creating a micro-environment) that make it highly suitable for bacteria detection (e.g., expedited and effective bacteria detection) and mitigation of bacterial contamination in specific environments (e.g., food systems). This study first introduces the materials used to create hydrogels for bacteria detection and the mechanisms for detection. We also summarize different hydrogel-based detection methods that rely on external stimuli and biorecognition elements, such as enzymes, temperature, pH, antibodies, and oligonucleotides. Subsequently, a range of widely utilized bacterial detection technologies were discussed where recently hydrogels are being used. These modifications allow for precise, real-time diagnostics across varied food matrices, responding effectively to industry needs for sensitivity, scalability, and portability. After highlighting the utilization of hydrogels and their role in these detection techniques, we outline limitations and advancements in the methods for the detection of foodborne pathogenic bacteria, especially the potential application of hydrogels in the food industry.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Md Rashidur Rahman
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| |
Collapse
|
10
|
Golan N, Parizat A, Tabachnikov O, Barnea E, Olsen WP, Otzen DE, Landau M. Resilience and Charge-Dependent Fibrillation of functional amyloid: Interactions of Pseudomonas Biofilm-Associated FapB and FapC Amyloids. J Biol Chem 2024:108096. [PMID: 39706277 DOI: 10.1016/j.jbc.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
FapC and FapB are biofilm-associated amyloids involved in the virulence of Pseudomonas and other bacteria. We herein demonstrate their exceptional thermal and chemical resilience, suggesting that their biofilm structures might withstand standard sterilization, thereby contributing to the persistence of P. aeruginosa infections. Our findings also underscore the impact of environmental factors on Fap proteins, suggesting that orthologs in different Pseudomonas strains adapt to specific environments and roles. Challenging previous assumptions about a simple nucleation role for FapB in promoting FapC aggregation, the study shows a significant influence of FapC on FapB aggregation. The interaction between these FapB and FapC is intricate: FapB stabilizes FapC fibrils, while FapC slows down FapB fibrillation but can still serve as a cross-seeding template. This complex interplay is key to understanding their roles in bacterial biofilms. Furthermore, the study highlights distinct differences between Fap and E. coli's CsgA (curli) amyloid, where CsgB assumes a simple unidirectional role in nucleating CsgA fibrillation, emphasizing the importance of a comprehensive understanding of various amyloid systems. This knowledge is vital for developing effective intervention strategies against bacterial infections and leveraging the unique properties of these amyloids in technological applications such as novel bio-nanomaterials or protective coatings.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Amit Parizat
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Orly Tabachnikov
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Current address: Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - William P Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany; The Center for Experimental Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany; European Molecular Biology Laboratory (EMBL), Hamburg, Germany.
| |
Collapse
|
11
|
Chen N, Xi J, Du N, Shen R, Zhao R, He W, Peng T, Yang Y, Zhang Y, Yu L, Tan W, Yuan Q. Framework nucleic acid strategy enables closer microbial contact for programming short-range interaction. SCIENCE ADVANCES 2024; 10:eadr4399. [PMID: 39661693 PMCID: PMC11633756 DOI: 10.1126/sciadv.adr4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Programming precise and specific microbial intraspecies or interspecies interaction would be powerful for microbial metabolic regulation, signal pathway mechanism understanding, and therapeutic application. However, it is still of great challenge to develop a simple and universal method to artificially encode the microbial interactions without interfering with the intrinsic cell metabolism. Here, we proposed an extensible and flexible framework nucleic acid strategy for encoding the specific and precise microbial interactions upon self-assembly. With this spatial manipulation tool, we propose the microbial spatial heterogeneity and short-range interaction mechanism that the microbial assembly facilitates the gene expressions of the surface sensors including flagella and pili in Pseudomonas aeruginosa, leading to a more sensitive response to quorum sensing. The microbial interaction programming strategy proposed in this work is expected to provide a powerful and designable nanoplatform for better understanding of distance-dependent bacterial communication networks.
Collapse
Affiliation(s)
- Na Chen
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Xi
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Na Du
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Ruichen Shen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Rui Zhao
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Wei He
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Tianhuang Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanbing Yang
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lilei Yu
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Quan Yuan
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
12
|
Guercio D, Boon E. The histidine kinase NahK regulates denitrification and nitric oxide accumulation through RsmA in Pseudomonas aeruginosa. J Bacteriol 2024:e0040824. [PMID: 39660891 DOI: 10.1128/jb.00408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Pseudomonas aeruginosa have a versatile metabolism; they can adapt to many stressors, including limited oxygen and nutrient availability. This versatility is especially important within a biofilm where multiple microenvironments are present. As a facultative anaerobe, P. aeruginosa can survive under anaerobic conditions utilizing denitrification. This process produces nitric oxide (NO) which has been shown to result in cell elongation. However, the molecular mechanism underlying this phenotype is poorly understood. Our laboratory has previously shown that NosP is a NO-sensitive hemoprotein that works with the histidine kinase NahK to regulate biofilm formation in P. aeruginosa. In this study, we identify NahK as a novel regulator of denitrification under anaerobic conditions. Under anaerobic conditions, deletion of nahK leads to a reduction of growth coupled with reduced transcriptional expression and activity of the denitrification reductases. Furthermore, during stationary phase under anaerobic conditions, ΔnahK does not exhibit cell elongation, which is characteristic of P. aeruginosa. We determine the loss of cell elongation is due to changes in NO accumulation in ΔnahK. We further provide evidence that NahK may regulate denitrification through modification of RsmA levels. IMPORTANCE Pseudomonas aeruginosa is an opportunistic multi-drug resistance pathogen that is associated with hospital-acquired infections. P. aeruginosa is highly virulent, in part due to its versatile metabolism and ability to form biofilms. Therefore, better understanding of the molecular mechanisms that regulate these processes should lead to new therapeutics to treat P. aeruginosa infections. The histidine kinase NahK has been previously shown to be involved in both nitric oxide (NO) signaling and quorum sensing through RsmA. The data presented here demonstrate that NahK is responsive to NO produced during denitrification to regulate cell morphology. Understanding the role of NahK in metabolism under anaerobic conditions has larger implications in determining its role in a heterogeneous metabolic environment such as a biofilm.
Collapse
Affiliation(s)
- Danielle Guercio
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth Boon
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Chemistry, Stony Brook University Department of Chemistry, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
13
|
Saha P, Mukherjee SK, Hossain ST. Regulation of TCA cycle genes by srbA sRNA: Impacts on Pseudomonas aeruginosa virulence and survival. Biochem Biophys Res Commun 2024; 737:150520. [PMID: 39128223 DOI: 10.1016/j.bbrc.2024.150520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Pseudomonas aeruginosa, an opportunistic bacterial pathogen of public health concern, is known for its metabolic versatility, adaptability in harsh environment, and pathogenic aggressiveness. P. aeruginosa relies on various regulatory networks modulated by small non-coding RNAs, which in turn influence different physiological traits such as metabolism, stress response, and pathogenesis. In this study, srbA sRNA has been shown to play a diverse role in regulating cellular metabolism and the production of different virulence factors in P. aeruginosa. srbA was found to control the TCA cycle, a key regulatory pathway for cellular metabolism and energy production, by regulating three main enzymes: citrate synthase (gltA), isocitrate dehydrogenase (icd), and α-ketoglutarate dehydrogenase E1 subunit (sucA) at both the transcriptional and translational levels. By modulating the TCA cycle, srbA could help the bacteria to adapt nutritional stress by lowering energy consumption. Additionally, srbA has been found to differentially regulate production of various virulence factors such as rhamnolipid, elastase, LasA protease, and pyocyanin under both nutrient-rich and nutrient-limiting conditions. It could also influence motilities in P. aeruginosa, linked to biofilm formation and pathogenicity. Thus, srbA might hold a promise in the research area for identifying virulence pathways and developing novel therapeutic targets to combat the global pathogenic threat of P. aeruginosa.
Collapse
Affiliation(s)
- Piyali Saha
- Department of Microbiology, University of Kalyani, Kalyani, 741235, India
| | | | | |
Collapse
|
14
|
Tugui CG, Sorokin DY, Hijnen W, Wunderer J, Bout K, van Loosdrecht MCM, Pabst M. Exploring the metabolic potential of Aeromonas to utilise the carbohydrate polymer chitin. RSC Chem Biol 2024:d4cb00200h. [PMID: 39703203 PMCID: PMC11653859 DOI: 10.1039/d4cb00200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Members of the Aeromonas genus are commonly found in natural aquatic ecosystems. However, they are also frequently present in non-chlorinated drinking water distribution systems. High densities of these bacteria indicate favorable conditions for microbial regrowth, which is considered undesirable. Studies have indicated that the presence of Aeromonas is associated with loose deposits and the presence of invertebrates, specifically Asellus aquaticus. Therefore, a potential source of energy in these nutrient poor environments is chitin, the structural shell component in these invertebrates. In this study, we demonstrate the ability of two Aeromonas strains, commonly encountered in drinking water distribution systems, to effectively degrade and utilize chitin as a sole carbon and nitrogen source. We conducted a quantitative proteomics study on the cell biomass and secretome from pure strain cultures when switching the nutrient source from glucose to chitin, uncovering a diverse array of hydrolytic enzymes and metabolic pathways specifically dedicated to the utilization of chitin. Additionally, a genomic analysis of different Aeromonas species suggests the general ability of this genus to degrade and utilize a variety of carbohydrate biopolymers. This study indicates the relation between the utilization of chitin by Aeromonas and their association with invertebrates such as A. aquaticus in loose deposits in drinking water distribution systems.
Collapse
Affiliation(s)
- Claudia G Tugui
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
| | - Dimitry Y Sorokin
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, RAS Moscow Russia
| | - Wim Hijnen
- Evides Water Company Rotterdam The Netherlands
| | | | - Kaatje Bout
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
| | | | - Martin Pabst
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
| |
Collapse
|
15
|
Khlebnikova A, Kirshina A, Zakharova N, Ivanov R, Reshetnikov V. Current Progress in the Development of mRNA Vaccines Against Bacterial Infections. Int J Mol Sci 2024; 25:13139. [PMID: 39684849 DOI: 10.3390/ijms252313139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial infections have accompanied humanity for centuries. The discovery of the first antibiotics and the subsequent golden era of their discovery temporarily shifted the balance in this confrontation to the side of humans. Nevertheless, the excessive and improper use of antibacterial drugs and the evolution of bacteria has gotten the better of humans again. Therefore, today, the search for new antibacterial drugs or the development of alternative approaches to the prevention and treatment of bacterial infections is relevant and topical again. Vaccination is one of the most effective strategies for the prevention of bacterial infections. The success of new-generation vaccines, such as mRNA vaccines, in the fight against viral infections has prompted many researchers to design mRNA vaccines against bacterial infections. Nevertheless, the biology of bacteria and their interactions with the host's immunity are much more complex compared to viruses. In this review, we discuss structural features and key mechanisms of evasion of an immune response for nine species of bacterial pathogens against which mRNA vaccines have been developed and tested in animals. We focus on the results of experiments involving the application of mRNA vaccines against various bacterial pathogens in animal models and discuss possible options for improving the vaccines' effectiveness. This is one of the first comprehensive reviews of the use of mRNA vaccines against bacterial infections in vivo to improve our knowledge.
Collapse
Affiliation(s)
- Alina Khlebnikova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Natalia Zakharova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
16
|
Maršík D, Danda M, Otta J, Thoresen PP, Mat́átková O, Rova U, Christakopoulos P, Matsakas L, Masák J. Preparation and Biological Activity of Lignin-Silver Hybrid Nanoparticles. ACS OMEGA 2024; 9:47765-47787. [PMID: 39651097 PMCID: PMC11618447 DOI: 10.1021/acsomega.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024]
Abstract
Silver nanoparticles (AgNPs) are excellent antimicrobial agents and promising candidates for preventing or treating bacterial infections caused by antibiotic resistant strains. However, their increasing use in commercial products raises concerns about their environmental impact. In addition, traditional physicochemical approaches often involve harmful agents and excessive energy consumption, resulting in AgNPs with short-term colloidal stability and silver ion leaching. To address these issues, we designed stable hybrid lignin-silver nanoparticles (AgLigNPs) intended to effectively hit bacterial envelopes as a main antimicrobial target. The lignin nanoparticles (LigNPs), serving as a reducing and stabilizing agent for AgNPs, have a median size of 256 nm and a circularity of 0.985. These LigNPs were prepared using the dialysis solvent exchange method, producing spherical particles stable under alkaline conditions and featuring reducing groups oriented toward a wrinkled surface, facilitating AgNPs synthesis and attachment. Maximum accumulation of silver on the LigNP surface was observed at a mass reaction ratio mAg:mLig of 0.25, at pH 11. The AgLigNPs completely inhibited suspension growth and reduced biofilm development by 50% in three tested strains of Pseudomonas aeruginosa at a concentration of 80/9.5 (lignin/silver) mg L-1. Compared to unattached AgNPs, AgLigNPs required two to eight times lower silver concentrations to achieve complete inhibition. Additionally, our silver-containing nanosystems were effective against bacteria at safe concentrations in HEK-293 and HaCaT tissue cultures. Stability experiments revealed that the nanosystems tend to aggregate in media used for bacterial cell cultures but remain stable in media used for tissue cultures. In all tested media, the nanoparticles retained their integrity, and the presence of lignin facilitated the prevention of silver ions from leaching. Overall, our data demonstrate the suitability of AgLigNPs for further valorization in the biomedical sector.
Collapse
Affiliation(s)
- Dominik Maršík
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Matěj Danda
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Jaroslav Otta
- Department
of Physics and Measurements, University
of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Petter P. Thoresen
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Olga Mat́átková
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Ulrika Rova
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Paul Christakopoulos
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Leonidas Matsakas
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Jan Masák
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| |
Collapse
|
17
|
Khan BA, Roy S, Tahsin N, Baidya K, Das KC, Islam MS, Ahsan N, Salam A. Antibiotic resistance of bioaerosols in particulate matter from indoor environments of the hospitals in Dhaka Bangladesh. Sci Rep 2024; 14:29884. [PMID: 39623045 PMCID: PMC11612278 DOI: 10.1038/s41598-024-81376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The emergence and spread of antibiotic resistance in microorganisms pose significant challenges to public health, especially in hospitals. This study investigated the existence or occurrence of bacterial bioaerosol and their antibiotic resistance patterns in particulate matter (PM) collected from hospitals in the greater Dhaka region, Bangladesh. The real-time particulate matter concentrations (PM1.0, PM2.5, and PM10) were measured in four hospitals and two ambient locations. Air sampling was conducted using a filter-based method with a low-volume air sampler, while AEROCET-531 S (USA) was employed to monitor particulate matter concentrations. Bacterial bioaerosol concentration was determined using a culture-based method, and eleven bacterial species, including nine individual species, i.e., Staphylococcus aureus, Pseudomonas aeruginosa, P. stutzeri, Bacillus cereus, Acinetobacter schindleri, Proteus vulgaris, B. subtilis, Escherichia coli, and B. aerius, were isolated. Antibiotic susceptibility testing was conducted using the Kirby-Bauer disk diffusion method with 21 antibiotics. Bacterial isolates were detected using partial sequencing of the 16 S rRNA gene. Bioaerosol concentration ranged from 194.65 ± 22.48 CFU/m3 to 948.39 ± 84.14 CFU/m3, showing significant correlations with PM1.0 and PM2.5 concentrations (R2 = 0.80 and 0.85, respectively). All bacterial isolates collected from the hospitals exhibited resistance against four or more antibiotics, indicating multidrug resistance (MDR). Notably, the bacterial isolates displayed the highest resistance rate against ampicillin (90.90%), azithromycin (81.81%), erythromycin (81.81%), cefixime (81.81%), and cotrimoxazole (54.54%), among the tested antibiotics. Except B. aerius, all other bacterial isolates were associated with hospital-acquired infections (HAIs). These findings highlight the high rates of antibiotic resistance, underscoring the pressing requirement for infection control measures and continuous surveillance strategies in hospital settings. These findings emphasize the necessity for global hospital infection control strategies focusing airborne multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Badhon Ali Khan
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shatabdi Roy
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nishat Tahsin
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Kalpana Baidya
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology (NIB), Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Md Safiqul Islam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Ahsan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abdus Salam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
18
|
Han L, Ren J, Xue Y, Xie G, Gao J, Fu Q, Shao P, Zhu H, Zhang M, Ding F. Palmitoleic acid inhibits Pseudomonas aeruginosa quorum sensing activation and protects lungs from infectious injury. Respir Res 2024; 25:423. [PMID: 39623416 PMCID: PMC11613874 DOI: 10.1186/s12931-024-03035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Unsaturated fatty acids targeting quorum sensing (QS) system have shown potential application in reducing bacterial virulence. We aim to investigate the effect of palmitoleic acid (PMA) on P. aeruginosa QS activation, and its impact on infection-induced lung injury. METHODS The influence of PMA on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin production, and QS gene transcription levels were examined in wildtype PAO1 culture. The roles of PMA in reducing infection-induced injury were assessed in human bronchial epithelial BEAS-2B cells and mouse lung infection models, respectively. PMA levels and QS signaling molecule concentrations were tested in the bronchoalveolar lavage fluid (BALF) of bronchiectasis patients with first-time detection of P. aeruginosa infection. RESULTS PMA administration dose-dependently suppressed the expression of QS signaling molecules, pyocyanin, and QS genes during the logarithmic stage of bacterial growth. In BEAS-2B cells, PMA-treated PAO1 filtrates significantly reduced cell apoptosis and expression of IL-8 and IL-6. In mouse lung infection models, prophylactically oral administration of PMA significantly downregulated the expression of P. aeruginosa QS signals and QS genes (lasR, rhlR, rhlI, lasB, rhlA, phzA1, phnA) in lungs, and relieved neutrophilic airway inflammation. Finally, PMA levels were negatively correlated with the concentrations of both 3OC12-HSL and C4-HSL in BALF of bronchiectasis patients, and positively correlated with their forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1.0). CONCLUSION Our findings show that PMA inhibits P. aeruginosa QS activation and protects lungs from injury caused by bacterial virulence. Hence, PMA may serve as a potential anti-QS agent against P. aeruginosa infection and would help to alleviate lung injury in bronchiectasis patients.
Collapse
Affiliation(s)
- Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Shao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Ren Y, Zhu R, You X, Li D, Guo M, Fei B, Liu Y, Yang X, Liu X, Li Y. Quercetin: a promising virulence inhibitor of Pseudomonas aeruginosa LasB in vitro. Appl Microbiol Biotechnol 2024; 108:57. [PMID: 38180553 PMCID: PMC10770215 DOI: 10.1007/s00253-023-12890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
With the inappropriate use of antibiotics, antibiotic resistance has emerged as a major dilemma for patients infected with Pseudomonas aeruginosa. Elastase B (LasB), a crucial extracellular virulence factor secreted by P. aeruginosa, has been identified as a key target for antivirulence therapy. Quercetin, a natural flavonoid, exhibits promising potential as an antivirulence agent. We aim to evaluate the impact of quercetin on P. aeruginosa LasB and elucidate the underlying mechanism. Molecular docking and molecular dynamics simulation revealed a rather favorable intermolecular interaction between quercetin and LasB. At the sub-MICs of ≤256 μg/ml, quercetin was found to effectively inhibit the production and activity of LasB elastase, as well as downregulate the transcription level of the lasB gene in both PAO1 and clinical strains of P. aeruginosa. Through correlation analysis, significant positive correlations were shown between the virulence gene lasB and the QS system regulatory genes lasI, lasR, rhlI, and rhlR in clinical strains of P. aeruginosa. Then, we found the lasB gene expression and LasB activity were significantly deficient in PAO1 ΔlasI and ΔlasIΔrhlI mutants. In addition, quercetin significantly downregulated the expression levels of regulated genes lasI, lasR, rhlI, rhlR, pqsA, and pqsR as well as effectively attenuated the synthesis of signaling molecules 3-oxo-C12-HSL and C4-HSL in the QS system of PAO1. Quercetin was also able to compete with the natural ligands OdDHL, BHL, and PQS for binding to the receptor proteins LasR, RhlR, and PqsR, respectively, resulting in the formation of more stabilized complexes. Taken together, quercetin exhibits enormous potential in combating LasB production and activity by disrupting the QS system of P. aeruginosa in vitro, thereby offering an alternative approach for the antivirulence therapy of P. aeruginosa infections. KEY POINTS: • Quercetin diminished the content and activity of LasB elastase of P. aeruginosa. • Quercetin inhibited the QS system activity of P. aeruginosa. • Quercetin acted on LasB based on the QS system.
Collapse
Affiliation(s)
- Yanying Ren
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Rui Zhu
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaojuan You
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Dengzhou Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Mengyu Guo
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bing Fei
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying Liu
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ximing Yang
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Peking, 100700, China.
| | - Xinwei Liu
- Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China.
| | - Yongwei Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China.
- The Key Laboratory of Pathogenic Microbes & Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China.
- Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China.
- Henan Provincial Key Laboratory of Antibiotics-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
20
|
Turban A, Morin-Le Bihan A, Derbier L, Piau-Couapel C, Nesseler N, Cattoir V, Donnio PY, Ménard G. Effectiveness of water system chemical disinfection against Pseudomonas aeruginosa infections, despite a not-so-obvious connection. Am J Infect Control 2024; 52:1432-1437. [PMID: 39293676 DOI: 10.1016/j.ajic.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Pseudomonas aeruginosa is a well-recognized opportunistic pathogen frequently responsible for hospital-acquired infections. Acquisition routes of P aeruginosa are both endogenous and exogenous, including transmission from a portion of the hospital water system. METHODS The impact of disinfection procedures of the water system and description routes of P aeruginosa transmission in a surgical intensive care unit over a 2-year period were investigated. Two distinct periods A and B were considered, respectively, before and after the disinfection. Fourier transform infrared spectroscopy was used to compare isolates recovered from patients and tap water. RESULTS Overall, 21.3% of tap water samples were positive but with a significantly lower rate in period B. Concomitantly, the prevalence of patients positive for P aeruginosa decreased from 2.6% to 1%, suggesting a correlation between the presence of environmental sources and patient contaminations. The results revealed that 18% of patients were involved in cross-transmission events not related to any isolate recovered from water, suggesting transmission through care practices. Conversely, only 1 environmental transmission event was suspected in a patient. CONCLUSIONS Although the link between the hospital environment and patients was unclear, HCW-associated care practices could be related to contaminated point-of-use waters and then indirect spreading to patients.
Collapse
Affiliation(s)
- Adrien Turban
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France; UMR_S 1230 BRM, INSERM/University Rennes, Rennes, France
| | | | - Lucille Derbier
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
| | | | - Nicolas Nesseler
- CHU Rennes, Service d'Anesthésie et de Soins Critiques, Rennes, France
| | - Vincent Cattoir
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France; UMR_S 1230 BRM, INSERM/University Rennes, Rennes, France
| | - Pierre-Yves Donnio
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France; UMR_S 1230 BRM, INSERM/University Rennes, Rennes, France
| | - Guillaume Ménard
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France; UMR_S 1230 BRM, INSERM/University Rennes, Rennes, France.
| |
Collapse
|
21
|
Braunstein R, Hubanic G, Yerushalmy O, Oren-Alkalay S, Rimon A, Coppenhagen-Glazer S, Niv O, Marom H, Barsheshet A, Hazan R. Successful phage-antibiotic therapy of P. aeruginosa implant-associated infection in a Siamese cat. Vet Q 2024; 44:1-9. [PMID: 38726795 PMCID: PMC11089911 DOI: 10.1080/01652176.2024.2350661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/27/2024] [Indexed: 05/15/2024] Open
Abstract
Antibiotic-resistant pathogens are a growing global issue, leading to untreatable infectious diseases in both humans and animals. Personalized bacteriophage (phage) therapy, the use of specific anti-bacterial viruses, is currently a leading approach to combat antibiotic-resistant infections. The implementation of phage therapy has primarily been focused on humans, almost neglecting the impact of such infections on the health and welfare of companion animals. Pets also have the potential to spread resistant infections to their owners or the veterinary staff through zoonotic transmission. Here, we showcase personalized phage-antibiotic treatment of a cat with a multidrug-resistant Pseudomonas aeruginosa implant-associated infection post-arthrodesis surgery. The treatment encompassed a tailored combination of an anti-P. aeruginosa phage and ceftazidime, precisely matched to the pathogen. The phage was topically applied to the surgical wound while the antibiotic was administered intramuscularly. After two treatment courses spanning 7 and 3 weeks, the surgical wound, which had previously remained open for five months, fully closed. To the best of our knowledge, this is the first case of personalized phage therapy application in felines, which provides further evidence of the effectiveness of this approach. The successful outcome paves the way for personalized phage-antibiotic treatments against persistent infections therapy in veterinary practice.
Collapse
Affiliation(s)
- Ron Braunstein
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Goran Hubanic
- Vet-Holim, Animal Medical Center, Kiryat-Anavim, Israel
| | - Ortal Yerushalmy
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Sivan Oren-Alkalay
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Amit Rimon
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
- Tzameret, The Military Track of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Ofir Niv
- Vet-Holim, Animal Medical Center, Kiryat-Anavim, Israel
| | - Hilik Marom
- Vet-Holim, Animal Medical Center, Kiryat-Anavim, Israel
| | | | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
22
|
Kumari P, Yadav S, Sarkar S, Satheeshkumar PK. Cleavage of cell junction proteins as a host invasion strategy in leptospirosis. Appl Microbiol Biotechnol 2024; 108:119. [PMID: 38204132 PMCID: PMC10781872 DOI: 10.1007/s00253-023-12945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extracellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/therapeutic aspects of leptospirosis will also be discussed. KEY POINTS: • The review focussed on the cell junction cleavage proteins in bacterial pathogenesis • Cell junction disruptors from Leptospira genome are identified using bioinformatics • The review provides insights into the therapeutic/diagnostic interventions possible.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suhani Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sresha Sarkar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
23
|
Li J, Li Y, Zhou L, Li H, Wan T, Tang J, Zhou L, Xie H, Wang L. Microbiome analysis reveals the inducing effect of Pseudomonas on prostatic hyperplasia via activating NF-κB signalling. Virulence 2024; 15:2313410. [PMID: 38378443 PMCID: PMC10880505 DOI: 10.1080/21505594.2024.2313410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent disease among middle-aged and elderly males, but its pathogenesis remains unclear. Dysbiosis of the microbiome is increasingly recognized as a significant factor in various human diseases. Prostate tissue also contains a unique microbiome, and its dysbiosis has been proposed to contribute to prostate diseases. Here, we obtained prostate tissues and preoperative catheterized urine from 24 BPH individuals, and 8 normal prostate samples as controls, which followed strict aseptic measures. Using metagenomic next-generation sequencing (mNGS), we found the disparities in the microbiome composition between normal and BPH tissues, with Pseudomonas significantly enriched in BPH tissues, as confirmed by fluorescence in situ hybridization (FISH). Additionally, we showed that the prostate microbiome differed from the urine microbiome. In vitro experiments revealed that lipopolysaccharide (LPS) of Pseudomonas activated NF-κB signalling, leading to inflammation, proliferation, and EMT processes, while inhibiting apoptosis in prostatic cells. Overall, our research determines the presence of microbiome dysbiosis in BPH, and suggests that Pseudomonas, as the dominant microflora, may promote the progression of BPH through LPS activation of NF-κB signalling.
Collapse
Affiliation(s)
- Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongming Li
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tengfei Wan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xie
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Do DT, Yang MR, Vo TNS, Le NQK, Wu YW. Unitig-centered pan-genome machine learning approach for predicting antibiotic resistance and discovering novel resistance genes in bacterial strains. Comput Struct Biotechnol J 2024; 23:1864-1876. [PMID: 38707536 PMCID: PMC11067008 DOI: 10.1016/j.csbj.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
In current genomic research, the widely used methods for predicting antimicrobial resistance (AMR) often rely on prior knowledge of known AMR genes or reference genomes. However, these methods have limitations, potentially resulting in imprecise predictions owing to incomplete coverage of AMR mechanisms and genetic variations. To overcome these limitations, we propose a pan-genome-based machine learning approach to advance our understanding of AMR gene repertoires and uncover possible feature sets for precise AMR classification. By building compacted de Brujin graphs (cDBGs) from thousands of genomes and collecting the presence/absence patterns of unique sequences (unitigs) for Pseudomonas aeruginosa, we determined that using machine learning models on unitig-centered pan-genomes showed significant promise for accurately predicting the antibiotic resistance or susceptibility of microbial strains. Applying a feature-selection-based machine learning algorithm led to satisfactory predictive performance for the training dataset (with an area under the receiver operating characteristic curve (AUC) of > 0.929) and an independent validation dataset (AUC, approximately 0.77). Furthermore, the selected unitigs revealed previously unidentified resistance genes, allowing for the expansion of the resistance gene repertoire to those that have not previously been described in the literature on antibiotic resistance. These results demonstrate that our proposed unitig-based pan-genome feature set was effective in constructing machine learning predictors that could accurately identify AMR pathogens. Gene sets extracted using this approach may offer valuable insights into expanding known AMR genes and forming new hypotheses to uncover the underlying mechanisms of bacterial AMR.
Collapse
Affiliation(s)
- Duyen Thi Do
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Ren Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tran Nam Son Vo
- Department of Business Administration, College of Management, Lunghwa University of Science and Technology, Taoyuan City, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Carević T, Kolarević S, Kolarević MK, Nestorović N, Novović K, Nikolić B, Ivanov M. Citrus flavonoids diosmin, myricetin and neohesperidin as inhibitors of Pseudomonas aeruginosa: Evidence from antibiofilm, gene expression and in vivo analysis. Biomed Pharmacother 2024; 181:117642. [PMID: 39486364 DOI: 10.1016/j.biopha.2024.117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Citrus flavonoids are group of bioactive polyphenols. Here, we investigated the potential of diosmin, myricetin and neohesperidin as possible inhibitors of Pseudomonas aeruginosa. This bacterium is a major clinical challenge due to its propensity to form resistant biofilm. The aims of this study were to examine flavonoids antibacterial activity using the microdilution method, assays intended to determine several antibiofilm mechanisms (crystal violet, congo red binding, extracellular DNA (eDNA) test and confocal laser scanning microscopy (CLSM) live/dead cell imaging), followed by virulence genes RT-qPCR analysis. Furthermore, we aimed to examine in vivo toxicity of the compounds as well as their efficacy in P. aeruginosa zebrafish embryo infection model. Minimal inhibitory concentrations of tested flavonoids towards P. aeruginosa were in range 0.05 - 0.4 mg/mL. A high potential of the compounds to disturb both the formation of the bacterial biofilm and its eradication was recorded, including significant reduction in biofilm biomass, exopolysaccharide and eDNA production. Biofilm treatment with diosmin resulted in the lowest percentage of live microbial cells as observed in the CLSM live/dead cell imaging. The lasI, pvdS, and rhlC genes were found to be downregulated in the presence of diosmin and myricetin. Only diosmin stood out as non-embryotoxic. Consequently, in vivo analysis using a zebrafish model of P. aeruginosa infection showed an antivirulence effect of diosmin. Our findings suggest that diosmin could be potential candidate for the development of new agent that target P. aeruginosa infections by reducing its virulence mechanisms.
Collapse
Affiliation(s)
- Tamara Carević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Stoimir Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Margareta Kračun Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Nataša Nestorović
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 11042, Serbia
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade 11000, Serbia
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia.
| |
Collapse
|
26
|
Alotaibi B, Elekhnawy E, El-Masry TA, Saleh A, Alosaimi ME, Alotaibi KN, Negm WA. Antibacterial potential of Euphorbia canariensis against Pseudomonas aeruginosa bacteria causing respiratory tract infections. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:261-269. [PMID: 38696143 DOI: 10.1080/21691401.2024.2345891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/14/2024] [Indexed: 05/14/2024]
Abstract
The widespread dissemination of bacterial resistance has led to great attention being paid to finding substitutes for traditionally used antibiotics. Plants are rich in various phytochemicals that could be used as antibacterial therapies. Here, we elucidate the phytochemical profile of Euphorbia canariensis ethanol extract (EMEE) and then elucidate the antibacterial potential of ECEE against Pseudomonas aeruginosa clinical isolates. ECEE showed minimum inhibitory concentrations ranging from 128 to 512 µg/mL. The impact of ECEE on the biofilm-forming ability of the tested isolates was elucidated using crystal violet assay and qRT-PCR to study its effect on the gene expression level. ECEE exhibited antibiofilm potential, which resulted in a downregulation of the expression of the biofilm genes (algD, pelF, and pslD) in 39.13% of the tested isolates. The antibacterial potential of ECEE was studied in vivo using a lung infection model in mice. A remarkable improvement was observed in the ECEE-treated group, as revealed by the histological and immunohistochemical studies. Also, ELISA showed a noticeable decrease in the oxidative stress markers (nitric oxide and malondialdehyde). The gene expression of the proinflammatory marker (interleukin-6) was downregulated, while the anti-inflammatory biomarker was upregulated (interleukin-10). Thus, clinical trials should be performed soon to explore the potential antibacterial activity of ECEE, which could help in our battle against resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | | | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta
| |
Collapse
|
27
|
Wang Y, Liu X, Huang C, Han W, Gu P, Jing R, Yang Q. Antibiotic resistance genes and virulence factors in the plastisphere in wastewater treatment plant effluent: Health risk quantification and driving mechanism interpretation. WATER RESEARCH 2024; 271:122896. [PMID: 39631158 DOI: 10.1016/j.watres.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Microplastics (MPs) are ubiquitous in wastewater treatment plants (WWTPs) and provide a unique niche for the spread of pollutants. To date, risk assessments and driving mechanisms of pathogens, antibiotic resistance genes (ARGs), and virulence factors (VFs) in the plastisphere are still lacking. Here, the microbiota, ARGs, VFs, their potential health risks, and biologically driving mechanisms on polythene (PE), polyethylene terephthalate (PET), poly (butyleneadipate-co-terephthalate) and polylactic acid blends (PBAT/PLA), PLA MPs, and gravel in WWTP effluent were investigated. The results showed that plastisphere and gravel biofilm harbored more distinctive microorganisms, promoting the uniqueness of pathogens, ARGs, and VFs compared to WWTP effluent. The abundance of major pathogens, ARGs, and VFs in the plastisphere was 1.01-1.35 times higher than that in the effluent. The high health risk of ARGs (HRA) calculated by fully considering the abundance, clinical relevance, pathogenicity, accessibility and mobility, and the high proportion of resistance contigs with mobile genetic elements confirmed that the plastisphere posed the highest potential health risk. Candidatus Microthrix and Candidatus Promineifilum were the essential hosts of ARGs and VFs in the plastisphere and gravel biofilm, respectively. High metabolic activity such as amino acid metabolism and biosynthesis of secondary metabolites, and highly expressed key genes increased the synthesis of ARGs and VFs. The primary mechanisms driving ARG enrichment in the plastisphere were enhanced microbial metabolic activity, increased frequency of horizontal gene transfer, heightened antibiotic inactivation and efflux, and reduced cell permeability. This study provided new insights into the ARGs, VFs, and health risks of the plastisphere and emphasized the importance of strict control of wastewater discharge.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Chenduo Huang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Weipeng Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Pengchao Gu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Ruxian Jing
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
28
|
Salim A, Sathishkumar P. Therapeutic efficacy of chitosan-based hybrid nanomaterials to treat microbial biofilms and their infections - A review. Int J Biol Macromol 2024; 283:137850. [PMID: 39577523 DOI: 10.1016/j.ijbiomac.2024.137850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Antimicrobial resistance, the biggest issue facing the global healthcare sector, quickly emerged and spread due to the frequent use of antibiotics in regular treatments. The investigation of polymer-based nanomaterials as possible antibiofilm treatment agents is prompted by the growing ineffectiveness of conventional therapeutic techniques against these resistant bacteria species. So far, several articles have been published on microbial biofilm eradication using various polymer-based nanomaterials due to their therapeutic efficacy and biocompatibility nature. Despite their potential, a comprehensive review of the chitosan-based hybrid nanomaterials to treat microbial biofilms and their infections is lacking. This review provides a comprehensive investigation of the current state of therapeutic efficacy, various nanoformulations, advantages, limitations, and regulations of chitosan-based hybrid nanomaterials for biofilm treatment. Special attention is given to the application of chitosan-based nanomaterials in wound care, urinary tract infections, and dental biofilms are discussed, highlighting their role in managing biofilm-associated complications. Researchers will be better able to comprehend and develop unique, marketable chitosan-based nanomaterials with increased activity to treat biofilm infections in near future with the aid of this review.
Collapse
Affiliation(s)
- Anisha Salim
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
29
|
Khadraoui N, Essid R, Damergi B, Fares N, Gharbi D, Forero AM, Rodríguez J, Abid G, Kerekes EB, Limam F, Jiménez C, Tabbene O. Myrtus communis leaf compounds as novel inhibitors of quorum sensing-regulated virulence factors and biofilm formation: In vitro and in silico investigations. Biofilm 2024; 8:100205. [PMID: 38988475 PMCID: PMC11231753 DOI: 10.1016/j.bioflm.2024.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Antibiotic resistance of the Gram-negative bacterium Pseudomonas aeruginosa and its ability to form biofilm through the Quorum Sensing (QS) mechanism are important challenges in the control of infections caused by this pathogen. The extract of Myrtus communis (myrtle) showed strong anti-QS effect on C hromobacterium . violaceum 6267 by inhibiting 80 % of the production of violacein pigment at a sub-MIC concentration of 1/8 (31.25 μg/mL). In addition, the extract exhibited an inhibitory effect on virulence factors of P. aeruginosa PAO1 at half MIC (125 μg/mL), significantly reducing the formation of biofilms (72.02 %), the swarming activity (75 %), and the production of protease (61.83 %) and pyocyanin (97 %). The active fraction also downregulated the expression of selected regulatory genes involved in the biofilm formation and QS in the P. aeruginosa PAO1 strain. These genes included the autoinducer synthase genes (lasI and rhlI), the genes involved in the expression of their corresponding receptors (lasR and rhlR), and the pqsA genes. The analysis of the active fraction by HPLC/UV/MS and NMR allowed the identification of three phenolic compounds, 3,5-di-O-galloylquinic acid, myricetin 3-O-α-l-rhamnopyranoside (myricitrin), and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside. In silico studies showed that 3,5-di-O-galloylquinic acid, with an affinity score of -9.20 kcal/mol, had the highest affinity to the active site of the CviR protein (3QP8), a QS receptor from C. violaceum. Additionally, myricetin 3-O-α-l-rhamnopyranoside (myricitrin) and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside interact to a lesser extent with 3QP8. In conclusion, this study contributed significantly to the discovery of new QS inhibitors from M. communis leaves against resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Nadine Khadraoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Dorra Gharbi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Abel Mateo Forero
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre de Biotechnology de Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Erika-Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, Hungary
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Carlos Jiménez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
30
|
Sajjad B, Siddique A, Rasool K, Jabbar KA, El-Malah SS, Almomani F, Alfarra MR. Seasonal and spatial variations in concentration, diversity, and antibiotic resistance of ambient bioaerosols in an arid region. ENVIRONMENTAL RESEARCH 2024; 262:119879. [PMID: 39243843 DOI: 10.1016/j.envres.2024.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The airborne microbiome significantly influences human health and atmospheric processes within Earth's troposphere and is a crucial focus for scientific research. This study aimed to analyze the composition, diversity, distribution, and spatiotemporal characteristics of airborne microbes in Qatar's ambient air. Air samples were collected using a sampler from ten geographically or functionally distinct locations during a period of one year. Spatial and seasonal variations significantly impacted microbial concentrations, with the highest average concentrations observed at 514 ± 77 CFU/m3 for bacteria over the dry-hot summer season and 134 ± 31 CFU/m3 for fungi over the mild winter season. Bacterial concentrations were notably high in 80% of the locations during the dry-hot summer sampling period, while fungal concentrations peaked in 70% of the locations during winter. The microbial diversity analysis revealed several health-significant bacteria including the genera Chryseobacterium, Pseudomonas, Pantoea, Proteus, Myroides, Yersinia, Pasteurella, Ochrobactrum, Vibrio, and fungal strains relating to the genera Aspergillus, Rhizopus Fusarium, and Penicillium. Detailed biochemical and microscopic analyses were employed to identify culturable species. The strongest antibiotic resistance (ABR) was observed during the humid-hot summer season, with widespread resistance to Metronidazole. Health risk assessments based on these findings indicated potential risks associated with exposure to high concentrations of specific bioaerosols. This study provides essential baseline data on the natural background concentrations of bioaerosols in Qatar, offering insights for air quality assessments and forming a basis for public health policy recommendations, particularly in arid regions.
Collapse
Affiliation(s)
- Bilal Sajjad
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Azhar Siddique
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Khadeeja Abdul Jabbar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Shimaa S El-Malah
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - M Rami Alfarra
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| |
Collapse
|
31
|
Bouvier M, Bachtarzi M, Poirel L, Nordmann P. Rapid detection of imipenem/relebactam susceptibility/resistance in Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2024; 110:116474. [PMID: 39191152 DOI: 10.1016/j.diagmicrobio.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Imipenem-relebactam (IPR) has been reported to exhibit a good activity against non-metallo-ß-lactamase carbapenem-resistant Pseudomonas aeruginosa (CRPA), and the rapid detection of susceptibility/resistance to this new therapeutic alternative may be crucial. Therefore, the Rapid IPR Pseudomonas NP test was developed to quickly identify IPR susceptibility/resistance among multidrug-resistant P. aeruginosa. METHODS The principle of the Rapid IPR Pseudomonas NP test is based on visually detecting glucose metabolization by observing (or not) a color change from yellow to red or orange of the red phenol pH indicator in the presence of imipenem at 2 mg/L and relebactam at 4 mg/L A total of 80 clinical Pseudomonas aeruginosa isolates were analyzed, among which 42 isolates were IPR resistant according to EUCAST guidelines (MICs, susceptible ≤2 mg/L, resistant >2 mg/L). Results obtained with the Rapid IPR Pseudomonas NP test were compared with the reference broth microdilution (BMD). RESULTS The sensitivity, specificity and accuracy of the test were found to be 100 %, 89.5 % and 95 %, respectively, using the BMD reference method as a comparator. Moreover, five out of the IPR-susceptible isolates (n = 38) exhibiting an MIC of IPR close to the breakpoint (MIC = 1 mg/L, n = 2; MIC = 2 mg/L, n = 3) yielded to a major error result, namely a positive result with the rapid IPR Pseudomonas NP test (resistance). By contrast, all IPR-resistant isolates (n = 42) were all correctly categorized. CONCLUSIONS The Rapid IPR Pseudomonas NP test is sensitive, specific, and easy to perform and interpret. Therefore, it is suitable for implementation in routine clinical laboratories.
Collapse
Affiliation(s)
- Maxime Bouvier
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland
| | - Mohamed Bachtarzi
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Medical Microbiology laboratory, CHU Mustapha Bacha, Alger, Algeria
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland.
| |
Collapse
|
32
|
Vargas-Cuebas GG, Sanchez CA, Bezold EL, Walker GM, Siddiqui S, Minbiole KPC, Wuest WM. Adaptations to cationic biocide exposure differentially influence virulence factors and pathogenicity in Pseudomonas aeruginosa. Virulence 2024; 15:2397503. [PMID: 39282885 PMCID: PMC11407422 DOI: 10.1080/21505594.2024.2397503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Cationic biocides (CBs), which include quaternary ammonium compounds (QACs), are employed to mitigate the spread of infectious bacteria, but resistance to such surface disinfectants is rising. CB exposure can have profound phenotypic implications that extend beyond allowing microorganisms to persist on surfaces. Pseudomonas aeruginosa is a deadly bacterial pathogen that is intrinsically tolerant to a wide variety of antimicrobials and is commonly spread in healthcare settings. In this study, we pursued resistance selection assays to the QAC benzalkonium chloride and quaternary phosphonium compound P6P-10,10 to assess the phenotypic effects of CB exposure in P. aeruginosa PAO1 and four genetically diverse, drug-resistant clinical isolates. In particular, we sought to examine how CB exposure affects defensive strategies and the virulence-associated "offensive" strategies in P. aeruginosa. We demonstrated that development of resistance to BAC is associated with increased production of virulence-associated pigments and alginate as well as pellicle formation. In an in vivo infection model, CB-resistant PAO1 exhibited a decreased level of virulence compared to wild type, potentially due to an observed fitness cost in these strains. Taken together, these results illustrate the significant consequence CB resistance exerts on the virulence-associated phenotypes of P. aeruginosa.
Collapse
Affiliation(s)
- Germán G Vargas-Cuebas
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Elise L Bezold
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
33
|
Sathishkumar P, Khan F. Leveraging bacteria-inspired nanomaterials for targeted controlling biofilm and virulence properties of Pseudomonas aeruginosa. Microb Pathog 2024; 197:107103. [PMID: 39505089 DOI: 10.1016/j.micpath.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen designated as a high-priority pathogen because of its role in major healthcare-associated and nosocomial infections. Biofilm production by these bacteria is one of the adaptive resistance mechanisms to traditional antibiotics, making treatment challenging, especially for immunocompromised patients. P. aeruginosa also produces a variety of virulence factors, which aid in invasion, adhesion, persistence, and immune system protection. Recent advances in nanotechnology-based therapy, notably the application of bioinspired metal and metal-oxide nanomaterials, have been seen as a viable way to control P. aeruginosa biofilm and virulence. Because of its ease of growth and culture, synthesizing metal and metal-oxide nanomaterials using bacterial species has become one of the most environmentally benign green synthesis options. The application of bacterial-inspired nanomaterials is particularly successful for targeted control of P. aeruginosa infection due to interactions with cell membrane components and transport systems. This paper delves into and provides a complete overview of the application of bacterial-inspired metal and metal-oxide nanomaterials to treat P. aeruginosa infection by targeting biofilm and virulence characteristics. The review focused on synthesizing and applying gold, silver, copper, iron, magnetite, and zinc oxide nanomaterials to mitigate P. aeruginosa biofilm and virulence. The underlying mechanism of these metal and metal-oxide nanoparticles in relation to biofilm and virulence features has also been thoroughly discussed. The current review introduces novel approaches to treating and controlling drug-resistant P. aeruginosa using bacterial-inspired nanomaterials as a targeted therapeutic strategy.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
34
|
Li T, Mo Z, Zhao Y, Cao H, Sheng S, Xu Z. CzcR-dependent reduction of catalase gene expression and induction of catalase activity in Pseudomonas aeruginosa during zinc excess. BMC Microbiol 2024; 24:509. [PMID: 39614155 DOI: 10.1186/s12866-024-03671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is able to survive, grow, and cause severe infections at different sites throughout the human body owing to its ability to sense diverse signals and precisely modulate target gene expression using its abundant signaling systems. Release of zinc (Zn) and hydrogen peroxide (H2O2) within the phagocyte are two major host strategies to defend against bacterial infections. It was previously shown that the response regulator CzcR controls global gene expression including catalase genes during Zn excess, but regulatory mechanisms of catalase gene expression and the role of CzcR in H2O2 tolerance remain unclear. RESULTS In the study, comparative transcriptome analysis comprehensively described the CzcR-dependent and -independent gene regulatory pattern in P. aeruginosa during Zn excess, which revealed the counteractive co-regulation of two key H2O2-detoxifying catalase genes katA and katB through CzcR-dependent and -independent pathways in response to Zn excess. Protein-DNA interaction assay demonstrated that CzcR negatively regulates the expression of catalase genes katA and katB by directly binding to their promoters. While interestingly, we further showed that CzcR positively regulates H2O2 tolerance by inducing the catalase activity during Zn excess. CONCLUSION This study reported the opposite functions of CzcR in negatively regulating the expression of catalase genes katA and katB but in positively regulating the activity of catalase and H2O2 tolerance during Zn excess in P. aeruginosa.
Collapse
Affiliation(s)
- Ting Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zhifeng Mo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yuying Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Shuo Sheng
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Joint International Research Laboratory of Ethnomedicine of the Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
35
|
Zhao Y, Xu H, Wang H, Wang P, Chen S. Multidrug resistance in Pseudomonas aeruginosa: genetic control mechanisms and therapeutic advances. MOLECULAR BIOMEDICINE 2024; 5:62. [PMID: 39592545 PMCID: PMC11599538 DOI: 10.1186/s43556-024-00221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Pseudomonas aeruginosa is a significant opportunistic pathogen, and its complex mechanisms of antibiotic resistance pose a challenge to modern medicine. This literature review explores the advancements made from 1979 to 2024 in understanding the regulatory networks of antibiotic resistance genes in Pseudomonas aeruginosa, with a particular focus on the molecular underpinnings of these resistance mechanisms. The review highlights four main pathways involved in drug resistance: reducing outer membrane permeability, enhancing active efflux systems, producing antibiotic-inactivating enzymes, and forming biofilms. These pathways are intricately regulated by a combination of genetic regulation, transcriptional regulators, two-component signal transduction, DNA methylation, and small RNA molecules. Through an in-depth analysis and synthesis of existing literature, we identify key regulatory elements mexT, ampR, and argR as potential targets for novel antimicrobial strategies. A profound understanding of the core control nodes of drug resistance offers a new perspective for therapeutic intervention, suggesting that modulating these elements could potentially reverse resistance and restore bacterial susceptibility to antibiotics. The review looks forward to future research directions, proposing the use of gene editing and systems biology to further understand resistance mechanisms and to develop effective antimicrobial strategies against Pseudomonas aeruginosa. This review is expected to provide innovative solutions to the problem of drug resistance in infectious diseases.
Collapse
Affiliation(s)
- Yuanjing Zhao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Haoran Xu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hui Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Simin Chen
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
36
|
Nandanwar N, Gu G, Gibson JE, Neely MN. Polymicrobial interactions influence Mycobacterium abscessus co-existence and biofilm forming capabilities. Front Microbiol 2024; 15:1484510. [PMID: 39654682 PMCID: PMC11627178 DOI: 10.3389/fmicb.2024.1484510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The lungs of patients with cystic fibrosis (CF) are vulnerable to persistent polymicrobial colonization by bacterial pathogens including Pseudomonas aeruginosa, Staphylococcus aureus, and the non-tuberculous mycobacterium (NTM) Mycobacterium abscessus. The polymicrobial milieu within the CF lung impacts individual species fitness, influences biofilm-forming capabilities, pathogenicity, production of virulence factors and even antimicrobial responses, all potentially compromising therapeutic success. Interaction studies among these CF pathogens are very limited, especially studies on the influences of P. aeruginosa and S. aureus on M. abscessus co-existence and virulence. Based on the little known thus far about coinfection of these pathogens, we hypothesize that the co-existence of P. aeruginosa and S. aureus alters M. abscessus virulence and phenotypic characteristics. We evaluated the direct (co-culture) and indirect (using supernatant) effects of P. aeruginosa and S. aureus on M. abscessus growth rate, biofilm formation, macrophage internalization and glycopeptidolipids (GPL) expression. Our observations indicate that P. aeruginosa and S. aureus exert a competitive behavior toward M. abscessus during direct contact or indirect interaction in-vitro, probably as is the case of polymicrobial infections in the lungs of patients with CF. This is the first report that demonstrates S. aureus inhibitory effects on M. abscessus growth and biofilm forming capabilities. Collectively, co-culture studies enhance our understanding of polymicrobial interactions during coinfection and can guide to establish better management of coinfections and treatment strategies for M. abscessus.
Collapse
Affiliation(s)
- Nishant Nandanwar
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Geoffery Gu
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Joy E. Gibson
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael N. Neely
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
37
|
Chatterjee D, Sivashanmugam K. Computational approach towards repurposing of FDA approved drug molecules: strategy to combat antibiotic resistance conferred by Pseudomonas aeruginosa. J Biomol Struct Dyn 2024:1-16. [PMID: 39580714 DOI: 10.1080/07391102.2024.2431666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 11/26/2024]
Abstract
Antimicrobial resistance is recognized as a major worldwide public health dilemma in the current century. Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, causes nosocomial infections like respiratory tract infections, urinary tract infections, dermatitis, and cystic fibrosis. It manifests antibiotic resistance via intrinsic, acquired, and adaptive pathways, where efflux pumps function in the extrusion of antibiotics from the cell. MexB protein, part of the tripartite efflux pumps MexAB-OprM present in P.aeruginosa, expels the penems and β-lactam antibiotics, thereby enhancing Pseudomonas resistance. The current study was intended to screen around 1602 clinically approved drugs to understand their ability to inhibit the MexB protein. Amongst them, the top 5 drug molecules were selected based on the binding energies for analyzing their physio-chemical and toxicity properties. Lomitapide was found to have the maximum negative binding energy followed by Nilotinib, whereas Nilotinib's number of hydrogen bonds was higher than that of Lomitapide. ADMET study revealed that all 5 drug molecules had limited solubility. Also, Lomitapide and Venetoclax showed low bioavailability scores, while Nilotinib, Eltrombopag, and Conivaptan demonstrated higher potential for therapeutic levels. A molecular dynamic simulation study of the 5 drugs against MexB was carried out for 200 nanoseconds. The RMSD, RMSF, Hydrogen bond formation, Radius of gyration, SASA, PCA, DCCM, DSSP and MM-PBSA binding energy calculation along with demonstrated high stability of the MexB-Nilotinib complex with lesser distortions. Our study concludes, that Nilotinib is a potential inhibitor and can be developed as a therapeutic agent against MexB protein for controlling P. aeruginosa infections.
Collapse
Affiliation(s)
- Debolina Chatterjee
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
38
|
He J, Xu P, Chen R, Chen M, Wang B, Xie Y, Yang Q, Sun D, Ji M. Exploiting the Zebrafish Model for Sepsis Research: Insights into Pathophysiology and Therapeutic Potentials. Drug Des Devel Ther 2024; 18:5333-5349. [PMID: 39600867 PMCID: PMC11590671 DOI: 10.2147/dddt.s500276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis, a severe condition instigated by infections, continues to be a primary global cause of death, typified by systemic inflammation and advancing immune dysfunction. Comprehending the complex pathological processes that underlie sepsis is integral to the creation of efficacious treatments. Despite the inability of animal models to entirely reproduce the clinical intricacies related to sepsis, they are invaluable instruments for the exploration and development of therapeutic approaches. Within this context, the zebrafish model is particularly noteworthy due to its genetic tractability, transparency, and appropriateness for high-throughput screening of genetic mutants and therapeutic compounds. This scholarly review emphasizes the crucial role that the zebrafish disease model plays in enhancing our comprehension of sepsis, by exploring its applications in deciphering immune and inflammatory responses, evaluating the consequences of genetic alterations, and examining novel therapeutic agents. The Insights derived from zebrafish research not only augment our understanding of the underlying mechanisms of sepsis, but also possess considerable potential for the transference of these discoveries into clinical therapies, thus potentially transforming the approach to sepsis management. The objective of this scholarly article is to underscore the importance of zebrafish in the realm of biomedical research pertaining to sepsis, and to delineate forthcoming opportunities for utilizing this model in clinical applications.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, People’s Republic of China
| | - Mengyan Chen
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yilun Xie
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Mingxia Ji
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| |
Collapse
|
39
|
Yang J, Xu JF, Liang S. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. Crit Rev Microbiol 2024:1-19. [PMID: 39556143 DOI: 10.1080/1040841x.2024.2429599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/22/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Pseudomonas aeruginosa, able to survive on the surfaces of medical devices, is a life-threatening pathogen that mainly leads to nosocomial infection especially in immunodeficient and cystic fibrosis (CF) patients. The antibiotic resistance in P. aeruginosa has become a world-concerning problem, which results in reduced and ineffective therapy efficacy. Besides intrinsic properties to decrease the intracellular content and activity of antibiotics, P. aeruginosa develops acquired resistance by gene mutation and acquisition, as well as adaptive resistance under specific situations. With in-depth research on drug resistance mechanisms and the development of biotechnology, innovative strategies have emerged and yielded benefits such as screening for new antibiotics based on artificial intelligence technology, utilizing drugs synergistically, optimizing administration, and developing biological therapy. This review summarizes the recent advances in the mechanisms of antibiotic resistance and emerging treatments for combating resistance, aiming to provide a reference for the development of therapy against drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Jian Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Yang Y, Li X, Sun L, Wang XK, Zhang YW, Pang J, Li GQ, Hu XX, Nie TY, Yang XY, Liu JH, Brandis G, You XF, Li CR. High level non-carbapenemase carbapenem resistance by overlaying mutations of mexR, oprD, and ftsI in Pseudomonas aeruginosa. Microbiol Spectr 2024:e0139824. [PMID: 39555917 DOI: 10.1128/spectrum.01398-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a global threat, but the mechanism of non-carbapenemase carbapenem resistance is still unclear. In the current study, we investigated the contributions of point mutations in mexR, oprD, and ftsI to carbapenem resistance in P. aeruginosa during in vivo evolution studies with consecutive clinical isolates. Real-time qPCR and Electrophoretic Mobility Shift Assay demonstrated that MexR (Gln55Pro) mutation increased MexAB efflux pump genes expression by altering MexR's binding capacity, leading to a four- to eight-fold increase in meropenem MIC in the Pae d1 Green ∆mexR and PAO1∆mexR mutants. The OprD (Trp415*) truncation affected porin structure, and the constructed mutant Pae d1 Green oprD Trp415* increased meropenem MIC by 16-fold (from 0.25 to 4 µg/mL). The contribution of ftsI mutation to meropenem resistance was confirmed by clinical linkage analysis and was estimated to cause a two-fold increase in meropenem MIC by comparing the resistant clinical isolate with the Pae d1 Green oprD Trp415*∆mexR double mutant. The study found that the oprD Trp415* allele alone accounts for the imipenem MIC in clinical isolates, while the ∆mexR and ftsI Arg504Cys alleles do not contribute to imipenem resistance. In conclusion, we identified and explored the contributions of mexR, oprD, and ftsI mutations to high level non-carbapenemase carbapenem resistance in P. aeruginosa. These findings highlight the interplay of different mutations in causing non-carbapenemase carbapenem-resistance in P. aeruginosa. IMPORTANCE The emergence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a significant global health threat, complicating treatment options for infections caused by this pathogen. Understanding the mechanisms behind non-carbapenemase carbapenem resistance is critical for developing effective therapeutic strategies. This study provides crucial insights into how specific point mutations in key genes-mexR, oprD, and ftsI-contribute to carbapenem resistance, particularly the MexR (Gln55Pro) mutation's effect on efflux pump expression and the OprD (Trp415*) truncation's impact on porin structure. The findings elucidate the complex interplay of these mutations, highlighting their roles in conferring high-level resistance, and underscore the imperative for continued research to inform therapeutic strategies against CRPA infections.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Xiu-Kun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - You-Wen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Guo-Qing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin-Xin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Tong-Ying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Xin-Yi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| | - Jian-Hua Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Gerrit Brandis
- Department of Cell and Molecular Biology (ICM), Uppsala University, Uppsala, Sweden
| | - Xue-Fu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cong-Ran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic CAMS Collection Center of Pathogenic, Beijing, China
| |
Collapse
|
41
|
Chen X, Li W, Fan Q, Liu X, Zhai X, Shi X, Li W, Hong W. Amphiphilic Janus Nanoparticles for Effective Treatment of Bacterial Pneumonia by Attenuating Inflammation and Targeted Bactericidal Capability. Int J Nanomedicine 2024; 19:12039-12051. [PMID: 39583317 PMCID: PMC11583765 DOI: 10.2147/ijn.s486450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Pseudomonas aeruginosa (P. aeruginosa)-induced pneumonia is marked by considerable infiltration of inflammatory cells and biofilm formation, which causes acute and transient lung inflammation and infection. Nevertheless, the discovery of alternative preventative and therapeutic methods is essential due to the high mortality rates in clinical settings and the resistance of P. aeruginosa infection to multiple medications. Purpose In this research, we constructed amphiphilic Janus nanoparticles (JNPs, denoted as SSK1@PDA/CaP@CIP), loaded with hydrophobic SSK1, a β-galactosidase (β-gal)-activated prodrug for reducing macrophages, and hydrophilic ciprofloxacin (CIP), a classic antibiotic for treating infection. SSK1@PDA/CaP@CIP was designed to effectively attenuate inflammation, eradicate biofilms, and combat planktonic P. aeruginosa. Results As expected, SSK1@PDA/CaP@CIP was able to target the infection site and demonstrated outstanding efficacy in treating P. aeruginosa strain PAO1-induced pneumonia by regulating macrophage infiltration to reduce inflammation and removing planktonic bacteria and biofilms to control infection. Additionally, the primary organs did not exhibit any discernible pathological changes following treatment with SSK1@PDA/CaP@CIP, which indicates superior biocompatibility throughout the treatment course. Discussion In conclusion, our investigation introduced a promising approach to the treatment of pneumonia associated with PAO1.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Weiwei Li
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Qing Fan
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Xiao Liu
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Xuanxiang Zhai
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Xiaoyi Shi
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Wenting Li
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Wei Hong
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| |
Collapse
|
42
|
Su J, Xiao J, Deng X, Lin X, Xie L, Ye H, Lin C, Zhou F, Wu S. Combining Aloin with TIENAM ameliorates cecal ligation and puncture-induced sepsis in mice by attenuating inflammation and modulating abdominal cavity microbiota. Int Immunopharmacol 2024; 141:112925. [PMID: 39154534 DOI: 10.1016/j.intimp.2024.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Despite the high mortality rate, sepsis lacks specific and effective treatment options. Conventional antibiotics, such as TIENAM (TIE; imipenem and cilastatin sodium for injection), face challenges owing to the emergence of bacterial resistance, which reduces their effectiveness and causes adverse effects. Addressing resistance and judicious drug use is crucial. Our research revealed that aloin (Alo) significantly boosts survival rates and reduces inflammation and bacterial load in mice with sepsis, demonstrating strong antimicrobial activity. Using a synergistic Alo + TIE regimen in a cecal ligation and puncture (CLP)-induced sepsis model, we observed a remarkable increase in survival rates from 10 % to 75 % within 72 h compared with the CLP group alone. This combination therapy also modulated inflammatory markers interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, mitigated tissue damage, regulated immune cells by lowering NK, activated CD8+ and CD4+ T cells while increasing peritoneal macrophages, and decreased the bacterial load in the peritoneal cavity. We noted a significant shift in the abdominal cavity microbiota composition post-treatment, with a decrease in harmful bacteria, such as Lachnospiraceae_NK4A136_group, Klebsiella, Bacillus, and Escherichia, and an increase in beneficial bacteria, such as Lactobacillus and Mucispirillum. Our study emphasizes the efficacy of combining Alo with TIE to combat sepsis, and paves the way for further investigations and potential clinical applications aiming to overcome the limitations of TIE and enhance the therapeutic prospects of Alo.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Jianbin Xiao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| |
Collapse
|
43
|
Su J, Lin C, Lin X, Hu S, Deng X, Xie L, Ye H, Zhou F, Wu S. Combining ulinastatin with TIENAM improves the outcome of sepsis induced by cecal ligation and puncture in mice by reducing inflammation and regulating immune responses. Int Immunopharmacol 2024; 141:112927. [PMID: 39163689 DOI: 10.1016/j.intimp.2024.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Despite the high mortality associated with sepsis, effective and targeted treatments remain scarce. The use of conventional antibiotics such as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging because of the increasing bacterial resistance, which diminishes their efficacy and leads to adverse effects. Our previous studies demonstrated that ulinastatin (UTI) exerts a therapeutic impact on sepsis by reducing systemic inflammation and modulating immune responses. In this study, we examined the possibility of administering UTI and TIE after inducing sepsis in a mouse model using cecal ligation and puncture (CLP). We assessed the rates of survival, levels of inflammatory cytokines, the extent of tissue damage, populations of immune cells, microbiota in ascites, and important signaling pathways. The combination of UTI and TIE significantly improved survival rates and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Notably, the survival rates of UTI+TIE-treated mice increased from 10 % to 75 % within 168 h compared to those of mice that were subjected to CLP. The dual treatment successfully regulated the levels of inflammatory indicators (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) and immune cell numbers by reducing B cells, natural killer cells, and TNFR2+ Treg cells and increasing CD8+ T cells. Additionally, the combination of UTI and TIE alleviated tissue damage, reduced bacterial load in the peritoneal cavity, and suppressed the NF-κB signaling pathway. Our findings indicate that UTI and TIE combination therapy can significantly enhance sepsis outcomes by reducing inflammation and boosting the immune system. The results offer a promising therapeutic approach for future sepsis treatment.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| |
Collapse
|
44
|
Panpetch W, Tumwasorn S, Leelahavanichkul A. Presence of Pseudomonas aeruginosa in feces exacerbate leaky gut in mice with low dose dextran sulfate solution, impacts of specific bacteria. PLoS One 2024; 19:e0309106. [PMID: 39546435 PMCID: PMC11567622 DOI: 10.1371/journal.pone.0309106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 11/17/2024] Open
Abstract
The impact of Pseudomonas aeruginosa (PA) was explored in a mouse model with non-diarrheal gut permeability defect using 1.5% dextran sulfate solution (DSS) plus antibiotics (ATB) with or without orally administered PA. As such, ATB+DSS+PA mice induced more severe intestinal injury as indicated by stool consistency and leaky gut (FITC-dextran assay, bacteremia, and endotoxemia) with an increase in serum cytokines, liver enzyme, and hepatocyte apoptosis when compared with ATB+DSS mice. There was no abnormality by these parameters in the non-DSS group, including water alone (control), antibiotics alone (ATB+water), and antibiotics with PA (ATB+water+PA). Despite a similarly fecal microbiome patterns between ATB+DSS and ATB+DSS+PA groups, a higher abundance of Pseudomonas, Enterococci, and Escherichia-Shigella was detected in ATB+DSS+PA mice. Additionally, the additive pro-inflammation between pathogen molecules, using heat-killed P. aeruginosa preparations, and LPS against enterocytes (Caco2) and hepatocytes (HegG2), as indicated by supernatant IL-8 and expression of several genes (IL-8, NF-kB, and NOS2) are demonstrated. In conclusion, presence of P. aeruginosa in the gut exacerbated DSS-induced intestinal injury with spontaneous translocation of LPS and bacteria from the gut into the blood circulation (leaky gut) that induced more severe systemic inflammation. The presence of pathogenic bacteria, especially PA in stool of the healthy individuals might have some adverse effect. More studies are in needed.
Collapse
Affiliation(s)
- Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Translational Research on Immunology and Immune-Mediated Diseases (CETRII), Department of Microbiology, Faculty of Medicine, Bangkok, Thailand
| |
Collapse
|
45
|
Khan S, Lin PR, Tan C. Engineering Cyborg Pathogens through Intracellular Hydrogelation. ACS Synth Biol 2024; 13:3609-3620. [PMID: 39413025 DOI: 10.1021/acssynbio.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Synthetic biology primarily focuses on two kinds of cell chassis: living cells and nonliving systems. Living cells are autoreplicating systems that have active metabolism. Nonliving systems, including artificial cells and nanoparticles, are nonreplicating systems typically lacking active metabolism. In recent work, Cyborg bacteria that are nonreplicating-but-metabolically active have been engineered through intracellular hydrogelation. Intracellular hydrogelation is conducted by infusing gel monomers and photoactivators into cells, followed by the activation of polymerization of the gel monomers inside the cells. However, the previous work investigated only Escherichia coli cells. Extending the Cyborg-Cell method to pathogenic bacteria could enable the exploitation of their pathogenic properties in biomedical applications. Here, we focus on different strains of Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. To synthesize the Cyborg pathogens, we first reveal the impact of different hydrogel concentrations on the metabolism, replication, and intracellular gelation of Cyborg pathogens. Next, we demonstrate that the Cyborg pathogens are taken up by macrophages in a similar magnitude as wild-type pathogens through confocal microscopy and real-time PCR. Finally, we show that the macrophage that takes up the Cyborg pathogen exhibits a similar phenotypic response to the wild-type pathogen. Our work generalizes the intracellular hydrogelation approach from lab strains of E. coli to bacterial pathogens. The new Cyborg pathogens could be applied in biomedical applications ranging from drug delivery to immunotherapy.
Collapse
Affiliation(s)
- Shahid Khan
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Pin-Ru Lin
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
46
|
Shleeva MO, Demina GR, Savitsky AP. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv Drug Deliv Rev 2024; 215:115472. [PMID: 39549920 DOI: 10.1016/j.addr.2024.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
47
|
Jing G, Hu C, Fang K, Li Y, Wang L. How Nanoparticles Help in Combating Chronic Wound Biofilms Infection? Int J Nanomedicine 2024; 19:11883-11921. [PMID: 39563901 PMCID: PMC11575445 DOI: 10.2147/ijn.s484473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Chronic wound infection has become a global health problem, with bacterial biofilms, which are difficult to penetrate using traditional antibiotics, considered the primary cause of recurrent infection and delayed healing in chronic wounds. In recent years, the outstanding performance of nanomaterials in controlling biofilm infections has been widely acknowledged, and these materials are regarded as highly promising for chronic wound infection management. The formation and structure of chronic wound biofilms undergo complex dynamic changes. Therefore, a deep understanding of the underlying causes of repeated wound infections and the specific antibacterial mechanisms of nanomaterials at different stages of biofilm formation is crucial for effective "chronic wound infection management". This review first reveals the relationship between biofilms, wound chronicity, and recurrent infections. Secondly, it focuses on the four stages of chronic wound biofilm formation: (1) adhesion stage, (2) aggregation and promotion stage, (3) maturation stage, and (4) regeneration and dissemination stage. It also comprehensively summarizes the specific antibacterial mechanisms of nanomaterials. This study analyzes essential factors affecting the control of chronic wound biofilms by nanoparticles from various perspectives, such as the material itself, the local wound environment, and the systemic host response. Finally, the limitations and potential future trends in current research are discussed. In summary, nanoparticles represent a promising strategy for combating chronic wound biofilm infections, and this review provides new insights for alternative adjuvant therapies in managing bacterial biofilm infections in chronic wounds.
Collapse
Affiliation(s)
- Gang Jing
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Chen Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Keyi Fang
- School of Stomatology, Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Yingying Li
- School of Stomatology, Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Linlin Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
48
|
Ferrusca Bernal D, Mosqueda J, Pérez-Sánchez G, Chávez JAC, Neri Martínez M, Rodríguez A, Carvajal-Gamez B. Loop-Mediated Isothermal Amplification Coupled with Reverse Line Blot Hybridization for the Detection of Pseudomonas aeruginosa. Microorganisms 2024; 12:2316. [PMID: 39597705 PMCID: PMC11596522 DOI: 10.3390/microorganisms12112316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is a pathogen of critical priority importance according to the WHO. Due to its multi-resistance and expression of various virulence factors, it is the causal agent of severe healthcare-acquired infections (HAIs). Effective strategies to control infections caused by P. aeruginosa must include early and specific detection of the pathogen for early and timely antibiotic prescription. The need to develop a specific and reproducible diagnostic technique is urgent, which must often be more sensitive and faster than current clinical diagnostic methods. In this study, we implement and standardize the loop-mediated isothermal amplification (LAMP) technique, coupled with the reverse line blot hybridization (RLBH) technique for the detection of P. aeruginosa. A set of primers and probes was designed to amplify a specific region of the P. aeruginosa 16s rRNA gene. The sensitivity of the LAMP-RLBH method was 3 × 10-4 ng/μL, 1000 times more sensitive than the PCR and LAMP technique (this work), with a sensitivity of 3 × 10-3 ng/μL. The LAMP-RLBH and LAMP techniques showed specific amplification and no cross-reaction with members of the ESKAPE group and other Pseudomonas species. The present investigation provides a technique that can be easily performed in less time, achieving a faster and more reliable alternative compared to traditional microbial diagnostic methods for the detection of P. aeruginosa.
Collapse
Affiliation(s)
- Daniel Ferrusca Bernal
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
- Cuerpo Académico, Salud Animal y Microbiología Ambiental, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | | | - Mónica Neri Martínez
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
- Proteogenomic and Molecular Diagnosis Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Angelina Rodríguez
- Cuerpo Académico, Salud Animal y Microbiología Ambiental, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico;
- Maestría en Química Clínica Diagnóstica, Facultad de Química, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Bertha Carvajal-Gamez
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
- Cuerpo Académico, Salud Animal y Microbiología Ambiental, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico;
- Proteogenomic and Molecular Diagnosis Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico
- Maestría en Química Clínica Diagnóstica, Facultad de Química, Autonomous University of Queretaro, Queretaro 76010, Mexico
| |
Collapse
|
49
|
Huang X, Ding J, Yang X, Tian B, Yu R, Lyu M, Liu W, Ding Q. Clinical characteristics and prognosis analysis of pseudomonas aeruginosa bloodstream infection in adults: a retrospective study. Clin Exp Med 2024; 25:5. [PMID: 39535677 PMCID: PMC11560997 DOI: 10.1007/s10238-024-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Pseudomonas aeruginosa bloodstream infections (PA BSIs) in adults, especially those complicated by sepsis, are associated with high rates of morbidity and mortality. Early identification of risk factors for both mortality and sepsis-induced coagulopathy (SIC) is critical to optimizing patient management and improving outcomes. We conducted a retrospective analysis of 118 adult patients diagnosed with PA BSIs at the Affiliated Hospital of Xuzhou Medical University from January 2022 to February 2024. Univariate analysis was employed to identify significant clinical factors, followed by multivariate stepwise logistic regression to determine independent predictors of mortality and SIC. Based on these findings, nomogram models were constructed and evaluated using the area under the receiver operating characteristic curve (AUC), Bootstrap resampling, and calibration plots to assess model performance. Empiric sensitive antibiotic therapy (ESAT) (OR = 0.039, P < 0.001), coronary artery disease (CAD) (OR = 10.315, P = 0.010), and invasive mechanical ventilation (OR = 3.926, P = 0.020) emerged as significant predictors of mortality. In contrast, elevated C-reactive protein (CRP) (OR = 1.011, P = 0.003), procalcitonin (PCT) (OR = 1.030, P = 0.005), and lower hemoglobin levels (OR = 0.963, P = 0.004) were independently associated with SIC. The AUC of mortality prediction model is 0.908, while the SIC prediction model yielded an AUC of 0.817. The predictive models developed in this study demonstrate early identification of mortality rates and SIC risk in PA BSI patients, which may have the potential to guide timely therapeutic interventions and improve clinical outcomes in this high-risk population.
Collapse
Affiliation(s)
- Xiaoya Huang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- The First Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jiahai Ding
- The First Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xin Yang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Bingxin Tian
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Runli Yu
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Min Lyu
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wen Liu
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qin Ding
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
50
|
Musila L, Bird JT, Margulieux KR, Kigen C, Mzhavia N, Filippov AA, Nikolich MP. Complete genome sequences of three Pseudomonas aeruginosa jumbo bacteriophages discovered in Kenya. Microbiol Resour Announc 2024; 13:e0068424. [PMID: 39377596 PMCID: PMC11556092 DOI: 10.1128/mra.00684-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024] Open
Abstract
The genomes of three Pseudomonas aeruginosa Phikzvirus bacteriophages isolated in Kenya are described. The genomes of phages vB_PaePAO1-KEN19, vB_Pae3705-KEN49, and vB_Pae10145-KEN51, respectively, had lengths of 278,921, 280,231, and 280,173 bp, with 36.93%, 36.84%, and 36.86% GC content, containing 419, 417, and 417 coding sequences (including seven tRNAs in each genome).
Collapse
Affiliation(s)
- Lillian Musila
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Kericho, Kenya
| | - Jordan T. Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas, Little Rock, Arkansas, USA
| | - Katie R. Margulieux
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Collins Kigen
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Kericho, Kenya
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Andrey A. Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mikeljon P. Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|