1
|
Faraji N, Ebadpour N, Abavisani M, Gorji A. Unlocking Hope: Therapeutic Advances and Approaches in Modulating the Wnt Pathway for Neurodegenerative Diseases. Mol Neurobiol 2025; 62:3630-3652. [PMID: 39313658 PMCID: PMC11790780 DOI: 10.1007/s12035-024-04462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Neurodegenerative diseases (NDs) are conditions characterized by sensory, motor, and cognitive impairments due to alterations in the structure and function of neurons in the central nervous system (CNS). Despite their widespread occurrence, the exact causes of NDs remain largely elusive, and existing treatments fall short in efficacy. The Wnt signaling pathway is an emerging molecular pathway that has been linked to the development and progression of various NDs. Wnt signaling governs numerous cellular processes, such as survival, polarity, proliferation, differentiation, migration, and fate specification, via a complex network of proteins. In the adult CNS, Wnt signaling regulates synaptic transmission, plasticity, memory formation, neurogenesis, neuroprotection, and neuroinflammation, all essential for maintaining neuronal function and integrity. Dysregulation of both canonical and non-canonical Wnt signaling pathways contributes to neurodegeneration through various mechanisms, such as amyloid-β accumulation, tau protein hyperphosphorylation, dopaminergic neuron degeneration, and synaptic dysfunction, prompting investigations into Wnt modulation as a therapeutic target to restore neuronal function and prevent or delay neurodegenerative processes. Modulating Wnt signaling has the potential to restore neuronal function and impede or postpone neurodegenerative processes, offering a therapeutic approach for targeting NDs. In this article, the current knowledge about how Wnt signaling works in Alzheimer's disease and Parkinson's disease is discussed. Our study aims to explore the molecular mechanisms, recent discoveries, and challenges involved in developing Wnt-based therapies.
Collapse
Affiliation(s)
- Navid Faraji
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Epilepsy Research Center, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neurosurgery Department, Münster University, Münster, Germany.
| |
Collapse
|
2
|
Fang K, Pishva E, Piers T, Scholpp S. Amyloid-β can activate JNK signalling via WNT5A-ROR2 to reduce synapse formation in Alzheimer's disease. J Cell Sci 2025; 138:JCS263526. [PMID: 39907042 PMCID: PMC11832185 DOI: 10.1242/jcs.263526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Wnt signalling is an essential signalling system in neurogenesis, with a crucial role in synaptic plasticity and neuronal survival, processes that are disrupted in Alzheimer's disease (AD). Within this network, the Wnt/β-catenin pathway has been studied for its neuroprotective role, and this is suppressed in AD. However, the involvement of the non-canonical Wnt-planar cell polarity (Wnt/PCP) pathway in AD remains to be determined. This study investigates the role of ROR2, a Wnt/PCP co-receptor, in synaptogenesis. We demonstrate that WNT5A-ROR2 signalling activates the JNK pathway, leading to synapse loss in mature neurons. This effect mirrors the synaptotoxic actions of Aβ1-42 and DKK1, which are elevated in AD. Notably, blocking ROR2 and JNK mitigates Aβ1-42 and DKK1-induced synapse loss, suggesting their dependence on ROR2. In induced pluripotent stem cell (iPSC)-derived cortical neurons carrying a PSEN1 mutation, known to increase the Aβ42/40 ratio, we observed increased WNT5A-ROR2 clustering and reduced numbers of synapses. Inhibiting ROR2 or JNK partially rescued synaptogenesis in these neurons. These findings suggest that, unlike the Wnt/β-catenin pathway, the Wnt/PCP-ROR2 signalling pathway can operate in a feedback loop with Aβ1-42 to enhance JNK signalling and contribute to synapse loss in AD.
Collapse
Affiliation(s)
- Kevin Fang
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, University Maastricht, 6229 ER Maastricht, The Netherlands
| | - Thomas Piers
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Exeter EX2 5DW, UK
| | - Steffen Scholpp
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
3
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Nazli D, Bora U, Ozhan G. Wnt/β-catenin Signaling in Central Nervous System Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:13-33. [PMID: 39511125 DOI: 10.1007/5584_2024_830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role in the development, maintenance, and repair of the central nervous system (CNS). This chapter explores the diverse functions of Wnt/β-catenin signaling, from its critical involvement in embryonic CNS development to its reparative and plasticity-inducing roles in response to CNS injury. We discuss how Wnt/β-catenin signaling influences various CNS cell types-astrocytes, microglia, neurons, and oligodendrocytes-each contributing to repair and plasticity after injury. The chapter also addresses the pathway's involvement in CNS disorders such as Alzheimer's and Parkinson's diseases, psychiatric disorders, and traumatic brain injury (TBI), highlighting potential Wnt-based therapeutic approaches. Lastly, zebrafish are presented as a promising model organism for studying CNS regeneration and neurodegenerative diseases, offering insights into future research and therapeutic development.
Collapse
Affiliation(s)
- Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye.
| |
Collapse
|
5
|
Shin J, Park AY, Ju S, Lee H, Kang HW, Han D, Kim S. Analysis of key pathways and genes in nodal structure on rat skin surface using gene ontology and KEGG pathway. Genes Genomics 2025; 47:71-85. [PMID: 39503930 DOI: 10.1007/s13258-024-01582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND We have previously reported anatomical, histological, and gene expression characteristics of the nodal structure of rat skin surface and suggested its potential as an acupuncture point. However, the specific characteristics of the interactions among the genes expressed in this structure remain unclear. OBJECTIVE We aimed to determine gene expression changes by analyzing interaction networks of genes up-regulated in nodal structures and to explore relationships with acupuncture points. METHODS We investigated the relationship between the nodal structures and acupuncture points by analyzing the interactions of up-regulated genes, their Gene Ontology biological functions, and the characteristics of Kyoto Encyclopedia of Genes and Genomes pathways. RNA-seq and STRING analysis provided comprehensive information on these gene groups. RESULTS Interactions between up-regulated genes in nodal structures were classified into three groups. The first group, which includes Wnt7b, Wnt3, and Wnt16, showed significant interactions in pathways such as Wnt signaling, Alzheimer's disease, and regulation of stem cell pluripotency. The second group, composed of Fos, Dusp1, Pla2g4e, Pla2g4f, and Fgfr3, demonstrated a notable association with the MAPK signaling pathway. Lastly, the third group, consisting of Adcy1, Pla2g4e, Pla2g4f, and Dusp1 exhibited effective interactions with the inflammatory mediator regulation of TRP channels and serotonergic synapse. CONCLUSION Continued research on nodal structures where these genes are expressed is needed to improve our understanding of skin anatomy and physiology as well as their potential clinical utility as acupuncture points.
Collapse
Affiliation(s)
- Joonyoung Shin
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
| | - A Yeong Park
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
| | - Suk Ju
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
| | - Hyorin Lee
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
| | - Hyung Won Kang
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
- Department of Korean Neuropsychiatry, College of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Dongwoon Han
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea
- Department of Global Health and Development, Hanyang University, Seoul, Republic of Korea
| | - Sungchul Kim
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, 54538, Republic of Korea.
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
6
|
Ye Q, Li X, Gao W, Gao J, Zheng L, Zhang M, Yang F, Li H. Role of Rho-associated kinases and their inhibitor fasudil in neurodegenerative diseases. Front Neurosci 2024; 18:1481983. [PMID: 39628659 PMCID: PMC11613983 DOI: 10.3389/fnins.2024.1481983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are prevalent in the elderly. The pathogenesis of NDDs is complex, and currently, there is no cure available. With the increase in aging population, over 20 million people are affected by common NDDs alone (Alzheimer's disease and Parkinson's disease). Therefore, NDDs have profound negative impacts on patients, their families, and society, making them a major global health concern. Rho-associated kinases (ROCKs) belong to the serine/threonine protein kinases family, which modulate diverse cellular processes (e.g., apoptosis). ROCKs may elevate the risk of various NDDs (including Huntington's disease, Parkinson's disease, and Alzheimer's disease) by disrupting synaptic plasticity and promoting inflammatory responses. Therefore, ROCK inhibitors have been regarded as ideal therapies for NDDs in recent years. Fasudil, one of the classic ROCK inhibitor, is a potential drug for treating NDDs, as it repairs nerve damage and promotes axonal regeneration. Thus, the current review summarizes the relationship between ROCKs and NDDs and the mechanism by which fasudil inhibits ROCKs to provide new ideas for the treatment of NDDs.
Collapse
Affiliation(s)
- Qiuyan Ye
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu College of Nursing, Huaian, China
| | - Jiayue Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Zheng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Miaomiao Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengge Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Honglin Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Fürtjes AE, Foote IF, Xia C, Davies G, Moodie J, Taylor A, Liewald DC, Redmond P, Corley J, McIntosh AM, Whalley HC, Maniega SM, Hernández MV, Backhouse E, Ferguson K, Bastin ME, Wardlaw J, de la Fuente J, Grotzinger AD, Luciano M, Hill WD, Deary IJ, Tucker-Drob EM, Cox SR. Lifetime brain atrophy estimated from a single MRI: measurement characteristics and genome-wide correlates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622274. [PMID: 39574607 PMCID: PMC11580880 DOI: 10.1101/2024.11.06.622274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
A measure of lifetime brain atrophy (LBA) obtained from a single magnetic resonance imaging (MRI) scan could be an attractive candidate to boost statistical power in uncovering novel genetic signals and mechanisms of neurodegeneration. We analysed data from five young and old adult cohorts (MRi-Share, Human Connectome Project, UK Biobank, Generation Scotland Subsample, and Lothian Birth Cohort 1936 [LBC1936]) to test the validity and utility of LBA inferred from cross-sectional MRI data, i.e., a single MRI scan per participant. LBA was simply calculated based on the relationship between total brain volume (TBV) and intracranial volume (ICV), using three computationally distinct approaches: the difference (ICV-TBV), ratio (TBV/ICV), and regression-residual method (TBV~ICV). LBA derived with all three methods were substantially correlated with well-validated neuroradiological atrophy rating scales (r = 0.37-0.44). Compared with the difference or ratio method, LBA computed with the residual method most strongly captured phenotypic variance associated with cognitive decline (r = 0.36), frailty (r = 0.24), age-moderated brain shrinkage (r = 0.45), and longitudinally-measured atrophic changes (r = 0.36). LBA computed using a difference score was strongly correlated with baseline (i.e., ICV; r = 0.81) and yielded GWAS signal similar to ICV (rg = 0.75). We performed the largest genetic study of LBA to date (N = 43,110), which was highly heritable (h 2 SNP GCTA = 41% [95% CI = 38-43%]) and had strong polygenic signal (LDSC h 2 = 26%; mean χ2 = 1.23). The strongest association in our genome-wide association study (GWAS) implicated WNT16, a gene previously linked with neurodegenerative diseases such as Alzheimer, and Parkinson disease, and amyotrophic lateral sclerosis. This study is the first side-by-side evaluation of different computational approaches to estimate lifetime brain changes and their measurement characteristics. Careful assessment of methods for LBA computation had important implications for the interpretation of existing phenotypic and genetic results, and showed that relying on the residual method to estimate LBA from a single MRI scan captured brain shrinkage rather than current brain size. This makes this computationally-simple definition of LBA a strong candidate for more powerful analyses, promising accelerated genetic discoveries by maximising the use of available cross-sectional data.
Collapse
Affiliation(s)
- Anna E Fürtjes
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Isabelle F Foote
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Charley Xia
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gail Davies
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Moodie
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adele Taylor
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - David C Liewald
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Redmond
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Janie Corley
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew M McIntosh
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Valdés Hernández
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ellen Backhouse
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Karen Ferguson
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Javier de la Fuente
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew D Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michelle Luciano
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - W David Hill
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ian J Deary
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Simon R Cox
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Ke C, Shan S, Tan Y, Cao Y, Xie Z, Shi S, Pan J, Zhang W. Signaling pathways in the treatment of Alzheimer's disease with acupuncture: a narrative review. Acupunct Med 2024; 42:216-230. [PMID: 38859546 DOI: 10.1177/09645284241256669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND To date, there is no effective treatment for Alzheimer's disease (AD), a progressive neurodegenerative disorder that is increasing in prevalence worldwide. The objective of this review was to summarize the core targets and signaling pathways involved in acupuncture treatment for AD. METHODS We reviewed numerous signaling pathways, including mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-protein kinase B (PI3 K/Akt), adenosine monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), nuclear factor (NF)-kB, p53, Wnt, nitric oxide (NO), Janus kinase / signal transducer and activator of transcription (JAK/ STAT), RhoA/ROCK (Rho-associated protein kinase) and Ca2+/ calmodulin-dependent protein kinase II (CaMKII) / cyclic adenosine monophosphate-response element-binding protein (CREB). The relevant data were obtained from PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI) and Wanfang databases. RESULTS In summary, the effects of acupuncture are mediated by multiple targets and pathways. Furthermore, acupuncture can improve pathological changes associated with AD (such as abnormal deposition of amyloid (A)β, tau hyperphosphorylation, synaptic dysfunction and neuronal apoptosis) through multiple signaling pathways. CONCLUSION Overall, our findings provide a basis for future research into the effects of acupuncture on AD.
Collapse
Affiliation(s)
- Chao Ke
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shengtao Shan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Tan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yang Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhengrong Xie
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Senjie Shi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jiang Pan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Zhang F, Zhang W. Research progress in Alzheimer's disease and bone-brain axis. Ageing Res Rev 2024; 98:102341. [PMID: 38759893 DOI: 10.1016/j.arr.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD) is the most common type of cognitive impairment. AD is closely related to orthopedic diseases, such as osteoporosis and osteoarthritis, in terms of epidemiology and pathogenesis. Brain and bone tissues can regulate each other in different manners through bone-brain axis. This article reviews the research progress of the relationship between AD and orthopedic diseases, bone-brain axis mechanisms of AD, and AD therapy by targeting bone-brain axis, in order to deepen the understanding of bone-brain communication, promote early diagnosis and explore new therapy for AD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
10
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
11
|
Collu R, Yin Z, Giunti E, Daley S, Chen M, Morin P, Killick R, Wong STC, Xia W. Effect of the ROCK inhibitor fasudil on the brain proteomic profile in the tau transgenic mouse model of Alzheimer's disease. Front Aging Neurosci 2024; 16:1323563. [PMID: 38440100 PMCID: PMC10911083 DOI: 10.3389/fnagi.2024.1323563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction The goal of this study is to explore the pharmacological potential of the amyloid-reducing vasodilator fasudil, a selective Ras homolog (Rho)-associated kinases (ROCK) inhibitor, in the P301S tau transgenic mouse model (Line PS19) of neurodegenerative tauopathy and Alzheimer's disease (AD). Methods We used LC-MS/MS, ELISA and bioinformatic approaches to investigate the effect of treatment with fasudil on the brain proteomic profile in PS19 tau transgenic mice. We also explored the efficacy of fasudil in reducing tau phosphorylation, and the potential beneficial and/or toxic effects of its administration in mice. Results Proteomic profiling of mice brains exposed to fasudil revealed the activation of the mitochondrial tricarboxylic acid (TCA) cycle and blood-brain barrier (BBB) gap junction metabolic pathways. We also observed a significant negative correlation between the brain levels of phosphorylated tau (pTau) at residue 396 and both fasudil and its metabolite hydroxyfasudil. Conclusions Our results provide evidence on the activation of proteins and pathways related to mitochondria and BBB functions by fasudil treatment and support its further development and therapeutic potential for AD.
Collapse
Affiliation(s)
- Roberto Collu
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Zheng Yin
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston Methodist Academic Institute, Houston, TX, United States
| | - Elisa Giunti
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Sarah Daley
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Mei Chen
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
| | - Peter Morin
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Richard Killick
- King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Stephen T. C. Wong
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston Methodist Academic Institute, Houston, TX, United States
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biological Sciences, University of Massachusetts Kennedy College of Science, Lowell, MA, United States
| |
Collapse
|
12
|
Ouyang X, Collu R, Benavides GA, Tian R, Darley-Usmar V, Xia W, Zhang J. ROCK Inhibitor Fasudil Attenuates Neuroinflammation and Associated Metabolic Dysregulation in the Tau Transgenic Mouse Model of Alzheimer's Disease. Curr Alzheimer Res 2024; 21:183-200. [PMID: 38910422 DOI: 10.2174/0115672050317608240531130204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The pathological manifestations of Alzheimer's disease (AD) include not only brain amyloid β protein (Aβ) containing neuritic plaques and hyperphosphorylated tau (p-- tau) containing neurofibrillary tangles but also microgliosis, astrocytosis, and neurodegeneration mediated by metabolic dysregulation and neuroinflammation. METHODS While antibody-based therapies targeting Aβ have shown clinical promise, effective therapies targeting metabolism, neuroinflammation, and p-tau are still an urgent need. Based on the observation that Ras homolog (Rho)-associated kinases (ROCK) activities are elevated in AD, ROCK inhibitors have been explored as therapies in AD models. This study determines the effects of fasudil, a ROCK inhibitor, on neuroinflammation and metabolic regulation in the P301S tau transgenic mouse line PS19 that models neurodegenerative tauopathy and AD. Using daily intraperitoneal (i.p.) delivery of fasudil in PS19 mice, we observed a significant hippocampal-specific decrease of the levels of phosphorylated tau (pTau Ser202/Thr205), a decrease of GFAP+ cells and glycolytic enzyme Pkm1 in broad regions of the brain, and a decrease in mitochondrial complex IV subunit I in the striatum and thalamic regions. RESULTS Although no overt detrimental phenotype was observed, mice dosed with 100 mg/kg/day for 2 weeks exhibited significantly decreased mitochondrial outer membrane and electron transport chain (ETC) protein abundance, as well as ETC activities. CONCLUSION Our results provide insights into dose-dependent neuroinflammatory and metabolic responses to fasudil and support further refinement of ROCK inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Roberto Collu
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Ran Tian
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biological Sciences, University of Massachusetts Kennedy College of Science, Lowell, MA, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| |
Collapse
|
13
|
Anand AA, Khan M, V M, Kar D. The Molecular Basis of Wnt/ β-Catenin Signaling Pathways in Neurodegenerative Diseases. Int J Cell Biol 2023; 2023:9296092. [PMID: 37780577 PMCID: PMC10539095 DOI: 10.1155/2023/9296092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
Defective Wnt signaling is found to be associated with various neurodegenerative diseases. In the canonical pathway, the Frizzled receptor (Fzd) and the lipoprotein receptor-related proteins 5/6 (LRP5/LRP6) create a seven-pass transmembrane receptor complex to which the Wnt ligands bind. This interaction causes the tumor suppressor adenomatous polyposis coli gene product (APC), casein kinase 1 (CK1), and GSK-3β (glycogen synthase kinase-3 beta) to be recruited by the scaffold protein Dishevelled (Dvl), which in turn deactivates the β-catenin destruction complex. This inactivation stops the destruction complex from phosphorylating β-catenin. As a result, β-catenin first builds up in the cytoplasm and then migrates into the nucleus, where it binds to the Lef/Tcf transcription factor to activate the transcription of more than 50 Wnt target genes, including those involved in cell growth, survival, differentiation, neurogenesis, and inflammation. The treatments that are currently available for neurodegenerative illnesses are most commonly not curative in nature but are only symptomatic. According to all available research, restoring Wnt/β-catenin signaling in the brains of patients with neurodegenerative disorders, particularly Alzheimer's and Parkinson's disease, would improve the condition of several patients with neurological disorders. The importance of Wnt activators and modulators in patients with such illnesses is to mainly restore rather than overstimulate the Wnt/β-catenin signaling, thereby reestablishing the equilibrium between Wnt-OFF and Wnt-ON states. In this review, we have tried to summarize the significance of the Wnt canonical pathway in the pathophysiology of certain neurodegenerative diseases, such as Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis, and other similar diseases, and as to how can it be restored in these patients.
Collapse
Affiliation(s)
- Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad 211012, India
| | - Misbah Khan
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| | - Monica V
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| | - Debasish Kar
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| |
Collapse
|
14
|
Sokol DK, Lahiri DK. APPlications of amyloid-β precursor protein metabolites in macrocephaly and autism spectrum disorder. Front Mol Neurosci 2023; 16:1201744. [PMID: 37799731 PMCID: PMC10548831 DOI: 10.3389/fnmol.2023.1201744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolites of the Amyloid-β precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Department of Neurology, Section of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Zhang C, Wang J, Wang W. Wnt signaling in synaptogenesis of Alzheimer's disease. IBRAIN 2023; 9:316-325. [PMID: 37786762 PMCID: PMC10527795 DOI: 10.1002/ibra.12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease (AD), recognized as the leading cause of dementia, occupies a prominent position on the list of significant neurodegenerative disorders, representing a significant global health concern with far-reaching implications at both individual and societal levels. The primary symptom of Alzheimer's disease is a decrease in synaptic potency along with synaptic connection loss. Synapses, which act as important linkages between neuronal units within the cerebral region, are critical in signal transduction processes essential to orchestrating cognitive tasks. Synaptic connections act as critical interconnections between neuronal cells inside the cerebral environment, facilitating critical signal transduction processes required for cognitive functions. The confluence of axonal and dendritic filopodial extensions culminates in the creation of intercellular connections, coordinated by various signals and molecular mechanisms. The progression of synaptic maturation and plasticity is a critical determinant in maintaining mental well-being, and abnormalities in these processes have been linked to the development of neurodegenerative diseases. Wnt signaling pathways are important to the orchestration of synapse development. This review examines the complicated interplay between Wnt signaling and dendritic filopodia, including an examination of the regulatory complexities and molecular machinations involved in synaptogenesis progression. Then, these findings are contextualized within the context of AD pathology, allowing for the consideration of prospective therapeutic approaches based on the findings and development of novel avenues for future scientific research.
Collapse
Affiliation(s)
| | - Joy Wang
- Winchester High SchoolWinchesterMassachusettsUSA
| | - Wen‐Yuan Wang
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of ScienceShanghaiChina
- Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Chau DDL, Ng LLH, Zhai Y, Lau KF. Amyloid precursor protein and its interacting proteins in neurodevelopment. Biochem Soc Trans 2023; 51:1647-1659. [PMID: 37387352 PMCID: PMC10629809 DOI: 10.1042/bst20221527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Amyloid precursor protein (APP) is a key molecule in the pathogenesis of Alzheimer's disease (AD) as the pathogenic amyloid-β peptide is derived from it. Two closely related APP family proteins (APPs) have also been identified in mammals. Current knowledge, including genetic analyses of gain- and loss-of-function mutants, highlights the importance of APPs in various physiological functions. Notably, APPs consist of multiple extracellular and intracellular protein-binding regions/domains. Protein-protein interactions are crucial for many cellular processes. In past decades, many APPs interactors have been identified which assist the revelation of the putative roles of APPs. Importantly, some of these interactors have been shown to influence several APPs-mediated neuronal processes which are found defective in AD and other neurodegenerative disorders. Studying APPs-interactor complexes would not only advance our understanding of the physiological roles of APPs but also provide further insights into the association of these processes to neurodegeneration, which may lead to the development of novel therapies. In this mini-review, we summarize the roles of APPs-interactor complexes in neurodevelopmental processes including neurogenesis, neurite outgrowth, axonal guidance and synaptogenesis.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuqi Zhai
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Coronel R, Bernabeu-Zornoza A, Palmer C, González-Sastre R, Rosca A, Mateos-Martínez P, López-Alonso V, Liste I. Amyloid Precursor Protein (APP) Regulates Gliogenesis and Neurogenesis of Human Neural Stem Cells by Several Signaling Pathways. Int J Mol Sci 2023; 24:12964. [PMID: 37629148 PMCID: PMC10455174 DOI: 10.3390/ijms241612964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous studies have focused on the pathophysiological role of amyloid precursor protein (APP) because the proteolytic processing of APP to β-amyloid (Aβ) peptide is a central event in Alzheimer's disease (AD). However, many authors consider that alterations in the physiological functions of APP are likely to play a key role in AD. Previous studies in our laboratory revealed that APP plays an important role in the differentiation of human neural stem cells (hNSCs), favoring glial differentiation (gliogenesis) and preventing their differentiation toward a neuronal phenotype (neurogenesis). In the present study, we have evaluated the effects of APP overexpression in hNSCs at a global gene level by a transcriptomic analysis using the massive RNA sequencing (RNA-seq) technology. Specifically, we have focused on differentially expressed genes that are related to neuronal and glial differentiation processes, as well as on groups of differentially expressed genes associated with different signaling pathways, in order to find a possible interaction between them and APP. Our data indicate a differential expression in genes related to Notch, Wnt, PI3K-AKT, and JAK-STAT signaling, among others. Knowledge of APP biological functions, as well as the possible signaling pathways that could be related to this protein, are essential to advance our understanding of AD.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Rosa González-Sastre
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Patricia Mateos-Martínez
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| |
Collapse
|
18
|
Killick R, Elliott C, Ribe E, Broadstock M, Ballard C, Aarsland D, Williams G. Neurodegenerative Disease Associated Pathways in the Brains of Triple Transgenic Alzheimer's Model Mice Are Reversed Following Two Weeks of Peripheral Administration of Fasudil. Int J Mol Sci 2023; 24:11219. [PMID: 37446396 PMCID: PMC10342807 DOI: 10.3390/ijms241311219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The pan Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor fasudil acts as a vasodilator and has been used as a medication for post-cerebral stroke for the past 29 years in Japan and China. More recently, based on the involvement of ROCK inhibition in synaptic function, neuronal survival, and processes associated with neuroinflammation, it has been suggested that the drug may be repurposed for neurodegenerative diseases. Indeed, fasudil has demonstrated preclinical efficacy in many neurodegenerative disease models. To facilitate an understanding of the wider biological processes at play due to ROCK inhibition in the context of neurodegeneration, we performed a global gene expression analysis on the brains of Alzheimer's disease model mice treated with fasudil via peripheral IP injection. We then performed a comparative analysis of the fasudil-driven transcriptional profile with profiles generated from a meta-analysis of multiple neurodegenerative diseases. Our results show that fasudil tends to drive gene expression in a reverse sense to that seen in brains with post-mortem neurodegenerative disease. The results are most striking in terms of pathway enrichment analysis, where pathways perturbed in Alzheimer's and Parkinson's diseases are overwhelmingly driven in the opposite direction by fasudil treatment. Thus, our results bolster the repurposing potential of fasudil by demonstrating an anti-neurodegenerative phenotype in a disease context and highlight the potential of in vivo transcriptional profiling of drug activity.
Collapse
Affiliation(s)
- Richard Killick
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Christina Elliott
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Elena Ribe
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Martin Broadstock
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Gareth Williams
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| |
Collapse
|
19
|
Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN, Kumar A, Singh V, Singh SK. WNT-β Catenin Signaling as a Potential Therapeutic Target for Neurodegenerative Diseases: Current Status and Future Perspective. Diseases 2023; 11:89. [PMID: 37489441 PMCID: PMC10366863 DOI: 10.3390/diseases11030089] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Wnt/β-catenin (WβC) signaling pathway is an important signaling pathway for the maintenance of cellular homeostasis from the embryonic developmental stages to adulthood. The canonical pathway of WβC signaling is essential for neurogenesis, cell proliferation, and neurogenesis, whereas the noncanonical pathway (WNT/Ca2+ and WNT/PCP) is responsible for cell polarity, calcium maintenance, and cell migration. Abnormal regulation of WβC signaling is involved in the pathogenesis of several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and spinal muscular atrophy (SMA). Hence, the alteration of WβC signaling is considered a potential therapeutic target for the treatment of neurodegenerative disease. In the present review, we have used the bibliographical information from PubMed, Google Scholar, and Scopus to address the current prospects of WβC signaling role in the abovementioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Lakshmi Vineela Nalla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Dumala Naresh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, India
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Guntupalli Chakravarthy
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Sajusha Duguluri
- Department of Biotechnology, Bharathi Institute of Higher Education and Research, Chennai 600073, India
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Kumar
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Veer Singh
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
20
|
Kostes WW, Brafman DA. The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells 2023; 12:1204. [PMID: 37190113 PMCID: PMC10136584 DOI: 10.3390/cells12081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
21
|
Rajput S, Malviya R, Bahadur S, Puri D. Recent Updates on the Development of Therapeutics for the Targeted Treatment of Alzheimer's Disease. Curr Pharm Des 2023; 29:2802-2813. [PMID: 38018199 DOI: 10.2174/0113816128274618231105173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 11/30/2023]
Abstract
Alzheimer's disease (AD) is a complicated, multifaceted, irreversible, and incurable neurotoxic old age illness. Although NMDA (N-methyl D-aspartate)-receptor antagonists, cholinesterase repressors, and their pairings have been approved for the treatment, they are useful for short symptomatic relief. Researchers throughout the globe have been constantly working to uncover the therapy of Alzheimer's disease as new candidates must be determined, and newer treatment medicines must be developed. The aim of this review is to address recent advances in medication research along with new Alzheimer's disease therapy for diverse targets. Information was gathered utilizing a variety of internet resources as well as websites, such as ALZFORUM (alzforum.org) and clinicaltrials.gov. In contrast to other domains, the proposed medicines target amyloids (secretases, A42 generation, neuroinflammation, amyloid precipitation, and immunization), tau proteins (tau phosphorylation/aggregation and immunotherapy), and amyloid deposition. Despite tremendous advancement in our understanding of the underlying pathophysiology of Alzheimer's disease, the FDA (Food and Drug Administration) only approved aducanumab for diagnosis and treatment in 2003. Hence, novel treatment tactics are needed to find and develop therapeutic medicines to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Dinesh Puri
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
22
|
Microglial Expression of the Wnt Signaling Modulator DKK2 Differs between Human Alzheimer's Disease Brains and Mouse Neurodegeneration Models. eNeuro 2023; 10:ENEURO.0306-22.2022. [PMID: 36599670 PMCID: PMC9836029 DOI: 10.1523/eneuro.0306-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Wnt signaling is crucial for synapse and cognitive function. Indeed, deficient Wnt signaling is causally related to increased expression of DKK1, an endogenous negative Wnt regulator, and synapse loss, both of which likely contribute to cognitive decline in Alzheimer's disease (AD). Increasingly, AD research efforts have probed the neuroinflammatory role of microglia, the resident immune cells of the CNS, which have furthermore been shown to be modulated by Wnt signaling. The DKK1 homolog DKK2 has been previously identified as an activated response and/or disease-associated microglia (DAM/ARM) gene in a mouse model of AD. Here, we performed a detailed analysis of DKK2 in mouse models of neurodegeneration, and in human AD brain. In APP/PS1 and APPNL-G-F AD mouse model brains as well as in SOD1G93A ALS mouse model spinal cords, but not in control littermates, we demonstrated significant microgliosis and microglial Dkk2 mRNA upregulation in a disease-stage-dependent manner. In the AD models, these DAM/ARM Dkk2+ microglia preferentially accumulated close to βAmyloid plaques. Furthermore, recombinant DKK2 treatment of rat hippocampal primary neurons blocked WNT7a-induced dendritic spine and synapse formation, indicative of an anti-synaptic effect similar to that of DKK1. In stark contrast, no such microglial DKK2 upregulation was detected in the postmortem human frontal cortex from individuals diagnosed with AD or pathologic aging. In summary, the difference in microglial expression of the DAM/ARM gene DKK2 between mouse models and human AD brain highlights the increasingly recognized limitations of using mouse models to recapitulate facets of human neurodegenerative disease.
Collapse
|
23
|
Macyczko JR, Wang N, Zhao J, Ren Y, Lu W, Ikezu TC, Zhao N, Liu CC, Bu G, Li Y. Suppression of Wnt/β-Catenin Signaling Is Associated with Downregulation of Wnt1, PORCN, and Rspo2 in Alzheimer's Disease. Mol Neurobiol 2023; 60:26-35. [PMID: 36215026 PMCID: PMC9795414 DOI: 10.1007/s12035-022-03065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/03/2022] [Indexed: 12/30/2022]
Abstract
Wnt and R-spondin (Rspo) proteins are two major types of endogenous Wnt/β-catenin signaling agonists. While Wnt/β-catenin signaling is greatly diminished in Alzheimer's disease (AD), it remains to be elucidated whether the inhibition of this pathway is associated with dysregulation of Wnt and Rspo proteins. By analyzing temporal cortex RNA-seq data of the human postmortem brain samples, we found that WNT1 and RRPO2 were significantly downregulated in human AD brains. In addition, the expression of Wnt acyltransferase porcupine (PORCN), which is essential for Wnt maturation and secretion, was greatly deceased in these human AD brains. Interestingly, the lowest levels of WNT1, PORCN, and RSPO2 expression were found in human AD brains carrying two copies of APOE4 allele, the strongest genetic risk factor of late-onset AD. Importantly, there were positive correlations among the levels of WNT1, PORCN, and RSPO2 expression in human AD brains. Supporting observations in humans, Wnt1, PORCN, and Rspo2 were downregulated and Wnt/β-catenin signaling was diminished in the 5xFAD amyloid model mice. In human APOE-targeted replacement mice, downregulation of WNT1, PORCN, and RSPO2 expression was positively associated with aging and APOE4 genotype. Finally, WNT1 and PORCN expression and Wnt/β-catenin signaling were inhibited in human APOE4 iPSC-derived astrocytes when compared to the isogenic APOE3 iPSC-derived astrocytes. Altogether, our findings suggest that the dysregulations of Wnt1, PORCN, and Rspo2 could be coordinated together to diminish Wnt/β-catenin signaling in aging- and APOE4-dependent manners in the AD brain.
Collapse
Affiliation(s)
- Jesse R Macyczko
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tadafumi C Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
24
|
Gone with the Wnt(less): a mechanistic perspective on the journey of Wnt. Biochem Soc Trans 2022; 50:1763-1772. [PMID: 36416660 DOI: 10.1042/bst20220634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Wnts are short-range signaling proteins, expressed in all metazoans from sponges to humans, critical for cell development and fate. There are 19 different Wnts in the human genome with varying expression levels and patterns, and post-translational modifications. Common to essentially all Wnts is the palmitoleation of a conserved serine by the O-acyltransferase PORCN in the endoplasmic reticulum (ER). All lipidated Wnts then bind a dedicated carrier Wntless (WLS), endowed with the task of transporting them from the ER to the plasma membrane, and ultimately facilitating their release to receptors on the Wnt-receiving cell to initiate signaling. Here, we will focus on the WLS-mediated transport step. There are currently two published structures, both obtained by single-particle cryo-electron microscopy of the Wnt/WLS complex: human Wnt8A-bound and human Wnt3A-bound WLS. We analyze the two Wnt/WLS structures - remarkably similar despite the sequence similarity between Wnt8A and Wnt3A being only ∼39% - to begin to understand the conserved nature of this binding mechanism, and ultimately how one carrier can accommodate a family of 19 different Wnts. By comparing how Wnt associates with WLS with how it binds to PORCN and FZD receptors, we can begin to speculate on mechanisms of Wnt transfer from PORCN to WLS, and from WLS to FZD, thus providing molecular-level insight into these essential steps of the Wnt signaling pathway.
Collapse
|
25
|
The Molecular Effects of Environmental Enrichment on Alzheimer's Disease. Mol Neurobiol 2022; 59:7095-7118. [PMID: 36083518 PMCID: PMC9616781 DOI: 10.1007/s12035-022-03016-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
Collapse
|
26
|
Kang BW, Kim F, Cho JY, Kim S, Rhee J, Choung JJ. Phosphodiesterase 5 inhibitor mirodenafil ameliorates Alzheimer-like pathology and symptoms by multimodal actions. Alzheimers Res Ther 2022; 14:92. [PMID: 35804462 PMCID: PMC9264543 DOI: 10.1186/s13195-022-01034-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
Background Alzheimer’s disease (AD) pathology is associated with complex interactions among multiple factors, involving an intertwined network of various signaling pathways. The polypharmacological approach is an emerging therapeutic strategy that has been proposed to overcome the multifactorial nature of AD by targeting multiple pathophysiological factors including amyloid-β (Aβ) and phosphorylated tau. We evaluated a blood-brain barrier penetrating phosphodiesterase 5 (PDE5) inhibitor, mirodenafil (5-ethyl-2-7-n-propyl-3,5-dihydrro-4H-pyrrolo[3,2-d]pyrimidin-4-one), for its therapeutic effects on AD with polypharmacological properties. Methods To evaluate the potential of mirodenafil as a disease-modifying AD agent, mirodenafil was administered to test its effects on the cognitive behaviors of the APP-C105 AD mouse model using the Morris water maze and passive avoidance tests. To investigate the mechanisms of action that underlie the beneficial disease-modifying effects of mirodenafil, human neuroblastoma SH-SY5Y cells and mouse hippocampal HT-22 cells were used to show mirodenafil-induced alterations associated with the cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG)/cAMP-responsive element-binding protein (CREB) pathway, apoptotic cell death, tau phosphorylation, amyloidogenesis, the autophagy-lysosome pathway, glucocorticoid receptor (GR) transcriptional activity, and the Wnt/β-catenin signaling. Results Here, mirodenafil is demonstrated to improve cognitive behavior in the APP-C105 mouse model. Mirodenafil not only reduced the Aβ and phosphorylated tau burdens in vivo, but also ameliorated AD pathology induced by Aβ through the modulation of the cGMP/PKG/CREB signaling pathway, glycogen synthase kinase 3β (GSK-3β) activity, GR transcriptional activity, and the Wnt/β-catenin signaling in neuronal cells. Interestingly, homodimerization and nuclear localization of GR were inhibited by mirodenafil, but not by other PDE5 inhibitors. In addition, only mirodenafil reduced the expression levels of the Wnt antagonist Dickkopf-1 (Dkk-1), thus activating the Wnt/β-catenin signaling. Conclusions These findings strongly suggest that the PDE5 inhibitor mirodenafil shows promise as a potential polypharmacological drug candidate for AD treatment, acting on multiple key signaling pathways involved in amyloid deposition, phosphorylated tau burden, the cGMP/PKG/CREB pathway, GSK-3β kinase activity, GR signaling, and the Wnt/β-catenin signaling. Mirodenafil administration to the APP-C105 AD mouse model also improved cognitive behavior, demonstrating the potential of mirodenafil as a polypharmacological AD therapeutic agent. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01034-3.
Collapse
|
27
|
Mitra S, Dash R, Munni YA, Selsi NJ, Akter N, Uddin MN, Mazumder K, Moon IS. Natural Products Targeting Hsp90 for a Concurrent Strategy in Glioblastoma and Neurodegeneration. Metabolites 2022; 12:1153. [PMID: 36422293 PMCID: PMC9697676 DOI: 10.3390/metabo12111153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 09/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common aggressive, resistant, and invasive primary brain tumors that share neurodegenerative actions, resembling many neurodegenerative diseases. Although multiple conventional approaches, including chemoradiation, are more frequent in GBM therapy, these approaches are ineffective in extending the mean survival rate and are associated with various side effects, including neurodegeneration. This review proposes an alternative strategy for managing GBM and neurodegeneration by targeting heat shock protein 90 (Hsp90). Hsp90 is a well-known molecular chaperone that plays essential roles in maintaining and stabilizing protein folding to degradation in protein homeostasis and modulates signaling in cancer and neurodegeneration by regulating many client protein substrates. The therapeutic benefits of Hsp90 inhibition are well-known for several malignancies, and recent evidence highlights that Hsp90 inhibitors potentially inhibit the aggressiveness of GBM, increasing the sensitivity of conventional treatment and providing neuroprotection in various neurodegenerative diseases. Herein, the overview of Hsp90 modulation in GBM and neurodegeneration progress has been discussed with a summary of recent outcomes on Hsp90 inhibition in various GBM models and neurodegeneration. Particular emphasis is also given to natural Hsp90 inhibitors that have been evidenced to show dual protection in both GBM and neurodegeneration.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nusrat Jahan Selsi
- Product Development Department, Popular Pharmaceuticals Ltd., Dhaka 1207, Bangladesh
| | - Nasrin Akter
- Department of Clinical Pharmacy and Molecular Pharmacology, East West University Bangladesh, Dhaka 1212, Bangladesh
| | - Md Nazim Uddin
- Department of Pharmacy, Southern University Bangladesh, Chittagong 4000, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
28
|
O'Brien JT, Chouliaras L, Sultana J, Taylor JP, Ballard C. RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia-an international Delphi consensus. Alzheimers Res Ther 2022; 14:169. [PMID: 36369100 PMCID: PMC9650797 DOI: 10.1186/s13195-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy body dementia (which includes both dementia with Lewy bodies and Parkinson's disease dementia) apart from cholinesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II or III clinical trials in Lewy body dementia.
Collapse
Affiliation(s)
- John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Janet Sultana
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
29
|
Bjorkli C, Hemler M, Julian JB, Sandvig A, Sandvig I. Combined targeting of pathways regulating synaptic formation and autophagy attenuates Alzheimer’s disease pathology in mice. Front Pharmacol 2022; 13:913971. [PMID: 36052130 PMCID: PMC9426773 DOI: 10.3389/fphar.2022.913971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
All drug trials completed to date have fallen short of meeting the clinical endpoint of significantly slowing cognitive decline in Alzheimer’s disease (AD) patients. In this study, we repurposed two FDA-approved drugs, Fasudil and Lonafarnib, targeting synaptic formation (i.e., Wnt signaling) and cellular clearance (i.e., autophagic) pathways respectively, to test their therapeutic potential for attenuating AD-related pathology. We characterized our 3xTg AD mouse colony to select timepoints for separate and combinatorial treatment of both drugs while collecting cerebrospinal fluid (CSF) using an optimized microdialysis method. We found that treatment with Fasudil reduced Aβ at early and later stages of AD, whereas administration of Lonafarnib had no effect on Aβ, but did reduce tau, at early stages of the disease. Induction of autophagy led to increased size of amyloid plaques when administered at late phases of the disease. We show that combinatorial treatment with both drugs was effective at reducing intraneuronal Aβ and led to improved cognitive performance in mice. These findings lend support to regulating Wnt and autophagic pathways in order to attenuate AD-related pathology.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
- *Correspondence: Christiana Bjorkli,
| | - Mary Hemler
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
| | - Joshua B. Julian
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
- Department of Clinical Neurosciences, Division of Neuro Head and Neck, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
| |
Collapse
|
30
|
Diaz A, Martin-Jimenez C, Woo Y, Merino P, Torre E, Yepes M. Urokinase-Type Plasminogen Activator Triggers Wingless/Int1-Independent Phosphorylation of the Low-Density Lipoprotein Receptor-Related Protein-6 in Cerebral Cortical Neurons. J Alzheimers Dis 2022; 89:877-891. [PMID: 35964187 DOI: 10.3233/jad-220320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Urokinase-type plasminogen activator (uPA) is a serine proteinase found in excitatory synapses located in the II/III and V cortical layers. The synaptic release of uPA promotes the formation of synaptic contacts and the repair of synapses damaged by various forms of injury, and its abundance is decreased in the synapse of Alzheimer's disease (AD) patients. Inactivation of the Wingless/Int1 (Wnt)-β-catenin pathway plays a central role in the pathogenesis of AD. Soluble amyloid-β (Aβ) prevents the phosphorylation of the low-density lipoprotein receptor-related protein-6 (LRP6), and the resultant inactivation of the Wnt-β-catenin pathway prompts the amyloidogenic processing of the amyloid-β protein precursor (AβPP) and causes synaptic loss. OBJECTIVE To study the role of neuronal uPA in the pathogenesis of AD. METHODS We used in vitro cultures of murine cerebral cortical neurons, a murine neuroblastoma cell line transfected with the APP-695 Swedish mutation (N2asw), and mice deficient on either plasminogen, or uPA, or its receptor (uPAR). RESULTS We show that uPA activates the Wnt-β-catenin pathway in cerebral cortical neurons by triggering the phosphorylation of LRP6 via a plasmin-independent mechanism that does not require binding of Wnt ligands (Wnts). Our data indicate that uPA-induced activation of the Wnt-β-catenin pathway protects the synapse from the harmful effects of soluble Aβ and prevents the amyloidogenic processing of AβPP by inhibiting the expression of β-secretase 1 (BACE1) and the ensuing generation of Aβ 40 and Aβ 42 peptides. CONCLUSION uPA protects the synapse and antagonizes the inhibitory effect of soluble Aβ on the Wnt-β-catenin pathway by providing an alternative pathway for LRP6 phosphorylation and β-catenin stabilization.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology, Emory University, Atlanta, GA, USA.,Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
31
|
Wang Q, Huang X, Su Y, Yin G, Wang S, Yu B, Li H, Qi J, Chen H, Zeng W, Zhang K, Verkhratsky A, Niu J, Yi C. Activation of Wnt/β-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer's disease. Brain 2022; 145:4474-4488. [PMID: 35788280 DOI: 10.1093/brain/awac236] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes age-dependent neurological and cognitive declines. The treatments for AD pose a significant challenge, because the mechanisms of disease are not being fully understood. Malfunction of the blood-brain barrier (BBB) is increasingly recognized as a major contributor to the pathophysiology of AD, especially at the early stages of the disease. However, the underlying mechanisms remain poorly characterized, while few molecules can directly target and improve BBB function in the context of AD. Here, we showed dysfunctional BBB in AD patients reflected by perivascular accumulation of blood-derived fibrinogen in the hippocampus and cortex, accompanied by decreased tight junction proteins Claudin-5 and glucose transporter Glut-1 in the brain endothelial cells (BECs). In the APPswe/PS1dE9 (APP/PS1) mouse model of AD, BBB dysfunction started at 4 months of age and became severe at 9 months of age. In the cerebral microvessels of APP/PS1 mice and Aβ-treated BECs, we found suppressed Wnt/β-catenin signaling triggered by an increase of GSK3β activation, but not an inhibition of the AKT pathway or switching to the Wnt/planar cell polarity pathway. Furthermore, using our newly developed optogenetic tool for controlled regulation of LRP6 (upstream regulator of the Wnt signaling) to activate Wnt/β-catenin pathway, BBB malfunction was restored by preventing Aβ-induced BEC impairments and promoting the barrier repair. In conclusion, targeting LRP6 in the Wnt/β-catenin pathway in the brain endothelium can alleviate BBB malfunction induced by Aβ, which may be a potential treatment strategy for AD.
Collapse
Affiliation(s)
- Qi Wang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Xiaomin Huang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yixun Su
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Guowei Yin
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shouyu Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Bin Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Hui Li
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Junhua Qi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Chen
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wen Zeng
- Department of Cell Biology, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
32
|
Tong XK, Royea J, Hamel E. Simvastatin rescues memory and granule cell maturation through the Wnt/β-catenin signaling pathway in a mouse model of Alzheimer's disease. Cell Death Dis 2022; 13:325. [PMID: 35397630 PMCID: PMC8994768 DOI: 10.1038/s41419-022-04784-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/25/2022]
Abstract
We previously showed that simvastatin (SV) restored memory in a mouse model of Alzheimer disease (AD) concomitantly with normalization in protein levels of memory-related immediate early genes in hippocampal CA1 neurons. Here, we investigated age-related changes in the hippocampal memory pathway, and whether the beneficial effects of SV could be related to enhanced neurogenesis and signaling in the Wnt/β-catenin pathway. APP mice and wild-type (WT) littermate controls showed comparable number of proliferating (Ki67-positive nuclei) and immature (doublecortin (DCX)-positive) granule cells in the dentate gyrus until 3 months of age. At 4 months, Ki67 or DCX positive cells decreased sharply and remained less numerous until the endpoint (6 months) in both SV-treated and untreated APP mice. In 6 month-old APP mice, dendritic extensions of DCX immature neurons in the molecular layer were shorter, a deficit fully normalized by SV. Similarly, whereas mature granule cells (calbindin-immunopositive) were decreased in APP mice and not restored by SV, their dendritic arborizations were normalized to control levels by SV treatment. SV increased Prox1 protein levels (↑67.7%, p < 0.01), a Wnt/β-catenin signaling target, while significantly decreasing (↓61.2%, p < 0.05) the upregulated levels of the β-catenin-dependent Wnt pathway inhibitor DKK1 seen in APP mice. In APP mice, SV benefits were recapitulated by treatment with the Wnt/β-catenin specific agonist WAY-262611, whereas they were fully abolished in mice that received the Wnt/β-catenin pathway inhibitor XAV939 during the last month of SV treatment. Our results indicate that activation of the Wnt-β-catenin pathway through downregulation of DKK1 underlies SV neuronal and cognitive benefits.
Collapse
Affiliation(s)
- Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada
| | - Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada.,Department of Biochemistry, Microbiology, Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada.
| |
Collapse
|
33
|
Zhang W, Zhang M, Wu Q, Shi JS. Dendrobium nobile Lindl. Alkaloids Ameliorate Aβ25-35-Induced Synaptic Deficits by Targeting Wnt/β-Catenin Pathway in Alzheimer’s Disease Models. J Alzheimers Dis 2022; 86:297-313. [DOI: 10.3233/jad-215433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Dendrobium nobile Lindl. alkaloids (DNLA) are effective in ameliorating cognitive deficit in SAMP8, AβPP/PS1, and LPS-induced AD animal models, and prevented Aβ-induced synaptic degeneration in cultured hippocampal neurons. However, the underlying mechanisms remain unexplored. Objective: This study investigated the protective effects of DNLA on synaptic damage in an Aβ 25-35-induced rat AD model, in primary cortical neuron cultures, and in PC12 cells transfected with human AβPP695, focusing on the Wnt/β-catenin pathway. Methods: Sprague-Dawley rats received a single Aβ 25-35 injection (10μg) into the bilateral hippocampi. DNLA (40 and 80 mg/kg/d) was intragastrically administrated 7d prior to Aβ injection and continued for 28 days. The spatial learning and memory, synaptic morphology, synapse-related proteins, and Wnt signaling components GSK3β and β-catenin phosphorylation were evaluated. Rat primary cortical neuron cultures and AβPP695-PC12 cells were used to evaluate axonal mitochondria distribution, reactive oxygen species production, amyloidogenesis, and Wnt pathway in the protection. Results: DNLA ameliorated Aβ-induced cognitive impairment, increased the number of synapses, elevated the postsynaptic density thickness and expression of synapsin and PSD95 in the hippocampus, and suppressed Aβ-mediated GSK3β activity and the β-catenin phosphorylation. In primary neurons and AβPP695-PC12 cells, DNLA restored Aβ 25-35 induced mitochondrial dysfunction and inhibited reactive oxygen species production and amyloidogenesis. Furthermore, the Wnt/β-catenin pathway inhibitor Dkk-1 blocked the effect of DNLA on the expression of Aβ 1-42 and PSD95. Conclusion: DNLA rescued Aβ-mediated synaptic and mitochondrial injury and inhibited amyloidogenesis in vivo and in vitro, probably through the activation of Wnt/β-catenin signaling pathway to protect synaptic integrity.
Collapse
Affiliation(s)
- Wei Zhang
- Medical College, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Minghui Zhang
- Tongren City People’s Hospital, Tongren, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
34
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 935] [Impact Index Per Article: 311.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
35
|
Keshavarzi M, Moradbeygi F, Mobini K, Ghaffarian Bahraman A, Mohammadi P, Ghaedi A, Mohammadi-Bardbori A. The interplay of aryl hydrocarbon receptor/WNT/CTNNB1/Notch signaling pathways regulate amyloid beta precursor mRNA/protein expression and effected the learning and memory of mice. Toxicol Res (Camb) 2021; 11:147-161. [PMID: 35237419 PMCID: PMC8882790 DOI: 10.1093/toxres/tfab120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
The amyloid beta precursor protein (APP) plays a pathophysiological role in the development of Alzheimer's disease as well as a physiological role in neuronal growth and synaptogenesis. The aryl hydrocarbon receptor (AhR)/WNT/Catenin Beta 1 (CTNNB1)/Notch signaling pathways stamp in many functions, including development and growth of neurons. However, the regulatory role of AhR-/WNT-/CTNNB1-/Notch-induced APP expression and its influence on hippocampal-dependent learning and memory deficits is not clear. Male BALB/C mice received 6-formylindolo[3,2-b]carbazole (an AhR agonist), CH223191(an AhR antagonist), DAPT (an inhibitor of Notch signaling), and XAV-939 (a WNT pathway inhibitor) at a single dose of 100 μg/kg, 1, 5 , and 5 mg/kg of body weight, respectively, via intraperitoneal injection alone or in combination. Gene expression analyses and protein assay were performed on the 7th and 29th days. To assess the hippocampal-dependent memory, all six mice also underwent contextual fear conditioning on the 28th day after treatments. Our results showed that endogenous ligand of AhR has a regulatory effect on APP gene. Also, the interaction of AhR/WNT/CTNNB1 has a positive regulatory effect, but Notch has a negative regulatory effect on the mRNA and protein expression of APP, which have a correlation with mice's learning skills and memory.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Keivan Mobini
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Ghaffarian Bahraman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parisa Mohammadi
- Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Afsaneh Ghaedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Afshin Mohammadi-Bardbori
- Correspondence address. Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran. Tel.: +98(71)32425374; Fax: +98(71)32424326; E-mail:
| |
Collapse
|
36
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
37
|
Rogers S, Scholpp S. Vertebrate Wnt5a - At the crossroads of cellular signalling. Semin Cell Dev Biol 2021; 125:3-10. [PMID: 34686423 DOI: 10.1016/j.semcdb.2021.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Wnt signalling is an essential pathway in embryogenesis, differentiation, cell motility, development, and adult tissue homeostasis in vertebrates. The Wnt signalling network can activate several downstream pathways such as the β-catenin-dependent TCF/LEF transcription, the Wnt/planar cell polarity (PCP) pathway, and the Wnt/Calcium pathway. Wnt5a is a vertebrate Wnt ligand that is most often associated with the Wnt/PCP signalling pathway. Wnt5a/PCP signalling has a well-described role in embryogenesis via binding to a receptor complex of Frizzled and its co-receptors to initiate downstream activation of the c-Jun N-terminal kinase (JNK) signalling cascade and the Rho and Rac GTPases, Rho-Kinase (ROCK). This activation results in the cytoskeletal remodelling required for cell polarity, migration, and subsequently, tissue re-arrangement and organ formation. This review will focus on more recent work that has revealed new roles for Wnt5a ligands and consequently, an emerging broader function. This is partly due to our growing understanding of the crosstalk between the Wnt/PCP pathway with both the Wnt/β-catenin pathway and other signalling pathways, and in part due to the identification of novel atypical receptors for Wnt5a that demonstrate a far broader role for this ligand.
Collapse
Affiliation(s)
- Sally Rogers
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
38
|
Jeong W, Jho EH. Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Front Cell Dev Biol 2021; 9:714330. [PMID: 34589484 PMCID: PMC8473786 DOI: 10.3389/fcell.2021.714330] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling plays crucial roles in development and tissue homeostasis, and its dysregulation leads to various diseases, notably cancer. Wnt/β-catenin signaling is initiated when the glycoprotein Wnt binds to and forms a ternary complex with the Frizzled and low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Despite being identified as a Wnt co-receptor over 20 years ago, the molecular mechanisms governing how LRP6 senses Wnt and transduces downstream signaling cascades are still being deciphered. Due to its role as one of the main Wnt signaling components, the dysregulation or mutation of LRP6 is implicated in several diseases such as cancer, neurodegeneration, metabolic syndrome and skeletal disease. Herein, we will review how LRP6 is activated by Wnt stimulation and explore the various regulatory mechanisms involved. The participation of LRP6 in other signaling pathways will also be discussed. Finally, the relationship between LRP6 dysregulation and disease will be examined in detail.
Collapse
Affiliation(s)
- Wonyoung Jeong
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, South Korea
| |
Collapse
|
39
|
Liu T, Zhang T, Nicolas M, Boussicault L, Rice H, Soldano A, Claeys A, Petrova I, Fradkin L, De Strooper B, Potier MC, Hassan BA. The amyloid precursor protein is a conserved Wnt receptor. eLife 2021; 10:69199. [PMID: 34515635 PMCID: PMC8437438 DOI: 10.7554/elife.69199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
The Amyloid Precursor Protein (APP) and its homologues are transmembrane proteins required for various aspects of neuronal development and activity, whose molecular function is unknown. Specifically, it is unclear whether APP acts as a receptor, and if so what its ligand(s) may be. We show that APP binds the Wnt ligands Wnt3a and Wnt5a and that this binding regulates APP protein levels. Wnt3a binding promotes full-length APP (flAPP) recycling and stability. In contrast, Wnt5a promotes APP targeting to lysosomal compartments and reduces flAPP levels. A conserved Cysteine-Rich Domain (CRD) in the extracellular portion of APP is required for Wnt binding, and deletion of the CRD abrogates the effects of Wnts on flAPP levels and trafficking. Finally, loss of APP results in increased axonal and reduced dendritic growth of mouse embryonic primary cortical neurons. This phenotype can be cell-autonomously rescued by full length, but not CRD-deleted, APP and regulated by Wnt ligands in a CRD-dependent manner.
Collapse
Affiliation(s)
- Tengyuan Liu
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Doctoral School of Biomedical Sciences, Leuven, Belgium
| | - Tingting Zhang
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Doctoral School of Biomedical Sciences, Leuven, Belgium
| | - Maya Nicolas
- Doctoral School of Biomedical Sciences, Leuven, Belgium.,Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Lydie Boussicault
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Heather Rice
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Alessia Soldano
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Annelies Claeys
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Iveta Petrova
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Lee Fradkin
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bart De Strooper
- Center for Brain and Disease, Leuven, Belgium.,UK Dementia Research institute at University College London, London, United Kingdom
| | - Marie-Claude Potier
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bassem A Hassan
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
40
|
Martín-Cámara O, Cores Á, López-Alvarado P, Menéndez JC. Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 2021; 225:113742. [PMID: 34388381 DOI: 10.1016/j.ejmech.2021.113742] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Synaptic spine morphology is controlled by the activity of Rac1, Cdc42 and RhoA, which need to be finely balanced, and in particular RhoA/ROCK prevents the formation of new protrusions by stabilizing actin formation. These processes are crucial to the maturation process, slowing the de novo generation of new spines. The RhoA/ROCK also influences plasticity processes, and selective modulation by ROCK1 of MLC-dependent actin dynamics leads to neurite retraction, but not to spine retraction. ROCK1 is also responsible for the reduction of the readily releasable pool of synaptic vesicles. These and other evidences suggest that ROCK1 is the main isoform acting on the presynaptic neuron. On the other hand, ROCK2 seems to have broad effects on LIMK/cofilin-dependent plasticity processes such as cofilin-dependent PSD changes. The RhoA/ROCK pathway is an important factor in several different brain-related pathologies via both downstream and upstream pathways. In the aggregate, these evidences show that the RhoA/ROCK pathway has a central role in the etiopathogenesis of a large group of CNS diseases, which underscores the importance of the pharmacological modulation of RhoA/ROCK as an important pathway to drug discovery in the neurodegenerative disease area. This article aims at providing the first review of the role of compounds acting on the RhoA/ROCK pathway in the control of synaptic disfunction.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
41
|
Chow H, Sun JK, Hart RP, Cheng KK, Hung CHL, Lau T, Kwan K. Low-Density Lipoprotein Receptor-Related Protein 6 Cell Surface Availability Regulates Fuel Metabolism in Astrocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004993. [PMID: 34180138 PMCID: PMC8373092 DOI: 10.1002/advs.202004993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/06/2021] [Indexed: 05/07/2023]
Abstract
Early changes in astrocyte energy metabolism are associated with late-onset Alzheimer's disease (LOAD), but the underlying mechanism remains elusive. A previous study suggested an association between a synonymous SNP (rs1012672, C→T) in LRP6 gene and LOAD; and that is indeed correlated with diminished LRP6 gene expression in the frontal cortex region. The authors show that LRP6 is a unique Wnt coreceptor on astrocytes, serving as a bimodal switch that modulates their metabolic landscapes. The Wnt-LRP6 mediated mTOR-AKT axis is essential for sustaining glucose metabolism. In its absence, Wnt switches to activate the LRP6-independent Ca2+ -PKC-NFAT axis, resulting in a transcription network that favors glutamine and branched chain amino acids (BCAAs) catabolism over glucose metabolism. Exhaustion of these raw materials essential for neurotransmitter biosynthesis and recycling results in compromised synaptic, cognitive, and memory functions; priming for early changes that are frequently found in LOAD. The authors also highlight that intranasal supplementation of glutamine and BCAAs is effective in preserving neuronal integrity and brain functions, proposing a nutrient-based method for delaying cognitive and memory decline when LRP6 cell surface levels and functions are suboptimal.
Collapse
Affiliation(s)
- Hei‐Man Chow
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Jacquelyne Ka‐Li Sun
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Ronald P. Hart
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJ08854USA
| | - Kenneth King‐Yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic University999077Hong Kong
| | - Clara H. L. Hung
- The University Research Facility in Life SciencesThe Hong Kong Polytechnic University999077Hong Kong
| | - Tsun‐Ming Lau
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Kin‐Ming Kwan
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| |
Collapse
|
42
|
Martínez M, Inestrosa NC. The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neurosci Biobehav Rev 2021; 128:454-466. [PMID: 34224789 DOI: 10.1016/j.neubiorev.2021.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder primarily affecting the elderly. The disease manifests as progressive deterioration in cognitive functions, leading to a loss of autonomy. The identification of transcriptional changes in susceptible signaling pathways has provided clues to the origin and progression of AD and has pinpointed synapse loss as the prominent event in early stages of the disease. Synapse failure represents a key pathological correlate of cognitive decline in patients. Genetics and transcriptomics studies have also identified novel genes, processes, and pathways associated with AD. This evidence suggests that a deficiency in Wnt signaling pathway contributes to AD pathogenesis by inducing synaptic dysfunction and neuronal degeneration. In the adult nervous system, Wnt signaling plays a crucial role in synaptic physiology, modulating the synaptic vesicle cycle, trafficking neurotransmitter receptors, and modulating the expression of different genes associated with these processes. In this review, we describe the general transcriptional landscape associated with AD, specifically transcriptional changes associated with the Wnt signaling pathway and their effects in the context of disease.
Collapse
Affiliation(s)
- Milka Martínez
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
43
|
Galli S, Stancheva SH, Dufor T, Gibb AJ, Salinas PC. Striatal Synapse Degeneration and Dysfunction Are Reversed by Reactivation of Wnt Signaling. Front Synaptic Neurosci 2021; 13:670467. [PMID: 34149390 PMCID: PMC8209303 DOI: 10.3389/fnsyn.2021.670467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Synapse degeneration in the striatum has been associated with the early stages of Parkinson’s and Huntington’s diseases (PD and HD). However, the molecular mechanisms that trigger synaptic dysfunction and loss are not fully understood. Increasing evidence suggests that deficiency in Wnt signaling triggers synapse degeneration in the adult brain and that this pathway is affected in neurodegenerative diseases. Here, we demonstrate that endogenous Wnt signaling is essential for the integrity of a subset of inhibitory synapses on striatal medium spiny neurons (MSNs). We found that inducible expression of the specific Wnt antagonist Dickkopf-1 (Dkk1) in the adult striatum leads to the loss of inhibitory synapses on MSNs and affects the synaptic transmission of D2-MSNs. We also discovered that re-activation of the Wnt pathway by turning off Dkk1 expression after substantial loss of synapses resulted in the complete recovery of GABAergic and dopamine synapse number. Our results also show that re-activation of the Wnt pathway leads to a recovery of amphetamine response and motor function. Our studies identify the Wnt signaling pathway as a potential therapeutic target for restoring neuronal circuits after synapse degeneration.
Collapse
Affiliation(s)
- Soledad Galli
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stefka H Stancheva
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Tom Dufor
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
44
|
Li WH, Gan LH, Ma FF, Feng RL, Wang J, Li YH, Sun YY, Wang YJ, Diao X, Qian FY, Wen TQ. Deletion of Dcf1 Reduces Amyloid-β Aggregation and Mitigates Memory Deficits. J Alzheimers Dis 2021; 81:1181-1194. [PMID: 33896839 DOI: 10.3233/jad-200619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease. One of the pathologies of AD is the accumulation of amyloid-β (Aβ) to form senile plaques, leading to a decline in cognitive ability and a lack of learning and memory. However, the cause leading to Aβ aggregation is not well understood. Dendritic cell factor 1 (Dcf1) shows a high expression in the entorhinal cortex neurons and neurofibrillary tangles in AD patients. OBJECTIVE Our goal is to investigate the effect of Dcf1 on Aβ aggregation and memory deficits in AD development. METHODS The mouse and Drosophila AD model were used to test the expression and aggregation of Aβ, senile plaque formation, and pathological changes in cognitive behavior during dcf1 knockout and expression. We finally explored possible drug target effects through intracerebroventricular delivery of Dcf1 antibodies. RESULTS Deletion of Dcf1 resulted in decreased Aβ42 level and deposition, and rescued AMPA Receptor (GluA2) levels in the hippocampus of APP-PS1-AD mice. In Aβ42 AD Drosophila, the expression of Dcf1 in Aβ42 AD flies aggravated the formation and accumulation of senile plaques, significantly reduced its climbing ability and learning-memory. Data analysis from all 20 donors with and without AD patients aged between 80 and 90 indicated a high-level expression of Dcf1 in the temporal neocortex. Dcf1 contributed to Aβ aggregation by UV spectroscopy assay. Intracerebroventricular delivery of Dcf1 antibodies in the hippocampus reduced the area of senile plaques and reversed learning and memory deficits in APP-PS1-AD mice. CONCLUSION Dcf1 causes Aβ-plaque accumulation, inhibiting dcf1 expression could potentially offer therapeutic avenues.
Collapse
Affiliation(s)
- Wei-Hao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin-Hua Gan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fang-Fang Ma
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rui-Li Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yan-Hui Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang-Yang Sun
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ya-Jiang Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin Diao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fei-Yang Qian
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tie-Qiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
45
|
Robert C, Wilson CS, Lipton RB, Arreto CD. Evolution of the Research Literature and the Scientific Community of Alzheimer's Disease from 1983-2017: A 35-Year Survey. J Alzheimers Dis 2021; 75:1105-1134. [PMID: 32390624 DOI: 10.3233/jad-191281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study surveys the development of Alzheimer's disease (AD) in the research literature, the scientific community, and the journals containing AD papers over a 35-year period. Research papers on AD published from 1983 to 2017 in journals indexed in the Web of Science were analyzed in seven five-year periods. The number of AD papers increased from 1,095 in 1983-1987 to 50,532 by 2013-2017 and in the same time period, the number of participating countries went from 27 to 152. The US was the most prolific country throughout, followed by several European countries, Canada, Australia, and Japan. Asian countries have emerged and by 2013-2017, China surpassed all but the US in productivity. Countries in Latin America and Africa have also contributed to AD research. Additionally, several new non-governmental institutions (e.g., ADNI, ADI) have emerged and now play a key role in the fight against AD. Likewise the AD scientific publishing universe evolved in various aspects: an increase in number of journals containing AD papers (227 journals in 1983-1987 to 3,257 in 2013-2017); appearance of several AD-focused journals, e.g., Alzheimer's & Dementia, Journal of Alzheimer's Disease; and the development of special issues dedicated to AD. Our paper complements the numerous extant papers on theoretical and clinical aspects of AD and provides a description of the research landscape of the countries and journals contributing papers related to AD.
Collapse
Affiliation(s)
- Claude Robert
- Université Paris Descartes, Paris, France.,Gliaxone, Saint Germain Sous Doue, France
| | - Concepción S Wilson
- Formerly at: School of Information Systems, Technology and Management, University of New South Wales, UNSW Sydney, Australia
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles-Daniel Arreto
- Gliaxone, Saint Germain Sous Doue, France.,Université Paris Descartes, Faculté de Chirurgie Dentaire, Hôpital Bretonneau, HUPNVS, AP-HP, Paris, France
| |
Collapse
|
46
|
Pei YA, Davies J, Zhang M, Zhang HT. The Role of Synaptic Dysfunction in Alzheimer's Disease. J Alzheimers Dis 2021; 76:49-62. [PMID: 32417776 DOI: 10.3233/jad-191334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deemed as incurable, Alzheimer's disease (AD) research is becoming less convoluted as our understanding of its pathology increases. With current treatments focusing on merely mitigating the symptoms of AD, there have been many attempts to find a molecular culprit to serve as the single underlying cause and therapeutic target for clinical applications to approach the disease from its roots. Indeed, over the course of decades, the endless search for a singular target culprit in AD has uncovered a cascade of pathological defects, adding on to each other throughout the progression of the disease. The developmental patterns of amyloid-β (Aβ) oligomers have been studied as a means to discover the complex molecular interplay between various immune responses, genetic mutations, pathway disturbances, and regulating factors that disturb synapse homeostasis before disease manifestation. This new understanding has shifted the underlying goal of the research community from merely removing Aβ oligomers to finding methods that can predict high risk individuals and resorting to cocktail-drug treatments in an attempt to regulate multiple pathways that cumulatively result in the debilitating symptoms of the disease. By utilizing various assays from immuno-targeting to molecular biomarkers, we then interfere in the molecular cascades in an endeavor to avoid synapse dysfunction before disease maturity. Here, we review the current literature supporting the importance of synapses in AD, our current understanding of the molecular interactions leading up to clinical diagnoses, and the techniques used in targeted therapies.
Collapse
Affiliation(s)
- Yixuan Amy Pei
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Julie Davies
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Melanie Zhang
- Department of Neurobiology, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
47
|
Pope ED, Cordes L, Shi J, Mari Z, Decourt B, Sabbagh MN. Dementia with Lewy bodies: emerging drug targets and therapeutics. Expert Opin Investig Drugs 2021; 30:603-609. [PMID: 33899637 DOI: 10.1080/13543784.2021.1916913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Dementia with Lewy bodies (DLB) is characterized by the toxic accumulation of α-synuclein protein inside neural cells; this results in neurodegeneration which is clinically accompanied by behavioral and psychological changes. DLB shares features with Parkinson's disease (PD) and Parkinson's disease dementia (PDD), but also overlaps neurochemically and pathologically with Alzheimer's disease. Symptomatic treatments for LBD differ in their effectiveness while disease-modifying and curative approaches are much needed.Areas covered: We explore emerging therapeutics for DLB through the lens of repurposing approved drugs and survey their potential for disease modifying actions in DLB. Given the complexity of DLB with multiple pathologies, potential therapeutic targets that could affect Lewy body pathology, or metabolism or neurotransmitters or immunomodulation were surveyed. We queried PubMed and ClinicalTrials.gov searches 2017-2020.Expert opinion: DLB is not simply aredux ofAD or PD; hence, treatments should not be exclusively duplicative ofAD or PD directed treatments. This opens amyriad of possibilities for therapeutic approaches that are disease specific or repurposed.
Collapse
Affiliation(s)
- Evans D Pope
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Laura Cordes
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Jiong Shi
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Zoltan Mari
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Boris Decourt
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Marwan Noel Sabbagh
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| |
Collapse
|
48
|
Andrade-Restrepo M, Ciuperca IS, Lemarre P, Pujo-Menjouet L, Tine LM. A reaction-diffusion model of spatial propagation of A[Formula: see text] oligomers in early stage Alzheimer's disease. J Math Biol 2021; 82:39. [PMID: 33768404 DOI: 10.1007/s00285-021-01593-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/30/2020] [Accepted: 03/12/2021] [Indexed: 11/28/2022]
Abstract
The misconformation and aggregation of the protein Amyloid-Beta (A[Formula: see text]) is a key event in the propagation of Alzheimer's Disease (AD). Different types of assemblies are identified, with long fibrils and plaques deposing during the late stages of AD. In the earlier stages, the disease spread is driven by the formation and the spatial propagation of small amorphous assemblies called oligomers. We propose a model dedicated to studying those early stages, in the vicinity of a few neurons and after a polymer seed has been formed. We build a reaction-diffusion model, with a Becker-Döring-like system that includes fragmentation and size-dependent diffusion. We hereby establish the theoretical framework necessary for the proper use of this model, by proving the existence of solutions using a fixed point method.
Collapse
Affiliation(s)
- Martin Andrade-Restrepo
- Department of Applied Mathematics and Computer Science, Universidad del Rosario, Bogotá, 111711, Colombia.,Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Université de Paris, 750205, Paris, France
| | - Ionel Sorin Ciuperca
- Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1, Univ Lyon, 69622, Villeurbanne, France
| | - Paul Lemarre
- Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1, Univ Lyon, 69622, Villeurbanne, France
| | - Laurent Pujo-Menjouet
- Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1, Univ Lyon, 69622, Villeurbanne, France
| | - Léon Matar Tine
- Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1, Univ Lyon, 69622, Villeurbanne, France.
| |
Collapse
|
49
|
Liu X, Wang K, Wei X, Xie T, Lv B, Zhou Q, Wang X. Interaction of NF-κB and Wnt/β-catenin Signaling Pathways in Alzheimer's Disease and Potential Active Drug Treatments. Neurochem Res 2021; 46:711-731. [PMID: 33523396 DOI: 10.1007/s11064-021-03227-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
The most important neuropathological features of Alzheimer's disease (AD) are extracellular amyloid-β protein (Aβ) deposition, tau protein hyperphosphorylation and activation of neurometabolic reaction in the brain accompanied by neuronal and synaptic damage, and impaired learning and memory function. According to the amyloid cascade hypothesis, increased Aβ deposits in the brain to form the core of the senile plaques that initiate cascade reactions, affecting the synapses and stimulating activation of microglia, resulting in neuroinflammation. A growing number of studies has shown that NF-κB and Wnt/β-catenin pathways play important roles in neurodegenerative diseases, especially AD. In this review, we briefly introduce the connection between neuroinflammation-mediated synaptic dysfunction in AD and elaborated on the mechanism of these two signaling pathways in AD-related pathological changes, as well as their interaction. Based on our interest in natural compounds, we also briefly introduce and conduct preliminary screening of potential therapeutics for AD.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kaiyue Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xing Wei
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tian Xie
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Lv
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
50
|
Inestrosa NC, Tapia-Rojas C, Cerpa W, Cisternas P, Zolezzi JM. WNT Signaling Is a Key Player in Alzheimer's Disease. Handb Exp Pharmacol 2021; 269:357-382. [PMID: 34486097 DOI: 10.1007/164_2021_532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cellular processes regulated by WNT signaling have been mainly studied during embryonic development and cancer. In the last two decades, the role of WNT in the adult central nervous system has been the focus of interest in our laboratory. In this chapter, we will be summarized β-catenin-dependent and -independent WNT pathways, then we will be revised WNT signaling function at the pre- and post-synaptic level. Concerning Alzheimer's disease (AD) initially, we found that WNT/β-catenin signaling activation exerts a neuroprotective mechanism against the amyloid β (Αβ) peptide toxicity. Later, we found that WNT/β-catenin participates in Tau phosphorylation and in learning and memory. In the last years, we demonstrated that WNT/β-catenin signaling is instrumental in the amyloid precursor protein (APP) processing and that WNT/β-catenin dysfunction results in Aβ production and aggregation. We highlight the importance of WNT/β-catenin signaling dysfunction in the onset of AD and propose that the loss of WNT/β-catenin signaling is a triggering factor of AD. The WNT pathway is therefore positioned as a therapeutic target for AD and could be a valid concept for improving AD therapy. We think that metabolism and inflammation will be relevant when defining future research in the context of WNT signaling and the neurodegeneration associated with AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Laboratory of Neurobiology of Aging, Facultad de Medicina y Ciencia, Universidad de San Sebastián, Sede Los Leones, Santiago, Chile
| | - Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|